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ABSTRACT 

By means of correlation functions the statistics of 

light fluctuations caused by the motions of atmospheric 

scatterers are developed. The light fluctuations are in­

fluenced by the physical properties of the scattering medium 

(number density fluctuations of the scatterers, Brownian and 

turbulent motion of the scatterers, and the perturbations in 

the transmitted light caused by turbulent refractive inhomo-

geneities), the optics of the source-receiver system (receiv­

er aperture size), and the noise characteristics of the 

receiver (photocurrent shot-noise). All the previously men­

tioned effects are included in a photocurrent correlation 

function (the photocurrent is the measurable quantity asso­

ciated with the received light). From this correlation 

function,the first and second moments of the probability dis­

tribution and the mean time between independent values of 

the photocurrent are obtained. The results are applied to a 

typical radar system and, then, to the University of Arizona 

lidar system. First, the results show that the received ra­

dar signal (photocurrent) fluctuates according to an exponen­

tial distribution (Rayleigh); this is substantiated by experi­

ment. Second, the lidar photocurrent fluctuations are found 

to be normally distributed with a mean directly proportional 

to the number of molecules and particulates in the scattering 

ix 
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volume; the variance is dominated by shot-noise. The large 

receiver apertures typically employed in systems like the 

University of Arizona lidar cause the dominance of shot-

noise in the fluctuations. It is shown that changing some 

of the lidar's geometric configurations (e.g., reducing re­

ceiver aperture size and/or reducing the size of the scatter­

ing volume) will allow the fluctuations associated with the 

scatterer motion to dominate shot-noise. 



CHAPTER 1 

INTRODUCTION AND SYNOPSIS 
I 

1.1 Introduction 

Lidar systems are now being regularly used to remote­

ly detect the atmospheric structure of aerosols. Fluctua­

tions in the light intensity scattered from those aerosols 

create an uncertainty in the true atmospheric structure. 

This paper is an attempt to analyze the physical processes 

which cause these fluctuations. Correlation functions are 

chosen as the vehicle for this analysis because of the ease 

by which certain physical processes can be evaluated. In­

cluded in the analysis are the effects of number density 

fluctuations of the scatterers, Brownian and turbulent motion 

of the scatterers, and phase perturbations caused by turbu­

lent refractive inhomogeneities. The results are sufficient­

ly general to be applied to most lidar systems as well as 

typical radar systems. 

Smith (1965) discusses some work related to the fluc­

tuations in scattered laser light received from particulate 

and molecular scatterers. Smith presents some actual exam­

ples of laser light scattered from the atmosphere as the 

laser beam propagates at increasing range with the receiver 

looking directly along the laser beam path (monostatic 

1 
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system; these examples were taken from a series of experi­

ments performed by Collis and Ligda 1964). When the laser 

light was received and converted into a photocurrent, the 

most notable property of the photocurrent was smaller fluc­

tuations than expected. Smith expected the photocurrent to 

exhibit the larger fluctuations of a Rayleigh distributed 

photocurrent. This result is based upon the assumption that 

the laser light is scattered from randomly distributed, inde­

pendent scatterers (Marshall, Hitschfeld, and Wallace 1953); 

the assumption seems quite reasonable and is discussed fur­

ther in this dissertation. In order to account for the ob­

served smaller fluctuations, Smith gives several hypotheses. 

All of these hypotheses incorporate some means of averaging 

the laser light over several independent values. This averag­

ing causes the statistical variance of the fluctuation to be 

reduced by the square root of the number of independent 

values, thus explaining the smaller fluctuations. This dis­

sertation reaches conclusions similar to those just stated. 

Further, the effects of the photoelectric conversion and the 

variations in the transmission of the laser light are ana­

lyzed; these factors are not discussed by Smith. 

In Chapter 2, the photocurrent correlation function 

is calculated in terms of the intensity correlation function 

of the scattered light incident on the receiver. Recall 

that the photocurrent correlation function is a statistical 
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average of the product of two values of the photocurrent at 

two separate times; the intensity correlation function is 

similarly defined. From the photocurrent correlation func­

tion the first two statistical moments of the photocurrent 

probability distribution are obtained, as well as the inde­

pendence time of the photocurrent. This information is used 

to calculate the relative magnitudes of the experimental 

error in the photocurrent for typical lidar systems. 

Using the University of Arizona monostatic facility 

operating under normal conditions as a typical lidar system, 

the photocurrent fluctuations are indeed calculated to be 

smaller than the Rayleigh distributed photocurrent as indi­

cated by Smith (1965). Even more surprising is the result 

that the photocurrent fluctuations associated with the scat-

terer motion (scatterer noise) are far below the shot noise. 

It is shown that the size of the scattering volume and the 

collecting aperture of the lidar system principally deter­

mine the number of spatial coherence areas contained within 

the collecting aperture. As the number of coherence areas is 

increased, the fluctuations in the collected laser light are 

reduced. Since the scatter noise is a property of the col­

lected light and the shot noise is a property of the photocur­

rent itself, then increasing the number of spatial coherence 

areas reduces the scatter noise but not the shot noise. The 

number of coherence areas associated with typical lidar sys­

tems is so large that the scatter noise is found to be far 
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below the shot noise. Finally, it is of interest to consider 

lidar systems in which the number of coherence areas are 

small (diffraction limited). Under such conditions a whole 

new set of interesting problems arise. The results discussed 

in the previous paragraph are present in Chapter 3. 

In conclusion some of the original work in this dis­

sertation was placed into the Appendices, because its inclusion 

in an already cumbersome text would have lead to unnecessary 

confusion. 

The synopsis which follows is a condensation of some 

of the more salient contributions brought forth in this 

dissertation. The synopsis references portions of the main 

text where more detailed information can be found. 

1.2 Synopsis 

1.2.1 Light Scattered in a Continuous 
Bistatic Source-receiver System 

Consider a continuous, narrow beam of quasimonochro-

matic (laser) light illuminating a region of space containing 

molecular and particulate scatterers. Let a receiver view a 

portion of the illuminated space in order to. collect the 

light scattered from the molecules and particulates (atmos­

pheric scatterers). The received light is from those scat­

terers in the source-receiver common volume (scattering 

volume) yet the phase and amplitude of the received light is 

modified by the medium between both the source and the 



scattering volume and the scattering volume and receiver. 

Mathematically, a transmitted, scalar component of the light 

field, E^., which arrives at the scattering volume from the 

source can be expressed as 

-ka ~kai "ka-i E. = Et e + £ E . e + £ E . e J + H.O.T. (1.1) t Ii . mi . pi x j 

where E^ is the light source field attenuated by the mole-

~ kot cules and particulates along the path, according to e , 

where k = 27T/X (X - wavelength) and a ^meter/ is the atten­

uation parameter which includes the absorption and scattering 

of the laser light out of the beam. The second and third 

terms represent the single scatter contributions from the 

molecules and particulates, respectively; these terms are 

similarly adjusted for attenuation. The higher order terms 

that appear in (1.1) represent multiple scattering 

contributions. However for the weakly scattering medium en­

visioned for this paper, these terms can be neglected. 

When the summation is performed over the molecular 

contribution, the resultant field can be divided into two 

components due to small and large scale correlation lengths 

in the spatial number density distribution of the molecules. 

The resultant field component from the molecules whose spa­

tial number density correlation length is small compared to 

the wavelength (X) of the (laser) light, is called the Ray-

leigh component, while the component which typifies large 
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Pig. 1.1 Geometry of the Bistatic Source-Receiver System. 
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scale correlation lengths (turbulent refractive inhomogenei-

ties) with respect to X, is called the eddy component. The 

Rayleigh component of the scattered light appears in all 

directions, while the eddy component appears primarily in 

the forward direction (the larger the eddy compared to A, 

the closer to the forward direction is the scattered light). 

The molecular field component in (1.1) can now be written as 

-ka. 9 -ka. -ka. 
E E . e 1 = E® + E* = Z E*. e 1 + £ E®. e 1 (1.1a) 
^ mi m m ^ mi ^ mi 

where the superscripts e and R refer to the eddy and Rayleigh 

field components, respectively, while the superscripts % and 

s refer to the large and small number density correlation 

lengths, respectively. 

The light field which arrives at the receiver is ex­

pressed in a manner similar to (1.1) except that the scatter-

ers within the scattering volume now act as the source for 

the light arriving at the receiver. A complete expression 

for the light field arriving at the receiver from one scat-

terer within the scattering volume can be found after some 

preliminary simplification; this expression can be immediate­

ly extended to a collection of scatterers. First, the medium 

is assumed to be non-absorbing, so that attenuation of the 

light is caused strictly by scattering. Second, the eddy 

term, E®, is assumed to arise from weak, homogeneous, and 
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isotropic refractive turbulence consisting of eddies ranging 

in size from the inner scale of turbulence (JtQ) of 1.2 cm to 

an outer scale (Lq) of 10 m. Furthermore, since a typical 

(laser) wavelength is X 'V 7 x 10"5 cm, the eddy component ap­

pears essentially in the forward direction and scatters little 

light out of the beam. Consequently, does not attenuate 

the transmitted light, but modifies its amplitude and phase. 

To express this modification, E^ is combined with the trans­

mitted light field arriving at both the scattering volume and 

the receiver, where the combination is expressed by a new 

light field with a perturbed amplitude and phase. In addi-

tion since Em appears only along the transmission paths, 

there are no Em sources in the scattering volume which con­

tribute light to the receiver for the bistatic system (see 

Fig. 1.1) collecting light away from the forward direction 

of the initial source. Finally, for the weak scattering me­

dium envisioned, it can be shown that the contributions 

along the path from the scattering volume to the receiver of 
R —kot. 
Em and E^ =?E^j e J are negligible (see Appendix B) com­

pared to the other terms in (1.1 and 1.1a). Therefore, a 

component of the light field from one scatterer arriving at 

a point P on the receiver at time t . (r„,t)_7 for the bi-
m) 

static source-receiver system depicted in Figure 1.1 can be 

expressed with respect to some arbitrary origin in the 

common volume according to 
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Ej (rs,t) « (1.2) 

i/wt+fc «j (r -r .) -£ • (r-r . J_7 
x e o] o 3 s] s u*-

x e 
^0~^j)ft7r+ yZ. (rg-r^) ,t_7> 

(b) 

(c) 

-k{a£ (r-r.) ,t 7 + (r -r .),t 7) (d) 
xe o- 3 - s 3 -

iq . (t) (e) 
x e J 

where term (1.2a) is a component of the electric field ampli­

tude which arrives at the receiver (P) from the jth scatter-

er within the common volume adjusted for the perturbation of 

E® from the source to the scatterer /Tr -r.) 7 and from the m — o j — 

scatterer to the receiver [_ (rg-rj)_/? this case (1.2a) is 

a real number. The time dependence expresses the changing 

amplitude not only as the scatterer moves rjHrj(t)__/ but 

also as the refractive eddies move. Term (1.2b) expresses 

the phase of the scattered light in terms of the geometric 

path from the source to point P on the receiver (a> is the 

light frequency, k . and k . are the propagation vectors 
J J 

whose absolute values equal 2it/X and whose directions are 

along the incident and scattered light paths for the jth par­

ticle, respectively; these vectors change direction in time 

as the scatterer moves. Term (1.2c) denotes the perturbation 
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in the phase of the light (expressed by y) caused by the 

refractive turbulence. Term (1.2d) represents the attenua­

tion of the light. Finally, Term (1.2e) accounts for the 

temporal coherence of the light where q.(t) is a phase fac-
J 

tor (between 0 and 2ir) for the jth particle at time t. If 

two scattering events occur at time t^ and time 

then 

i&lj (ti)-qj <t2)-7 
- 1 for Itj-t^lt, 

< e ~ J  "  J  ' " > =  ( 1 . 2 f )  

= 0 for 111 — t I > t 1 1 21 c 

where < > denotes the ensemble average and t is the tempo-

ral coherence time of the light. 

1.2.2 Intensity Correlation Function 

If the assumption of stationarity in the mean proper­

ties of the scattering medium is assumed, then the statisti­

cal properties of the light intensity fluctuations at the 

receiver can be expressed in terms of an intensity correlation 

function. This function contains information on the mean and 

variance of the intensity probability distribution, the mean 

time between independent values of the intensity, and the 

spectral distribution of the light fluctuations. The most 

general form of the intensity correlation function <I(r ,0) s 

I (r' , t) >/cTenoted symbolically by RT(r ,r*,t)7 expresses the o X *b S ™ 

correlation of the intensity for both space and time according 
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to 

RI(^s'*s't)E <I^'0) I (rs#t)> (1.3) 

The expression denotes an average over all the possible val­

ues which the intensity may assume at two arbitrary points, 

r and r' in space and at two arbitrary times ti and t2. 5 S 

For the case discussed here rg denotes, as before, some point 

on the receiver, while r' is an adjacent point on the receiv-

er. Finally, from the stationarity assumption the correla­

tion in time depends only on the time delay t between the 

two arbitrary times here defined as tx=0 and t2=t, and hence 

in (1.3) tj is set equal to 0 and t2 equal to t. 

The intensities expressed in (1.3) are directly re­

lated to the light fields of the scatterers expressed by 

(1.2) according to 

l(rs,0) = E(rg, 0) E*(rg,0) 

(1.4) 

« £ E. (r ,0) 2 E*(r_0) 
i i s j ^ s 

where the * superscript denotes the complex conjugate of the 

light field and the expression is summed over all the scat­

terers contained in the scattering volume. An expression 

similar to (1.4) exists for I(r',t). The light field expres-
s 

sions in (1.4) can be individually summed over the molecular 

(Rayleigh component) and particulate field contributions so 
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that 

E(rs,0) = Em(rs#0) + Ep(rs,0) (1.5) 

where the m and p subscripts denote the separate contribu­

tions of the molecules^- and particulates, respectively. Us­

ing (1.4) and (1.5) in (1.3) results in an expression 

containing sixteen terms. Ten of these sixteen terms involve 

products of terms similar to <E (r ,0)E*(r1,t)>: these terms m s' ' p s' ' f 

are zero because the motions of the molecules and particu­

lates and, therefore, the associated, scattered light fields 

are assumed independent (see 2.7). The six terms which are 

left boil down to the expression given by 

+ V^s'^p 

(1.6) 

+ 2 + 2<V <Ip> 

where Rein front of the /~ _J7 brackets denotes the real por­

tion of the quantity contained within, <1 > and <1 > are the 
^ J ' m p 

mean intensities of the molecular and particulate portions 

of the light, respectively, and R„(r ,r',t) with the appro-
£i S S 

priate subscripts signifies the field correlation function 

of the molecules and particulates, generally given by 

R,(rQ,r .t) = <E(r ,0)E*(r',t)> (1.7) 

1. Note: superscript R is deleted from expression 
(1.1a). 
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Prom (1.6) the effects of the molecules and particu­

lates can be analyzed separately; the particulate component 

will be analyzed in detail, while the molecular component 

can be extracted by analogy. 

1.2.2a Particulates. The field component of the jth 

particulate scatterer, generally expressed by (1.2) must be 

simplified for the analysis to follow. First, for the weak 

turbulence assumed, (1.2a) will assume its unperturbed, time-

independent, free-space value denoted by A ̂ . Second, (1.2d) 

is neglected and discussed later, since it is negligible in 

most cases. Using this modified form of (1.2), and (1.3) 

and (1.4), the particulate intensity correlation function is 

given by 

^ N (0). N (0) N (t) N(t) (1.8) 
R_(r ,r',t) = < Z Z S Z A. A. A Ap (a) 

J- s s p i=l j=l k=l Jt=l 

exp {i/^\(0,rs) - <{>j(0,rs) + (b) 

where 

=  "V? j  +  Yoj ( t )  +  Ysj ( t )  "  5sj - ?s +  ,3j< t >  

where K^ - ̂ sj/ and YQj (t) and Ysj (t) are the phase 

terms in the brackets of (1.2c) and q.(t)is as defined by 

(1.2e). In (1.8b), i appears in front of the J brackets 

and as a subscript, the former denotes /-l, while the latter 

is a sum index. Further, portions of the phase representation 
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expressed in (1.2b) do not appear in (1.8 ) because they are 

common to all $ terms in (1.8b) and would cancel. Finally 

N(0) and N(t) denote the total number of particles in the 

scattering volume at time 0 and time t, respectively. 

The analysis of (1.8) begins by summing over the in­

dices; this leads to three independent sums given by 

RI(rs'rs't}p = (1-9a) + <1-9b) + (1.9c) 

for i=j and k=Jt 

(1.9a) N (0) N(t) 
"< £ |A. I 2 E | A. | 2> 

i-1 1 j=l 3 

for i=£. and j=k, but i^j 

(1.9b) N'(t) N* (t) 
=< L |a. I2 E |A. |2 x exp {i^<f>,(0,r ) 

i=l 1 j=l 3 is 

-<}>i(t/r^)7 (0#rs)-*j (t,r^)7}> 

for i=k, j=A; i^j 
(1.9c) 

= 0 

In (1.9a) the individual intensities from each par­

ticle are denoted by the |a^|2 terms where N(0) and N(t) 

account for the motions into and out of the scattering volume 

between time 0 and t. In (1.9b) N*(t) is the number of par­

ticles from the original N(0) which remain within the scatter 

ing volume after time t; only the particles that remain can 

have a correlated phase. The < > brackets refer to an 
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ensemble average over all the positions the particles may 

assume within the scattering volume and all the realizations 

the turbulent medium may assume along the two-way transmis­

sion path. Finally (1.9c) expresses all remaining terms which 

contain factors which involve the initial phase position of 

the particles. When the ensemble average is taken over the 

initial phase positions of the particles, the result yields 

<e j o, for 4> j (0) random (1.10) 

As a consequence of (1.10) all terms in (1.9c) are zero. 

The exponential which appears in (1.9b) has a complete 

expression written as 

<exp i{Ki-/7^i (t)-r^. (0)7 - iL-/r\ (t) -r_. (0)/ + ^sj~^si} *^s 

- (^sj-^si) *rg + ZSitOJ-q^tJ-q.. (0)+q_. (t)_7 (1.11) 

+Zvoi<0)+Ysi(0)-Yoi<t>-Y^i(t)-Yoj(0)-Ysj(0>+Yoj(t>+Y^j(t)7}> 

where the terms K. , K. (time dependence not expressed) denote 
1 3 

the appropriate scattering vectors for the i and jth parti­

cles, respectively, and the < > brackets denote the expecta­

tion value or ensemble average which can be taken independent 

of the summation terms over N'(t) in (1.9b). Using (1.2f) 

only those particles i and j which are within a temporal co­

herence length ̂ denoted as tc/C, where C is the speed of 
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light7 remain correlated over the ensemble average, at time 

0 and t so that 

<exp i{q.(0)-q.(0)-q.(t)+q•(t)}> ^ 1 (1.12) 
i J 1 ^ J 

1.2.3 Temporal Intensity Correlation 
Function: R_{t ,? /t)„ 1—s-—s-—p 

In order to discuss the temporal characteristics of 

the scattered light arriving at a point on the receiver from 

particles i and j, and then from a larger collection of par-

tides and molecules, it is assumed that r = r' (implies s s 

Jc = Ic' for all i and j) , therefore (1.11) becomes (\vith 1.12 5 s 

assumed) 

<exp i{K*^~r . (t)-r . (0)/"r.(t)-r . (0)7 
1 ^ 3 (1.13) 

+ ZVoi(0)-YOJ(0)+YSI(0)-YSJ(0)-YOI(t)+Yq}(t)"YSI (t) +YS}(t)J 

where the ' is dropped in y*.(t) and y'.(t) since r = r', 
si 3 

and the subscripts on the K's are dropped, since K. - K.. It 
1 j 

can be shown that for the weak, homogeneous, isotropic turbu­

lence assumed in this paper that ~ YQj (0) depends only 

on 

kox/~r.(0) - r. (0)71 
— 

h + 3 88 

!*ol  

•V 
where x denotes cross-product. There exists an 5Lq such 

that 



17 

iZYoi<0)-Yoj<0!7 _ - 1 for lQ < 2^ 
< e - (1.14) 

- 0 for I < I, o — tc 

where %. is defined as the transmitted, turbulent coherence tc 

length. This length is nothing more than the point beyond 

which the difference between the optical paths of the trans­

mitted light arriving at i and j fluctuates randomly between 

more than say -A/4 and A/4, thereby causing 

< „ o 

as expressed by (1.14). A relation similar to (1.14) exists 

for (y_j (0)-y . (0)) and the associated coherence length 
s i 3 

(A ) will be called the received turbulence coherence length, 
3T C 

In addition the terms (t) ~Y0j (t]_/ and (t) -yg j (t|7 

have coherence lengths I. and Z associated with them re-tc rc 

spectively. Therefore all particles i and j which have the 

appropriate components of relative separation less than 5L^c 

and I at time 0 and t will satisfy the condition that all rc J 

y  terms appearing in the second line of (1.13) vanish. 

Therefore, using this condition and (1.12) expression (1,9b) 

becomes 

N' (t) N' (t) 
< l |a.i2 Z |a.|2> <exp i{K*/~r.(t)-r.(O^z-K*^-r.(0) 
i=l 1 j=l 3 . x 3 

^ " rj(ti^> (1.15) 

where < > is separated since the movement of particles i and 
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j can be evaluated independently of the total number of par­

ticles within the scattering volume. Term (1.15) has the 

stipulation that it includes only those particles i and j 

whose components of separation are less than the temporal 

coherence length (t /C), and the transmitted and received, 
w 

turbulent coherence length {I. and Jt ) both at time 0 and tc rc 

t. These three lengths define what can be called a mutual 

coherence volume, MCV. So only those particles i and j whose 

components of separation remain less than the dimensions of 

an MCV at time 0 and t stay correlated during time 0 and t. 

As a result the scattering volume (V) can be partitioned into 

V/MCV subvolumes within each of which there are N"(0) /N"(0) 

=(MCV/V)N'(02.7 particles. For each MCV only N"(t) of the 

original N" (0) remain within the dimensions of an MCV after 

time t. Therefore (1.15)can be written as 

where each summation term in (1.15) is multiplied by the 

total number of subvolumes (V/MCV) when N'(t) is changed to 

N"(t). 

If AZ^ is denoted as the component of r^(t)-r^(0)in 

the direction K and if K is the absolute value of K, then 

the exponential part of (1.15) becomes 

> (1.16) 

<exp i/K(AZ.-AZ.) 7> 
i 3"" 

(1.17) 



Assuming the Brownian (B) and the turbulent motion 

B T (T) of the particles are independent and if AZ^ = AZ^ + AZ^ 

then (1.17) becomes 

<exp i^K(AZ^B - AZ<exp i^K(AZ^T - AZjT)_/> (1.18) 

The expressions in (1.18) can be calculated by averag 

ing the exponential over all possible displacements i and j. 

For this purpose a generalized displacement probability func­

tion has been developed after Wang and Uhlenbeck (1945), 

given by 

1 -1 ' 
G(Azi' = iro.o.U-p1)* exp ^l-p2) 

i 3 

AZ.2 AZ ,2 _ AZ.AZ. 
X (—-i— + —3 2 p 3^—-) ) /cm" V (1.19) 

cr. 2 a . 2 a. a . 
3 - d  x  d  

where a". 2 = <AZ.2> and ~p a. a". = <AZ.AZ.>. 
x i l j l j 

1.2.3a Brownian Motion. Integrating the product of 

the first term in the <> brackets of (1.18) and expression 

(1.19) over the limits of an MCV, it can be shown that 

<exp i^K (AZ^B - AZ_.B27> = + 2 ~ 2P 

(1.20) 

where "p = *p0 = 0 since the motion of a Brownian particle is 

non-correlated at all times with the motion of any other 

Brownian particle. Further, 
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4k T 

o. 2 = —-— {exp(-fi.t) + 3-t - 1} 
x mi^i2 

kBT 

h  -nqwr  

where k0 is Boltzmann's constant,T is the Kelvin temperature, 

m^ is the mass of the particles, is the diffusion coeffi­

cient of the particle in air (or water or whatever) ̂ cm2/sec7, 

and t is the time. 

1.2.3b Turbulent Motion. The diffusion of parti­

cles in a turbulent field has many similarities to Brownian 

motion. For homogenous, isotropic, and stationary turbulence 

the probability of displacement distributions is most likely 

to be Gaussian (Hinze 1959), as expressed by (1.19). How­

ever, unlike Brownian motion turbulent motion causes some 

correlated movement between two separated particles. The 

assumptions for turbulent motion are exactly the same as pre­

sented in the previous section on Brownian motion with a few 

exceptions. Since all the particles are assumed to move 

along with the turbulent fluid (air, water, etc.), the dis­

placements are independent of the scatterer size and mass, 

so that 

CT± = 0J « AT (1.21) 

Hinze (1959) states that for small diffusion times 

in homogeneous turbulence, the correlation function (C) of 
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the displacement components of two fluid elements depend on 

the mean separation, <Ari.(t)> (=<jri(t) - r.(t)|>) according 
j 3 

to 

^ <AZ . AZ . > 11 T" y 
C = 1 J = ^1 - if A (e<Ar. . (t)>)2/3 7 

at
2 9 "fitt2 13 

<Ar±j(t)><Ao (1.22) 

C = 0 <Ar^j(t)»Ao 

where A is some absolute constant, (u1)2 is the mean square 

fluctuation velocity of the turbulent air, and e is the eddy 

dissipation, and Ao is the integral scale of turbulence. 

Batchelor (1959) shows that for particles whose separation 

is in the inertial subrange 

<ir±jl(t)> - Ar.^fO) = CQ (Ar±^(0))g A^.MO) (1.23) 

where C is a constant, Ar..(0) is initial separation, 3 is 
w x j 

a power constant. Batchelor found for small t, 3 = 2/3 and 

for intermediate t, 3=1. For the purposes of this disser­

tation a simpler relation valid for all time is proposed ac­

cording to 

|E<Arij2(t)> = r<Ari;.2(t)> (1.24) 

where r is a constant. Upon integration (1.24) yields 
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<Ar. .2(t)> - Ar. . 2 (0) = (eFt- l)Ar 2(0) (1.25) 
j-j lj ij 

The characteristics of (1.25) are simpler than and 

sufficiently analogous to (1.23) and will be used in place of 

(1.23). An explicit relation similar to (1.25) for <r..(t)> 1 j 

has not been found in the literature. Such a relation must 

be found in order that (1.22) can be completely defined so 

that it may eventually be used for p" = in (1.20). To this 

end it is assumed that 

§£ <Ari;j(t)> = ri<rij(t)> (1.26) 

where r* is a constant. Upon integration, (1.26) yields 

<Ar. . (t)> - Ar. .(0) = (er,t- l)Ar..(0) (1.27) 
1 j * J -*• J 

If Ar^j(t) is randomly distributed according to the exponen­

tial distribution 

pi/arij j (t)_7 = <Ar^(t)> e <irij fc > d^Tri;j(t \J 

(1.28) 

then from (1.28) it follows that 

<Ar..2(t)> « 2<Ar..(t)>2 (1.29) 
x j  13 

and substitution of (1.29) into (1.24) immediately yields 
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(1.26) with T' = r/2. Unfortunately, (1.28) cannot be sub­

stantiated. However a relation similar to (1.26) seems phys­

ically sound based on (1.23) and (1.24). Therefore, for 

lack of a better relation, (1.27) will be used. 

Equation (1.27) can now be used in (1.22) where 

(1.22) is slightly modified for the purposes of this disser­

tation to extend the correlation relation to longer periods 

of time, so that 

_ a/3-, 
C - £1 - l_—£ J _7 <4rij(t)» < A, 

(1.30) 
C  =  0  < A r i j >  >  A °  

where (1.30) must now be averaged over all possible initial 

separations £Ar.•(0]_7 within the mutual coherence volume. x j 

In this connection it is equally probable that Ar... (0) may 
i ' j  

assume any value. Consequently, the turbulent correlation 

function, "pT, which is equivalent to p in (1.19) is 

_ ^ <<AZ. AZ. >> , 
PT = <C> = -^r-1 = TmSvT ! C <JV(Ari;j(0)) (1.31) 

°T MCV 

The solution to (1.31) is quite difficult for odd 

shaped, mutual coherence volumes. Yet, when (1.31) is inte­

grated for a spherical MCV of diameter D, the result is 

= 1 " IT (7Tf?r) Z/3 A(t) - D (1.32a) 
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A(t) < D (1.32b) 

where A(t) = Ao exp (-T't). If at time t = 0, Ao is > D then 

all particles within the MCV will have some correlation in 

their initial displacements; the greater Ao is than D the 

closer the average correlation of the particles in the volume 

/Ft_7 approaches 1, as shown by (1.32a). As time progresses 

the correlation becomes less as the particles mean relative 

separations ^<Ar..(t)>7 increase. If Ao < D initially, then 1j 

there are some particles within the MCV which have no corre­

lation in their initial displacements. Therefore, the average 

correlation of the particles in the MCV is small (1.32b) and 

decreases rapidly as time increases. The previously defined 

conditions will hold for any odd shaped MCV; the spherical 

MCV was chosen for the simplicity of explanation. Finally, 

the probability distribution of the displacements caused by 

turbulence is written as 

Integrating the product of the second term in the <> 

brackets of (1.18) and expression (1.33) over an MCV yields 

GT(AZi# AZjft) 

(1.33) 
(AZ? + AZ? - 2pT AZ^Z.) 

•i— } ĉm 

< exp {iK(AZ? - AzT) }> = exp ^-K2/4 {2o^z (1 - pT])/(1.34) 
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The complete expression for the phase term (1.17) influenced 

by Brownian and turbulent motion can now be written as 

<exp {iK(AZi - AZj) }> = exp t-f- /J? + + 2o£ (l-"pTl7> 

(1.35) 

Equation (1.35) completes the analysis of the phase term of 

(1.15) 

1.2.4 Analysis of the Number Density 
Terms of (1.9a) and (1.9b) 

The particle number densities are uniformly distrib­

uted according to the Junge power distribution within size 

interval increments over which a mean intensity i A*1" | 2 = I1 

is calculated. Let f^ be the fraction of the total number 

of particles in the ith increment. For a well-mixed, sta­

tionary distribution f. = v./v where v. is the total mean l i p  i  

number of particles in ith interval and is the total mean 

number of particles of all sizes within the scattering volume 

Finally, let f| be the fractional ratio of the original f^ 

that remains after time t. Such a difference occurs because 

smaller particles escape from the scattering volume faster 

than the larger ones, thereby changing the fractional ratio 

in each size range of the original distribution. From (1.9a) 

and (1.9b) fusing (1.16)_7 the following can be written 



• » J J 
(1.9a) = <N(o)N(t)> Z Z f. f. I1 I3 

(1.9b) = 

i-1 j=l a- 3 

V 
MCV 

J J . . 
2 < /N«« (t)72 > { Z E f ! f\ I I-* 

1 J i=l j=l 
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(1.36) 

- Z (f!)2(I3)2} 
3=1 3 

where J is the number of size intervals. By employing sta­

tistical relationships developed by Chandrasekhar (1943) 

and after lengthy calculations, it can be shown that 

< N(o)N(t) >=v* + - P (t)J vp 

' (t)72 >=v'2 /J ~ P'(t)JZ + vT/1 - P^t^Z (1.37) 
r r 

fi = fi O -  " pi (tl/ 

where v has been defined, v' is the mean number of parti* 
P P 

cles of all sizes within a mutual coherence volume, P(t)is 

the mean probability of escape for all sizes of particles 

from the scattering volume (V), P* (t) is the mean probabil­

ity of escape for all sizes of particles from the mutual 

coherence volume (MCV) and, finally, P|(t). is the mean prob­

ability of escape for the ith sized particle from the MCV. 

Using (1.35), (1.36), and (1.37), the complete temporal, in­

tensity correlation function can be written as (after some 

manipulation) 



RI(*s'*s'fc)p ={vp + &P(tl7vp> A*(o) + 

(1.38) 

VD & " P' (t)_72{A* (t) - B* (t) } C*(t) 
sr 

where 

J J 
A* (t) — Z Z f! f'. I1!3 

i=i j=i 1 3 

J 
B*(t) « I /f! Ix72 

j-i 1 ~ 

C*(t) = exp ^~a| + ~j + 2a* (1 - "pt17> 

A relation similar to (1.38) can be developed (see Appendix 

C) for the molecules and is given by 

Rt  ( r , £ , t )  =  I  {v*  + o* /T - P'(t)72 C*(t) 
I s  s  m  m  m £ -  — '  m  

a.39) 

C*(t) = exp + a * (1 - "pt17} 

where T is the intensity per molecule, vm  is the mean number 

of molecules in the scattering volume V, P*(t) is the mean 

probability of escape of a molecule from an MCV, is the 

mean square displacement for molecules in Brownian motion. 

The other terms have the same meanings as for (1.38). Fi­

nally, terms for R_(r„,r ,t) and R^fr .r .t)m can be found 
E  8  3  p  E S  S  m  

along lines similar to (1.38) and (1.39); the respective re­

lations are (see Appendix C). 
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RE(rs,rs,t)p = vp^r - P'(t)/ 2 f* exp{-|-/^ + a27> 

j~1 (1.40) 

RE(rs/rs,t)m = I{vm/r- P*(t)_7 exp + a^J^} (1.41) 

Expressions (1.38), (1.39), 1.40), and (1.41) can 

be substituted into (1.6)/~r =r' 7 from which the first two •" s s— 

moments of the intensity distribution can be found so that 

lim RT(r ,r ,t) = <I2> = 2(<I > + <1 >)2 (1.42) 
t+0 s s p m 

lim R1{rs,xs,t) - <I>2 = (<Ip> + <Im>^2 (1.43) 

where (1.43) and (1.44) have utilized 

lim {a?,.a2 F2 } =0, lim (P(t) , P7"^), P!(t) , P'(t)> = 0 
t->0 iim t+0 

and lim {a?, a"?, a2} = «, lim (P(t) , P^tt), P!(t), P'(t)} = 1 
t-*a> i t: m t-*-00 

J _ 
in addition <l> = E v.I -1; <1 > = I 

P j=l 3 P 111 mm 

The results expressed by (1.42) and (1.43) are exact­

ly the same results which are obtained for the first two 

statistical moments of Rayleigh (exponential) distributed 

light for which the mean intensity is the sum of the individ­

ual intensities from each scatterer. Although (1,42) and 

(1.43) do not prove the scattered light intensity is Rayleigh 

distributed, the results do not contradict this conclusion. 
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In this connection, the so-called Rayleigh distribution of 

the intensity is given by 

P(I) dl = ̂  exp (-<y>) dl (1.44) 

where <I> is given by (1.43) and p(I) is the probability den­

sity of the. intensity. 

1.2.5 Spatial.Intensity Correlation 

Function: R_(r„ ,r',0) . . . j_... 5 3 p 

In order to examine the spatial characteristics of 

the light arriving at the receiver from particles i and j, 

and then from a larger collection of particles and molecules, 

equation (1.8) has been set with t=0 so that R_ (r ,r',0) 

contains information only about the spatial variations of I 

as caused by spatial variations in the phase of the scattered 

light. With this in mind equation (1.11) becomes 

< exp i<Z.T£sj " itsi> * rs - (£• . - ic^) • 

+ ~ " <3j<o) + qj<027 d.45) 

+ ̂ VSI(0) - Y'I(0) - YSJ(0) + YSJ(0)7}> 

where the meaning and analysis of the q term in (1.45) are 

the same as before, and the y's are the phase perturbations 

induced by the turbulence as the light travels from the ith 

and jth scatterers to position r and r' (for the light paths 5 *3 

to rl a prime superscript appears on the y'si. Evaluating 



the vector terms in the first line of (1.45) yields 
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< exp i{-?-^ (r. - r.) - (rf - r!) + rest of (1.45) }> 
A l 3 A x 3 

(1.46) 

where the r's in (1.46) are the straight line distances from 

the scatterers to the points on the receiver in question. 

The condition required of the phase term in the exponential 

of (1.46) is that, for any pair of particles and any two 

points on the receiver, when the phase term is less than n/8, 

the intensity on the receiver between those two points is 

essentially uniform. For the case in which the incident 

light is temporarily coherent over the scattering volume, 

the q terms in (1.46) can be eliminated. Finally, for the 

weak turbulence considered the y terms are negligible com­

pared to changes in the r's. From these assumptions it can 

be shown from (1.46) that the separation of the two points 

on the receiver, denoted by d, defines a circular area (irdz/4) 

within which the received intensity is essentially uniform 

according to (see 2.7.1b) 

i _ 
r.j - (1.47) 

where A is the wavelength of the light, R is the distance 

i. 
from the scattering volume to receiver and r^j is the sepa­

ration component of the particles i and j perpendicular to the 
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direction of the scattered light. Therefore, if r"!". is set i j 

equal to the largest dimension of the scattering volume's 

cross-section in the plane of the receiver surface, then all 

the particles within the scattering volume will form a spot 

of almost uniform intensity on the receiver surface of diam­

eter d. This spot is commonly called a coherence area. A 

receiver may subtend many coherence areas each having a dif­

ferent mean intensity due to the changed phase orientation 

of the scatterers relative to each coherence area. It is 

assumed that, due to the unpredictability of determining the 

phase relationships among the large number of randomly posi­

tioned scatterers over each coherence area, the distribution 

of intensity with time (see 1.44) and space are analogous. 

The spatial distribution of intensity is important 

because of the typically large receivers needed to collect 

sufficient light for measurement via a photo-electric current. 

This introduces the next point; the measurement of intensity. 

1.2.6 Current Correlation Function 

Most generally the light is received by a large col­

lector and focused to a photo-tube which puts out a current 

characteristic of the collected intensity plus the photo­

tube's own noise characteristics (shot-noise is its primary 

source). It can be shown that the correlation function for 

the photocurrent /R.(t) = <i(0)i(t)> where i(0) is the photo-

current at time 0~J which has been filtered through a RC 
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circuit to reduce shot-noise (see Appendix D) is given by 

Ri(t)f = <i(0)i(t)>f « (M2 - M) <i'>2 + MRj(t)f (1.48) 

where 

- t05§t7 

-t/(RC)-
r + (ape) zRp (t) 

where subscript f denotes the filtered value, M is the number 

of coherence areas on the collector's surface, <i*> is the 

mean photocurrent from one coherence area, R|(t)^ is the fil­

tered current correlation function from one coherence area, 

y is the gain factor of the photomultiplier tube, e is the 

magnitude of the electronic charge, (RC) ̂ is the time con­

stant of the filter, a is the electron conversion efficiency 

of the photo cathode (electron/joules), <F'> is the mean flux 

of the scattered light collected by one coherence area, while 

R£(t) is the flux correlation function, written as 

where F* (0) and F'(t) are the fluxes of the scattered light 

collected by one coherence area at time 0 and t, respectively. 

Both <F'> and Rp(t) are related to the scattered intensity 

by the following relations: 

R'(t) = <F'(0) F*(t)> (1.49) 

<F'> = // <I> dAR dws ^watts/ (1.50) 

coherence 
area 
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Rp(t) = //// RI(rg#rs,t)dAR dws dA^ dtu^ /watts/2 

coherence 
area 

where dA_ and dA' are elements of a coherence area on the re-
k k 

ceiver surface and dw and do)' are elements of solid angle s s 

subtended by an element of the scattering volume at the re­

ceiver. Using (1.48) , (1.49), and (1,50) it can be shown, 

similar to (1.42) and (1.43), that 

lim R. (t) = <i2> = (142 + M) <i'>2 + M<i'> (1.51) 
t->0 v * f 

lim R.-(t) = <i>2 = Mz<i'>2 

where the f subscript is dropped in some cases. Finally 

(1.51) yields the expressions 

<i> - yq <F> 

• <i2> " <i>2 " twit <ij + t1 (1-"> 

where q = ae ^amperes/watt7, <F> = M<F*> is the mean flux 

over the whole collector. The term denoted by a^z is the 

variance due to shot noise, and aQ2 is the variance due to 

fluctuations in the intensity of the scattered light, A 

general probability distribution for the photocurrent /p(i) 
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di see (1.44)J has been developed (see 2.10.4) but is not 

presented here. However, for M large, the photocurrent be­

comes normally distributed with mean and variance given 

according to (1.52). 

This then completes the calculation of the statisti­

cal properties of the scattered (laser) light from a contin­

uous beam (laser). It should be noted that the calculations 

to this point have been sufficiently general to apply to any 

light scattering system. To this end and as an independent 

check on the work, the equations are evaluated for a typical 

radar system and the theoretical results discussed in light 

of actual reported measurements. A final example will be the 

application of the equations to a pulsed lidar system. 

1.2.7 Results 

1.2.7a Radar. Marshall et al. (1953) have shown by 

theory and experiment that the returned signal fluctuations 

from a collection of randomly moving scatterers are Rayleigh 

distributed when the receiver noise is below the signal noise 

from the scatterers (£*nz << tfg2). For the typical radar 

system (Battan 1959) (see 3.3) the half-angle divergence of 

the receiver-transmitter antenna, 0T, is related to the diam­

eter of the receiver-transmitter antenna (d') and radar wave­

length, A, by 

q _ (0 . 85) A /i c o \ 
T 2d* (1,53) 
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Employing (1.53) into (1.47) it can be shown that M 

(see 1.48) is close to 1.0. This implies that the received, 

radar energy is almost completely spatially coherent over 

the whole antenna so that the displayed signal, converted 

from the received energy, exactly follows the received energy 

fluctuation. The latter would be according to (1.44) which 

is the Rayleigh distribution which was found in actual mea­

surements according to Marshall et al. (1953). 

1.2.7b Pulsed, Bistatic System. The intensity cor­

relation function for a pulse of light is somewhat different 

than the continuous bistatic system (see 1.8). The primary 

difference is the temporal correlation among the scatterers 

illuminated by the pulse of light at different times. In 

particular if the pulse length Z - ct^ (c is the speed of 

light) , then for times 0 <_ t t the pulse at time 0 and t 

have part of their volumes common, yet for t > t the pulse 

at time 0 and t illuminates completely independent scatterers. 

The correlation function for the scatterers in the common 

volume will be exactly similar to that of the continuous 

case /RT(r ,r' ,t)7/ while the independent portions of the •>> s s 

two pulses are equivalent to two independent samples of the 
^ ^_ 

continuous case ^R_ (r ,rf ,co)/. Using these considerations <l s s 

the intensity correlation function for the pulsed system 

/R,P(r„,r',t)/ can be written (see 2.6.1) as 
^ X s s — 
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t -t 
(-£—)> s(t) + R-j. (rg,r^,t) (1.54) 

P 

where s(t) = 1; 0 t <_ t 
r 

0? t > t 

It is easily shown that the statistical moments of 

intensity for the pulsed system are exactly the same as those 

for the continuous system. 

A bistatic pulsed lidar system typical of those be­

ing used for studies of atmospheric aerosols is currently 

in operation at The University of Arizona. The most impor­

tant result that the work in this paper reveals about the 

photocurrent fluctuations in this system is that they are 

shot noise limited (in contrast to the radar which is scat-

terer noise limited). The large light collector (collector 

radius = 15 cm) and small wavelength (X = 6943 i£)both com­

bine (see 1.47) to yield a very large number of coherence 

areas (M) for typical scattering volume-receiver geometries. 

M is so large, in fact, that the a 2 term in (1.52) is at 

least two orders of magnitude below aR2. Further, because 

of this large spatial averaging of the light signal the prob­

ability distribution function of the photocurrent /p(i)di7 

is normally distributed according to 

(i-<i>)2 p(i)di = • ^— exp 
/27t0£ 2cn2 

di (1.55) 

where <i> and a. are given by (1.52) with a2 = 0. 
1 S 
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Using (1.55) it can be shown that in order to obtain 

accurate estimates of <i> the signal from the pulsed system 

must be integrated in space and time over many independent 

values of i (the estimate of <i> from the integrated signal 

is improved by the square root of the number of independent 

values of i). These integration procedures are being used 

at the University of Arizona laser facility and, at least in 

principle, accurate estimates to within ±1% of <i> are rou­

tinely obtainable (see Chapter 3) . 

1.2.8 Attenuation Fluctuations 

Equation (1.2d) represents the attenuation of the 

light from the source to receiver due to scattering and ab­

sorption (absorption is neglected in this work) along the 

light path. By calculating the volume of space through 

which the light beam passes, the number of scatterers which 

participate in the attenuation can be calculated. Employ­

ing relations for number density fluctuations of particles 

in a volume of space (Chandrasekhar 1943), expressions can 

be developed for the attenuation fluctuations in received 

intensity caused by Brownian and turbulent motion; similar 

relations can be developed for the molecules. It can be 

shown that these fluctuations can be neglected for lidar 

systems typical of the University of Arizona system 
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mentioned in Sec. 1.2.7. However, each system must be evalua­

ted under its own particular operating conditions (see Appen­

dix E) . 

1.2.9 Power Spectrum 

Recent technical developments in lidar systems have 

allowed the detection of the frequency shifts in the scat­

tered light due to the motion of scatterers. In addition to 

the raw, statistical characteristics of the fluctuations ex­

pressed by the correlation functions developed in this work, 

the correlation functions also contain Doppler shift and 

phase fluctuation information. A spectral analysis of the 

photocurrent correlation function is a means by which the 

frequency and phase information can be obtained. The complex 

photocurrent correlation function developed in this paper is 

particularly valuable because it includes a number of physi­

cal processes heretofore neglected. A brief summary includes 

number density fluctuations, Brownian and turbulent motion 

of scatterers, and the phase perturbations introduced by tur­

bulent refractive inhomogeneities. The influence of these 

processes can be assessed by evaluating a power spectrum by 

means of the Fourier transform of the photocurrent correla­

tion function. 

1.2.10 Conclusions 

An attempt has been made to analyze the fluctuations 

of scattered light by correlation functions. A generalized 
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relation has been developed which includes the effects of 

number density fluctuations of scatterers, Brownian and tur­

bulent motion of scatterers, and phase perturbations intro­

duced by refractive inhomogeneities. Particularly detailed 

work is presented for the turbulent motion of scatterers. 

The confidence of the results is shown by using radar as an 

example. Finally, the results are applied to a pulsed bi-

static laser system. They show that systems similar to the 

University of Arizona bistatic laser system are shot noise 

dominated. Furthermore, the signal must be integrated to 

average out the noise in order to use the laser for accurate 

atmospheric probing. An additional value of the correlation 

functions developed in this work is that they immediately 

yield the power spectrum of the fluctuations. 



CHAPTER 2 

THE CAUSES OF THE FLUCTUATIONS 
OF SCATTERED LASER LIGHT 

In general the fluctuations of scattered laser light 

from a collection of scatterers depend upon the temporal 

changes of the positions and number of the scatterers. The 

motion of the scatterers changes the relative phases of the 

components of the scattered light" and, at the same time, var 

ies the total concentration of the scatterers contributing 

to the scattered light at any one time. When the volume of 

space which contains the scatterers is distant from both the 

source of illuminating light and the receiver, the fluctua­

tions of the scattered light which reach the receiver are 

not simply related to the scatterers within the distant scat 

tering volume. The scattering medium along the source to 

receiver path modifies the fluctuations as well. 

The purpose of this chapter is to describe and calcu 

late the combined effects of all the important atmospheric 

scatterers and their influence on the fluctuations of the 

light which reaches the receiver. The first part of this 

chapter specifies the optical properties of the scatters and 

concurrently, the types of motion the scatterers demonstrate 

The concepts of temporal and spatial coherence are then 

40 
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presented as a means to analyze the phase structure of the 

transmitted and scattered light in a semi-quantitative way. 

This information is the basis for a detailed development of 

the effects of the scatterers on the phase and amplitude 

structure of the light within three separate regions of the 

source to receiver path. Finally, a calculation of the 

method by which the received light from the atmospheric scat­

terers is converted to a measurable current is presented. 

2.1 Optical Properties of 
Atmospheric Scatterers 

2.1.1 Molecules 

Simple electromagnetic scattering from objects in 

which the size of the scattering center is much smaller than 

the wavelength of the scattered light is called Rayleigh 

scattering. Each molecule which composes the earth's atmos­

phere satisfies the Rayleigh condition when illuminated by 

light in the visible region (the ruby laser emits radiation 

at 69438). 

The total scattered light field from a molecular 

medium is the sum of the singly and multiply scattered light 

fields from each molecule (with due regard for phase and am­

plitude) . The singly scattered light is scattered out of 

the illuminating light field, while the multiply scattered 

light comes from the rescattering of the singly scattered 

light. In the earth's atmosphere there are about 106 
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molecules within a volume of A3 (where X is the wavelength 

of visible light). Even under such high densities the amount 

of light singly scattered from each molecule is so small 

that multiple scattering is negligible. Therefore, the 

total scattered light field is simply the sum of the singly 

scattered light fields from each illuminated molecule. One 

way of summing the singly scattered fields is to group the 

molecular fields into regions of approximately constant 

phase. For example, all the molecules within a volume of 

(A/4)3 scatter the light with approximately constant phase. 

At the same time there exists a second, similar volume a 

certain distance away from the first whose molecules scatter 

light with a phase 180 degrees out of step with respect to 

the molecules of the first volume. If the number of molecules 

within these two volumes is equal, then the total resultant 

light field would be nearly zero. This last result implies 

that if the molecular medium is uniformly dense, then there 

is no resultant scattered field except in the forward direc­

tion of the illuminating light field. Nevertheless in the 

real atmosphere light is scattered in all directions from 

the molecular medium and must arise from the variations of 

the molecular density. In this connection a clear distinc­

tion between the individual scattered field from each mole­

cule and the resultant scattered field from a group of 

molecules should be kept in mind. The individual scattered 
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fields always exist (when the molecules are illuminated), 

while the resultant field from a group may not. Finally, 

scattering from density variations is easier to visualize 

than the individual contributions to the resultant scattered 

field. 

A graphical representation of the scales of molecular 

number density fluctuations helps to visualize the scattering 

problem. Along the direction which a light beam travels the 

molecular number density (at one instant of time), N(r), with 

in a volume (A/4) 3 about the point r would appear similar to 

Fig. 2.1. 

N(r) 
N (r) 

»*• 

Fig. 2.1 The Number Density of Molecules, N(r) (Solid Curve) 
and its Component Parts (Dotted Curves) Along the 
Path of the Light Beam. 

The term N(r) can be expressed as a sum of the com­

ponent parts such that N(r)= N(r) + ANR(r) + AN^(r) (these 

terms are defined shortly). An expression for the resultant 

scattered field is found by multiplying N(r) by the scatter-

i I  £  I  I  ( r - r  ' )  I 
ing phase-amplitude term Ae 1 1' v 1(A is the scattering 
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amplitude, |ic|= 2ir/X, and | (r-r') | is the distance from the 

scattering event to the point where the resultant field is 

calculated, namely the receiver) for each molecule and fi­

nally summing over all r. The resultant scattered field can 

be discussed in terms of the components of N (r) . The N(r) 

term (mean number density) yields a component to the resul­

tant scattered field only in the forward direction. This is 

caused by the phase terms canceling in all directions except 

the forward. Scattering of this type is commonly called 

dependent scattering. The AN0(r) term yields a resultant 

field component (called the Rayleigh component) which appears 

in all directions. The Rayleigh component is attributed to 

the random number density fluctuations on a size scale <X. 

Scattering of this type is commonly called independent scat­

tering. Under these conditions the resultant field has a 

complicated pattern at any one time. Yet, an average per­

formed over all the statistical realizations of ANR(r) yields 

the well-known result that the average Rayleigh field com-
_ u 

ponent is (N(r))^A. The ANT(r) term yields a resultant 

field (called the turbulence component) whose characteristics 

are similar to both the N(r) and ANR(r) field components. 

The reason is that ANT(r) is correlated over scales of dis­

tanced, thus yielding partial dependency effects in the 

resultant field. The result is a negligible resultant field 

except near the forward direction. Further, as the distance 

scale becomes >>A, the results approach those for N(r). 
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In actuality there can be many causes of large scale 

(with respect to X) density fluctuations. For example, the 

so-called Brillouin component to the scattered field can 

arise from density variations caused by sound waves. How­

ever, in this dissertation turbulence is considered the only 

cause of the large scale fluctuations. Finally, the detailed 

properties of the Rayleigh field component are thoroughly 

developed in Appendix B, while the properties of the turbu­

lence component are discussed further in section 2.1.3. 

The turbulence and Rayleigh components of the scat­

tered light must be specially treated. It has been stated 

that the turbulence component appears almost entirely in the 

forward direction, while the Rayleigh component appears in 

all directions. Therefore, the energy of the laser beam, as 

it propagates through the medium, is essentially just redis­

tributed within the beam by the turbulence component, while 

the Rayleigh component scatters the light permanently out of 

the beam (neglecting multiple scattering). For this reason 

the molecular attenuation is associated primarily with the 

Rayleigh component. In this connection, the molecular opti­

cal depth, which will be presently shown to be a measure of 

the molecular attenuation, is also associated with the Ray­

leigh component alone. 
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2.1.2 Particulates 

The size range, number density, index of refraction 

and shape of particulate matter are extremely variable. The 

sensitivity of present laser-receiver systems is not suffi­

cient to differentiate variations in some of the particulate 

properties. However, the laser, when used in conjunction 

with other direct measurement devices, can yield a great 

deal of useful information about particulate matter. Since 

this dissertation is concerned with the scattered light fluc­

tuations caused in part by the particulate matter, it is suf­

ficient to specify typical properties of the particulates as 

known and proceed to calculate the resultant scattered light 

fluctuations. To this end, the following paragraphs specify 

the properties of the particulates which are used throughout 

the rest of this dissertation. 

The number of particulates per unit volume of size a 

and at position vector r in space can be represented by 

n(a,r). Since for the purposes of this dissertation a single 

model is sufficient to represent typical atmospheric partic-

ulate properties, a considerable simplification of n(a,r) 

can be made. The first simplification is the assumption of 

uniformity of the size distribution (a) over all space (r) so 

that n(a,r) can be written in a separable form given by 

n(a,r) = N(a)N*(r) (2.1) 

where N (a) is the number of particulates per cm3 at radius a 
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and N'(r) is a multiplier (no units) adjusted to give the 

actual number density at position r. 

With regard to N(a) Junge (1963) found the typical 

size range of radii of the atmospheric particulates extends 

from 10 2 ym to 10 pm (ym = 10 G meters). The actual values 

of N(a) in the atmosphere are quite variable, but Junge has 

developed a mathematical number density distribution which 

on the average fits many independent observations of number 

density vs. size. This size distribution is given according 

to a power law and is expressed as 

= ca"'v +"^ /number/cm3 - size interval/ (2.2) 

where N(a) is the number of particles per cm3 of radius a, 

while c is a constant adjusted so that the integral of (2.2) 

yields the appropriate number density over a given size in­

terval for a normalized distribution. For example, when c 

equals 3 x 1015, there exists 1 particle per cm3 in the size 

range 0.1 a l.Oy with a value of v* = 3.0. The term v* 

is a shape factor which typically ranges from 2.0 to 4.0; 

the value of v* = 3.0 is chosen as an average. Finally, the 

assumption that N(a) assumes the same form at all points in 

the typical atmosphere (away from sources and sinks) has not 

been proven, but for modeling purposes the assumption is con­

venient. 
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The second simplification of n(a,r) is the assumption 

of particulate horizontal homogeneity. This assumption leads 

to the replacement of N'(r) in (2.1) by N*(z) where z is the 

position above the ground. Certainly many instances can be 

found in which this assumption is incorrect especially, for 

example, near sources and sinks of particulates. Yet the 

atmosphere tends to be horizontally homogeneous in many re­

spects (wind and temperature field). For this reason the 

particulate density (far removed from sources and sinks) 

tends to be horizontally homogeneous. This is only a weak 

qualification for the expected horizontal homogeneity of the 

particulates. Nevertheless, experimental evidence has lead 

Elterman (1964) to calculate an average vertical distribution 

which adequately suits the purposes of this dissertation. 

This distribution, the so-called Air Force "clear atmosphere" 

model, is given as 

N1 (z) = Nq exp ^/T-0.8 km"1)^ (2.3) 

The term N is a constant which can be adjusted to o j  

fit the total particulate optical depth, x^O,00), as described 

in the following paragraphs. 

Standard text books show that a monochromatic beam of 

radiation, (r), at position r is attenuated to + 

dl^(r) after traveling a distance ds in the direction of 

I^(r) according to 
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dlx(r) = -J;n(a,r) Q^(a) x\ & ds <2.4) 

where (a)(cm2) is the attenuation cross-section of each 

particle of size a at wavelength X. Dropping the X sub­

scripts (for essentially monochromatic laser light) and us-

ing the separable form of n(a,r), the particle size dependent 

terms in (2.4) are replaced with the relation 

'v'p 10,0 ym 
3+. = / C£(a) dN (a) ^cm"1/ « ZN(a)QP (a) (2.5) 
* 0.01 um a tX 

where is called tne normalized volume attenuation coeffi­

cient and dN(a) comes from (2,2). Using (2.5) and limiting 

(2.4) to a beam of radiation traveling in the vertical direc-

tion (r->-z and ds-*dz) yields 

dl (z) = N'(z)I(z)dz (2.6) 

From (2.6) a general definition of the particulate optical 

depth, i^(zi,z2), between any two levels zi and z2 is given 

by 

TP(zi,z2) = ^2N'(z)$£dz (2.7) 
zi 

When zi is at ground level and 22 is sufficiently 

high to include all of the particles ^denoted by z2 = «7, 

(2.7) yields the total particulate optical depth, 1^(0,«). 
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Using (2.3) and (2.7), it is easily shown that 99% of the 

light attenuation by the particles occurs within the first 5 

kilometers (zi = 0; Zz = 5 km). For this reason numerical 

calculations of scattered laser light which appear in Chapter 

3 are not carried beyond 5 km; the region of interest is 

within the first 5 km. Furthermore, tP{0,«) can be set equal 

to t^(0,5 km) with a high degree of accuracy and the term 

(0,°°) can be inferred by independent measurements. For 

example, the directly transmitted solar flux which reaches 

the earth's surface depends on the total optical depth which, 

in turn, is just the sum of the particulate and molecular 

(Rayleigh component) optical depths in cloud free areas. 

The molecular optical depth, as a function of wavelength, is 

known and can be subtracted from the measured total optical 

depth, thereby yielding a reliable measurement of the partic­

ulate optical depth. This value can be used on the left 

hand side of (2.7) to scale the unknown Nq which appears in 

N'(z) (see 2.3). Therefore, the simplification previously 

discussed allows the attenuation properties of the particu­

lates to be completely specified by xp(0,«)̂ = x̂ (0,5 km)_7 

and v*, the shape factor of the size distribution. The term 

Q^(a) is calculated for each size particle and depends on a 

number of other parameters yet to be discussed. 

The attenuation properties of the molecules can be 

similarly defined as is done for the particles in the previous 
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paragraphs. In fact, molecular attenuation is much simpler 

for a number of reasons. In particular, the size of the 

molecules is much less than the wavelength of the light (al­

lowing the Rayleigh condition to be used) and the density 

distribution depends only on the atmospheric density, p(z), 

whose variation with z for the purposes of this dissertation 

can be well approximated by an isothermal atmosphere. There­

fore, relations similar to (2.1) through (2.7) exist for 

molecules. In addition, molecular optical depths xm(zi,z2) 

and Tm(0,°°) have meanings and are used in Chapter 3. 

In connection with (2.6) one final comment is in 

order. The relation (2.6) can be integrated along with (2.7) 

to yield 

I (z 2) » I (zi) e"T(zi'Zl) (2.8) 

where the superscript to t ( z i , z 2) is dropped for generaliza­

tions to both molecules and particulates. From (2.8) it is 

easily seen that the fraction of the intensity transmitted 

from zi to z% is just e"T^Zl'Z2^. This exponential term is 

commonly called the transmittance and is represented by the 

term T(zi,z2). It will be recalled that variations in the 

light transmitted through a scattering medium is one of the 

three causes of light fluctuations mentioned in Chapter 1. 

An analysis of the fluctuations in T(zi,z2) is performed in 

Appendix E for use later in this chapter. 
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The scattering properties of the particulates strong­

ly depend on their index of refraction. The complete index 

of refraction of the particulates contains a real part, n, and 

an imaginary part, k. The real part is related to the di­

electric constant of the particulate matter, while the complex 

part is related to the particulates1 light absorptive proper­

ties. The index of refraction of particulate matter is dis­

cussed in a paper by Quenzel (1969) . He produces considerable 

evidence that variations in n and k for spherical particu­

lates cause significant differences in their scattering prop­

erties. This variability creates a great deal of uncertainty 

in the analysis of the scattered light from particulates. 

Yet, evidence indicates that a large percentage of the natu­

ral particulates are composed of silicates, ammonium sulfate, 

and sodium chloride (Junge 1963). Fortunately, these sub­

stances have a real index (n) near 1.5 in the visible; sili­

cate quartz, for example, has n = 1.54 at the wavelength of 

the ruby laser (A = 6943&). On the other hand the absorptive 

properties of the particles are difficult to specify (Eiden 

1966, Fischer 1973). Furthermore, inclusion of these proper­

ties is not critical to the results of this dissertation. 

For the purpose of this dissertation, therefore, it is suffi­

cient to consider the particulates as a non-absorbing (k = 0), 

silicate dust. 

As if the uncertainties of the refractive index are 

not enough, the shape of the particulates causes an even 
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greater problem. Holland and Draper (1967) performed light 

scattering experiments with non-spherical, talc platelets. 

They concluded from these experiments that a collection of 

non-sphericalf randomly oriented particles has scattering 

properties remarkably similar to an equivalent sized system 

of spherical particles. This conclusion is what everyone in 

scattering theory was silently hoping for. Then, new evi­

dence by Holland and Gagne (1970) showed the shape of the 

particle has a critical influence on the scattering of light, 

not only from a single particle (as has been known for a 

long time), but also from a collection of randomly oriented 

particles of different sizes. Therefore, the simplifying 

assumption that light scattering from atmospheric particu­

lates can be described by an equivalent distribution of 

spheres is questionable at best. Nevertheless, valuable in­

ferences about the fluctuations in the scattered light can 

be made with the assumption of spherical particulates. There­

fore, this dissertation uses the results for the spherical 

scatterer in lieu of a more viable alternative. 

Hence, further discussions of particulate matter will 

assume that the number density vs. size (2.2), distribution 

with height (2.3), index of refraction (n = 1.54, k = 0), and 

the scattering phase functions (Mie 1908), spherical are 

known. 

Recalling that fluctuations in the scattered light 

are ultimately a result of the motions of the scatterers, a 
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discussion of the relative motions of the scatterers is in 

order. 

The simplest scale of atmospheric motion which in­

fluences the positions of the particulate matter is Brownian 

motion. This motion results from the fluctuations of molecu­

lar impaction on the surface of the particle. The molecular 

impaction is correlated over a distance very much smaller 

than the intra-particle separation? hence, the Brownian mo­

tion of each particle is independent. Yet, even though the 

motion is independent, the relative phases of the scattered 

light from the particles demonstrates dependency, if only for 

a very short time. Indeed, a finite amount of time is re­

quired for the particles to reshuffle themselves to new phase 

positions. Recall from Chapter 1 that during this reshuffle 

time two values of the relative phase components of the scat­

tered light intensity are dependent, while after the reshuf­

fle time the two phase components are independent. The dif­

ference between independence of motion of the particles and 

independence of the phase of the scattered light must be kept 

in mind. Further, the transition from dependence to inde­

pendence in the relative phase is generally a smooth transi­

tion. Therefore, the point of transition from dependence to 

independence is a matter of choice. For example, the inten­

sity correlation function of the scattered light from the 

particulates and the molecules, calculated in Appendix C, 

shows a critical dependence on the relative phases of the 



55 

scatterers. This dependence takes the form of an exponen­

tial time delay. When the delay time is sufficiently long 

so that the phase dependence reduces to 36.7% /exp (-1)7 of 

its original value, independence is said to occur! These 

facts are important in the later development of the statis­

tical theory of the fluctuations of the scattered laser light 

The next scale of motion that influences the particu­

late scatterers is turbulence. The principal concern is how 

the particle behaves by itself and among a collection of 

neighboring particles in a turbulent field. The turbulent 

motion of an individual particle depends on the inertial 

response to its turbulent fluid matrix. Hinze (1959) dis­

cusses the motion of a discrete particle in a homogeneous 

turbulent fluid.Hinze begins his solution by calculating 

the equation of motion of a single spherical particle in a 

viscous fluid. He then simplifies the complete equation by 

order of magnitude calculations. The simplified equation is 

expanded into a Fourier representation. This allows a mea­

sure of the response velocity of the particle to the Fourier 

velocity components of the turbulent fluid. The results 

show that with typical atmospheric densities of air (Pa = 10~ 

gm/cm3) and particle (p = 2.0 gm/cm3), the actual motion of p 

the particles is slightly different from the fluid elements 

for homogeneous turbulence. This difference is difficult to 

1. Homogeneous turbulence is a random motion whose 
average properties are independent of position in the field. 
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incorporate and is not included, so it is assumed that the 

motion of the particle and the fluid coincide. Therefore, 

the motion of fluid elements (air) and particulates are re­

ferred to synonomously. 

The relative motion among a collection of particles 

in a turbulent fluid is developed less adequately. To under­

stand the physical principles involved, the turbulence field 

is considered as a collection of eddies which range from a 

minimum size (inner scale) to a maximum size (outer scale). 

If the distance r.. between two particles is somewhere be-
1  j  

tween the outer and inner scale of turbulence, then all 

eddies of size s < r^ (s is the eddy size) act independently 

on the relative motions of the particles, while those eddies 

of size s :> r^j strongly correlate the relative motion (Fuchs 

1964). This relationship continues until the particles are 

separated by a distance greater than the outer scale of tur­

bulence at which point the motions show no correlation. Ex­

cept for the longer correlation in the relative motion, the 

consequences of turbulent motion are analogous to those of 

Brownian motion. The correlation between the phase positions 

of different particles at different times leads to dependency 

in the scattered radiation from these particles. Similarly, 

when the relative motion of the particles show no correlation, 

the scattered radiation becomes independent. 
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In addition to the dependency of the phase positions 

of the scatterers, variations in the total number of particu­

lates within a scattering volume cause fluctuations in the 

scattered light. These total number fluctuations arise from 

two sources. First, the Brownian and turbulent motion move 

particles in and out of the volume. These variations are 

denoted as homogeneous fluctuations. Secondly, if the par­

ticles are distributed in inhomogeneous clumps, large varia­

tions in the total number of particles in the scattering 

volume at any time could occur by means of wind replacement; 

these non-stationary fluctuations, caused by the inhomoge-

neity, are not treated in this dissertation. 

* 

2.1.3 Turbulent Refractive Inhomogeneities 

As was stated in section 2.1.1 the turbulence compo­

nent of the scattered light is only a part of the resultant 

scattered field from the molecules. This turbulence compo­

nent is associated with large scale molecular density varia­

tions which are commonly called turbulent refractive inhomo­

geneities. Unfortunately the spatial structure of these 

refractive inhomogeneities defies mathematical description. 

For this reason an exact calculation of the turbulence com­

ponent of the molecularly scattered light remains unsolved. 

In addition, a light beam passing through a turbulent medium 

would encounter many randomly distributed refractive inhomo­

geneities whose spatial density structure changes with time. 
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This overwhelming complexity points to the statistical solu­

tion of the problem. 

Tatarskii (1961) was one of the first to attempt a 

statistical solution for an electromagnetic wave passing 

through a refractively turbulent medium. Most of the subse­

quent work to this date is based on the ideas presented in 

Tatarskii's book, Wave Propagation in a Turbulent Medium. 

Tatarskii begins the solution by relating the macroscopic 

Maxwell's equations to the index of refraction of the air. 

He then uses Kolmogeroff's turbulence theory to relate the 

statistically averaged structure of the refractive index 

(spatial density structure) to the sizes of the turbulent 

eddies. His results are limited to weak scattering, but 

they demonstrate the perturbation of the phase and amplitude 

of a light beam which passes through a turbulent medium. 

A physical description of the scattering process is 

as follows. The phase and amplitude structure of the light 

which reaches some distant field point are influenced by the 

magnitude and spatial structure of the refractive index vari­

ations. The larger the variation of refractive index of an 

inhomogeneity the greater the amount and angular spread of 

the scattered light. This result is generally apparent from 

Snell's laws. However, Tatarskii (1961) calculates a specif­

ic relation for the angular spread of the scattered light, 

given by 
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2 sin"1 -5—^r— << H << 2 sin"1 (2.9) 
4 t t L o  m  4 t t £ o  

where Lo is the outer scale of turbulence and &o is the inner 

scale of turbulence associated with the averaged Kolmogeroff 

turbulent eddy spectrum, a is the scattering angle, and A is 

the wavelength of the light. Tatarskii states that typical 

values of Lo and &o are 10m and 1.2 cm, respectively, for 

weak turbulence, and lm and 0.3 cm, respectively, for strong 

turbulence. As shown by (2.9), a stronger turbulence results 

in larger scattering angles implying a wider spread to the 

scattering angles implying a wider spread to the scattering 

limits. The spatial structure of the refractive index re­

lates the magnitude of the refractive index variations at two 

adjacent points. This association allows a calculation of 

the degree to which two adjacent scatterings remain correla­

ted. In weak turbulence the spatial correlation of the re­

fractive index is large while much smaller for strong 

turbulence. In the end the spatial correlation of the scat­

terings influences the spatial region over which the fluctua­

tions in the transmitted light beam are correlated. 

The temporal fluctuations of the transmitted light 

arise from the "motion" of the turbulence. Unfortunately, 

the motion of turbulent eddies is difficult to define since 

their physical structure cannot be well specified. Indeed, 

the mean wind can move one refractive inhomogeneity with re­

spect to another. In addition, a refractive inhomogeneity 
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can decay through mixing and diffusion. All of these com­

plexities have not provided any clear definition of the life 

time and motion of the refractive inhomogeneities• Conse­

quently, very little can be said about the "speed" of the 

fluctuations in the transmitted light. 

In conclusion, Tatarskii's work has allowed other 

researchers to make contributions more relevant to the needs 

of this dissertation. In particular, Ho (1969) , as was men­

tioned in Chapter 1, has calculated the phase and amplitude 

changes of a laser beam passing through a turbulent medium. 

His work is outlined in the section discussing the effects of 

scatterers between the laser source and scattering volume. 

The previous paragraphs were presented for acquaint­

ance or review of the nature of atmospheric scatterers. Be­

fore magnitudes for each scattering process are calculated, 

it is important that two concepts associated with the phase 

structure of an electromagnetic wave be discussed. They are 

temporal and spatial coherence. Although specific examples 

and definitions are discussed in Chapter 1, a more general­

ized set of definitions are presented in the following sec­

tions . 

2.2 Coherence 

2.2.1 Temporal Coherence 

Mandel and Wolf (1965) present the concepts of coher­

ence in a good discussion. Temporal coherence is related to 
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the different frequency components which comprise a quasimo-

nochromatic beam of light and the phase relationships among 

these components. It is recalled from Chapter 1 that a qua-

simonochromatic beam consists of a set of monochromatic 

beams differing very slightly in frequency. Assuming the 

phases of all the frequencies which form the light beam at 

some particular time, t, coincide, then at some later time, 

t + At, the phases of all the components become out of step 

with respect to a fixed point. The manifestation of tempo­

ral coherence is said to occur when the components of the 

beam at time t and t + At can still be superimposed to form 

an interference pattern. The temporal coherence time (At) 

is related to the band width (Av) of the frequency components 

comprising the light beam by the relation (2.10). The longi­

tudinal coherence length is cAt, where c is the speed of 

light. 

AtAv £  1 (2.10) 

During the coherence time At or, equivalently, over 

the longitudinal coherence length the frequency components 

of the quasimonochromatic beam remain almost in step. There­

fore, the phases between any two points within a coherence 

length can be related by 2irvt, where ct is the separation of 

the two points and v is the central quasimonochromatic fre­

quency. Similarly, the relative phases of any scatterers 

which lie within a longitudinal coherence length of the 
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quasimonochromatic beam can also be calculated. This is an 

important step in defining the scattered light intensity 

from a collection of scatterers. For example, the University 

of Arizona ruby laser has a central wavelength of X = 6943 & 

with a wavelength spread of AX - 0.02 &. Using the wave­

length-frequency relation X = c/v and (2.10), the temporal 

coherence time (At) and the longitudinal coherence length 

(cAt) for the University of Arizona ruby laser are 8 x 10~10 

seconds and 24 centimeters, respectively. Therefore, the 

relative phases among a collection of scatterers whose sepa­

rations are beyond about 24 cm cannot be calculated and, 

furthermore, must assume random values. This conclusion is 

based on the original condition for the manifestation'of 

temporal coherence applied to the laser beam. This condition 

states that when two portions of the laser beam, separated 

by a time delay greater than the temporal coherence time 

(At), are superimposed, no interference pattern occurs. No 

interference indicates a random phase relationship between 

the two portions of the laser beam. 

The previous paragraphs have described a generalized 

condition (temporal coherence) which yields a measure of the 

degree to which phase surfaces of a light beam remain in 

step in the direction of beam propagation. Further, a knowl­

edge of this condition facilitates the calculation of the 

relative phases among a collection of scatterers when illumi­

nated by a light beam. However, because of the finite spread 
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of light beams the degree to which the phase surfaces of the 

light beam remain in step in a plane perpendicular to the 

beam's direction of propagation must also be calculated. 

This leads to the topic of spatial coherence. 

2.2.2 Spatial Coherence 

The concept of spatial coherence is related to an 

interference experiment of the Young's double slit design 

(Figure 2.2). The experiment involves a source, a double 

slit screen, and an observation plane (0) upon which an 

phase surface of 
a point emitting from 

the source 

Source 

•c 

double slit 
screen 

observation^ 
plane I 

s 

/ < 
Figure 2.2. The Young's Double Slit Experiment 

interference pattern is formed. Light from a source of any 

size and at any distance from the double slit screen is said 

to demonstrate spatial coherence over the width of the slit 

separation (s) provided the fringes on the observation screen 

(0) have a visibility {commonly denoted by the symbol 6) 

greater than 0.88. The choice of 6 ^0.88 is a condition 

that requires the phase surfaces of the light field to remain 
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almost in step, perpendicular to the direction of light prop­

agation (Mandel and Wolf 1965). 

The maximum separation of the slit (s), for which an 

interference pattern appears on a screen with 6 0.88 is de­

noted as the transverse coherence length. The transverse 

coherence length is synonomous with the far-field, Franhoffer 

diffraction pattern of the source. 

With regard to the double slit experiment, the visi­

bility, 6, is determined by (2.11), where I and I . are 
max min 

the adjacent maximum and minimum intensity of a fringe, re­

spectively, which appear on the observation plane. 

I - I . 
x max mm . , _ ., * 6 = t z—t (2.11) 

max min 

Mandel and Wolf show that (2.11) can be equivalently ex­

pressed in terms of the so-called light field correlation 

function. The general expression for the light field ampli-

tude correlation function, R (n, ra,t), is 

Rgtrwi^t) = < E (r i ,0) E* (r2,t) > (2.12) 

where ri and r2 are two separate points in space at which 

the field amplitude, E(n,ti) ̂ ti=o7, and its complex conju-

gate, E*(r2#t2) £tz=t/r exist. The brackets on the right 

hand side of (2.12) represent an average over all the possi-

ble values the light field amplitude samples at n and r2 
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with time delay t. Using (2.12) Mandel and Wolf show that 

the visibility expression, 6, is given by 

Rp(ri,r20) 
6 " - •» ^—+ ZT (2.13) 

z,re(ri #n ,0} re(r2,r2/0)7^ 

The relation (2.13) is used throughout this disserta­

tion to calculate the spatial phase structure of light 

sources; however, (2.13) is not always necessary for this 

purpose. For example, a laser emits a collimated spherical 

wave; the collimation is usually so narrow that the light 

wave is essentially plane parallel. In any case, the phase 

surfaces of the light field remain in step over the wholt 
* 

laser beam cross-section. Such a light field demonstrates 

complete spatial coherence in the same sense that a monochro­

matic light beam demonstrates complete temporal coherence. 

Further, if a Young's double slit experiment is performed 

with n and r2 at the slit positions, a visibility of 6 = 

1.00 would be calculated both for the light intensity mea­

surements of (2.11) and the light field amplitude measure­

ments of (2.13). In the case of the laser, the spatial co­

herence of the light is reduced as the light beam passes 

through atmospheric scatterers. The amount of this reduction 

is discussed presently in this chapter. 

Spatial coherence is not limited to a well behaved 

light source of laser quality. An extended thermal source 
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in which each point on the surface of the source emits an 

independent spherical wave can demonstrate spatial coherence 

on a double slit (in no way is this source to be confused 

with a point source). If the separation of the slits (s) 

(see Figure 2.2) is small enough, the spherical phase sur­

faces of all the independent emitters will have approximately 

the same phase relationship among them at the slits. At the 

same time the temporal phase of the light from all the emit­

ters is almost completely out of step. 

2.3 Interaction of the Laser Light 
with the Atmospheric Scatterers 

The path over which the laser light passes (from 

laser to receiver) is divided into three parts. The parts 

are: laser to scattering volume, scattering volume, and 

scattering volume to receiver. A partition of this type is 

indicated since the atmospheric scatterers /molecules (Ray-

leigh and turbulence components) and particulates^ are not 

uniformly important throughout the whole laser to receiver 

path. For example, the turbulence component of the scattered 

laser light appears primarily (see 2.9) in the forward direc­

tion, while the Rayleigh and the particulate components ap­

pear in all directions. Therefore, as long as the scatter­

ing angle, B (see Figure 2.2), is not near the forward direc­

tion, the turbulence component of the scattered light from 

within the scattering volume can be neglected in comparison 

to the Rayleigh and particulate components. Yet, as the 
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laser light passes from laser source to the scattering vol­

ume and from the scattering volume to the receiver, the tur­

bulent refractive inhomogeneities influence the phase and 

amplitude structure of the light. This partition, as such, 

appears to simplify the discussion of the many complex ef­

fects of the interaction of the laser light with the atmos­

pheric scatterers between the laser source and receiver. 

2.4 Effects of Scatterers between the 
Laser Source and Scattering Volume 

2.4.1 The Effects of the Turbulence Compo­
nent of the Scattered Light on the Transmitted 
Laser Light 

A considerable amount of theoretical research has 

been done on the effects of refractive turbulence on the 

propagation of laser light. The nature of the turbulent re­

fractive inhomogeneities has been previously discussed. As 

was stated, the works of T. L. Ho (1969, 1970) appear to be 

best suited for the purposes of this dissertation. Ho's 

works yield results comparable with other researchers (Asaku-

ra, Kinoshita and Suzuki 1969; Livingston, Deitz, and 

Alcaraz 1970; Brown 1971; Poirier and Korff 1972), but, more 

important, the physical basis for Ho's mathematical assump­

tions is clear. In addition his results can be immediately 

applied to the laser work at The University of Arizona. 

The current mode of solution to the turbulent scat­

tering problem used by most authors, including Ho, follows 
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Tatarskii (1961) and begins with Maxwell's Equation, suit­

ably modified. No theory for the spatial and temporal re-

fractive index structure, expressed by n(r,t), exists. 

Therefore, a time independent, refractive index structure, 

n(r), about which only a statistical average is known repla-

ces n(r,t) in Maxwell's Equation. Consequently, the time 

independent form of Maxwell's Equation for a scalar electric 

field, E(r), (also time independent), passing through a tur-

bulent medium defined by n(r), results and is expressed by 

V2 E(r) + k2 n2(r) E(r) = 0 (2.14) 

The simplified solution to (2.14) proceeds by assum­

ing the refractive fluctuations about a mean are small and 

that the transmitted laser field is perturbed slightly. From 

these assumptions a generalized perturbation solution for 

the electromagnetic field which reaches a distant point is 

obtained. 

For equation (2.14) EL(r) (the unperturbed laser 

field) is the unperturbed field, while Es(r) (the scattered 

field) is the perturbed field; the solution is just E(r)== 

EL(r) + Es(r) as previously indicated. Furthermore, the re­

quirement of small refractive index fluctuations about a 

mean is typically modeled as n(r) *= nQ(r) + ni (r) where nQ(r) 

- 1 (unperturbed atmosphere) and ni(r) << 1. With these re­

quirements the perturbation solution to (2.14) actually 



69 

becomes two equations. The first equation has the same form 

as (2.14) except E(r) is replaced by EL(r) and n(r) is re-

placed by nQ(r). The second equation is similarly defined 

except E(r) is replaced by Es(r)y however, on the right hand 

side of this equation a source term, -2kzni(r) E^(r), appears 

instead of zero. This source term represents the interaction 

J. of the laser light, E (r), with the turbulent refractive in-

homogeneities, ni(r). As is discussed in an earlier portion 

of this chapter, ni(r) must be described by some statistical 

average structure. This in turn leads to only statistical 

solutions to the scattered light field. Nevertheless, a 

great deal of useful information can be obtained as will be 

shown. 

Using the perturbation solution to (2.14) as outlined 

above, Ho calculates the product of the total transmitted 

field ^E(r) = EL(r)+ Es(rjyrat the point r = ri with its com­

plex conjugate E*(r) at the point r = r2. This product, when 

statistically averaged ^<E{ri) E* (r2)>_? over all the reali­

zations of the turbulent refractive index field, yields an 

expression which is analogous to the light field amplitude 

correlation function, (2.12). Recalling this correlation 

function ^Rg(ri,tz,tV^ and realizing that E(r) is time inde­

pendent requires the expression be written as 

RE(ri,r2,0) = < E(ri)E*(r2)> (2.15) 
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This expression yields two pieces of useful informa­

tion. When ri = r2, then RE(ri,ri,0) = < I(?i)> , where 

I(ri) is the intensity at rj. Therefore, information is ob­

tained about the change in the statistical mean intensity at 

arbitrary points within the laser beam as it passes through 

the turbulent medium. Finally, (2.15) by itself can be used 

to calculate the spatial coherence of the light beam. In 

this connection, turbulent scattering causes adjacent phase 

surfaces of the composite laser field ̂ E(r) = EL(r) + Es(r)^ 

to become out of step. Since E (r), is the bad actor with 

regard to the spatial phase uniformity of E(r), the spatial 

coherence decreases as the beam penetrates the turbulent 

medium. 

In the earlier section of spatial coherence it was 

pointed out that the visibility of the fringes, 6, from a 

Young's double slit is used to scale the spatial coherence 

of the light. The term 6 is directly related to the field 

correlation function (2.15) through the expression (2.13). 

Before passing through the turbulent medium the laser beam 

is assumed to demonstrate perfect spatial coherence, repre-

sented by 6 = 1.00, for any double slit positions ri and rz 

within the beam cross-section. However, as soon as some tur­

bulent scattering occurs 6 never quite equals 1.00 again for 

any finite slit separation jr* - r2|. Nevertheless, there 

exists a separation at which the light is almost spatially 

coherent, represented by 6 = 0.88; this separation is the 
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transverse coherence length. Further, a cross-sectional area 

of the beam within which any two slits can be chosen to demon 

strate a fringe clarity of 6 =0.88; is denoted as the spatial 

coherence area. Using Ho's (1970) expression for (2,15), 

modified for the University of Arizona laser system, the 

transverse coherence length and the corresponding spatial co­

herence area can be calculated as a function of range into a 

weak turbulent medium; this is done in the next section. 

2.4.1a Magnitudes of the Turbulence Effects on the 

Spatial Phase Structure of the Transmitted Laser Light. The 

transverse coherence length (2.2.2) becomes smaller as the la 

ser light passes through the weak turbulent medium. To cal­

culate typical values of the transverse coherence length 

(TCL) as a function of range, [r|, the results of Ho's 1970 

paper were modified to fit the parameters of the University 

of Arizona ruby laser. To this end, the TCL for this laser 

was calculated by means of computer (University of Arizona 
A 

CDC6400) for weak turbulent conditions (C* = 10~16 m~2/3) 

as a function of range, |r|. In addition, two laser beam 

divergence angles were used where 0T, the half angle beam 

width is used to express this divergence. These results are 

expressed in Table 2.1. 

As an independent comparison, the results of Table 

2.1 were compared with similar calculations made by Brown 

2. C2 is the Kolmogorov turbulence strength factor 
and typically varies from 10""16 to 10-1<* m~2/3 for weak to 
strong turbulence, respectively. 



72 

(1971). Brown calculated the TCL in a completely different 

manner and the results appear in a relatively simple closed 

form (his equation 61). The condition under which Ho's TCL 

was calculated was applied to Brown's developments. Ho's 

computed calculations were done for 0^ = 0.5 mr. (mr. = 10"3 

radians) and compared with Brown's results. The results com­

pared so well that Brown's equation alone was used to calcu­

late the TCL for 0T = 1.5 mr. The results or Table 2.1 

clearly show the reduction of the TCL with increasing range. 

Finally the TCL serves as the diameter of a circular area 

which is called the spatial coherence area of the transmitted 

light. 

2.4.1b Magnitude of the Turbulence Effects oh the 

Temporal Phase Structure of the Transmitted Laser Light. A 

knowledge of the temporal phase of the composite laser field 

£E(r) = EL(r) + Es(ris required for two related reasons. 

First, the temporal phase, as expressed by the longitudinal 

coherence length, along with the spatial phase as expressed 

by the transverse coherence length discussed earlier, com­

pletes the three dimensional description of the phase of the 

composite laser field. This is necessary in order to approx­

imately specify the relative phase relationships among the 

atmospheric scatterers contained in a volume of space illumi­

nated by the laser beam. Secondly, the fluctuations in light 

intensity £l(r) = |e (r) \U are directly caused by the 



TABLE 2.X The Transverse Coherence Length, TCL.^of the Transmitted 
Laser Light as a function of Range, |r|, in Weak Turbulence. 
The term ps is the effective laser beam radius, while 0T is 
the half-angle beam width in milliradians (mr.). 

0T = 0.5 mr. 0T - 1.5 mr. 

|r| (km) Ps (cm) TCL /Ho7 (cm) TCL /Brown/ (cm) TCL /Brown/ (cm) 

0.5 10.1 10.1 10.1 20.0 

1.0 12.7 7.8 7.0 10.6 

2.0 17.6 5.8 4.2 5.5 

3.0 22.6 4.8 3.2 4.0 

4.0 27.6 4.2 2.6 3.0 

5.0 32.7 3.8 2.2 2.6 
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temporal phase shifts of the scattered light ^ E 3 ( r ) Y  with 
t 

respect to the unscattered light (r^J7 

Similar to the spatial phase, an exact knowledge of 

the temporal phase of the composite laser beam is not possi­

ble because the phase ultimately depends on the unknown tem­

poral and spatial refractive index structure ^ni 

Nevertheless, the assumption of weak turbulence requires that 

the composite laser field, expressed as E(r) = E (r) + E (r), 
T « 

satisfies the relation |e (r)| >> |e (r)|. Therefore, the 

temporal phase as expressed by the longitudinal coherence 

length of the composite field is almost equal to the longi­

tudinal coherence length of the unperturbed laser field 

/e1, (r)/. The product of the longitudinal coherence length 

(24 cm) and the spatial coherence area x (TCL) /£7 defines 

the coherence volume of the transmitted light. It is within 

a coherence volume that the relative phases among a collec­

tion of scatterers can be calculated. This, in turn, allows 

the calculation of the phase of the scattered light incident 

on a receiver and the resultant fluctuations. 

2.4.1c Fluctuations in the Transmitted Laser Light 

Caused by Turbulence. The statistical solution to Maxwell's 

equation (2.14) should yield information about the statisti­

cal distribution of the fluctuations in the transmitted laser 

light intensity. If all orders of statistical moments of 

the light intensity could be calculated, then the statistical 

(or probability) distribution of the transmitted laser light 
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intensity could be specified. Yet, the simplified solution 

to (2,14) yields only the first two moments of the transmit­

ted light intensity for weak turbulence. Fortunately, the 

generally agreed upon intensity probability distribution, 

p(l)dl, for weak turbulence is log-normal for which only the 

first two moments are needed (see 2.16 below). For stronger 

turbulence scattering the solution for p(l)dl is difficult 

and the proposed solutions by many researchers have caused a 

great deal of controversy. This controversy is well-de­

scribed by deWolf (1969), so no further discussion of this 

subject will be made in this dissertation. 

The log-normal intensity distribution valid for weak 

turbulence is given by 

L, Z.̂ "°9e T*" r!T (2 16) 
p (I)dX = (2ttot2)"^ exp -{ } =— 

L 1 

where <I> is the mean intensity of the transmitted laser 

light which reaches a point some distance from the source 

within the effective diameter of the laser beam, and is a 

measure of the variance of the logrithmic intensity, L, 

given by log0(I/<I>). Both <I> and have a range depen­

dence not expressed in (2.16) for convenience. 

Using some relationships given by deWolf (1969) and 

Ho (1969) , a general expression for cr£, valid for the char­

acteristics of the University of Arizona laser was calculated 
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and is given here by 

a2 = 1.24 C2k7/6|r[1x/6 (2.17) ij n • 1 

where is the Kolmogorov turbulence strength factor whose 

dimensions are t~"2/^7 (where m is meters) , k is the wave 

number of the laser light /nT'27"' an<* 1*1 the distance from 

the source. For weak, homogeneous turbulence is typical­

ly taken as 10"16 m~2/3, while the wave number of the ruby 

laser is ^9.05 x 10""6 m~^/. 

Table 2.2 expresses some values of as a function 

of range, jr|. 

TABLE 2.2 The Variance of the Transmitted Laser Light Log-
intensity (cr2) as the Light Passes Through a 
Weakly Turbulent Medium with Increasing Range, 

|r | (km) cr£ 

0.5 0.14 x 10~2 

1.0 0.51 

1.5 1.07 

2.0 1.81 

3.0 3.81 

5.0 9.71 
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A well-known property of the normal distribution is 

that 68% of the spread of the distribution lies within one 

standard deviation on either side of the mean (<I> ± a^). 

Therefore, using (2.16) the upper (Iu) and lower (1^) bounds 

of the intensity about the mean which contain 68% of the 

spread can be calculated by setting 

log(lu/<l>) = aL; log(I^/<I>) = - aL (2.18) 

At 5 km the solution to (2.18) using Table 2.2 yields 

I = 1.1<I> and I. = 0.9<I>. This solution indicates that 
X X  X i  

10% intensity fluctuations about the mean are fairly common 

even for weak turbulence. Yet, the weak turbulence condi­

tion insures that the energy is primarily redistributed and 

not lost from within the effective laser beam diameter. The 

spatial distribution of the intensity is the next important . 

consideration in discussing the light fluctuations. 

The intensity probability distribution functions are 

valid at a single point. Little mention is made in the lit­

erature regarding the spatial extent of these intensity fluc­

tuations. This dissertation attempts to rectify this inade­

quacy through the logical assumption that the intensity 

fluctuations are correlated over a spatial coherence area, 

as has been previously discussed. 
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2.4.2 The Effects of the Rayleigh and the 
Particulate Components of the Scattered 
Light on the Transmitted Laser Light 

The Rayleigh and particulate components of the scat­

tered light reduce the temporal and spatial coherence in the 

same manner as the turbulence component, but there are some 

obvious differences. The scattering is not limited to the 

forward direction even for very weak scattering. The 

strength of the Rayleigh component is proportional only to 

the density of the molecules, while scattering from particles 

is related to the number density and size of the particles. 

Curran (1971) shows that for the University of Arizona laser 

facility multiple scattering contributions from the Rayleigh 

and particulate components can be neglected compared to sin­

gle scattering. 

A further calculation can be made to assess the mag­

nitude of the transmitted laser field to the magnitudes of 

the Rayleigh and particulate components of the forward scat­

tered light field (single scattered) as a function of range 

in the scattering medium. To this end a solution (Appendix 

B) to the radiative transfer equation is obtained for the 

mean flux density near the center of the transmitted laser 

beam. The solution, expressed as a ratio of the scattered 

to transmitted mean flux density, depends primarily on the 

total optical depth of the atmosphere and the half-angle beam 

width of the laser beam, 0^. Now, for 0^ = 1.5 mr. (millira-

dians) and the respective total particulate and molecular 
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optical depths of xjjj = 0.25 and = 0.036 (at the ruby wave­

length of 0.6943pm.), the mean flux density ratio is found to 

be of the order 10"** for the vertically propagating laser 

beam at all ranges from 1 to 5 km. range into the medium. 

Therefore, since the ratio equals IE_ ̂ 1 = 10" 2  (E s  is the 
L |E (r)| 

scattered field and E is the transmitted laser field), it 

is concluded that the molecules and particulates have a 

negligible effect, except for attenuation, on the laser light 

passing from the source to the scattering volume. With re­

gard to this last statement the composite field ( = E*1 + Es) 

remains essentially undisturbed and therefore its coherence 

properties are also virtually unchanged. 

2.5 Effects of Atmospheric Scatterers 
at the Scattering Volume 

Under the conditions of relatively weak scattering 

it is assumed that the laser light which reaches the scatter­

ing volume demonstrates some spatial and temporal coherence. 

It is then possible to relate the phase of the scattered 

light to the relative phase positions of the scatterers with­

in the scattering volume. 

2.5.1 Turbulence Component of the 
Scattered Lxght 

The turbulence component of the scattered light ap­

pears near the forward direction of the transmitted laser 

light. Therefore, at the large scattering angles representa­

tive of the monostatic and bistatic laser facility at The 
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University of Arizona the turbulence component from the scat­

tering volume is neglected. 

2.5.2 The Rayleigh and Particulate 
Components of the Scattered Lxght 

Molecules (Rayleigh component) and particulates scat­

ter significant amounts of incident laser light at large 

scattering angles. Indeed, it is this very characteristic 

upon which the inference of their optical properties is 

based. The scattered light amplitude from all the molecules 

and particulates combines at the receiver surface to give 

some instantaneous intensity. This instantaneous intensity 

fluctuates about a statistical mean value. The statistical 

mean value contains information about the scatterers but is 

difficult to estimate because of the fluctuations. In order 

to calculate the fluctuations of the scattered light inten­

sity about a mean, it becomes necessary to calculate the 

probability distribution of the scattered intensity. As 

stated earlier, if all the statistical moments of the scat­

tered light intensity were known, then the probability dis­

tribution could be calculated exactly. In practice it is 

difficult, if not impossible, to calculate moments beyond 

the second order. Under certain conditions, such as Gaussian 

scattered light, the first and second moments of the scat­

tered light intensity determine all the higher order moments. 

By means of the scattered intensity correlation function yet 

to be defined, the first and second moments of the 
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statistical distribution of the scattered intensity can be 

calculated. In addition, the intensity correlation function 

yields the correlation time of the scattered light. The in­

tensity correlation function not only depends on the change 

of phase positions of the scatterers but also on the fluctua­

tions in the total number density of scatterers within the 

scattering volume; Brownian and turbulent motion cause the 

changes in position and number density. Further, the loss 

of spatial and temporal coherence of the incident light re­

duces the temporal information about the relative phase posi­

tions of the scatterers at the receiver. 

2.6 The Scattering Volume 

2.6.1 The Scattering Volume for Pulsed 
and Continuous Illumination 

The basic difference between a pulsed and continuous 

laser beam is the amount of time the laser is "turned on". 

For example, the typical pulsed ruby laser emits a pulse of 

light with pulse length about 30 nano-seconds or so, while 

the continuous laser emits light as long as desired. At the 

same time, the energy density of the pulsed laser is usually 

much higher than the continuous laser. Since the volume at­

mospheric scattering coefficient is so weak, the pulsed laser, 

because of its high energy density, must be used to obtain 

measurable amounts of scattered light from small scattering 

volumes. However, the very use of the pulsed laser results 
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in some special geometric conditions on the size and shape 

of the scattering volume. 

For the statistical studies of the scattered light 

in this dissertation, it is necessary to calculate the number 

and position of the atmospheric scatterers which scatter . 

light to the receiver arriving at the same time; the light 

from these scatterers composes the instantaneous intensity 

incident on the receiver. This requirement is satisfied by 

calculating the volume of space containing scatterers which 

are illuminated by the laser light and whose separate contri­

butions to the scattered light arrive at the receiver at the 

same time; this volume is called the instantaneous scatter­

ing volume. In such a scattering volume all the scattering 

events do not occur at the same time. For example, a scat­

tering event which occurs in a region with a given source-to-

receiver path must occur later in real time with respect to 

a similar scattering event with a longer path in order for 

the light from both events to arrive at the receiver at the 

same time. Therefore, it is important to keep in mind that 

the scattering volume used in this dissertation for subse­

quent calculations is the instantaneous scattering volume. 

The instantaneous scattering volume has been used by 

radar researchers in past studies. Since the radar system, 

which measures back-scattered energy from rain and clouds is 

in many ways similar to the monostatic lidar system, some 

useful comparisons can be made. First, the radar emits a 
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pulse of energy whose time length is on the order of a milli­

second (10-3 sec), but this varies considerably. The pulse 

cross-section of energy widens as it propagates because of 

the beam spread determined by the radar antenna cross-section 

The pulse of energy illuminates all the scatterers within the 

volume defined by the beam spread and the pulse length. How­

ever, only the scatterers within half the pulse volume scat­

ter light which arrives at the receiver at the same time 

(directly back-scattered). The previously discussed scatter­

ing geometry is exactly the same for the monostatic lidar 

system. 

When the bistatic laser-receiver system is considered 

the dimensions of the instantaneous scattering volume"are 

different. Curran (1971) has extensively studied the geome­

try of the instantaneous scattering volume for the pulsed 

bistatic system and it is left to interested readers to delve 

into the problem further; all that is needed in this disser­

tation is the size of the instantaneous scattering volume in 

terms of the measurable pulse volume, V , and scattering p 

angle, ©. 

From Curran's work it is shown that if &p is the 

length of the pulse and is its cross-sectional area, then 

the length of the instantaneous scattering volume, ^ip' -**s 

given by 

A (2.19) 
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where O is the scattering angle; the cross-sectional area re­

mains Ap. Therefore, the size of the instantaneous scatter­

ing volume, V. , is given by 

viP - <V aP (2-20) 

2.7 General Formulation of the Intensity 
Correlation Function of the Scattered Light 

The basic goal of this dissertation, as has been 

often stated, is to study the fluctuations of the scattered 

light. A method which seems well-suited for this purpose is 

to calculate the intensity correlation function of the scat­

tered light which arrives at the receiver. The correlation 

function as such has been discussed a number of times so far 

in this dissertation; recall the light field correlation 

function (2.15) used to calculate the spatial coherence of 

the light. The intensity correlation function (statistical) 

is similarly expressed as 

RJ (ri,r2,t) = <I(ri,0) I(r2,t)> (2.21) 

where again, R.j.(ri,r2,t) is the intensity correlation func­

tion, I(r2,0) is the intensity (scattered) which arrives at 

the point ri (on the receiver) from the instantaneous scat­

tering volume at time 0, I(?2/t) is similarly defined except 

the light arrives at r2 at time t. Finally, the brackets 

refer to the ensemble or statistical average. It will be 
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shown that (2.21) contains all the statistical information 

necessary to describe the fluctuations of the scattered 

light. First, (2.21) is employed to study the temporal cor­

relation of the intensity at one point by setting ri = rzj 

second, the spatial correlation is analysed by setting t = o 

and £2. 

The intensity correlation function of the scattered 

light which arrives at one point on the receiver (ri - rz) 

correlates two intensities after a time delay t. During 

this time delay the intensity can change from a number of 

causes. After a time delay, t, the instantaneous scattering 

length, moves a distance 8. = t/c. Now, if Jl > Aip' 

instantaneous scattering volume at time t, contains an en­

tirely new set of scatterers with different numbers and rela­

tive phase positions than in the volume at time 0. On the 

statistical average, this condition is assumed to yield an 

intensity at time t, which is entirely independent (or un-

correlated) with the intensity at time 0. Yet, for A < A. 

the instantaneous scattering volumes at time 0 and t have an 

overlapping portion. The non-overlapping parts of the instan 

taneous scattering volumes contribute a portion to the inten­

sities which are uncorrelated, while the intensities from 

the overlapping portions are correlated. Further, the corre­

lation of the intensities from the overlapping volume changes 

not only because the overlapping volume becomes smaller with 
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time, but also because the scatterers may move between time 

0 and t, however slightly. The motion causes a change in 

the relative phase positions and numbers of the scatterers 

contained within the overlapping volume which, in turn, re­

duces the correlation of the intensities between time 0 

and t. 

In order to include the effects of the changing in­

stantaneous scattering volume in (2.21), it is found conven­

ient to express (2.21) in terms of the intensity correlation 

function for a continuous beam laser, R^(t), (the condition 

ri = rz is implicit and is dropped; the c superscript denotes 

continuous beam) which illuminates a volume equivalent in 

size and shape to the instantaneous scattering volume'of the 

pulsed laser, but remains fixed in space. For Rj(t) the 

correlation in the scattered light intensity changes only by 

means of scatterer motion causing new relative phase posi­

tions and numbers of the scatterers within the fixed volume 

between time 0 and t. If the time t is sufficiently long, 

the scattered intensities become completely independent (or 

uncorrelated) , this is denoted by R° (°°) ^t = toJZ* There­

fore it seems logical to assume that R^(<»), whose indepen­

dence is caused by scatterer motion, is equivalent to that 

portion of R^ (t) /~ri = rz dependence is dropped/^ from the 

non-overlapping part of the instantaneous scattering volumes, 

while the.overlapping portion of Rj(t) is equivalent to R^(t). 
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Using the partial correspondence between R^(t) and 

R®(t) discussed in the previous paragraph, a mathematical re­

lationship can be written for their complete correspondence. 

Figure 2.3 shows the instantaneous scattering volumes at 

time 0 and t; the different cross-hatching denotes the over­

lapping and non-overlapping portions of the volumes. During 

the period when A < H. or in terms of time t < t. . RT(t) — ip — lp' i 

is written as 

t. -t 
RjCt) = (Rj(t) ( ) + Rj(«) <~-)}s(t) (2.22) 

fcip ip 

where the first term within the {} brackets is the contribu­

tion from the overlapping volume, while the second term is 

the contribution from the non-overlapping volume. Finally, 

the term s(t) is a step function given by 

3(t> = {j ; 2ft- t;lp} (2*23) 

' ip 

Now when t > t. , R-(t) equals R^(»). In order for this ip i i 

solution to vanish for t < t. we write - ip 

r z ( t )  = R°(«) { J  - s(t)7 (2.24) 

Thus (2.22) is valid for t < t. and vanishes for t > t. , — ip xp 

while (2.24) is valid for t > t^ and vanishes for t 

A solution valid for all time is the sum of (2.22) and (2.24) 
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or, 

rjtt) 

Figure 2.3 

t. -t 
{/R^(t) - r£(®27 (^2—)} s(t) + R°(«) 

ip 

m 
(2.25) 

i \ 
The Relative Position of the Instantaneous Scat­
tering Volume at Time 0 (Solid Boundaries) and 
Time t (Dashed Boundaries). — in the above figure 
the cross-hatching denotes the overlapping (b) 
and non-overlapping (a) portions of the volumes, 
while &ip and iI denote the distances which.when 
divided by the speed of light correspond to the 
time t^p and t 

As a final note, if it is desired to correlate the 

scattered light between independent laser firings (denoted 

as pulse-to-pulse), then the correlation function 

coming from the same instantaneous scattering volume after a 

pulse delay time t, is 

</r_(t27pp = r?(t) ( 2 . 2 6 )  

and depends only on the motion of the scatterers as expressed 

by R°(t). 

Therefore, the expressions (2.25) and (2.26) have 

separated the dependence of the intensity correlation 
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function, R-^tt), on both the instantaneous scattering volume 

and the motions of the scatterers; Rj(t) can now be separate­

ly analyzed for the effects of the scatterer motion. 

2.7.1 The Intensity Correlation Function 
from the Continuously Illumxnated Atmospheric 
Scatterers 

2.7.1a Temporal Correlation. When the implicit 

range dependence (see 2.21) of R^(t) is expressed by writing, 

RI(r,rft), the intensity correlation function of the scat­

tered light from the molecules and particulates which arrives 

from a scattering volume a distance r away is 

Rj(r,r,t) = <1 (r,o)I(r,t)> (2.27) 

The above expression is presently shown to yield the first 

two statistical moments of the probability distribution as­

sociated with the temporal fluctuations of I(r,t). Typically 

r ends at some arbitrary point on the receiver surface. In 

order to include the phases of all the scatterers which con­

tribute to (2.27), the expression must be written in terms of 

the light fields as 

R°(r,r,t) = <E(r,o)E*(r,o)E(r,t)E*(r,t)> (2.28) 

The light field E(r,t) is the sum of all the scattered 

fields from the individual molecules and particulates within 

the scattering volume which arrives at some arbitrary point 

on the receiver at time t. 
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When the general field expression E(r,t) is written 

in terms of the sum of the molecular ̂ E"m(r,t|_7 (Rayleigh com­

ponent) and the particulate fields ^E (r,t\J and placed into 

(2.28), the multiplication results in sixteen terms. Ten of 

these sixteen terms involve products of terms similar to 

<Em(r,o)E* (r,t)>; these terms must be zero because the mo­

tions of the molecules and particulates are independent. 

The six terms which are left boil down to the expression 

given by 

R°(r,r,t) = RC(£,r,t)p + R°(r,£,t)m 

(2.29) 

+ 2Re{^(J,?,t)p_7 ,/R|(r,r,t)p_7}+2<Ira><Ip: 

and, further, it can be shown that 

R°(J,J,t) = R°(j,j,t)p + (2.30) 

where the m and p subscripts on the right-hand side of (2.29) 

and (2.30) refer to the expressions involving the molecular 

or particulate fields only and the Re in front of the brack­

ets {} denotes the real portion of the product. Also, it 

should be recalled that RE<r,r,t) (without the superscript) 

is generally written as 

RE(r,r,t) = <E(r,o)E*(r,t)> (2.31) 

The * in both (2„29) and (3.31) denotes complex conjugate. 
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Finally, <Im> and ^p1" are the mean scattered intensities 

from the molecules and particulates, respectively. 

The forms of (2.29) and (2.30) have conveniently 

separated the joint correlation functions of the molecules 

and particulates into their separate correlation functions 

which can now be studied individually. However, since the 

light fields E (r,t) and E (r,t) are typically composed of a ill 

great number of contributions from the individual molecules 

and particulates, messy summation notation must be used. 

Further, since as many as four products of these summation 

terms appear in calculating the intensity correlation func­

tions, an entirely unwieldy problem becomes manifest. There­

fore, it was thought best to place these calculations'in 

Appendix C, while the important features can be summarized 

here. 

A discussion of the calculation of the intensity cor­

relation function of the particulates, R°(r,r,t) , will 
^ P 

present all the factors necessary to calculate the addition­

al correlation functions which appear in (2.29). The func­

tion R°(r,r,t)p in terms of the field amplitudes Ep(r,t), is 

given by (2.28) with p subscripts on the field terms. Each 

field term, E (r,t), has a general form, calculated in Appen-
r 

dix A, which includes the phase and amplitudes of all the 

contributing scatterers; the expression is 
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i(|> (t) N(t) • ~y , /"* \ \ 
E (r,t) « e { Z Am / el(K*ri Y(ri))6/?!-r (t)/dV(ri)} 
F m=l V. - m -

ip 

(2.32) 

where ^(t) is the phase of the light which travels from the 

laser source to a fixed reference point within the instanta­

neous scattering volume and then to the arbitrary point on 

the receiver a distance r away from the reference point, 

N(t) is the number of particulates contained within the in­

stantaneous scattering volume at time t, Am is the scattered 

amplitude from the mth scatterer, the integral within the 

brackets seeks out the phase positions of all the scatterers, 

rm(t), at time t with respect to the reference point Within 

the scattering volume by integrating the dummy variable ri 

over V.. The properties of the Dirac delta function 6/ ri-xp 

rm(t2_Z/ provide a useful simplification of notation. The 

term K*n is the general phase position of a particle loca-

ted at ri with respect to the reference point within V. . 

Further, K = ic -it , where ic is the wave number of the laser s o '  o  

light pointing in the direction of the incident light, while 

ics is the wave number pointing in the direction of the scat­

tered light (from the scattering volume to the receiver). 

In addition 

K| o ±£ sin <§) (2.33) 
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where A is the laser light wavelength, and H is the scatter­

ing angle. Finally, y(ri) is the additional phase attribu­

ted to turbulence effects along the two-way optical transmis­

sion path. 

The four products of the fields, expressed by (2.28), 

which comprise R_(r,r,t) contain four independent sums over 
X p 

the particulates within the scattering volume at time zero 

and time t. The details of these summations are carried out 

in Appendix C where it is shown that the correlations in the 

phase of the light arriving at the receiver depend on three 

main conditions. 

The first condition concerns the temporal correlation 

of the incident laser light and the spatial correlation chan­

ges in the light attributed to turbulence effects along the 

two-way optical transmission path. The temporal correlation 

of the incident laser light has already been expressed by 

the longitudinal coherence length (or temporal coherence 

time), while the spatial correlation along the incident por­

tion of the two-way optical path has been expressed by the 

transverse coherence length (TCL). Finally, the spatial 

correlation in the scattered portion of the two-way optical 

path, called the maximum transverse separation (MTS), is 

presently discussed. The three correlation lengths define a 

region within the scattering volume in which the relative 

phase relationships among the particulate scatterers remain 
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correlated at a point on the receiver when averaged over 

many statistical realizations of the turbulent medium. The 

defined region is called a mutual coherence volume (JMCV) . 

Particulates which become separated beyond the dimensions of 

the MCV between time zero and t change their relative phases 

to random values and thereby contribute to fluctuations in 

the received intensity. 

The second condition concerns the changes in the 

relative phase positions among the particles between time 

zero and t as expressed through K*ri(0) and K*ri(t), respec­

tively. Between time zero and t,ri(t) changes by means of 

Brownian and turbulent motion. The Brownian motion moves 

each particle independently so that the relative phases cimong 

the particles demonstrate no correlation after a relatively 

short time. On the other hand, the turbulence tends to move 

groups of particles independently, while within any one group 

the particles show some dependent motion. Consequently, the 

relative phases among groups of particles demonstrate short 

correlation times, while relative phases of particles within 

one group demonstrate a longer correlation time. The com­

bined Brownian and turbulent motion causes the received in­

tensity fluctuations to demonstrate complex characteristics. 

Finally, the third condition concerns the total num­

ber of particles within the scattering volume at time zero 

and t, denoted by N(0) and N(t), respectively. Again, 
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Brownian and turbulent motion move the particulates into and 

out of the scattering volume thus leading to differences be­

tween N(0) and N (t) . These differences, in turn, cause fluc­

tuations in the received intensity. 

The molecules demonstrate the same effects on their 

correlation functions as previously outlined for the particu­

lates; however, the results are much simpler. 

The final results of Appendix C yield expressions in 

terms of measurables for the right-hand sides of (2.29) and 

(2.30), From these expressions it is shown that the first 

two statistical moments of the probability distribution are 

obtained in addition to the correlation time for the scat-
% 

tered light. The calculation of the correlation time"is by 

far the most difficult because it is dependent on a complex 

interplay of (1) the turbulent and Brownian diffusion coef­

ficients of the molecules and all the different sized partic­

ulates, (2) the correlation coefficient of the turbulent 

motion, (3) the size of the mutual coherence volume, and (4) 

the scattered intensity per molecule and per particulate for 

each different size. Expressions for the two statistical 

moments are now presented, while further discussion of the 

correlation time is presented in Chapter 3. 

Recall that (2.25) gives the intensity correlation 

function for the pulsed laser illuminating a moving instan­

taneous scattering volume in terms of a continuous beam 
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illuminating a fixed instantaneous scattering volume. An im­

portant property of the correlation function written as 

Rjtt) = <I(0)I{t)> (2.34) 

is that 

(1) Aim Rj(t) = <I2(0)> = <I2> (2.35) 

t+o 

and 

(2) Aim Rr(t) = <I(0)I(~)> « <I(0)><IW> = <I>2(2.36) 

t - * - 0 0  

where <I2> is the mean square of the intensity and <i:> is 

the mean intensity. The expression (2.36) is valid because 

it is assumed that the processes which correlate the inten­

sity at time 0 with the intensity at time t vanish, if t is 

long enough (t = «); certainly, scattering from moving par­

ticulates and molecules eventually satisfies this condition. 

Now, employing (2.25) the results are 

RjtO) = Rj (0) and R];(«») = R°(«) (2.37) 

Now from (2.29), the right-hand sides of (2.37) can be eval­

uated in terms of the molecules and particulates, so that 

RI<°> " RS(0) = R?(0)p + RI(0>m + 2 RI(0)pRE(0>m + 2<Im><1p> 

(2.38) 



(2.39) 
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Rl(~) = R°(«) = R^(co)p + R^(~)m + 2 R°(«)pR°(~)m + 2<y<y 

All the terms on the right-hand sides of (2.38) have 

been calculated in Appendix C in terms of measurables. The 

results are 

RI(0>p = 2<V2 ; RI(0)m = 2<V2 

RI(0)p " "V ' *S(0>m " "V 

r ^ ( " » p =  < v t ' r s ( " , » -  < i m > 2  

RE<">p = 0 ! RE<">m = 0 

Therefore, using (2.35), (2.36), (2.38) and (2.39) 

yields after some simplification 

<I2> = 2 (<I > + <1 >)2 

p m 
(2.40) 

< i > 2  -  ( < i  >  +  < 1  >)2 
p m 

where Appendix C additionally shows that 

j  n  <1 > = I V.IJ ; <1 > = v I (2.41) 
p j p m mm 

where v. is the total mean number of particulates within the 

instantaneous scattering volume of the jth size interval of 
# 

which there are a total of J size intervals, I-* is the scat­

tered intensity per particle of the jth size, vm is the total 
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mean number of molecules in the instantaneous scattering 

volume and I is the scattered intensity per molecule. 

The results expressed by (2.40) and (2.41) are exact­

ly the same results which are obtained for the first two 

statistical moments of Rayleigh distributed light for which 

the mean light intensity is the sum of the individual inten­

sities from each scatterer. Although (2.40) and (2.41) do 

not prove the scattered light intensity is Rayleigh distrib­

uted the results do not contradict this conclusion. In 

this connection, the so-called Rayleigh distribution of the 

intensity is given by 

P(I) dl « exp (- ̂ -) dl .(2.42) 

where <I> is given by (2.40) and p(I) probability density of 

the intensity. 

Along with (2.42) and the correlation time of the 

intensity fluctuations, a complete picture of the intensity 

fluctuation of the scattered light which arrives at an arbi­

trary point on the receiver surface is obtained. 

The next step is to investigate the spatial distri­

bution of the intensity over the receiver surface. 

2.7.1b Spatial Correlation. While Section 2.8.1a 

employed the intensity correlation function, written as 

Rj(ri,r2,t) = <1 (ri,0) I(r2,t)> (2.43) 
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with the special condition ri = r2 = r in order to analyze 

the temporal fluctuations of the scattered light at a point, 

this section employs the condition t = 0 and ri ^ rz to study 

the spatial distribution of the scattered light. The goal is 

to find the maximum region on a portion of the receiver sur­

face over which an instantaneous value of the intensity re­

mains relatively uniform (or constant); under such condi­

tions, of course, the intensity at any two points within the 

region has a high spatial correlation. Rather than calculate 

this region, which will be referred to as the spatial coher­

ence area, directly from (2.43), a better understanding of 
* 

the principles involved can be obtained with a geometric ap­

proach. 

From Figure 2.4 consider two scatterers at 0 and P 

scattering light to A and B on the receiver. The phase of 

A 2tt A the light which arrives at A from P is given by 4>p = —^rp + 

A P A Yp + <fg» where X is the wavelength, rp is the geometric path 

A from P to A, Yp is the random phase factor attributed to tur-
p 

bulence along P to A, and <(>g is the phase of the light at P 

from the laser. Similar relations exist for the light trav­

eling from P to B, 0 to A, and 0 to B. The relative phase 

difference of the light arriving at A from both P and 0 

P A A (A<f>pQ = (<{>p - <#»q) ) will have approximately the same relative 

B B B phase difference at B (A4>pq = (4>p - <J>q) ) provided 

|A$®0-A.t£0| < tt/8 (2.43a) 
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Under the conditions of (2.43a) the intensity of the light 

at both A and B is also approximately the same. Relation 

(2.43a) can be written as 

X 

(rp~rp^ ~~ (ro~rO) )+ ̂ (^p""^p) ~ ("^0""^0) 3l £ V8 (2.43b) 

P n (note; the 4>g and <J>~ terms cancel) . Using the Cauchy-

Schwartz inequality (2.43b) can be written as 

x  y| + | z ] < tt/8 

The terms |X|, |Yj, | Z | become larger with increas­

ing r (separation of O and P) and d (separation of B and A): 
* 

the terms r and d are shown in Figure 2.4. For a fixed r, 

it will be shown that the point at which jx| = tt/8 both |y| 

and | Z | are <<7r/8. Therefore, |x| dominates the expression 

(2.43b) which, consequently, simplifies to yield 

A =1 (r®-r£)-(r®-r£) | < A/16 (2.43c) 

Further, the path difference, A, in (2.43c) can be expressed 

in terms of the variables R, r, d, and <f> as shown in Figure 

2.4, so that the solution to (2.43c) becomes 

a  =  
2R - [  (R2 + r2 + 2R r cos <J> + d2 - 2rd sin <f>) 

- (R2 + r2 + 2R r cos<Jj) _k 
16 

(2.44) 
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A = A/16 

surface 

Figure 2.4 The Spherical Phase Surfaces of Two Scatterers 
at 0 and P have a Path Difference of A - X/16 at 
the Separation Length d on the Receiver surface. 

Further, since r at most will be limited by the di­

mensions of the instantaneous scattering volume, the condi­

tion R >> r applies. From this condition (2.44) simplifies 

to 

2R 
d2 - 2 r d sin 

2 (Rz + r2 + 2R r cos cj>) 

_ a  
16 

(2.45) 

where further simplification yields 

r = XR
2 1 

8d (dcos <p + R sin <p) 
(2.46) 
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In (2.46) d is the radius of a circular area on the 

receiver surface, called the spatial coherence area, over 

which the phase surfaces of the scattered light fields from 

all the contributing scatterers between 0 and P remain almost 

in step. The scattered light comes from a volume a distance 

R away from the receiver and whose dimensions are given by r 

and this volume is a volume of revolution. When (R sin <f>) 

>> (d cos <M or 0 >> tan"1 (d/R), then this volume is a 

cylinder whose central axis is aligned along OA (see Figure 

2.3) and whose radius (= r sin <J>) from (2.46) is given by 

r sin <J> = ̂  = constant (2.47) 

Now, for those angles 4> < tan"1 (d/R) , the cylindrical vol­

ume tapers off, so that at <f = 0, (2.46) reduces to 

t l  p  2  
r = — (2.48) 

8d2 

In order to insure that all the scatterers within the instan­

taneous scattering volume are contained within this volume 

of revolution, the radius of this volume (2.47) is set equal 

to the maximum radius of the instantaneous scattering volume 

as observed from the receiver. For example, the receiver on 

the monostatic lidar system has a field of view sufficiently 

large to include the entire transmitted laser beam. There­

fore, the radial dimension of the instantaneous scattering 

volume is defined strictly in terms of the geometry of the 
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transmitted beam. In this connection the radius of the ef­

fective transmitted beam, p , at a distance R from the laser 5 

head is given by 

ps « 0T(R* + R) (2.49) 

where 0T is the half-angle beam width and R* is the radius of 

curvature of the phase surfaces of the laser light at the 

laser emitter. This radius, p , is set equal to (2.47). 
s 

Therefore, the size of the coherence area on the surface, 

ird2, can be written entirely in terms of measurables, so 

that 

Spatial coherence area = ird2 - ir XR 
8 0T(R* + R) 

(2.50) 

Further, if P is the radius of the collecting aperture at 

the receiver surface, then the number of coherence areas, M, 

which are contained over this surface is 

m = irP' 

7Td: 

8 6T(R + R*)P 

XR 
(2.51) 

The significance of all the calculations from (2.44) 

to (2.51) is as follows. The instantaneous value of the 

scattered light intensity from all the molecular and partic­

ulate scatterers which arrives at one point on the receiver 

depends on the temporal arrangement of all the phase surfaces 

which compose the scattered light. This temporal arrangement 

of phase remains almost the same (or in step) over a spatial 
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coherence area (2.50). Further, the light which arrives at 

two points on the receiver whose separation is greater than 

the diameter of a coherence area must necessarily have light 

arriving at these two points with a path difference, A, 

greater than X/16. Therefore, the phase surfaces of the 

light are arriving with essentially a different temporal or­

der at the two points. This, in turn, results in a differ­

ent value of the instantaneous intensity at the two points. 

Yet, around each of these two points there is a region (spa­

tial coherence area) over which the intensity is nearly uni­

form. From these relationships, it is seen that the receiver 

surface contains, on the average, M spatial coherence areas 

(2.51) over any one of which the instantaneous value bf the 

intensity is nearly uniform, but between any two of which 

the instantaneous intensity values result from the different 

phase positions of the scatterers as calculated at the coher­

ence areas on the receiver, the statistical values which the 

instantaneous intensity are most likely given by (2.42), the 

Rayleigh distribution. This then completes the temporal and 

spatial description of the probability distribution of the 

scattered light which arrives on the receiver surface. 

Before the means by which the light is converted in­

to a measurable current is discussed the effects of the scat­

terers between the scattering volume and the receiver must 

be considered. 
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2.8 Effects of the Atmospheric Scatterers 
between the Scattering Volume and Receiver 

2.8.1 Turbulent Refractive Inhomogeneities 

The turbulent refractive inhomogeneities cause a de­

gradation of the phase structure of the light which reaches 

the receiver from the scattering volume. 

The analysis of the degradation of the phase struc­

ture is similar to that done for the transmitted light. Re­

call the conclusion that the relative phases from a collec­

tion of scatterers within the same coherence volume can 

always be calculated; the relative phases are simply depen­

dent on the relative separation of the scatterers in the 

direction of the transmitted laser light. 

With regard to the scattered light to the receiver, 

the actual separation of any two scatterers can be divided 

into a transverse component, parallel to the receiver sur­

face, and a longitudinal component, perpendicular to the re­

ceiver surface. An increase in the transverse separation 

causes the light from the two scatterers to pass through in­

creasingly independent turbulent scatterers which results in 

a loss of the phase correlation of the received light. On 

the other hand, an increase in the longitudinal component 

within the boundaries of the coherence volume, defined by 

the transmitted laser light, causes only a slight difference 

in the relative phase at the receiver and, therefore, a negli­

gible effect on the phase correlation of the received light. 
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The transverse separation of the scatterers acts as 

the effective separation of a double slit. When the visi­

bility of the fringes (6) is calculated by means of (2.12), 

(2.13) , and the perturbation method for calculating the com­

posite field reaching the receiver surface, an expression is 

obtained and written as 

6 =  -  Ki  F  ( | r i  -  rz  \ YJ  (2 .52)  

where Ki is a factor related to the strength of the turbu­

lence, and F(|ri - ?2|) is a geometric factor related to the 

effective separation of the double slit (or the equivalent 

transverse separation of scatterers). When there is no tur­

bulence Ki equals 0 and consequently the visibility of the 

fringes equals 1.00, as it should. 

The expression, (2.52), yields a means by which the 

phase effects of turbulence on the received laser light can 

be assessed. It is assumed that the maximum transverse 

separation (|ri - rz |) up to the boundaries of the coherence 

volume defined by the transmitted laser light, at which the 

fringe visibility equals 0.88, is the point at which the tur­

bulent inhomogeneities introduce a random factor into the 

relative phase of the light arriving from the two scatterers 

on the receiver surface. In this connection, a collection 

of scatterers will conserve their relative phase at a point 

on the receiver provided both the transverse component of 
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the particle separation between any two particles in the col­

lection is less than the transverse separation (|rj - vz |) 

and the collection of particles is in the same coherence 

volume defined by the transmitted laser light. These rer 

strictions define a new coherence volume which will be called 

the mutual coherence volume (MCV). The final dimension of 

the MCV which must be specified is the maximum transverse 

separation; MTS will be used for brevity. To this end, 

Table 2.3 shows this dimension as a function of range from 

the receiver. In addition these values of the MTS in weak 

turbulence are always greater than the geometric spatial co­

herence length, d, as defined in (2.47) in the previous sec­

tion , so that the definition of the spatial coherence•area 

according to (2.50) is always valid. 

Table 2.3 The Maximum Transverse Separation, MTS, of the 
Received Scattered Light as a Function of Increas­
ing Range Through a Homogeneous, Weak (C2 = 1 x 
10~16) Turbulent Atmosphere. n 

RANGE MTS 

km cm 

0.5 34.4 

1.0 20.6 

2.0 15.1 

3.0 11.9 

4.0 10.1 

5.0 8.8 
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2.8.2 Molecular (Rayleigh) and Particulate 
Effects 

The results of Appendix B showed that the forward 

scattered light which arrives at some distant field point 

within the transmitted beam from the molecules and particu­

lates is two orders of magnitude less than the directly 

transmitted laser light. Therefore, except for attenuation 

by the molecules and particulates, the laser light is trans­

mitted essentially unaffected by these scatterers. For the 

same reasons, it is assumed that the light arrives at the re­

ceiver essentially unaffected by the molecules and particu­

lates except for attenuation. Therefore, all that has been 

done regarding the probability distribution of the scattered 
• 

light which arrives at the receiver remains unchanged except 

that the above mentioned attenuation must be included. This 

last point about attenuation leads into the next topic before 

the receiver effects are discussed. 

2.9 Transmittance Fluctuations 

This section discusses the second source of experi­

mental error which hampers the measurement of the properties 

of the scattered light. The molecules and particulates 

change the transmittance of the light over two paths: (1) 

laser source to scattering volume and (2) scattering volume 

to receiver. These transmittance changes occur from greater 

and lesser numbers of scatterers occupying the transmission 
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paths (1) and (2). Further, these fluctuations cannot be 

differentiated from those caused by phase changes associated 

with scatterer motion within the instantaneous scattering 

volume (this is the first source of experimental error). 

Appendix E calculates the magnitude of these transmittance 

fluctuations caused by Brownian and turbulent motion along 

the two-way transmission path. Results are specifically cal­

culated for the University of Arizona monostatic, laser-

receiver system operating under normal atmospheric conditions 

This result shows that these transmittance fluctuations are 

well below 1% about a mean transmittance assuming average 

number densities of molecules and particulates. In light of 

the results of Chapter 3, which show that the fluctuations 

in the scattered light about a mean, caused by scatterer mo­

tion within the instantaneous scattering volume, are much 

greater than 1%, the transmittance fluctuations are neglected 

2.10 Receiver Effects 

Since the scattered laser light intensity from typi­

cal concentrations of atmospheric scatterers which arrives 

at the receiver is relatively weak, the light is usually col­

lected by a large aperture in order to obtain a sufficiently 

strong signal for measurement. The collected light is then 

focused by an optical system onto a photosensitive surface 

to begin the conversion of the light to an electrical cur­

rent. 
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At this point an important property of the optical 

focusing system must.be mentioned. It should be emphasized 

that the interference pattern which appears on the receiver 

aperture also appears on the photosensitive surface; just 

the relative dimensions of the pattern are changed by the op­

tical system. This point is important because it is the 

ratio of the receiver aperture area to the spatial coherence 

area of the interference pattern that partly determines the 

statistical nature of the electrical current associated with 

the collected light intensity. 

The photosensitive surface which the collected and 

focused light strikes is just the photocathode surface of a 

photo-multiplier tube (PMT) . Electrons are emitted fr'om the 

photocathode surface in proportion to the light intensity, 

but only on the average. In actuality, the electrons are 

emitted in bursts according to a Poissonian probability dis­

tribution. This characteristic, therefore, requires the 

statistics of the photocathode current correlation function 

be coupled to the intensity correlation function. 

An additional modification of the photocathode elec­

tron current occurs as the photocathode electron stream 

passes through the amplification dynodes of the PMT. A sin­

gle photocathode electron becomes amplified into a pulse of 

electrons of ever increasing strength at each dynode stage. 

Upon leaving the amplification system the electrons arrive 

at the anode as a pulse of strength ye, where y is the 
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amplification factor (gain) and e is the magnitude of the 

electronic charge. In addition, the pulse is broadened be­

cause of spread in the transit times of the electrons in the 

amplification system. 

The characteristic of the conversion process out­

lined above is the addition of a fluctuating noise factor, 

called shot noise, to the photoanode current. This shot 

noise is the third source of experimental error outlined in 

Chapter 1. 

In the following section, the correlation function 

of the photoanode current associated with the scattered 

light is calculated. This function is employed in the same 

manner as the scattered intensity correlation function; 

namely, the photoanode current correlation function yields 

the first two statistical moments of the current fluctua­

tions, <i> and <iz>, respectively, as well as the current 

correlation (or independence) time. From these parameters a 

complete statistical description of the photocurrent fluctua­

tions associated with the scattered light fluctuations is 

obtained. 

The calculations of the photocurrent correlation 

function are divided into a number of sub-sections. First, 

the photocurrent correlation function is calculated when the 

scattered light illuminates just one spatial coherence area, 

while the next section includes the effects of an arbitrary 

number of spatial coherence areas. This last subsection will 
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present the photoanode current correlation function in its 

most general form. The next sub-section treats the filter­

ing of the photoanode current, while the last sub-section 

discusses the statistical properties of the filtered photo­

anode current. 

2.10.1 Photocurrent Correlation Function 
for One Spatial Coherence Area 

Greytak (1970) calculates the photoanode current cor­

relation function for a photomultiplier tube illuminated by 

a spatially uniform intensity. His results apply to an area 

of any size and, therefore, in particular, to a spatial co­

herence area. In Appendix D, Part I, the steps similar to 

the method by which Greytak calculates the photocurrent cor­

relation function are presented. Greytak made a number of 

errors in his original manuscript; these errors are correc­

ted but not discussed. The final result for the photocurrent 
i 

correlation function, (t), in terms of measurables is 

R^(t) = <i' (o) i'<t)> (2.53) 

= 2l§~" ^a]ie <f,>)e rcs + (ape) 2 rf(t) 
s 

i  i  
where i (o) and i (t) are the photoanode currents at time o 

and t, respectively, v is the gain factor of the photomulti­

plier tube, a is the electron conversion efficiency of the 

photoanode (electrons/joules), e is the magnitude of the 

electronic charge, the product, RC , is the response time of 
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the PMT and represents the spread in transit time of the pho-

toelectrons /RC ^ 10"9seconds7/ <F > is the mean flux of 
s 

the scattered light collected by the one coherence area, 
i 

while Rp(t) is the flux correlation function, written as 

RP(t) = <F' (o )  F'(t)> (2.54) 

i • 
where F (o) and F (t) are the fluxes of the scattered light 

collected by one coherence area at time o and t, respective-
i i  

ly. Both <F > and R^, (t) are related to the scattered inten­

sity by the following relations: 

< F >  =  / /  <  I  >  d A R d w s  ^ y r a t t s 7  

(2.55) 
Rf(t) = // ff R (t) d ARd wsdAR dws /watts7a 

i 
where dA_ and dAn are elements of a coherence area on the re-k  k  

t 
ceiver surface and dui and do) are elements of solid angle s s 

subtended by an element of the instantaneous scattering vol­

ume at the receiver. Now, the dAR's are integrated over the 

coherence area, while the dws*s are integrated over the 

solid angle subtended by the instantaneous scattering volume 

at the receiver. Finally, it should be pointed out that the 

first expression on the right-hand side of (2.53) is the con-
i 

tribution to R^(t) from shot noise (the third and final 

source of experimental error), while the second term is the 

contribution of the scattered intensity fluctuations via 

(2.55) (The first contribution to the experimental error). 
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2.10.2 Photocurrent Correlation Function 
for Many Spatial Coherence AreaT 

If the light incident on the photomultiplier tube 

contains M spatial coherence areas, then the photoanode cur­

rent can be thought of as the independent sum of M photoanode 

currents each coming from one coherence area. Consequently, 

the photoanode current correlation function, R^(t), from M 

coherence areas is written as 

M , M , 
R. (t) = <i(o)i(t)> = < Z i (o) Z i (t)> (2.56) 
1 p=l p q=l q 

Since the contribution to the photocurrent from each coher­

ence area is independent of another (since the illuminating 

intensities over each coherence area are independent) ," terms 
i i  t i 

such as <i (o) i (t)> for p ^ q must become <i (o)><i (t)> = 
P 3̂ P 4 1  .  i i  

<i > , while terms for p = q must become <i (o) i (t)> = 
V 

R^(t). Prom these relations (2.56) becomes 

R±(t) = (M2 - M) <i' >2 + M R!(t) (2.57) 

i  
where M is the number of coherence areas and <i > is the mean 

i  
photoanode current from one coherence area, while R^(t) is 

the photocurrent correlation function from one coherence 

area and is given by (2.53). The expression (2.57) is the 

most general form of the photoanode current correlation 

function. 
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2.10.3 Filtering the Photoanode Current 

The University of Arizona laser-receiver has a post 

detection circuit which integrates the raw photoanode current 

from the PMT. Along with this integration the circuit fil­

ters the shot noise contribution to the photoanode current, 

while passing the fluctuations associated with the scatter-

ers. The filtering circuit acts as an equivalent RC^ (f 

subscript denotes filter) filter (resistor-capacitor in 

series) with a time constant, (RC)^ ̂  2.5 x 10"a seconds, 

(equivalent to 40 MHz band pass). Appendix D, Part 2 shows 

that the filtering modifies the shot noise portion of the 

photoanode current correlation function (see 2.53), so that 

(2.57) becomes 

Ri(t)f - (M2 - M) <i' > 2 + M R^(t)f (2.58) 

where 

I*i (t) f = (otye<F >)e RCf + (aye) 2 R£t) 

where the f subscript denotes the filtered values. One 

notes that the shot noise portion of the filtered photocur-

rent is reduced to h of that associated with the unfiltered 

shot noise expressed by (2.53). However, since (RC)^ ̂  2.5 

x 10"®, the filtering increases the correlation time of the 
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shot noise. This has some important consequences which are 

discussed in Chapter 3. 

2.10.4 The Statistical Properties of 
the Filtered, Photoanode Current 

Employing the properties of the filtered, photoanode 

current correlation function, (2.58), as is done for the in­

tensity correlation function (see 2.35 and 2.36) , the first 

two moments of the filtered photocurrent probability distri­

bution can be found, yielding 

lim - <i2> 

t-*-o 

lim R^(t)^ = <i>2 

t-»-w 

Using (2.58), (2.59) becomes 

<i2> - (M2 - M) <i >2 + M R^(o)^ 

<i>2 = (M2 - M) <i' >2 + M R^ (°°) f 

(2.59) 

(2.60) 

now,  

R^(°)f = <i'2> = "4^§— (aye<F*>) + (aye) 2 Rp(o) 
f 

(2.61) 

Ri (°°) f = <i >2 = (ape) 2 Rp(°°) 

Now combining (2.60) to (2.61) and simplifying yields 
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pe 
4rĉ : 

, • „ (2.63) 
<i> = M <i >z 

i  
Now since M<F > is the total mean flux density, <F>, over 

the whole receiver surface, it is easily shown that the mean 

and the variance of the filtered, photoanode current are 

<i> = yq <F> 

of = <i2> - <i>* - <i> + Zgl <2'64) 

•  i  

where q = ae and has the units of amperes per watt. The 
4 

above expression shows that the mean photoanode current is 

directly related to the mean flux from the scatterers col­

lected by the receiver surface which, in turn, is directly 

related to the mean scattered intensity. The variance on the 

other hand is dependent on the shot noise fluctuations, 

and the fluctuations in the intensity of the scattered light 

as expressed by a2. 

The next step is to attempt a calculation of the 

most likely probability distribution associated with (2.64). 

It will be recalled that this was done for the intensity dis­

tribution of the scattered light (see 2.42). However, the 

task in attempting to calculate p(i)di (probability distri­

bution of the current) is more complicated. 
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Rice (1954) has made an extensive study of shot 

noise. He showed that, if the mean photocurrent is suffi­

ciently strong, the shot noise is normally distributed about 

the mean according to 

p(i)di = (2iroM_Js exp {- (1 ~ <:L>) '}di (2.65) 
2on 

from shot 
noise only 

where, of course, <i> is the mean and is given in (2.64). 

With regard to that portion of the photocurrent as­

sociated with scattered light fluctuations, it seems logical 

to assume that the photocurrent distribution would be analo­

gous to the intensity distribution, but with some modifica­

tions. First, the photocurrent distribution from one spa-
i  i  

tial coherence area ̂ p(i )di_/ would follow the Rayleigh dis­

tribution of the scattered intensity according to 

p(i )di = <il> exp {^T-j*-•} di (2.66) 

from light 
fluctuations 
only 

i  •  
where <i > = yq <F > 

However, the photocurrent probability distribution 

associated with M independent spatial coherence areas is a 

little more complicated, but standard probability texts show 

how the distribution can be easily calculated, so that 



m  
p (i)di <jl > > (m-i): 

< J L  >  

M-1 
exp - i  

<i > 
di 
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(2.67) 

from light 
fluctuations 
only 

From this distribution it is easily shown that 

<i> = M<i'> 

<i2> = (M2 + M) <i'>2 

< • > 2 
which implies that a| = — and is equivalent to a2 in 

(2.64). The expression for (2.67) simplifies even further 

when M is_ large, i.e., it approaches the normal distribution 

equivalent to (2.65), so that 

(i)di = (2tto 2) exp{- ^ ~ —} di (2.68) 
2a. 

from light 
fluctuations 
only 

If the probability distributions associated with the 

shot noise and light fluctuations are independent, the same 

probability texts (Uspensky 1937, in particular) show that 

the joint probability distribution of both the shot noise 

and light fluctuations can be found by taking the Fourier 

transforms of (2.65) and (2.68), consolidating them, and cal­

culating the inverse Fourier transform; the result is 
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p(i)di = (2tto. 2) exp {- (i " <i>) 2 } di (2.69) 
x 2<j . 2 

x 

where <i> arid a? are given by (2.64). This distribution 

seems to be the most likely probability distribution of the 

filtered photoanode current. The conditions require that 

<i> must be reasonably large with respect to and that M be 

fairly large. It will be shown in the next chapter that the 

conditions of large M are well-satisfied by the University 

of Arizona laser system operating under normal conditions, 

while <i> being reasonably large with respect to is satis­

fied most of the time. If <i> < 20^, then (2.65) and, there­

fore, (2.69) cannot be used. This is also obvious from 

(2.69) since such a condition would cause p(i)di to be posi­

tive in the region i < o which is not physically realizable. 

Therefore, the probability distribution (2.69) com­

pletely specifies all the information obtainable about the 

magnitude of the photoanode current fluctuations associated 

with the fluctuations in the scattered light. However, the 

photocurrent correlation function (2.58) provides the corre­

lation time for the photocurrent to assume an independent 

value. The correlation time and probability distribution 

are necessary in order to make an estimate of the true mean 

photocurrent associated with the true mean intensity of the 

scattered light which is the main goal of this dissertation. 

In the next chapter (2.58) and (2.69) are used to analyze 
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the ability of the University of Arizona monostatic laser 

receiver system to estimate the true mean photocurrent, <i> 

associated with the true mean intensity of the scattered 

light. 

2.11 Chapter Summary 

Only the important results are summarized here. The 

scattered light which arrives on the receiver surface fluc­

tuates because of the motions of the molecular and particu­

late scatterers. The fluctuations are most likely distribu­

ted about a mean according to the Rayleigh distribution (see 

2.42). The mean intensity of this distribution is the 

independent sum of the intensities from each scatterer (see 
« 

2.40) which, on the average, occupies the scattering volume. 

The fluctuations in the transmittance of the light, because 

of molecules and particulate number density fluctuations 

along the laser source - scattering volume - receiver path, 

are negligible (see Section 2.9). The fluctuating light 

field which is collected by the receiver optics is focused 

onto a photomultiplier tube where the light is converted 

into a measurable current (see Section (2.10). The fluctua­

ting current (photoanode current) is composed of the fluctua­

tions associated with the light and some additional 

fluctuations associated with the light conversion process, 

shot noise (see 2.53). Xn order to reduce the shot noise, 

the photocurrent is filtered (see 2.65). Finally, the 
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fluctuations in the filtered photoanode current about a mean 

are shown to be distributed, most likely, according to a 

normal distribution (see 2.69). The mean photoanode current 

is proportional to the mean intensity, while the variance is 

proportional to the shot noise and light fluctuations (see 

2.69). The correlation time between independent values of 

the filtered photoanode current is obtained from the photo-

anode current correlation function (see 2.58). All of the 

previous is necessary for the calculations of Chapter 3. 



CHAPTER 3 

RESULTS 

3.1 The Photoanode Current Fluctuations 
for the University of Arizona Monostatic Lidar 

Using the mathematical relationships developed in 

Chapter 2, the ability of the University of Arizona mono-

static laser-receiver to estimate the true mean photoanode 

current associated with the true mean intensity of the scat­

tered light can be calculated. To achieve this purpose the 

parameters associated with the probability distribution of 

the photoanode current must be evaluated in terms of measur-

ables. The photocurrent probability distribution has been 

shown to be 

p(i)di = ^— exp {- ^ ~ —} di (3.1) 
/2ira^ 2a| 

where 

<i> = yq <F> 

ai = °n + as = Tmn <l> + tt~ 

In (3.1), i is the instantaneous value of the fil­

tered photoanode current. The mean photocurrent, <i> (amp­

eres) , depends upon the mean flux from the atmospheric 

123 
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scatterers <F> (watts) collected by the receiver optics, the 

conversion factor, q (amperes/watts), and the amplification 

factor, y. The variance, a?, consists of the sum of the shot 

noise (o£) and the variance of the current associated with 

light intensity fluctuations caused by the motions of the 

atmospheric scatterers (cr*). The term e is the magnitude of s 

the electronic charge and (RC)j- is the time constant of the 

circuit which filters the raw photoanode current, while M is 

the number of spatial coherence areas the instantaneous scat­

tering volume projects on the receiver surface. 

For the monostatic lidar system, the laser source 

and receiver are as coaxial as is physically permitted. 

Therefore, the laser light which illuminates the scatterers 

within the instantaneous scattering volume is directly back-

scattered to the receiver. Consequently, the scattering 

angle, H, is virtually 180°; this condition eliminates a 

number of cumbersome problems. For example, the size and 

shape of the instantaneous pulse volume becomes simply 

related to size and shape of the laser pulse volume, V . 

The exact relationship is given as 

V V 
V. = £-=- = =£ (at H = 180°) (3.2) 
lp 2 sin2 (|) 2 

Further, since the light paths from the source to receiver 
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coincide, the attenuation of the light over the whole path 

can be calculated in terms of the properties of just one path, 

The first step in specifying the parameters of (3.1) 

is to calculate the mean instantaneous flux of the scattered 

light collected by the receiver optics, <F>. The expression 

for <F> in terms of the physical parameters can be written 

as 

<F> = 
E tc 

/ \ 

V 
L P 

<V (vip 3SU80,R)> 
R 

R' v / 

/TI (0,R)T2 (O,R)/UR) 

B ih w- D -M (3.3) 

In (3.3) the term A is the normal flux density of 
« 

the laser light (energy/unit normal area, time) which arrives 

at the instantaneous scattering volume a distance R away. 

Specifically, is the total energy (joules) initially con­

tained in the laser pulse and is the volume of the laser 

pulse at range R, while c is the speed of light. The term 

Z is the fraction of the available light transmitted by the 
s 

source optics. The second term, B, is the product of the in­

stantaneous scattering volume, an^ the volume back-

scattered coefficient per unit solid angle (km str)""1 at 

range R. Term C is the solid angle subtended by the collec­

ting area of the receiver at the scattering volume (str) 

written as the ratio of the normal receiver area, AR, to the 

square of the range, R2. Term D expresses the amount of 
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light transmitted as the light passes to the scattering vol­

ume Ti(0,R), and back to the receiver, Tz(0,R), respectively. 

When the two paths coincide, as for the backscattered light, 

Ti(0,R) equals T2(0,R). Finally, the last term in (3.3), 

is the fraction of the available light transmitted by 

the receiver optics to the surface of the photomultiplier 

tube. The transmittance factors can be expressed in terms 

of the volume scattering coefficients of all the scatterers 

encountered along a vertical path in the atmosphere. In 

Appendix E such a relationship is calculated in order to 

study the fluctuations in the transmittance. The result 

shows that the total transmittance associated with the partic­

ulate scatterers is given by 

-2-r (0,R) 
/Ti(0,R)T2(0,R)/ = Ti(0 ,R) = e P (3.4) 

tr r 

where t (0,R) is the particulate optical depth (see 2.7, 
r 

Chapter 2) from the ground to a range position, R, along a 

vertical (z=R) path and for the model of the vertical distri­

bution used here is given by 

T (0,R) = {1 - exp ^T-0.8 km"Mil/) (3.5) 
f 

where is the total particulate optical depth of the atmos­

phere . 

Expressions equivalent to (3.4) and (3.5) exist for 

the molecules which have not been needed in the development 
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up to this point. Rather than make a detailed calculation, 

the form suggests itself by analogy to (3.4) and (3.5). 

First, it is obvious that 

where xm(0,R) is molecular optical depth over the vertical 

path from zero to R. The exponential within the brackets of 

(3.5) is exactly the height-number density relationship for 

the particulates for the Air Force "clear atmosphere" model 

(see 2.3, Chapter 2). Similarly, the functional decrease of 

molecular density with height is available in the Smithsonian 

Meteorological Tables (1958). For the purposes of this dis­

sertation, the simple isothermal atmosphere yields an ade­

quate functional dependence (since we are dealing with a 

narrow height range); this relation is given by 

where p(z) is the molecular density at height z, p is the 

density at sea level, and H is the scale height of the iso­

thermal atmosphere. Using (3.7) the molecular optical depth 

xm(0,R) may be expressed as 

^Ti(0,R)T2(0,R]7m « Ti2(0,R)m = e (3.6) 

(3.7) 

Tm(0,R) = {1 - exp ^-(H)-1^} (3.8) 
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Since Tucson is not at sea level, "p must be ad jus-s 

ted slightly. With this adjustment, a value of H = 8.5 km 

seems to give the best approximation to the actual density-

height relationship. The combined transmittance, Ti2(0,R), 

of the molecular and particulate atmosphere is given by the 

product of (3.4) and (3.6), so that 

T i 2 { 0 , R )  =  £ T i m { O f R )  T I P ( 0 , R J _72 

(3.9) 
= exp {-2^Tm(0,R) + Tp(0,R2/} 

The volume backscattering coefficient, 3_(180,R) 

expressed in (3.3) is the sum of the separate volume back-

scattering coefficients from the molecules, $m (180,R). and 

the particulates, 3^(180,R). This follows from a conclusion 

of Chapter 2 (see 2.41) which shows that the mean scattered 

intensity from a collection of molecules and particulates is 

the sum of the separate scattered intensities from each scat-

terer. Appendix B shows that the 3^(180,R) at any height can 

be related to the particulate density of the Air Force 

"clear atmosphere." This relation, in turn, is related to 

the particulate optical depth (Appendix B) so that 

pP(180,R) = ) TP eXp /J-o.8 km~MR7/km str7_1 (3.10) 

where S is the ratio of the normalized volume attenuation 

coefficient, 3^ to the normalized volume 
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backscattering coefficient, 3^(180) £km str/"1. For a Junge 

distribution with v* = 3.0, for which the calculations in 

this dissertation are done, S = 19 str. 

A relation analogous to (3.10) exists for the mole­

cules. Again, by similarities this relation is 

(H) ~1 
3g(180,R) = r—exp /J- (H) ~1R 7 (3.11) 

s 

i 
where S is the ratio of the molecular volume attenuation 

coefficient to the volume backscattering coefficient. The 
V 

work of Appendix C indicates that S is equal to 8ir/3 (str) . 

The equations (3.4) through (3.11) have completely 

specified the scattering properties of the molecular and par­

ticulate atmosphere in terms of their respective total opti­

cal depth—a great convenience. 

A certain number of parameters associated with the 

characteristics of the University of Arizona monostatic 

laser receiver facility remain to be specified before <i> 

and cr| in (3.1) can be calculated as a function of range. 

Some of these parameters have already been mentioned, but 

will be presented again for the immediately following calcu­

lations. The parameters which apply to (3.1) and (3.3) are: 

0^, = 1.5 x 10"3 radians — 0.80 

R* = 7.5 cm/0T =0.5 km £R = 0.65 

]i - 107 Efj> ~ 1 joule 
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e - 1.6 x 10"19 (coul) A r  =  it P2 

(RCf)"1 = 40 MHz P = 15 cm 

q = 0.02 amperes/watt 0R = 3 x 10"3 radians 

A = 69438 

where ©T is the half-angle divergence of the laser beam as 

it leaves the collimation optics, R* is the ratio of the 

radius of the laser beam cross-section as it leaves the 

source optics (7.5 cm) to 0^, u is the gain of the PMT, e is 

the magnitude of the electronic charge, (RC^)"1 is the fil­

ter band width of the post detection circuit employed to re­

duce shot noise, q is the PMT sensitivity, £ is the fraction 

of available light transmitted by the source optics, while 

is the fraction of the available light transmitted by the 
k • 

receiver optics, ET is the total energy contained in one 

laser pulse, AR is the area of the receiver lens, while P is 

its radius, and finally 0„ is the half-angle field of view 

of the receiver optics and X is the wavelength of the ruby 

laser light. 

When these constants are applied to (3.1) through 

(3.10) for a vertically propagating beam (where the total 

molecular and particulate optical depths for typical operat­

ing conditions are = 0.036 and = 0.25, respectively), 

the results are given in Table 3.1 

Before <i> and a? are calculated, the number of spa­

tial coherence areas, M, over the receiver surface associated 
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with the instantaneous scattering volume must be calculated. 

Chapter 2 (2.51) gives this number in terms of measurables 

and is rewritten below. This specific form requires that 

®T < 0R as indicated in the parameter listing, so that 

M Area of receiver „ 8qT(R+R*)P 
M - Coherence area ~ < XR > (3*12> 

Expression (3.12) completes all the relations needed to cal­

culate <i>, o?, and SN = <i>/cn, commonly called the signal-

to-noise ratio. Therefore, using the results of Table 3.1 

and all necessary relations, Table 3.2 is calculated. 

From Table 3.2 it is quite apparent that the variance 

in the photocurrent caused by the shot noise (c^)is about 

three to six orders of magnitude greater than the variance 

associated with the light fluctuations (a*) caused by the mo-

tions of the molecular and particulate scatterers. The 

reason is the overwhelming number of coherence areas (M) on 

the receiver surface. 

3.2 Estimating the True Mean Photocurrent 

The importance of knowing the probability distribu­

tion of the photocurrent is related to the degree of confi­

dence in estimating the true mean value of the photocurrent 

from a fluctuating signal. For the University of Arizona 

monostatic lidar the photocurrent appears to be normally dis­

tributed (3.1) with a variance dependent only on the shot 



TABLE 3.1 The Total Flux Collected by the Receiver (<F>) as a Function of 
Range (R) for the University of Arizona Monostatic Laser Propaga­
ting Vertically. — The total particulate and molecular optical 
depths are = 0.25 and x™ = 0.036. 

R 

(km) 

B|(180,R) 

(km 

Pg(180,R) 

str)-1 

/fP(0,RV72 /T^(0,R)/2 VR2 

(str) 

<F> 

(watts) 

1 47.3 x lO"* 4.49 x 10 .759 .9960 70.7 x 10~9 332. x 10-9 

2 21.3 4.00 .671 .9925 17.7 35.8 

3 9.55 3.55 .635 .9893 7.85 7.75 

4 4.91 3.16 .619 .9866 4.42 2.61 

5 1.93 2.81 .612 .9841 2.83 0.969 

h 
u> 
to 



Table 3.2 The Photoanode Current (<i>)# Variance (c?) , and Signal-to-Noise _ i • i t _ t • » n | • 1T. • » i * * 
Ratio (SN) as a Function of Range for the University of Arizona 
Monostatic Lidar. 

R M <i> a2 a2 o f  e _<i> n s 1 S *t— N a • 
(km) (amperes) (amperes) (amperes) (amperes) 

1 149.xl0+s 43.2x10"3 69.2xlO"0 125.xlO"12 69.2xl0"8 50.2 

2 37.2 4.65 7.44 5.81 7.44 17.1 

3 16.5 1.09 1.61 0.618 1.61 7.95 

4 9.30 0.339 0.54 0.124 0.54 4.61 

5 5.95 0.126 0.20 0.0267 0.20 2.80 
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noise. However, it will be recalled from Chapter 2 that 

(2.69) is not accurate for <i> £ 2cr^. Specifically, with 

this limitation in mind, it is found that for SN = 2 (i.e., 

<i> =s 2ck) , (3.1) predicts that 2.3% of the current is nega­

tive, while for = 1, 16% of the current is negative. Con­

sequently, as long as SN >_ 2, an insignificant error is made 

in assuming (3.1) valid. 

The procedure for estimating the true mean photocur-

rent begins by setting arbitrary limits about the true mean 

value of the photocurrent as expressed in the probability 

distribution. These limits are adjusted, taking advantage 

of the symmetry of the probability distribution, so that the 

amount of area between the limits is equal to the fraction 

of the time that the photocurrent remains within the limits. 

The limits, ii and iz, within which 95% of the photo­

current fluctuation is contained, are expressed mathematical­

ly by 

± z  

f  p(i)di = 0.95 (3.13) 
i i 

In this connection, if it is desired that the esti­

mate of <i>, called <i>est, be within +1% of <i> with 95% 

certainty, then 

<i>est = <i> ± 0.01 <i> (3.14) 

where from (3.13) and (3.14), the limits of it and i2 must 
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be 

ii = <i> - 0.01 <i> 

(3.15) 
i2 = <i> + 0.01 <i> 

If Ai is defined to be the error spread about the 
i < 

mean (Ai = iz - ii), and, if f is defined as ~ where a. is 
i 1 

the variance given in (3.1), then Ai may be written as a 

function of the instantaneous signal-to-noise ratio, SN, and 

the mean photocurrent, <i>, and f, as 

Ai = ̂  (3.16) 
N 

This expression may seem somewhat redundant at first, 

yet it provides a convenient form for the analyses to follow. 

The 95% confidence interval for the normal distribution, 

(3.1), requires that f = 3.92. In addition, if the tolera­

ted error of <i>est is t 1% <i> as expressed by (3.14), then 

the error spread, Ai, defined by (3.15) must be 0.02<i>. 

Therefore, from (3.16) 

f = Q>02 (3.17) 
N N 

From (3.17) it is easily seen that the instantaneous 

signal-to-noise ratio, SN, must assume values on the order 

of 2001 Clearly to achieve such a condition is next to im­

possible from back-scattered (0 - 180) laser light in typical 
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scattering atmospheres. At best, as shown by Table 3.2, 

typical values for the instantaneous signal-to-noise ratio 

are around 50. Since an estimate of the true mean {<i>est) 

with error limits of ±1% about <i> {the true mean) at 95% 

confidence may be too restrictive, Table 3.3 lists the val­

ues that SN may assume as a function of ±X% about <i> at Y% 

confidence level. 

Table 3.3 The Values of SN as a Function of the Error 
Spread About the Mean, ±X%, and the Confidence 
Level, Y%. 

Y% 

95 85 

+ 1 196 144 

+ 2 98 72 

+ 3 49 36 

+ 4 25 18 

+ 5 13 9 

From Table 3.3 it is seen that even for greatly re­

laxed restrictions on the quality of <i>est, the values of 

Sjj are still too large. For this reason, the photoanode cur 

rent signal must be integrated over many independent values 

of the signal in order to achieve accurate estimates of <i>. 

Since the variance in the photocurrent caused by the scatter 

ers (a2) is negligible compared to that of the shot noise 

(a*) an independent value of the photocurrent appears after 
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the shot noise correlation time, RC^ (see 2.58, Chapter 2). 

This value is the 1/e time for the current correlation func­

tion and is shown from the parameters of the receiver system 

for the monostatic lidar to be about 2.5 x 10"8 seconds. 

Since the typical signal fluctuations from the University of 

Arizona lidar are dominated by shot-noise, the independent 

signal values occur only after the shot-noise correlation 

time. 

In order to calculate the improvement in the esti­

mate of the mean signal by spatial and temporal averaging of 

the signal, the probability distribution of the integrated 

signal must be specified. In this connection probability 

texts show that a random variable, t, which consists of a sum 

of K independent values of i, each of which is distributed 

with mean <i> and variance a?, is also normally distributed 

according to 

P(t)dt = — exp - (* ~ Kt>) dt (3.18) 
/2ir ot 2o£ 

where <t> = K <i> 

o.2 = K o? 
t i 

From (3.18) the probability that the integrated pho­

tocurrent, t, is within ±X% of <t> at the Y% confidence level 

can be calculated as was done for instantaneous photocurrent. 
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The result shows that all the values of SN which appear in 

Table 4.3 may be reduced by the value /K when applied to 

estimating <i>est from K independent values of the photocur­

rent . 

Now, if a single laser pulse is spatially integrated 

over a distance AR in space (vertically), then the corre­

sponding time length of the current record,Ti, is AR/c. The 

number of independent values of the photocurrent contained 

in this record is Ki = Ti/(RC)j-. Further, if the scattering 

medium remains locally stationary over this region for a 

length of time, T2, and during this time a laser is fired 

once every At seconds, then the number of independent pulses, 

K2, is T2/2Tt (At (RC) £> . Finally, if the photocurrent is 

integrated spatially and temporally over all these pulses, 

then the total number of independent photocurrent values, K, 

is Ki x K2? then, 

K = KiK2= swtJ (It] (3-19> 

For a particular example applied to the monostatic system 

which is typical of normal operations, let AR - 90m, T2 = 100 

seconds, and At = 5 seconds (RCf = 2.5 x 10"~8 seconds). The 

result shows that K = 240, while /K = 15.5. Now, dividing 

all the terms in Table 3.3 by 15.5 shows that the highest 

value of SN is 12.6 (±1% at the 95% level), while the lowest 

value of SN is -1 (± 5% at the 85% level). Looking back at 



139 

Table 3.2 shows that the actual values of SN obtainable from 

the University of Arizona monostatic system can yield very 

accurate estimates of <i> by means of integrating the signaly 

this is currently being done. 

3.3 Photocurrent Fluctuations for the 
Monostatic System when the Scatterer Noise 

is Greater than the Shot Noise 

In section 3.1 the spatial averaging of the receiver 

is the primary cause of the scatterer noise (cr*) being less s 

than the shot noise (<?^) • In this section the conditions 

which lead to a* >> cr* are discussed. s n 

The results at the end of Chapter 2 are general 

enough to predict the signal fluctuation characteristics of 

other measurement systems. Using the radar, Marshall et al. 

(1953) have shown both by theory and experiment that the re­

turned signal fluctuations from a collection of randomly mov­

ing scatterers are Rayleigh distributed when the receiver 

noise is below the signal noise from the scatterers. For the 

typical radar system (Battan 1959) the half-angle divergence 

of the transmitter antenna, 0T, which coincides with the re­

ceiver is related to the diameter of the receiver-transmitter 

antenna, (d') and radar wavelength, A, by 

0T = (°2d*)X (3.20) 

When (3.20) is substituted into (3.12) with d' = 2P and R* = 

0, (3.12) becomes 
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M (radar) ̂ 3.0 (3.21) 

From (3.21) and (2,67), the results show that, when a2 > a2 S TL 

(where here is noise in the radar receiver system), the 

signal fluctuations, in accordance with the findings of 

Marshall, et al. are very nearly Rayleigh distributed. These 

results give further support to the generality and correct­

ness of the conclusions of Chapter 2. 

Perhaps the greatest motivation for creating condi­

tions where a* > a£ is that a spectral analysis of the sig­

nal fluctuation can yield the Doppler spectrum associated 

with the motions of the scatterers. The Doppler-lidar spec­

trum has the potential to yield information on meteorological 

phenomena such as wind speeds in the upper atmosphere, clear 

air turbulence, and circular air motion from small scale vor-

ticles such as dust devils and water spouts. 

For the monostatic lidar, the ratio (R&) of cr2 to 

can be written in terms of previously mentioned parameters 

according to 

°s <RC>f<2 , , , 
Ra = = 32E(A ) (ET)C(HSJIR)BS(180,R)1T^2 T? <0,R) (3.22) 

11 p 

where A^ = 7t(0t(R + R*))2 is the cross-sectional area of the 

laser beam at the scattering volume. Inspection of (3.22) 

shows that the most easily adjustable variable would be A^. 

If the laser source for the University of Arizona lidar is 
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collimated so that A = constant - irC2 for all ranges, then 
r 

the new value of R in terms of the old value (everything 
cl 

else being equal) is given by 

(Ra'new/'Void = (ApW(Vnew = <VR + R*>/c> * (3"23> 

If C is chosen as 2 cm.f then, using Table 3.2, (Ra)new ^ 

2.5 at R=1 km. Under these conditions a meaningful Doppler 

spectrum could be obtained, but greater ranges yield condi­

tions where (R ) <1. There are many addition effects 
a new — 

which are interesting, but the length of this dissertation 

curtails such discussions. 



CHAPTER 4 

CONCLUSIONS 

It has been shown that the photocurrent signal fluc­

tuations for the University of Arizona monostatic laser op­

erating under conditions in which the mean properties of the 

atmospheric scatterers are stationary depend only on the re­

ceiver noise (shot noise)—the third source of experimental 

error mentioned in the introduction. 

The signal fluctuations caused by the motions of the 

particles, the first source of experimental error, are sup­

pressed because of receiver averaging, while the second 

source, transmittance fluctuations, are negligible. 

In order to obtain accurate measurements of the true 

mean signal, the photocurrent must be averaged spatially and 

temporally. In addition, it is found that even for the rela­

tively clear atmospheres through which the University of 

Arizona monostatic laser system typically operates, estimates 

of the true mean photocurrent associated with the true mean 

intensity from the molecular and particulate scatterers can 

be routinely obtained to a high accuracy. In particular, it 

can be concluded that even the desired accuracy of estimat­

ing the true mean photocurrent to within ±1% at the 95% con­

fidence level is within reason. If indeed the scattering 

142 
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medium does not have stationary mean properties (less than 

1% variation in the mean) during the measurement period, a 

true mean would not exist. Under these conditions the sta­

tistical estimate of the scattering properties of the medium 

is modified. What is desired then is an estimate of the 

fluctuation of the true mean. It is not the purpose of this 

dissertation to elaborate on this particular problem. Suf­

fice to say that fluctuations in the true mean on the order 

of a few percent could not be discerned from the shot noise. 

Of course all of this depends on the time scales of the 

measurements with respect to the fluctuating true mean, 

which, again, is another problem. Certain modifications 

such as reducing the diameter and half angle divergence of 

the laser beam can "bring out" the scatterer noise. The use­

fulness of such a venture is not directly apparent, until it 

is realized that the scatterer noise contains information 

about the scatterers. As an example, the Brownian diffusion 

coefficient, related to the particulate scatterers, can be 

obtained from Fourier analysis of the noise fluctuations when 

the shot noise is very low (Clark, Lunacek and Benedek 1970). 

The Brownian diffusion coefficient, in turn, can be related 

to the size of the particle. More general applications lead 

to information concerning a wide range of atmospheric motion. 

Consequently, while "noise" by itself hampers the measure­

ment of any direct quantity, a proper analysis of the noise 
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fluctuations can lead to additional information about the 

scattering medium. 

Finally, the length of this dissertation curtails a 

detailed study of the fluctuations of laser signals for the 

University of Arizona bistatic system. However, the accura­

cies should be comparable with the vertically pointing mono-

static system, perhaps even more accurate. For example, an 

increased accuracy is associated with the slant paths of the 

bistatic system. In particular, the laser pulse traveling 

over a slant path takes longer to pass through a vertical 

section of the atmosphere over which the vertical number den­

sity of the scatterers can be assumed constant. Therefore, 

the longer the time, the better the estimate of <i>. Of 

course, the monostatic laser may be employed over slant 

paths as well. All of this points to a bright future for 

laser studies and the eventual development of the laser as a 

reliable meteorological tool. 

In conclusion, it should be emphasized that some of 

the original work in this dissertation was placed in the 

Appendices to maintain the continuity of the main text. 



APPENDIX A 

THE FIELD AMPLITUDE OF THE SINGLE 
SCATTERED LASER LIGHT 

Consider the transmitted laser light arriving at 

some point within its effective beam diameter at distance r 

away from the equivalent point source (0') from which the 

laser effectively emits as depicted in Figure A.l. The ef­

fective distance at which the equivalent point source emits 

is given by R* and equals the ratio of the beam diameter as 

it leaves the collimation optics to twice the half-angle 

beam divergence, 0^. 

equivalent point source 

Figure A.l The Geometry of the Transmitted Laser Beam and 
the Forward Scattered Light. 

Radiation which is scattered from point P to position 

0 will be out of phase with respect to the unperturbed laser 

light. If k is the wave vector in the direction of the un-o 

perturbed laser light and )cs is the wave vector in the direc­

tion of the scattered light, then the relative phases with 

145 
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which the unperturbed and scattered light arrive at O are 

respctively, and <f>. (t) , given by 
J 

<t>T (t) = wt - ic -r Jj o 
. . . (A.l) 

(t) - wt - {kQ*r.. (t) + kg-^r-r j (t)_/} 

The expression for <f>. (t) in (A.l) becomes more compact if 
•J 

r is added and subtracted from the right-hand-side of 

(A.l) yielding 

<f>j (t) = <{>L(t) - - r^(t)7 (K = Jcg - icQ) (A. 2) 

Therefore, the light which reaches point O at a dis­

tance r away from the equivalent point source 0' can be con-

, l sidered as the sum of the unperturbed laser light (r,t), 

with time dependence expressed^ and the perturbed or scat­

tered light from all the scatterers IEs(r,t)J with the fol­

lowing expressions 

EL(?,t) = AL ei(,1,t " 

Es(r,t) = ei(ut " x <A'3) 

N (t) -y 
(Z e"iK-(r - ri)S/*, - i. (t>7 av(Ji) } 
j=i v(n) 3 

where to denotes the frequency of the laser light, AL is the 

field amplitude of the unperturbed laser light appropriately 

adjusted for attenuation, laser characteristics, and the 
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) r | ~"1 drop off with range, N (t) is the total number of scat-
« 

terers which single scatter light to point 0 at time t, A^ 

is the field amplitude of the scattered light from scatter j, 

V(ri) is the total single scattering volume, and ri is a 

dummy variable which seeks out the actual positions of the 

scatterers /?. ( t ) 7 f  via the Dirac delta function <5^Fi - r. 
* d j 

(tj_7, when integrated over V(ri). 

A.1 The Scattered Light to the Receiver 

If the point 0 in Figure A.l is now chosen as a 

reference point within the instantaneous scattering volume 

which contains the scatterers, then an expression similar to 

Es(r,t) in (A.3) can be obtained for the field amplitude of 

the scattered light which arrives on a receiver surface a 

distance r away from 0. Figure A.2 depicts the geometry of 

the scattered light with respect to the source-receiver 

system and the reference point at O. 

Figure A.2 The Geometry of the Scattered Light Arriving at 
a Point on the Receiver (R). 
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In the above figure O* is the laser source, 0 is a 

reference point within the scattering volume, jc (t) is the 

position of the mth scatterer from 0 to P, and the point R 

is at the receiver. 

The phase of the scattered light which travels along 

the path from O' to 0 to R is and the phase from 0' to 

P to R is (t) ; these phases are easily seen to be 

4>r(t) = tot - (£Q.r' + &s*r) 

*m(t) = •r<t> " " v'm(t27 

The last term of d> comes from the path difference of the 
m 

light from the mth scatterer with respect to the reference 

path (0* to 0 to R). It is easily seen, therefore, that the 

total light field from N(t) scatterers which arrives at a 

point on the receiver can be written similar to (A.3) as 

E®(r,t) = e1(,,R(t){ 2 e+lK'ri6^Frr (t)/ dV(ri)} (A.5) 
K i * in m=l V(ri) 

In some applications in this dissertation the s su­

perscript and R subscript are dropped and replaced with 

other symbols, while the essential form of (A.5) remains the 

same. For example, the scattered light from the molecules 

and particulates which arrives at a point on the receiver 

will be written as E (r,t) and E (r,t), respectively. ill JLJ 
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Finally, the turbulent medium changes the two-way 

optical transmission path and its effect on the light is 

accounted for by adding a random phase factor Ym(t) (m sub­

script denotes dependence on rm(t)), to in (A.4) . As 

a result, the exponential within the integral of (A.5) be­

comes 

ei(K.? + Y<ri>> (a<6) 

where Ym(t) is replaced by y(ri) so that (A.6) is commensu­

rate with the delta-function expressed in {A.5). 



APPENDIX B 

MAGNITUDE OF THE SINGLE SCATTERED LIGHT 
FROM MOLECULES (RAYLEIGH COMPONENT) AND 

PARTICULATES IN THE TRANSMITTED LASER BEAM 

In this section the magnitude of single scattered 

light from a typical distribution of molecules and particu­

lates which contributes to the total transmitted laser beam 

is calculated. First, the amount of light scattered from 

the particulates in the forward direction (0=0) is calcu­

lated in terms of the amount of backscattered light which 

will be used in other parts of this dissertation. Then, the 

ratio of the single scattered light from the particulates to 

the unperturbed (except for attenuation) laser light is cal­

culated as a function of range. The square root of this 

ratio yields a measure of the ratio of |Es(r)| from the par­

ticulates to |EL(r)|, the desired goal of this section. 

Finally, the results for the particulates are easily extended 

to the molecules without further calculation. 

B.l Scattering and Attenuation 

Let a scattering volume (size dAds) be located about 

position r. in which there are many scatterers (Figure B.l); 

the scatterers are assumed to be molecules and particulates. 

The rate at which a energy of one polarization is 

scattered out of the volume (no absorption considered) at 

150 



Figure B.l. A Volume Containing Many Scatterers Upon Which 
is Normally Incident a Differential of Monochro­
matic Flux Density — A differential of the 
normal flux density (energy/unit normal area, 
time) is scattered into a direction 0 amounting 
to ij^cos tpdw' . 

some height z in a direction B into an element of solid angle 
i 

du from the incident beam is 

/L Q? (a.) p (a. ,B) p(a.,z) ds dA cos do) 7 /X,da>7 (B.l) 
" •  a  _  x i  x  —  a  —  a. s 

where (a^)^CM^ is the scattering cross-section per par-
s _ 

ticle of size a^ at wavelength X, p(a^,B) ^str~^7 is "the nor­

malized scattering phase function for the ith particle size 
i 

and, when multiplied by doi , yields the fraction of the 
i 

light scattered into doi at the scattering angle B. With no 

absorption, the amount of light scattered in all directions 

must be such that 

ftt , 
/ p(ai,B) do) = 1 (B.2) 
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The expression p(a. ,z) is the number of scatterers per unit 
X  

volume of size a^ at height z, while ds dA is the scattering 

volume at height z. Finally, ^energy/time, unit normal 

area, wavelength (\}y is a differential of the monochromatic 

normal flux density of the incident laser light. 

To simplify (B.l), the expression is summed over the 

Junge size distribution (Section 2.1.2) to yield 

£~~3g (B) N (z) ds dA cos iJj da3_y/T^dw7 (B.3) 

where 3"? (B) is the normalized volume angular scattering q 

coefficient and, under the condition of no absorption, is 

related to the normalized volume attenuation coefficient, 

3^ (see 2.5, Chapter 2), by 

~ n  •» t ^ 
3 1  =  /  3 g  ( B ) d w '  ̂ c n ( B . 4 )  

o 

i 
where cos iJj = 1. Finally, N (z) is a multiplier (no units) 

and is given by the Air Force "clear atmosphere" model, writ­

ten as 

N (z) = N exp /T-0.8 km-1)z7 (B.5) 

The value of Nq must be fixed by the total particulate opti­

cal depth, T^(o,°°), (see 2.7, Chapter 2), by 
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00 ~ i 

t^o,00) = / 5P N (z) dz (B.6) 
o 

Further, it is shown in Chapter 2, that t^(o,<») - t^(o,5 km) 

which indicates most of the particulates reside within the 

first 5 km of the ground. Using (B.6) and the previous 

statement yields 

B? no 
" (0.8 km2') " tP(o<5 km> (B"7) 

B.2 Forward Scattered Light 

Expression (B.3) can be used to calculate the magni­

tude of the forward scattered light reaching some distant 

point within the effective, unperturbed, laser beam. In 

summing up the contributions from all scatterers between the 

laser source and the distant point, the variations of 3^ (B) s 

with 6 must be included. Yet, an upper bound to the actual 
a# w _ 

solution can be obtained by assuming 3P(0) and 3^(180) apply s 5 

in all cases of 3^ (B) with B near 0 or 180. Finally, it is 

convenient to express the forward scattered light in terms 

of the backscattered light for which a ratio of 3^(0) to 3„ s s 

(180) is useful. 

In an unpublished work by Herman and Browning, the 

total scattering phase functions for a Junge distribution 

(see 2.1.2, Chapter 2) with particulates ranging from 0.1 pm. 

to 5.01 ym in size with power coefficients of v* = 2.0, 2.5, 



154 

3.0 were calculated at a wavelength 0.5 pni. Although the 

calculations were not done at the ruby laser wavelength (A = 

0.7 pm), the exact results are not needed; an order of magni­

tude calculation is sufficient. Prom these results, values 

of the ratio of 1^(0) to 3^(180) are presented in Table B.l 
s s 

for selected powers of v*; the power of the Junge distribu­

tion. 

Table B.l The Ratio of the Volume Scattering Coefficients 
in the Forward and Backward Directions. v* is 
the power of the Junge distribution. 

v* fjP(0)/eS(180) 
s s 

2.0 1000 

2.5 500 

3.0 167 

B.3 Attenuation on a Slant Path 

A final generalization is made for obtaining the 

attenuation along a slant path at an angle 0 with respect to 

the vertical. A simple transformation of height, z, to the 

same height on a slant path, R, yields the appropriate number 

density of particulate scatterers, N(R), in terms of N(z) 

for a horizontally homogeneous atmosphere. Therefore, for a 

non-vertically traveling laser beam passing through the at­

mosphere defined above, the optical depth for any penetration 
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distance, R, and any angle away from the zenith, 0, is given 

by 

R 
/ exp /T-0.8 km""1)R,u 7 dR 

tp(o,R) o 

xp(o,») 

which simplifies to 

tp(o,R) = { 1 - exp /T-0.8 km"1) Rp } (B.9) 
u 

tp = xp(o,«) 

B.4 Calculation of the Forward 
Scattered Light 

From (B.3), the differential of energy scattered in 

the forward direction per unit time per unit scattered solid 

angle per wavelength (the wavelength dependence is dropped 

for the monochromatic laser light) is 

differential scattered enerqy ~ 
time, unit scattered solid angle = PL<R > Bs(0) N(R > dV 

(B.10) 
^=/I^cos£du), cos£=l in this case/ 

— i 
where F^(R ) is the normal flux density of the laser light 

i 
which reaches the position of the scattering volume at R 

(see Figure B.2), |3P(0) is the volume scattering coefficient s 
i 

in the forward direction, N (R ) is the multiplier at 

t (o,00) 

{IT = cos 6) 

u / 
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i __ 
position R and dV ^ds dA/ is an element of scattering vol­

ume. 

Prom data presented by MacKinnon (1969) it is found 

that the volume scattering coefficient, 3^(180), for a v* = s 
n  

3.0 and the associated volume attenuation coefficient, 

a're 

eg <180) = 1,24XTrIstr kr""1 " 9,52 x 10~6ZFm st£7"1 

= 1.8 x lO-" km"1 (B.11) 

s = 5t/^s(180) = 19 str 

The ratio S has since been verified by Fernald (1972) 

for an identical Junge distribution. 

Using this last relation it can be shown that 

eg (0) N(r') « &P (0.8^km l) Tp exp km-i)Ry-_7 (b . 12) 

where 3^ = (0)/p^(180) for simplicity of notation. Also w w s 

the normal flux density of the laser light which reaches the 
V 

position, R , is 

e 
FL ~ A At (B.14) 

P 

Here E^, is the total energy contained in the laser pulse of 

effective beam cross-sectional area, A^, and length (time) 

At-. Typically, E^ is 1 joule and At ~ 30 nanoseconds, while 



157 

Ap depends on the collimation optics. The exponential at­

tenuation in (B.13) should include the molecular optical 

depth Tm(0,R ), but, since T^io,00) - 0.25 and xm(o,°°) -

0.036, the effects of molecules in this caclulation are ne­

glected. 

scatt .  
Ap(R) 

(Note: r. — R* + R' and r = R* + R when compared to Figure 
A^l in Appendix A) 

Figure B.2 Description of the Laser Beam and Scattering 
Volume. -- The term A (R) is the effective 
beam cross sectional area at R. 

Now referring to Figure B.2, the normal flux density 

of the scattered light passing through the effective beam 

cross-sectional area at a distance R, due to all scatterings 
• 

occurring at R , is given approximately by 

F = < r >  ~  a  ) R v  /  F t (R') £ £ ( 0 )  N(R') aj(R,)e"xP(R' 'R)dV(R*) 
s p v 

L 3 (B. 15) 
T 
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where A (r) is the effective beam normal cross-sectional 
P 

area (cos ^ = 1) at distance R,w(R') is the solid angle sub­

tended by the effective beam cross-sectional area at R from 

R', and dV(R') is an element of the total scattering volume, 

VT. Finally, the last term in (B.15) is the amount of atten­

uation the single scattered light incurs between the scat­

tering volume at R' and the position R. 

The solid angle aj(R') can be easily shown to be 

to (R1) = 2 tt {1 ( R" R I )  } £str/ (B. 16) 

Z(R-R')2 + Pg 

A ratio of F^(R) to F^(r ) yields 

pP 
Q(R) = _s „ ) I f pP(0) N(R') w(R') dv (R1) (B.17) 

FL(R) AP^ o  s  

where eT^R^ T R ) ̂  e T assumed for forward 

scattering. Because of the nature of o)(R'), a far field (f} 

and near field (n) solution to (B.17) must be calculated. 

The conditions are 

trp _ ̂  __ 
Far field u>£{R') = /str7 for R-R' > /10" p„ 

f (R-R')2 ~ " ~ 
(B.18) 

Near field w„(R') = (B.16) for R-R* < /To p„ 

Consequently the total solution, as expressed by (B.17), is 
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Q(R) = Qf(R) + Qn(R) in which 

i rf -
Qf (R) ^ a"W f 3st0) N(R,) "f^'1 dv<R') (B. 19a) 

i r 
Qn(R) ^ A"W f es(H) NtR,) wn(R,} dv (R,) (B. 19b) 

P  R f  

where Rf = R - /It) pg, Ps = ZJR* + R) 6t-7' Ap ̂  = 7rps' and 

the full expression for 3^(6) must be used in the near field 

(B.19b) so that Qn(R) is not grossly overestimated. Employ­

ing previously defined expressions (B.19a) is simplified to 

Qf (R) ̂  Pg /f (R* + R,)2 exp{ (B. 20) 
£ sS o (R - R') 2 

/t-0.8)yr^7jdr' 

For the particulates defined by Table B.l, the far-field, 

normal flux density ratio as a function of range is expressed 

by 

Qf(R) * 0^ irG^ { I i + I2 + I3} (B. 21) 

where 

Ii = e"W X2 a {Si - ̂  /JJ - E± } 

I, = 2e_W X {E. - E. CW > 
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I ,  = sd! { e W - e X) -V- i { 1 - e"K> 
s a a 

W = aR, X = R* + R, Y = a /To X 0T, a = 0.8 (km-1) and 

X' u 
E ip-'J = / \ du 

oo 

3 S  =  0 G(O) / 0|(18O) 

Integration of 3^(B) in (B.19b) can be accurately 

done only by computer. Yet, an upper bound to the forward 

scattered energy can be calculated by taking the energy scat­

tered out of the laser beam in the near-field zone and con­

centrating it into the forward direction. Using this 

expression an upper bound to (B.19b) can be expressed as 

/~Ft (Rf) - Ft (R) J A (R) , 
q  ( r ) < L f L ~ P „ energy-scattered out 
n f (R)A (R) energy transmitted 

L p 

< x (0,R) - x (0,Rf) (B.19c) 
r p ^ 

< xjjj exp ^p0.8 km" *117^0.8 km""1/!^* (R* + R) 

^An integration of (B.19b) was performed and the above ex­

pression was verified as an upper bound^ 

An upper bound (sum of B.19a and B.19c) to the nor­

mal flux density ratio, Q (R), for a vertically propagating 

beam (y" =1) as a function of range (R) and with = 0.25 

and v* = 3.0 is presented in Table B.2 
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Table B.2. The Normal Flux Density Ratio, Q(R), as a Func­
tion of Range For a Vertically Propagating Laser 
Beam With Particulates. 

(Optical depth = 0.25, 0 = 1.5 milliradians 
and v* « 3.0). 

R (km) (Xi + I2 + I3)(km) Q(R) /Q (107^ 

1 145.5 25.5 x lO™*1 5.06 x 10~2 

2 106.2 18.8 4.32 

3 64.1 8.05 2.84 

4 34.4 5.87 2.43 

5 18.3 3.36 1.83 

In addition, Table B.2 presents which is 

directly related to the field strength ratio of the singly 

scattered to transmitted laser light, the desired goal of 

this section. 

/Q(R)7^ > (evaluated at jr| = R) (B.22) 
le^r) | 

where the time dependent forms of E (r) and E (r) are given 

in Appendix A. 

As a conclusion, it can be firmly stated that [Es(r)| 

is typically two orders of magnitude below |E^(r)| for the 

University of Arizona laser light passing through a represen­

tative turbid particulate atmosphere. 
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Similarly, the molecular atmosphere, whose total op­

tical depth over Tucson is (molecules) ̂  0.036, would 

scatter relatively insignificant amounts of light in the for­

ward direction compared to |EL(r)|. 



APPENDIX C 

CALCULATION OF THE INTENSITY CORRELATION 
FUNCTION OF THE MOLECULES AND PARTICULATES 

The scattered intensity correlation function from 

the instantaneous scattering volume (the r dependence of R^ 

(r,r,t) is dropped for notation convenience) is written as 

N<0) N (O) N (t) N(t) . * • 
R°(t) = < Z £ E 2 A1 A3 A A 

i=l j=l k=l 1=1 
(C.l) 

exp {i^^O) - (o) + <f>k(t) - 4>Jl(t)/}> 

where N(0) is the number of scatterers within the instanta­

neous scattering volume (V.) initially and N(t) is the num-

ber at a later time, t. The term A is the scattered 

amplitude of the light of one polarization from the kth scat­

terer, while ̂ (t) is the phase position of the kth scatterer 

at time t and is expressed by 

exp {i£<Fk(tVJ) - f exp {i(K-r +y (r i)) }5 (r i-rk (t)) dV(ri) 

xp (C.2) 

where the terms of (C.2) are explained in Appendix A. Simi­

larly, <f>j (0) is the phase position of the jth scatterer 

initially. 
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The instantaneous scattering volume, , is consid­

ered to be continuously illuminated by a beam of light which 

is temporally and spatially coherent only over the dimensions 

of an MCV with respect to the receiver. 

C.1 Particulates 

Beginning with (C.l), the correlations in the scat­

tered light intensity arise from the manner in which the in­

dices i, j, k, and I are summed. All summation terms are 

included as the sum of three independent summations of (C.l). 

Each of the three independent summations within the ensemble 

average of (C.l) are 

R°(t) » (1) + (2) + (3) (C.3) 
^ r 

where 

(1) i = j; k = SL, yields 

N(0) . N(t) . 
< 2 la1!2 2 |a3|2 > 
i=l j=l 

(2) i = #.; j=k; i^j, yields 

N'(t) . N'(t) 
< £ |a 12 2 |a3J2 x 
i=l j=l 

exp {iJ/<|)i(0) - <J>i(t)_7 - i^.<f>j (0) - <J>j(t)_7}> 
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(3) i = k; j = A; i ^ j 

0 

The terms of (1) in (C.3) denote the products of the 

individual intensities from each particle of which there are 

N(0) at time 0 and N(t) at time t contained within the in­

stantaneous scattering volume. The variations of N(0) and 

N(t) account for the motions of particles into and out of the 

instantaneous scattering volume. 

Term (2) accounts for the changes in phase of the 

scattered light which reaches the receiver. In (2) N'(t) is 

the number of particles from the original N(0) which remain 

within the instantaneous scattering volume after time t; 

only the particles that remain can have a correlated phase. 

The < > brackets refer to an ensemble average over all the 

positions the particles may assume and all the realizations 

the turbulent medium along the two-way transmission path. 

Using (C.2), the exponential in term (2) can be written as 

exp{i^*i/Sri (t)-Ar j (t2/+i/>Yij (0)-Y£j (t2_7} where Ar.^ (t) (0)-

(t) and yi j (t) =yi (t) -y(t) {y (ri (t) ) =yi (t) } . The y^ (t) 

terms express the relative phase added to the received light 

from the turbulent medium along the two-way transmission 

path; y^j(t) depends on the strength of the turbulence and 

i i Jr.(t)-r.(t)|, the separation between the particles. If the 
J 

separation between any two particulate scatterers is less 

than the dimensions of the mutual coherence volume (MCV), 
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then on the average the turbulent medium adds a very small 

relative phase to the light which arrives at any one point 

on the receiver. Mathematically it can be stated that if u^ 

- ^ < dk (k=1/2/3)/ then <exp (iYj^j (t) ) >~1, 

where <5^ = longitudinal coherence length, transverse coher­

ence length, and maximum transverse separation for k=l,2, 

and 3, respectively, and < > denotes an ensemble average over 

many realizations of the turbulent medium along the two-way 

transmission path. For u.> d£, <exp(iy. . (t))>=0. 
k k 13 

It would be difficult to account for every relative 

phase addition among the particles. Yet, if the scattering 

volume is divided up into separate mutual coherence volumes, 

then all the particles which remain within any one MCV both 

at time 0 and t will approximately satisfy <exp{i(y^^(0)-y^^ 

(t))}> - 1. Therefore, averaging over the statistical reali­

zations of the turbulent medium along the two-way transmis­

sion path, (2) becomes 

V. I2 N"<t) . N"(t) 
< 2 |A1|2 E |A3|2exp{iK-/Ar.(t)-Ar.(t)/}> 

i=l i=l ~ 1 3 MCV 
>12 1 i i 2, 

(2a) (2b) 

where N"(t) is the number of the original particulates, N" 

(0), which remain within their respective mutual coherence 

volumes during time 0 to t. The < > brackets now refer to a 

statistical average over all the positions the particles may 

assume within an MCV. To simplify the above expression a 
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separate average over (2a) and (2b) is taken, so that 

<(2a){2b)> = <(2a)>< (2b)> 

All the remaining terms which are expressed by (3) 

in (C.3) contain factors which involve the initial phase po­

sitions of the particles. When the ensemble average is taken 

over the initial phase positions of the particles, the result 

yields 

<e = o, for j (0) random (C.4) 

As a consequence, all the terms which would have been ex­

pressed by (3) in (C.3) are zero. Further analysis of (C.3) 

is divided into separate analyses of (1), (2a), and (2b). 

C.2 Analysis of Term (2b) 

If Az^ is denoted as the component of Ar^ (t) in the 

direction K and if K is the absolute value of K, then (2b) 

becomes 

< exp {i K^Az. - Az. 7}> (C.5) 
x i 

As mentioned in Chapter 1 the Brownian (B) and tur­

bulent (T) motion are independent. Hence, if 

Az. = Az? + Az? (C.6) 
i i i 

then, placing (C.6) into (C.5) yields the product of the two 
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independent exponential terms 

» 

< exp {iK (Az? - Az*?)}> < exp {iK (AzT - AzT)}> (C.7) 
1 3 ^ J 

A separate analysis of the Brownian and turbulent motion can 

now be done. 

C.3 Brownian Motion 

Chandrasekhar (1943) calculates the probability of a 

displacement of a Brownian particle from its initial posi­

tion as a function of time. Wang and Uhlenbeck (1945) 

provide a generalized probability relationship for the disr 

placement of two particles in terms of their correlation co­

efficient. Combining the results of Chandrasekhar,and Wang 

and Uhlenbeck, an expression for the probability density, 

Gg(Az^, AZj,t), of a displacement Az^ and Az^ in time can be 

given by 

G„ (Az. , Az. ,t) « 1—-—£ exP ~1 
13 1 3 trrt rt (1 _ n  2  i ra^aj  (1-p^^ (1-  p )  

Az? Az* 2pAz.Az. 
X (-—- + ——1) /cm" V 

a? az. a. a. 

(C. 8) 

i d 13 

772 _ where af = <Azf> and pa.a. = <Az.Az.>. In addition, 
i l in it 

a? = 
1 -1b! 

4k T 
{exp ^.-3i|t|_7 + 3^ 111 —1} (C.9a) 
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k T 
3. = ——=•— (C. 9b) 
i m.D. 

i l 

In (C.9a) and (C.9b), kg is Boltzmann's constant, T 

is the Kelvin temperature of the gas in which the particles 

are embedded, m^ is the mass of the particles, is the dif­

fusion coefficient of the particle in the air ^cm2/sec7 (or 

water or whatever). Therefore, 

< exp {iK(Az? - Az*?)}> = // G„(Az., Az.,t) 
1 3 MCV 1 3 

(C.IO) 

exp {iK(Az. - Az.)}d{Az.)d (Az .) 
J J 

The mutual turbulent coherence volume (MCV) is usual­

ly sufficiently large and (Az^,Az^,t) usually drops off 

sufficiently fast with Az^ and Az^ that the limits to (C.IO) 

can be extended equivalently to ±°°. The integral of (C.IO) 

with these limits yields, 

< exp {iK(Az? - Az^) }> = exp /-—rr— (<J? + a? - 2pa". a.) 7 (C.ll) 
1 3  ̂ l j i j 

It is important to recall from Chapter 1 that the mo­

tion of a Brownian particle is uncorrelated at all times 

with the motion of any other Brownian particle (on the aver­

age) . Consequently, p" in (C.ll) is zero. 



170 

C.4 Turbulent Motion 

The diffusion of particulates in a turbulent field 

has a great many similarities to Brownian motion. Indeed 

most probability of displacement distributions are Gaussian 

(Hinze 1959), as expressed by (C.8). However, there does 

appear to be some correlated movement of two separated parti­

cles, as explained in Chapter 1. The assumptions for turbu­

lent motion are exactly the same as presented in the previous 

section on Brownian motion with a few exceptions. Since all 

the particles move along with the turbulent field, the dis­

placements are independent of the scatterer size and mass, 

so that 

a± = cj = ot (c.12) 

Further, the rate of mean separation <Ar..(t)>= <|r. 

i (t)-r . (t) J > is proportional to <Ar..(t)>, so that <Ar..(t)> 
J 

= Ar^j (0) exp(rt) where Ar^^ (0) is the initial separation 

and r is a constant. 

Hinze (1959) states that for small diffusion times 

in homogeneous turbulence, the correlation function of the 

position components of two fluid elements (synonymous with 

the particles' positions) is 

<Az. Az .> -a i j 
C = —-—3- = /I - = (e<Ar, . (t)>) 2/3/ Ar..(t)<A 

a l  ~  9  u ' z  "  ~ ~  i 3 - o  
1 (C.13) 

C = 0 Ar^j(t)> Aq 
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where A is some absolute constant, u'2 is the mean square 

fluctuation velocity of the turbulent air, e is the eddy dis­

sipation by turbulence per unit mass, and Aq is the integral 

scale of turbulence. Equation (C.13) is modified slightly, 

for the purposes of this dissertation, to extend the correla­

tion relation to longer periods of time. 

_ <arii 
C - £1 - ( jP )2/3_7 <Arj.<t)><A0 

o 
(C.14) 

C = 0 <Arij ̂ >;> A
0 

The relation (C.14) must now be averaged over all the possi­

ble initial separations of the particulates within the mutual 

coherence volume. In this connection it is equally probable 

that the particles may assume any initial separation. Conse­

quently, the turbulent correlation function which is equiva­

lent to p" in (C.ll) is 

TmSvT m£v cdv(flr..(0)) (c.15) 

The solution to (C.15) is quite difficult for odd 

shaped, mutual coherence volumes. When (C.15) is integrated 

for a spherical MCV of diameter D, the result is 

= <C> = 
<<Az. Az .» 

i 2 

n 
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PT = 1 ~ IT (A (t) * 2>/3 Att* -D 

(C.16) 

= (1 - —;) (̂ -̂) 3 A (t) < D 

where A(t) = Aq exp(-rt). Even though (C.16) is an approxi­

mation to the actual p^, it seems quite reasonable. If D is 

taken as the average dimension of the MCV, (C.16) can apply 

well enough to the actual problem. Finally, the probability 

distribution of the displacements, G(Az^,Az^,t), caused by 

turbulence is written as 

GT (4z i (Az t )  = _ 1  _ is exp <• ~1 k 
J ™°T d*"pt ) (1—pt ) 

(C.17) 

(Az? + Az? - 2p Az.Az.) 
- 3 —i !_} /orcT J 

am 2 T 

where the form of (C.17) is suggested by (C.8) and (C.12). 

Now, integration of exp {iK(Az. - Az.)} over (C.17) 
X J 

as is done in (C.10) yields 

< exp{iK (AZT - Azj)}> = exp{-^- (2 a£(1 - ?T))> (C.18) 

Finally, the phase correlation term, (C.5), for a 

distribution of particulate scatterers moving by Brownian 

and turbulent motion is given by (C,7) which, in turn, is 

the product of (C.ll) and (C.18); the final form of term 
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(C .5 ) is 

<exp {iK(Az^ - AZj)}> = exp + x? + 2a* (1 - p")/} 

(c.19) 

In (C. 19) , a? and x"? refer to the Brownian diffusion 
J 

coefficients of different sized particles i and j and do not 

refer, per se, to the positions of the particles. All other 

terms are previously defined. 

C.5 Analysis of Term (1) and Term (2a) 

The particulate number densities are uniformly dis­

tributed according to the Junge power distribution within 

size interval increments over which a mean intensity |A1|2 = 

I1 is calculated. Let f^ be the fraction of the total number 

of particles in the ith increment. For a well-mixed, sta-

tionary distribution f. = v . / v  where v. is the total mean 
x x' p x 

number of particles in the ith interval and v is the total p 

mean number of particles of all sizes within the instanta­

neous scattering volume. Any sub volume, such as a mutual co­

herence volume, will contain the same fractional ratio f^. 

Let N"(t) be the total number of particles in an MCV after 
i 

time t, and let f^ be the fractional ratio of the original 

f^ that remain after time t. This notation is used since 

smaller particles will escape from the MCV faster than the 

larger ones, thereby, the fractional ratio of the particles 
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remaining does not resemble f^. Finally, if N(0) and N(t) 

are the total number of particles within the instantaneous 

scattering volume initially and at some later time respec­

tively then term (1) and term (2a) are written 

(1) 
J J . . 

<N{0) N(t)> E E f. f. I1 I3 
i»l j=l 1 3 

(2a) 
V. 
ie 
MCV 

(t )JZ> 
J J , , 
E E f. f. I1 I3 

* t • *1 1 *1 i=l 3=1 

E (f^)2 (I3)2 
j=i 3 

(C.20) 

In (C.20) J denotes the number of size intervals of 

particulates represented. 

It is recalled that number density fluctuations are 

caused by turbulence and Brownian motion moving the particu­

lates in and out of the instantaneous scattering volume (for 

term 1) and the mutual coherence volume (for term 2a). In 

order to calculate probability distributions for the number 

density fluctuations, considerable use is made of a landmark 

work done by Chandrasekhar (1943). Through his work it can 

be shown that the mean probability of escape of a particle 

in the ith size interval out of a volume V in time t is 

given by P^(t), where 

P. (t> = 1 - / GBT(r.,t> dV (tl) (C. 21) 
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and GBT(r^,t) is the combined probability of a displacement 

r^ in time t per unit volume for a particle under Brownian 

and turbulent motion (the combined expression is an exten­

sion of Chandrasekhar•s work), given by 

r .  2  

GBT *ri #t)/cm-37 - 7- exp { } BT 1 ~ ~ + °T
2)/ 3/2 V + V 

(C.22) 

Finally, V in (C.21) is either the instantaneous scattering 

volume for use in (1) or the MCV for use in (2a). 

In the same landmark work Chandrasekhar shows the 

probability that there exist (n-k) particulates within the 

volume V after time t from an original number n is given by 

W(n;n-k) = e ^ jj(n-j)1 pj<1-p)n j (^jlk>1 (C.23) 

where the expression holds for any collection of particles 

so that v - v^, the total mean number of particulates in the 

ith size interval and P = P^(t), already defined. An expres­

sion similar to (C.23) exists (not given here), denoted by W 

(n;n+k), for the probability that k particles are added to 

the original n after time t. One other useful relation is 

the probability of finding n particulates occupying the vol­

ume V at any one time, given by 
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(C.24) 

where v in this case is the mean number of particulates in 

the volume V. 

necessary to calculate <N(0) N (t) > and (t.)7z> which ap­

pear in (C.20). It should be emphasized that in calculating 

these relations the associated statistics require V>>1. 

After lengthy calculations, it can be shown that 

where has already been defined and vp is the mean of par­

ticles of all sizes within a mutual coherence volume. In ad­

dition, P(t) is the particle weighted mean probability of 

escape and is written as 

J 
P (t) = 2 f. P. (t) (C.26) 

i=l 1 

where P^ (t) is given by (C.21) and the volume over which P^ 

(t) is integrated is the instantaneous scattering volume, 

Now, the relations (C.21) to (C.24) yield the means 

< N (0) N(t)> = v2 + £L-P(t)/Vp 

(C.25) 

<^N" (t]/2> « Vp2 /1-p" (t)J2 + Vp/1-Pf(t2/ 

t 

V. . Similarly, P (t) is given by 

p'(t) = Z f. p! (t) 
i=l 1 1 

J 
(C. 27) 
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where p!(t) is given by (C.21) integrated over a mutual co-
*1* —m 1 r 

herence volume, MCV. The term Vp is related to vp simply by 

v' = (55SZ)v p *v. ' p 
ip 

(C.28) 

The terms which remain to be defined in (C.20) are 

the fractional ratios, f^ and f^. The term f^ is fixed and 

remains so for all time (the ratios are defined by the Junge 

distribution, while f^ is a function of time, denoted by f^ 

= f!(t) . The fraction ratio, f!(t), is simply the ratio of 

the number of the ith size remaining after time t to the num­

ber of the ith size originally there; this relation must be 

given by 

f:ct) = f± £L-p±(t)7 (C.29) 

where f. is the original fractional ratio and P.(t) has been 

previously defined. Since P.[(0) = 0, then f^(0) = f^; using 

this correspondence all the fractional ratio terms appearing 

in (C.20) can be written in terms of (C.29). 

The final expressions then, for (1) and (2a) are 

(1) 

(2a) 

= {v| + /I - P(t2/vp} A*(0) 

V. 

MCV {v'2£l-p' (t)7Z + Vi-p''(t[/} (C.30) 

{A* (t) - B* (t) } 
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where 

before 

for Rt 

J J . 
V (t) = £ I f! (t) f! (t) I1 ID 

i=l j=l 3 

B*(t) = E /f!(t) I^/2 
j«l 

C*(t) = exp { + T? + 2t* (1-pt]_7) 

C.6 Complete Expression for Rj. (t) 

Since it is required that v and v' >>1, as stated r ir 

for the statistics to apply, the complete expression 

t)p can be written as 

R]I (t) p = A*(0) + 

v2 /l-p'(t)/2 {A*(t)-B*(t)} C*(t) 

C.7 Molecules 

(C.31) 

The properties of the Rayleigh component of the scat­

tered light are well known. Substituting the expression for 

the scattered field into the intensity correlation function 

yields 

RI(t)m = I2 <B (0) B* (0) B (t) B*(t)> (C.32) 

3Q 
where J. - {1 + cos o) F_ (scattered intensity per mole-

16* L cule) 
2 

8tt 
a) 

a' 17 (total scattering cross section per 
molecule) 
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0 = scattering angle 

a = W p~po (polarizability) 

• • 

FL - I dw (incident normal flux density) 

1 + + N(t) 
B(t) « ==— / exp {-iK-r. }{ E d/f-r,(t)7-P V. _}dV(n) 

ip V±p 1 k=l K ~ ° ip 

At this stage the solution proceeds exactly as that 

for the particulates. The molecules move by thermal and tur­

bulent motion, and can be influenced by soundwaves (the lat­

ter not discussed). Specification of G(Az.,Az.,t) for the 
• D 

various types of motion along with the initial random posi­

tion of the molecules yields all the statistical information. 

The results are 

R°(t)m = T2(v* + v* £-v' <ti72 exp {=£• ft + ^(1-PT17J 

(C,33) 

where 

t , -r.2 
P'(t)  =  1  - ±exp { i—} dV(r.) 

1 + ®t173/2 ^ + ?£ 
MCV 

In (C.33) , o* is the mean square displacement for the 

molecules by Brownian motion and is given by (C.9) in which 

the particulate terms are replaced by the molecular terms. 
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C.8 Calculation of the Field Correlation 
Function of the Particulates and Molecules 

Again, the range dependence of Rg(r,r,t) is dropped 

for notation convenience, so that Rg(r,r,t) -»- R^(t). Now, 

this function consists of a double sum and its evaluation is 

made much simpler by employing the results of the previous 

section. in general, R^(t) is given by 

e N(0) N(t) . * 
R°(t) = < L E A1 AK exp {i^$\(0) - <f>k(t2/}> (C.34) 

3—1 k=l 

The general expression, (C.34) is evaluated by dividing the 

general sum into two sub-sums. These sums are: (1) j=k, 

and (2) whose specific evaluation is given below. 

C.8.1 Particulates 

RE(t)p = (1) + (2) 

(1) j=k The correlation occurs only for those particulates 

of the original N(0) which remain phase correlated 

after time t; i.e., N"(t) within an MCV. 

MCV 

N"(t) . 
L-* I 2> <exp {i/$*. (o) - 4». (t)7}> (C.35) < E {A3 | 2> <exp {i/5*. (o) - <{». (t)7}> 

j=l 3 3 

(2) j^k These terms are zero since the phases, <t> j (o) and 

(Ji^tt), which the jth and kth scatterers may assume 

are completely random and independent so that 
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for all j^k. 

The evaluation of (1) proceeds by simplification of (C.35) to 

J . _ 
<N'(t) E f! (t)I3> < exp {i/<f>. (0) - 0.(t)/>> 

j = l  3  3  3 -

(C. 36) 

The results of the previous section show that 

RE(t)P = vp^r"^'(tl/ .£ fj(t) lj exp {ZT"Z.^j + F£J^(c-37> 
3  ^  

where all the terms in (C.37) have been previously defined. 

C.8.2 Molecules 

The form of this equation suggests itself by first 

comparing (C.37) with (C.31) so that R^(t) . given below, L in 

compares with (C.33). Therefore, R^(t) is given as 
Jb m 

r^ttom = i {vt_i" (ti7 exp tr|- + (c-38> 

where all the terms in (C.38) have been previously defined. 

C.9 The Statistical Moments of the 
Intensity Distribution 

The intensity and field correlation functions for 

the molecules and particulates and their respective expres­

sions in terms of the measurables are given below 

(1) = 
v4 

MCV 
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R^(r,r,t)p = (C.31) ; R°(r,r,t)m = (C.33) 

R^(?,£,t)p = (C.37) ; Rg(r,rft)m = (C.38) 

where the dependence on range, r, is explicitely expressed. 

By applying the condition t=0, the left-hand sides of the 

above expressions become the statistical moments, while the 

right-hand sides become simple forms in terms of measurables, 

The results are 

_ . J 

<£E(r,ol7*> = 2^vr, Z f4(o) If72 
p p j=1 J 

<^(r,oi7^> = 2^^ 

J (C.39) 

< I"(r,o) > = 2 f' (o) I1 
P P j=1 3  

< I(r ,o) > = vmIm m mm 

The interesting and, perhaps, expected results of 

(C.39) show that the mean scattered intensities from the col­

lection of molecules and particulates are the sums of the 

mean intensities from each scatterer alone. Further, mean 

square intensities are just twice the square of the means. 

The expressions of (C.39) can be placed in a simpler form 

for use in Chapter 2. 



<I2> » 2(<I >)2 ; <1 > = E v. I3 
P P P j=l 3 

<I2> - 2(<I >)2 ; <1 > — v I 
m m m mm 
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(C.40) 

The limits of the correlation functions at t=« are 

easily formed by realizing a? and xj +» as t + «, so that 

j i £ v. I 3  

J 13-1 

re (°°)p - 0 

' ri(oo)m= (vm V 2  

; re (°°)m = 0 

(C.41) 



APPENDIX D 

CONVERSION OF LIGHT TO CURRENT 

Light strikes a photocathode surface for a length of 

time T. During this time the light causes photoelectrons to 

be emitted from the cathode. Each photocathode electron 

enters an amplification system. This amplification system 

consists of a stage of dynodes. An electron accelerated be­

tween any two dynodes gains sufficient energy to knock a num­

ber of electrons off a dynode surface after impact. Thus, a 

single photoelectron becomes amplified into a pulse of elec­

trons of ever increasing strength at each dynode stage. Upon 

leaving the amplification system the electrons arrive at the 

anode as a pulse of strength, ye, where y is the amplifica­

tion factor (gain), and a broadened width related to the 

spread in the transit times of the electrons in the amplifi­

cation system. 

Following Papoulis (1965) and Greytak (1970) it can 

be shown that the photocurrent correlation function, R^(t), 

at the anode for a stationary signal is given by 

R±(t) = <i (0)i (t) > = •5|§-(aye<F>)e"t/RCs+ (aye) 2 Rp(t) (D.l) 

184 
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The first term on the right-hand side of (D.l) is the contri­

bution associated with the shot noise, while the second term 

is the contribution from the correlation function of the re­

ceived flux, Rp(t). Specifically, RCg (sec) is the time 

constant of the dynode system and represents the spread in 

the transit times of the electrons, a is the conversion ef­

ficiency of the photocathode (electron/joule), <F>(watts) is 

the average light flux collected by the receiver, and finally 

Rp(t) = <F(0)F(t)> is the average correlation in the light 

flux at times 0 and t. 

D.l Filtering the Photoanode Current 

When the photoanode current is passed through a fil­

ter, the statistical characteristics of the current are modi­

fied. The filter contains a frequency band pass chosen so 

that those frequencies associated with the shot noise are re­

duced, while those associated with the signal from the scat­

tered light are passed or transmitted. However, even though 

this filtering reduces the magnitude of the fluctuations 

associated with the shot noise, these current fluctuations 

demonstrate a longer correlation time. In this connection a 

longer correlation time requires a longer record of the pho-

tocurrent signal in order to obtain confident estimates of 

the mean value of the photocurrent associated with the scat­

tered light. So in effect, the reduced noise magnitude is 
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traded off for the longer correlation time. The net result 

however is an improvement in the measurement of the true 

mean photocurrent. 

The University of Arizona laser-receiver system has 

a post detection circuit which passes the raw photoanode cur­

rent through an effective RC (resistor-capacitor in series) 

filter. Papoulis (1965) shows that the filter response func­

tion for such a circuit is given by" 

H ( t ' }  =  e ~ ' t ' ' / R C f  ( D * 2 )  

where RC^ is the time constant of the filter. 

If RC^ is sufficiently long in order to pass the 

fluctuations of the scattered light as expressed through 

Rp (t) in (D.l), then only the shot noise portion of R^(t) is 

affected. Therefore, the filtered portion of R^(t), denoted 

by R!(t) is found by using 

00 

r!(t) = / r.(t-t*)H(t1)dt* (D.3) 
— 00 

which, in turn, yields 

/T,„ 2RC ^ /Ti„ 
(D.4) r' = ue<i> 

i * '  4 ( r c . - r c  )  £ s 

-t/RC- _ 2RCs -t/RC, 
rc^-rc r s 

For the post-detection filter in the University of 

Arizona lidar system, RC^=2.5 x 10~fl seconds, while RCS~1.0 
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x 10"" 9 seconds (Greytak 1970). Therefore, 

-r ue<i>e"t/RCf (t) ̂ filtered shot noise portion/^ = 4rc (D.5) 
f 



APPENDIX E 

ittance of the 

is directly 

scatterers 

TRANSMITTANCE FLUCTUATIONS 

This dissertation has been primarily occupied in 

discussing the fluctuations in the scattered light caused 

just by the motions of the scatterers within t.he instanta­

neous scattering volume. These same scatterers cause addi­

tional fluctuations indirectly through fluctustions in the 

transmitted light (transmittance) . The transir 

scattered light which arrives at the receiver 

related to the attenuation of the light by the 

(molecules and particulates) along two light paths. The 

first path, of course, is from the laser source to the scat­

tering volume, while the second is from the scattering 

volume to the receiver. Fluctuations in the amount of 

attenuation may arise by variations in the numbers of scat­

ters along these two paths. A fewer number of scatterers 

along a path causes less attenuation and therefore increased 

transmittance of the light, while larger numbers cause a 

corresponding decrease in transmittance. Thes^ fluctuations 

in transmittance cause fluctuations in the lig ht i intensity 

which arrives at the receiver and are essentially indiscern­

ible from those caused by scatterer motion witt 

taneous scattering volume. Consequently, it is 
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in the instan-

important 
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that the magnitude of these transmittance variations be 

analyzed. 

In Section 2.1.2, Chapter 2, it is shown that the 

transmittance, T(zi,z2), along a vertical path between any 

two levels zi and Z2 in a horizontally homogeneous atmos­

phere is related to the optical depth, x(zi,z2), between 

those levels by 

T(zi,z2) = e~T(zi 'Z2> (E.l) 

Now, x (zi, z 2) generally includes a separate optical depth 

for the molecules and particulates such that x(zi,z2) = Tm 

(z1,z2) + xp(zi,z2) where m and p superscripts refer to the 

molecules and particulates, respectively. For simplicity 

only vertical paths with the condition z = yR and u - 1 (see 

Appendix B) are considered, so that zer in the following. 

Therefore, by setting zi=0 and z2=R, and from (2.7) in Chap­

ter 2, the transmittance for the particulates alone along 

one transmission path (denoted by subscript 1) is given by 

TP(0,Z) = T?(0,R) = e~xP*0'R> (E. 2) 

where 

tp(0,R) = xjj! {1 - exp^T-0.8 km"Mr/) 
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A similar expression exists for the molecules but 

its discussion is deferred to the end of this Appendix. It 

is easily shown that the total attenuation for the two-way 

path in the monostatic system yields a transmittanca given 

by 

TP(0,R) « <Tp(0,R)) (E.3) 

Since the flux of the light, F^, collected by the 

receiver of the monostatic system is proportional to ̂ Tp(0, 

R2/2/ then a 1% variation in the received flux caused by a 

corresponding variation in the transmittance is 

F - F T T 
F £T 

= 0.01 = 
r2TP' (0 ,R) _ e-2xP(0,R) 

-2tp(0,R) 
(E.4) 

where (E.2) is used to obtain (E.4). This expression simpli­

fies further to yield 

tp(0,R) - xp'(0,R)| « 0.005 (E.5) 

The choice of a 1% variable in FT caused by the transmit­

tance fluctuations equals a desirable upper limit for the F^ 

fluctuations. From (2.7) in Chapter 2 

TP(0,R) = / pPN*(R) dR 
0 ^ 

(E.6) 
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Therefore, variations in Tp(0,R), as expressed by 

(E.6), can occur both from variations in 3P and N'(R). Vari­

ations in 3P arise from changes in the relative number of 

particulates in each size interval described on the average 

by the Junge distribution, while variations in N'(R) arise 

from fluctuations in the total number of particulates en­

countered along the two way path with the relative numbers 

remaining constant. The 3P variations would be very diffi­

cult to calculate and the author has not developed a method 

to calculate such variations. However, based on the results 

of allowing N'(R) to vary appears to indicate that variations 

in 3P would be insignificant compared to the N'(R) varia­

tions. Be that as it may, the N'(R) variations are much 

easier to calculate. Therefore, from (E.6) let us assume 

that tp (0,R) is given by 

TP'(0,R) = TP(0,R) ± / 3PAN'(R) dR 
0 c 

(E.7) 

where AN' (R) = AN exp/T-0.8 km "Mr7/ then substitution of o ™ 

(E.7) into (E.5) yields 

AN R „ 
-fl2, / BPN' (R) dR 

o 0 

AN. 

N - T
P(0,R) - 0.005 (E. 8) 

Expression (E.8) yields a measure of the variation in the 

total fraction of the particulates in all size intervals, 
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ANq, which would yield a 1% variation in the mean received 

flux. 

Chandrasekhar (1943) shows that the fluctuations in 

the total numbers of a collection of particles contained in 

a volume, V, whose surface area is A can be calculated. If 

N(a) is the total mean number of particulates contained with 

in a size range between a and a + Aa, then the mean life of 

a state of fluctuation which consists of a total of N(a) par 

ticulates ^N(a)=N{a)_^ is given by T^, and is related to N (a) 

and N(a) by 

TM = — (E. 9} 
(a)+N (a)/P 

where Po(sec_1) is the probability that a particle will es­

cape from V per unit time. The term PQ is simply found by 

calculating the number of particles which pass through the 

surface area of the containing volume and dividing this num­

ber by the total number of particles contained in V; simply 

stated 

« _ (particle flux) (surface area of V) /ct 
po - (number of particles in V) (E.10) 

Although the particulates move under Brownian motion 

they instantaneously behave as free particles in thermal 

equilibrium with their surroundings. Therefore, 
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particle flux = n(|)v (E.ll) 

where n(a) = N(a)/V and v is the Maxwellian velocity given 
_ u 

by v = (8kT/7rm) ; the term k is Boltzmam^s constant, T is 

the temperature in the region containing the particles and m 

is the mass of the particles of size a. Therefore, using 

(E.10) and (E.ll) Pq becomes = surface area of vj 

po = V (Us)15 (E-12> 

Chandrasekhar goes on to show that the average time 

between the occurrence of a state of fluctuation consisting 

of N(a) particulates, given by 0N, when N(a) is large is ex­

pressed as 

h 

% -
tt 

2N (a) , 
^ exp£(N(a)-N(a))2/2N(a2/ (E.13) 

For the calculations to follow let us assume that 

the monostatic system is operating over a vertical path so 

that il = 1 and R = z. Further, it is assumed that for a 

first approximation the two way path of the laser beam is 

confined to a cylindrical volume whose cross sectional area 

equals the aperture area of the receiver (ttB2, where B is 

the radius of the receiver aperture) and whose length equals 

the range, z. In addition assume that z - 5 km. and that v* 

= 3.0 (power of Junge distribution) for which the constant, 
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c, in (2.1, Chapter 2) equals 3 x 10~ls. For such a size 

distribution calculations with the Mie equations show that 

9iven (E.7) equals 1.8 x 10~*knrl. Finally, it can 

be shown that the total mean number of particles contained 

within the cylindrical volume in a size interval Aa about a 

is given by 

_ _ 5km 
N(a) = (ca_l,Aa) (ttB2 / N' (z) dz) 

0 

Using (E.2) and (E.6) the above relation simplifies to 

N(a) (ca^Aa) (ttB2t^/3^) (E.14) 

Similarly, using (E.8) and noting that t^(0,R) at R=z=5km 

equals a relation is developed for N (a) in terms of N(a). 

This relation is based on the fact that AN /N equals AN(a)/ 
o o 

N (a), so that 

N (a) = N (a) ± AN (a) = N(a) ± (0.005N (a)/t^) (E.15) 

Finally, if the particulates have a water density 

(chosen for simplicity) and are in an environment with a 

temperature, T « 300K, then all the parameters have been spec­

ified to calculate TN and 0N for various sized particles. 

Table E.l shows the results of the calculations of TN and ©N 

for tP = 0.1 and 0.25 for particles of size a and within 
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range Aa, and for B = 15 cm (equal to the radius of the 

University of Arizona monostatic receiver aperture). 

One can conclude from Table E.l that reasonable 

times for the occurrence of fluctuation states in the partic­

ulate concentrations do not arise to cause optical depth 

variances which lead to a 1% fluctuation in the mean re­

ceived flux, Ft; an examination of 0N for the various partic­

ulate sizes and optical depths substantiates this conclusion. 

However, it must be remembered that the particulates are 

assumed to move by thermal motion. 

An extension of the previous development for the 

effects of turbulent motion appears warranted. Referring to 

(E.10) and (E.11), it is noted that the probability per unit 

time for particle escape, PQ, depends on the mean velocity 

of the particles, v. Using a mean turbulent velocity for 

all the particulates yields a good approximation to the tur­

bulent process. Inspection of the equations for TN and 0N 

(E.9 and E.13) shows that they are inversely proportional 

to v. Therefore, a simple ratio of the mean thermal and tur­

bulent velocities yields the corresponding fluctuation times 

for the turbulent motion in terms of the values of the ther­

mal motion expressed in Table E.l; simply stated 

/ * » « 

vthermal 
T N 

0N turb vturbulent °N 
L A 

thrm 



Table E.l - Fluctuation States for Particulates in Brownian Motion. 

t? "= 0.1 

a;Aa(xlO" 6meters) N (a) PQ (sec"1) Tn(sec) ©N(sec) 

0.01;0,001 

0.1 ; 0.01 

1.0 ;0.1 

8.0 ;0.8 

10.0 ;1.0 

1.18xl013 

1.18x1010 

1.18xl07 

2.36x10** 

1.18x10** 

5.32 

1.68X10"1 

5.32xl0"3 

2.38x10"'* 

1.68x10-" 

7.94x10"15 

2.50x10"10 

7.94x10"6 

8.90x10"* 

0.250 

IO10* 

IO1°6 

iol°3 

iol°2 

106** 

= 0.25 

If 

ft 

II 

11 

If 

2.95x1013 

2.95x1010 

2.95x107 

5.90x10'* 

2.95x10* 

If 

II 

II 

II 

tl 

3.18x10"19 

l.OOxlO"9 

3.18x10"5 

3.56xl0"2 

0.1 

e 
1010 

lo1"5 

io10 3 

2.0x107 

1.1x10** 
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Using reasonable values of ̂ turbulent(10-100 cm/sec) 

makes little changes in the results derived for the thermal 

motion. Only for the special case of a = 10.0x10"6 meters 

at = 0.25 does 0N^ few seconds, but at a = 8.0x-10~6 me­

ters 0N is again up to the thousands of seconds! Therefore, 

it is concluded that even for turbulent motion of the partic 

ulates fluctuations of 1% in FT most likely do not occur. 

Finally, the large values of 0^ at each size inter­

val shows that variations in {3*? caused by changes in the 

relative numbers of particulates in the Junge distribution 

are not too likely. 

With regard to the molecules, Chandrasekhar shows 

that a 1% fluctuation in the air density for a spherical 

1 o 1 * volume of radius 1 cm has a recurrence time, 0N, of 10 

seconds! Therefore, for the large volumes associated with 

the transmission paths of the laser-receiver system, fluctua 

tions of 1% are virtually impossible. 
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