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Abstract 

This dissertation studies intradav and daily foreign exchange market volatility. 

First, we address how best to model the intraday seasonality and the serial corre­

lation in return volatihty. We find there is no gain from smoothing the intraday 

seasonal volatility pattern. A model that jointly estimates the intraday seasonal 

pattern and conditional heteroskedasticity imderperforms models that remove sea­

sonal variance through deseasonaiization and then model conditional heteroskedas­

ticity with a GARCH model. Secondly, we show how intraday data can be used to 

create daily volatihty estimates. Results show intraday data allow for daily volatil­

ity estimates which are independent of a volatihty d\Tiamics specification. Lastly, 

we show that intraday data improve the performance of one-step ahead forecasts 

based on a one year sample and show that the results are consistent %\ith Monte 

Carlo simulations. 
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Chapter 1 

Conditional Heteroskedasticity and Intraday 
Seasonal Volatility in the Foreign Exchange 
Market 

1.1 Introduction 

There is a growing area of research in finance which deals with modeUng volatihty 

of asset markets. With the construction of high frequency data, it is now possible 

to model volatility in a more precise manner. Previously, one could only address 

volatihty on a week by week or day by day time frame. VVhUe this may be fine for 

some applications, like options pricing, it may not be for other applications since 

information about the natm-e of the market is unused. 

New research is now possible due to the collection of data which is of a higher fire-

quency than previously used. W'Tiereas previous studies used weekly or daily data, 

data sets with prices ever\' few minutes are now available which allow researchers 

to look at new market dynamics. For example, in high frequency exchange rate 

data, it has been observed that price changes vary a great deal per day. That is. 

depending on the time of day. the volatility of the exchange rate market fluctuates. 

This pattern is completely unobservable when working with daily data. The effect 

is very similar when working with sales data for firms. There is a big end of the 

year efiect on sales, and that is known as the Christmas/Holiday shopping season. 

In a regression analysis we need to take hohday sales into account, so too do we 

have to adjust our high frequency exchange rate models for a periodic intraday 

pattern. In this case, we have a daily pattern in the veiriance of the exchange rates. 
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One of the recent advances in modeling financial time series has been the work 

of Engle (1982) and Bollerslev (1986) for the ARCH model. This class of models 

estimates parameters more efficiently by directly modehng the second moment of 

the model (or variance, or volatihty), in addition to the first moment.' In financial 

time series data volatility appears to be time varying; there are periods of high 

and low volatility. Since financial models often make assumptions on the nature of 

variance it is important that one uses a class of models which allow for time-varying 

variance. Assuming that the data has constant variance when it does not could 

lead one to make incorrect statistical inference. The ARCH framework is appealing 

for the direct nature of its modeUng of time-varying variances. 

This chapter tries to address significance of intraday volatility seasonality when 

we are modeUng exchange rates with an ARCH framework. We address whether 

intraday seasonality matters, and if it does how best to handle it. To show which is 

the best way to model this seasonality, we estimate a variety of models and evaluate 

their effectiveness in forecasting out-of-sample. 

1.1.1 Literature Review 

The approach of this paper is not completely ad hoc. For one. it has been estab­

lished that high frequency returns do have an intraday seasonal variance pattern.' 

For this reason, it is important to model this seasonaUty. In addition, there is a well 

estabhshed hterature which looks at volatihty transmission.^ This tries to explain 

why there are periods of high and low volatihty in financial markets. A popular 

'A good survey Eirticle is Bollerslev, Chou, and Kroner (1992). 
-See Dacorogna et. al. (1993). 
^See Engle, Ito, £ind Lin (1988). 
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explanation is that there are periods of high and low 'news' activity. As news ar­

rives to a market, agents will have differing interpretations of the news and it takes 

time for a new equilibrium to result. The news process is the cause of changes in 

prices and price expectations and ARCH models are often used to model the ar­

rival of news to the market. Therefore, it seems appropriate to decompose volatility 

into two distinct components, an intraday seasonal component and a news arrival 

component. 

Secondly, but not of less importance, is that current research is yielding am­

biguous results. It has been shown by Drost and Nijman (1993) that there is a 

theoretical relationship between parameter estimates from a GARCH model as the 

sampling rate for data becomes less frequent. That is, the parameter estimates us­

ing daily returns will be related to the parameter estimates when two-day returns 

are used. Andersen and BoUerslev (1994) work with five minute Deutschemark 

exchange rate data and show that this theoretical relationship does not always 

hold. 

When GARCH models are estimated with returns calculated on small intervals 

(minutes), Andersen and BoUerslev (1994) find the GARCH parameter estimates do 

not follow the Drost and Nijman (1993) prediction. Also, the parameter estimates 

yield unreasonable volatility persistence. (VolatiUty persistence is a measure of 

how long a shock in the variance takes to dissipate. It can be measured as a 

haJf-life or as a median half-life. In either case, given the GARCH parameters, 

there is a theoretical relationship which yields these half-Uves.) Interestingly, when 

longer time periods (daily and above) are used to calculate returns, the Drost 

and Nijman (1993) theoretical predictions hold and volatility persistence estimates 

are more reasonable. It is also worth noting that Andersen and BoUerslev (1994) 
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attempt to correct for intraday seasonality, but still obtain results which they call 

"unpredictable, occasionally imprecise, and generally difficult to interpret." 

1.1.2 Effects of Deseasonalization 

The most common way to address the intraday seasonality in foreign exchange re­

turns is to remove it by deseasonalization. This is the approach taken in Andersen 

and BoUerslev (1994) and more recently by Ghose and Kroner (1997). It is not clear 

that this approach is the best way to model volatility dynamics. When we desea-

sonalize intraday returns, we are assuming that what is important is to compare 

a return with the average retinrn for that time period. It is a relative comparison 

that is important; all indications of absolute magnitude are lost. 

To illustrate this point, consider the days Friday, February 11, 1994 and Monday, 

December 6, 1993. In both cases, if one divides the fifteen minute returns of those 

days, by the corresponding sample standard deviation for each return, the difference 

between the raw retvirn and the deseasonalized returns varies greatly. When the 

intradaily returns for December 6, 1994 are deseasoned and squared, they appear 

to be very similar to the raw squared returns (see Figures A.l and A.2). In fact, 

the correlation of squared retvurn and the deseasonalized square return is 0.92. For 

February 11, 1994, deseasonalization causes the returns to appear to be different. 

When deseaonalized, the early morning returns and late night returns are much 

larger relative to the afternoon returns (see Figvnres A.3 and A.4). The correlation 

of the squared retiurns and the deseasoned returns is 0.45. 

The days just discussed were chosen as extreme examples to illustrate the point 

that days will look different depending on whether one deseasonalizes or not. The 

question then becomes whether, if one is interested in forecasting, is it best to (1) 
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deseasonalize returns, model volatility, create forecasts, seasonalize the forecasts 

or to (2) model seasonality and volatility jointly? This paper investigates whether 

this sequential modeling approach performs better than a joint modeling approach 

where the intraday seasonality and the conditional heteroskedasticity are dealt with 

simultaneously. 

1.1.3 Outline of Chapter 

This paper's goal is to compare various methods of modehng intraday seasonality. 

Some models have already been used in the context of exchange rates (Andersen 

and Bollerslev (1994)), while other models will be extended to allow for a intraday 

seasonal volatility component. Regardless, there has yet to be a systematic analysis 

of which models perform better. Such a study is useful to guide theoretical research 

in this area and further points to new undiscovered dynamics. 

The comparison of various models will require some thought. Since the true 

variance process for returns is unobserved, it is not possible to calculate an R- as 

is often done with estimates from a standard regression. Instead, we will evaluate 

models statistically with likelihood based criteria and on out-of-sample forecast 

abihty. 

This paper analyzes various models and determines which method for handling 

the intraday seasonality and conditional heteroskedasticity works best for forecast­

ing of volatility. 

The rest of the paper is organized as follows: Section 1.2 presents various models 

which incorporate intraday seasonality and conditional heteroskedasticity. Section 

1.3 discusses the data. Section 1.4 discusses how the models will be ranked or 
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compared, Section 1.5 presents the empirical results, and Section 1.6 concludes and 

summarizes. 

There have been two general methods for deahng with the seasonality in intraday 

returns. The first approach is to use the sample variance while the second is to 

create a smoothed estimate. Both are discussed below; two variants of the smoothed 

approach are presented. 

Model 1: Sample Variance 

The most straight forward measure of the intraday seasonaUty is to calculate 

the sample variance for each intraday time interval. Suppose that our returns are 

defined to be Rt^t where t = \ ...T represents the day, and i = 1... n represents 

the time of day. For example, with fifteen minute data, n = 96 and the 12AM 

return for day 1 of the sample would be denoted Similarly, /?i,2 represents 

the 12:15AM return for day 1. Defining 7(2) to be the variance of the returns at 

time i. we sum over all days T and obtain 

This approach was used in Ghose and Kroner (1997) to deseasonalize their returns. 

With their approach, to standardize the 9AM returns, one just divides the returns 

by the standard deviation of the 9AM returns. 

1.2 Models 

1.2.1 Seasonality 
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Model 2: Fourier Series 

The second method is to use paxametric smoothing. One fits the time of day 

variance to a fourier expansion (a similar approach has been used by Andersen and 

Bollerslev (1996) to model intraday seasonahty). In this case we have 7(1) being a 

function of sines and cosines 

7m( i )  =  +  c o s ( k i )  +  6 f c  s i n ( k i )  
^ A:=l fc=l 

The number of sine and cosines is determined by m, which is left to the discretion 

of the researcher. The series is defined when the weights (a^ and 6^) are estimated. 

There are a couple of approaches to fit a fourier series to the intraday variance. 

One is to use the sample variances (estimated from Model 1) and then fit a fourier 

series to the ninety-six variances. The problem with this approach is that it assigns 

equal importance to each variance estimate. Unfortunately, the confidence intervals 

for the variance estimates are much larger when the US market is open than when 

it is closed. To allow all variances to be equally important is inefficient. We can 

addressed this inefficiency with appropriate weighting of the variances. 

Another approach to fitting the fourier series is to use the individual returns 

rather than the ninety-six sample variances. In this case, given that the mean 

return is zero for each cross section'*, we can estimate the intraday variance by 

using squared returns. The fourier series solution for ojt is now extended to take 

"•Results are not reported. 
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care of the T observations per cross section interval, i.  

1 " ^ , 
" 48 X r ̂  ̂  

^ £ 53 sin(A:z) 

One of the benefits of fourier series is that all the terms are orthogonal to one 

another. This prevents problems of multicolUnearity as the number of terms (i.e. 

m) can be increased with ease. 

Model 3: Exponential Seasonality 

A variation on the fourier series method is to use polynomials. 

7(z) = exp(co + Cii H h c„2") 

The approach here is similar to that used by Dacorogna et. al. (1993). although 

there are two distinct changes. First, the polynomial is continuous throughout the 

entire day. Dacorogna et. al. (1993) use a pieced polynomial, similar in natm"e 

to a spline polynomial regression, with restrictions on the coefficients. The second 

difference is that the polynomial is exponentiated to guarantee positive variances. 

In addition we require that 7(1 = 1) = 7(2 = 96). This forces 7(z) to have the 

same value at 0 GMT and 24 GMT and is guaranteed by imposing the restrictions 

on the Cn coefficients.^ 

®If the time index i cycles from 0 to 1 (rather than 1 to 96), then the restriction is satisfied 
when Co = cq + •••+ Cn. A similar linear restriction is created if the time index is from -I to 1. 
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One of the problems with estimating a high order polynomial is that of multi-

coUinearity. The time variables become more and more coUinear as the order of 

the polynomial is increased. To see this we can write 

f \  
1 

\ ^ i  

As i cycles through 1 to 96, for example and while not identical, appear to 

be so in a numerical (or computational) environment. Our vector j" becomes more 

correlated with as n increases. A way to reduce this multicollinearity is to use 

a time index which cycles from -1 to 1 instead of 1 to 96. While this method is not 

perfect, it has the effect of making and more orthogonal to each other. 

In order to estimate seasonal exponential, the same approach for the ARCH 

class of models is used. As a result, one can think of this seasonaUty as being 

conditionally seasonal. The model and its corresponding log likehhood is 

f^t.i — Q.i 

et.i ~ N(0,ali) 

oh = Exp(co + Ci i H h Cni") 

log(L) = log(7r) - Y. log(cr2 J - Y. 
^ t t 

which obtains consistent estimates for the Cfc's. 
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1.2.2 Conditional Heteroskedasticity 

The serial correlation in foreign exchange voIatiHty has been captured by the ARCH 

(or GARCH) class of models which were developed by Engle (1982) and BoUerslev 

(1986). This class of models can be thought of as an Autoregressive Moving Average 

(ARABIA) model in variance and are presented in brief form below: 

Model 4; GARCH(1,1) 

1.2.3 Sequential Modeling: Deseasonalization 

The most common method to handle the intraday volatility seasonality has been 

to deasonahze the returns before modeling. This procedure is a sequential one. and 

involves three steps: 

1. Deseasonalize the data with an estimate for the time specific variance. Using 

our notation of 7(4) for our estimate of intraday variance, then our deseasoned 

returns are 

Vt = ft 

cjf = uj + + Pcr'j_i 

Model 5: ARCH(IO) 

Vt = ft 

af = + Q!ioe£_io 
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In this step, one can use either the time-of-day sample variance or a smoothed 

variance estimate. 

2. Model the deseasoned returns. Rt,i, with a GARCH or ARCH model, and 

obtain variance estimates 

3. We are not interested in a deseasoned volatility forecast, but a true volatility 

forecast. As a result, one needs to take the forecasts from the deseasoned 

analysis and reseasonaiize them. This is done by multiplying the variance 

forecast by a the time specific sample standard deviation. Specifically. 

1.2.4 Simultaneous Modeling: Seasonality and Conditional 

Heteroskedasticity 

An alternative approach from the one discussed above is to jointly (or simultane­

ously) model the seasonality and conditional heteroskedasticity. To investigate this 

approach, we will estimate a number of joint seasonal/heteroskedastic models. 

Model 6: PGARCH(1,1) and PARCH(IO) 

The first model is the Periodic GARCH (P-GARCH) model (and similarly P-

ARCH) from Bollerslev and Ghysels (1996). This model is a GARCH model where 

the variance pareimeters vary depending on the time of day. In our case, we will 

limit the seasonality to two terms for simplicity. This model has two sets of GARCH 

parameters which are estimated with two dummy variables. One dummy captures 

the effects of the US market being open, while the other dummy isolates the effects 
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of the US market being closed. 

^t,i — 

1  

II 

1 °  
f  

0  II 

1  

The US maxket is assumed to be open from 1300 to 2300 GMT. Melvin (1995) 

describes tMs time period as the time period from which the New York financial 

center opens to when the San Francisco financial center closes.® While the curren­

cies are traded 24 hours a day, this particular window seems to captiure the major 

activity of American traders. This divides a day's ninety-six observations into forty 

retmns for when the US maxket is open, and fifty-sLx observations for when the 

US market is closed. In Bollerslev and Ghysels (1996), the foreign exchange max­

ket returns were partitioned into two returns per day; a morning return and an 

afternoon return. 

The PARCH model is similar to the PGARCH, with the variance equation 

changed from a GARCH to ARCH framework. Otherwise, there is no difference 

between the two models. 

®We do not correct for daylight savings. In the summer, the US markets open one liour earlier 
relative to GMT. The focus here is to approximate the effect of the US market on currency 
volatility, not to exhaustively study it. 
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Model 7: Conditionally Periodic GARCH (CP-GARCH) and 

Conditionally Periodic ARCH (CP-ARCH) 

The second seasonal/heteroskedastic model is designed as a GARCH model 

where the "u;" term varies with the time of day. In fact, we assmne that "u" 

varies proportionally to the intraday seasonal variance. This model consists of 

two steps. First, the seasonal intraday variance is estimated, either using the 

sample variance for each time of day or the exponential seasonaUty. Secondly, 

the conditional heteroskedasticity is modeled with the seasonal intraday variance 

estimates obtained from the first step being placed in the variance equation. 

The second stage of the model is: 

= Q. i  

while in ARCH terms, we get: 

^t.i = €.ii 

This model does not estimate the seasonality when modeling the volatility dynam­

ics, but takes it as given (and hence the name conditionally periodic). The u term 

is necessary to deflate the 7t in the variance equation. In a GARCH model, the 

relationship between the sample variance and the parameter estimates is given by 

^ ~ therefore the a; term in this model allows the a and p parameters 

to vary freely. 
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Model 8: Seasonality & ARCH(IO) (S-ARCH) 

The last seasonaJ/heteroskedastic model is just the addition of the seasonal 

exponential model to the ARCH(IO) model, and is the univariate equivalent to the 

model in Aradhyvda and Tronstad (1994). This model jointly estimates intraday 

seasonality and conditional heteroskedasticity and is: 

Vt = ft 

erf = exp(co + CiZ H h Cni") + 

+ aioe^_io 

In this model, the seasonal effects are independent of the dynamic effects. As a 

result, there are no feedback effects of the lagged terms on the seasonal terms. A 

GARCH specification would allow for feedback between seasonality and conditional 

heteroskedasticity, and such it is much more difficult to interpret the seasonal terms 

(see LaFVance and Burt 1983). 

1.3 Data 

The data consists of 262 daily observations for the DoUar-Deutschemark, Dollar-

Swiss FVanc, and Dollar-Yen, from September 15, 1993 to September 16, 1994. The 

sample consists of all weekdays with the exception of December 24 (December 25 

and January 1 occurred on weekends.) Figures A.5. A.6, and A.7 show the exchange 

rates used in this study. 

For each day, there are returns for every fifteen minutes, yielding a total of 

ninety-six observations per day. The returns are calculated as log returns and are 
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multiplied by 100. The notation we wiU use will be 

Rt,i = logCPu) - log(Pt.(j_i)) 

where t = 1, 2,.... T, and i = 1,2,..., 96. The t variable corresponds to day in 

the sample, while i represents the intraday cycle (there is no correction for daylight 

savings time). For example, the first fifteen minute return for day 3 at 12AM is 

calculated as = log(P3j) — log(P2,96), while the fifteen minute return for day 

3 at 12:15AM is Rz,2 = log(P3,2) - log(P3.i). 

1.4 Model Selection 

There are many ways of evaluating competing models. Statistically, one can choose 

the model with the highest mean likeUhood. Alternatively, one may view the true 

value of a model in terms of its abihty to perform out of sample. Below we discuss 

the two methods which will be used to rank models statistically. 

1.4.1 Likelihood Ratio Tests 

Where one model nests another, we can just use a likelihood ratio test to determine 

model selection. The formula for a Ukehhood ratio test is given by 

^LR = -21ii A 

where A = LifLo, where LQ is the Ukelihood function for the unrestricted model, 

Li is the Ukehhood function for the restricted model and is distributed asymp­

totically as Xfc (where k is the number of restrictions). In the results section, we 
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have the mean log-likelihood for the varioiis models. Simple algebra yields the test 

statistic in terms of the mean log-likehhood. 

^LR = —2 In A 

i-iQ 

= 2n(Mean In Lq — Mean In Li) 

where n is the number of observations. 

1.4.2 Likelihood Dominance Criterion 

We are also interested in comparing models which are not nested. The likelihood 

dominance criterion proposed by Pollack and Wales (1991) provides a method for 

model selection when this occurs. A quick summary is provided below. 

Let hypothesis have ni parameters and let hypothesis H2 have 722 parameters 

where rii <712. Then, the likelihood dominance criterion: 

• Prefers Hi to Ho if L2 -  Li < c ( " 2 + i ) - C(n, - n )  ̂ 

• Indecisive between Hi to Ho if > L2 - Li > g("--+i)-c(nt+i) 

• Prefers H2 to Hi if L2 - Li > c(n2-n,H-i)-c(i) 

where Lj is the UkeUhood for model j and C{m) is the critical value of a chi-square 

with m degrees of freedom. 



33 

1.4.3 Heteroskedastic Mean Square Error 

The last method to compare rival models is a variant of the standard mean squared 

error (MSE) measure. Since we are dealing with time series with non-constant 

variance, it is appropriate to alter the MSE calculation so that large retiirns do 

not dominate the calculation. Bollerslev and Ghysels (1996) first proposed using a 

heteroskedastic consistent MSE measure: 

, r r 9 T 2 

HMSE = -Y: 
^  t = l  

A-2 

where ef is the realized volatility and af is the forecast of the volatility. We wiU 

use HMSE as an indicator of how well the models perform out of sample. 

1.5 Empirical Results 

The data are divided into two sets; the first for estimation, the second for out of 

sample forecasting. The estimation (or modehng) data set consists of 202 days, 

leaving 60 days for evaluating forecasts. Thus roughly 30% of the data is set 

aside for out-of-sample forecasting. Tables A.l and A.2 provide the descriptive 

statistics for the modeUng and forecasting data sets. The parameter estimates for 

all the models discussed below are provided in Tables A.3 to A.25. The mean log 

likelihood estimates for each model is provided in Table A.26; the sample kurtosis 

resulting from using the estimated variances are provided in Table A.27. 
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1.5.1 Seasonality 

The intraday retiirns clearly exhibit seasonality. As evident in Figures A.8, A.9, 

and A.IO, the variance during the day rises after 12 GMT (8 EDT) and starts to fall 

at 18 GMT (14 EDT) for the three currencies. A likelihood ratio test of intradaily 

homoskedasticity versus intradaily heteroskedasticity rejects homoskedasticity. The 

test is a chi-square test with 190 degrees of freedom. DM test statistic is 6,519. for 

JY it is 2,948, and for the SF it is 7,051; the 1% critical value is 238. 

Similarly, intradaily homoskedasticity is rejected against the alternative of the 

exponential seasonaUty model. The estimated parameters are presented in Ta­

ble A.3. Graphs of the smoothed variance estimates are shown in Figures A. 17. 

A.19, and A.21. 

As for the the merits of a smoothed variance estimate in comparison with the 

sample variance estimates, the smoothed estimates fare poorly. Using the likelihood 

dominance criteria for non-nested hypothesis, we reject the smoothed estimates in 

favor of the sample variance estimates for all three currencies (see Table A.28). 

To get a better understanding of why a likeUhood ratio test rejects the smoothed 

estimates in favor of the sample variance estimates, one just needs to compare 

the smoothed estimate with the sample variance estimates. While to the eye. the 

smooth estimates are "close" to the sample variance estimates, they are not. In fact 

a large number of smoothed variance estimates are not within the 99% confidence 

interval for the sample variance. Between one-third to half of the exponential 

estimates are outside the 99% confidence interval. Given so many estimates are 

so far away from the sample variance estimates, it is understandable we reject 

exponential seasonality in favor of sample variance seasonality. 
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It turns out that using another smoothing technique or increased number of 

parameters does not improve the smooth intraday variance estimates. We also 

estimated another smoothed estimator, a fourier series expansion for comparison. 

The fourier series expansion with about the same number of degrees of freedom as 

the exponential model estimated (m = 4) (see Figures A. 11, A. 13 and A. 15) was 

estimated along with (m = 9) (see Figures A. 12, A. 14 and A. 16) which has more 

than twice the nimiber of parameter estimates. It is clear to the eye that having a 

greater number of sines and cosines (with m = 9) provides a better fit. However, we 

still find that with m = 9, there are still roughly 40% of the time specific variance 

estimates outside the 99% confidence interval of the sample variance estimates (see 

Table A.29). 

We conclude that the parametric form of the seasonality is not an issue since two 

parameterizations do so poorly. Therefore, we proceed with exponential seasonality 

since it can be more easily nested in larger models. Given that higher order number 

of fourier terms only slightly improve the fit, and since higher ordered polynomials 

suffer from multicoUinearity, we Umit the order of the exponential seasonal model 

to degree nine.(We do not investigate the benefits of changing the degree of the 

polynomial.) 

1.5.2 Deseasonalization 

The resvdts of deseasonalization are encouraging. The ARCH, GARCH, P-ARCH, 

and P-GARCH models all improve statistically when the returns are deseasonahzed 

first, the conditional heteroskedasticity is modeled, and the variance forecasts are 

reseasoned. The likeUhood dominance criterion model selection procedure favors 
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the three step deseasonahzing the returns over modeUng the raw returns (see Table 

A.30) and is consistent with the results obtained in Andersen and BoUerslev (1994). 

Secondly, using the sample variance to deseasoneilize the returns again out­

performs using the smoothed variance estimates from the exponential seasonahty 

model. In the four models mentioned above: ARCH, GARCH, P-ARCH. and P-

GARCH all perform better when the sample variance is used (see Table A.31). 

Lastly, as seen in the tables which report coefficient estimates, there appears to 

be little variation in the parameter estimates when deseasonahzing with exponential 

seasonality or sample standard deviation. While no formal tests are presented here, 

the variations between parameter estimates are well within the heteroskedastic 

adjusted standard errors for the parameter estimates. 

1.5.3 Se£isonality &: Heteroskedasticity: Joint Modeling 

There are three attempts to incorporate the intraday seasonality and the condi­

tional heteroskedasticity. In aU cases, the addition of the seasonality term in the 

ARCH/GARCH freimework improves the models. We discuss each below. 

Addition of Seasonality 

As is to be expected, the addition of a seasonal term in a conditional heteroskedastic 

model improves modehng. The P-GARCH. P-ARCH, CP-GARCH, CP-ARCH, 

and S-ARCH models aU fail to be rejected versus the alternative of GARCH or 

ARCH on raw returns (see Table A.32). 
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S-ARCH vs. CP-GARCH/P-GARCH 

As is expected, S-ARCH is favored over P-GARCH framework for all three curren­

cies (see Table A.33). Since there is so much variation in the intraday seasonaUty. 

a model which captures it well wiU outperform a model which is more restrictive 

in its seasonality. Since P-GARCH has only two "states", the flexibility of the S-

ARCH framework is dominant. However, the case is more ambiguous in comparing 

S-ARCH and CP-ARCH/CP-GARCH. When one uses time of day variance for the 

conditional periodic variance, there is no clear winner (see Table A.33). 

S-ARCH vs. Desectsonalization 

Interestingly, at this time, there appears to be little gain in modehng the intraday 

seasonality and the conditional heteroskedasticity jointly in comparison with de-

seasonalization. All three classes of models (P-ARCH. CP-ARCH, and S-ARCH) 

are rejected in favor of the three step procedure: deseasonahzation. modeling, and 

reseasonahzation when sample variance is used as the variance to deseasonahze (see 

Table A.33). The gains from using the sample variance to deseasonahze are greater 

than the benefits of simultaneous modeUng with exponential seasonahty. 

One interesting observation from the S-ARCH estimation is that of the estimated 

seasonality. When adjusted for the conditional heteroskedasticity, the seasonail pat­

tern estimated is much more volatile than that of the seasonal exponential model. 

As shown in Figures A. 18, A.20 and A.22, the expected seasonahty conditional on 

time of day is much more peaked. 
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1.5.4 ARCH vs. GARCH 

For many empirical studies, financial retm^ns are modeled with a GARCH model. It 

is of interest to see if one would be better off with an ARCH specification instead. In 

our case here, for the majority of the model specifications, the likelihood dominance 

criterion favors the ARCH(IO) over the GARCH(1,1) specification (see Table A.36). 

With the exception of the JY, the returns are better modeled when deseasonalized 

with sample variance with ARCH than with GARCH. The conditionally periodic 

GARCH models (with or without NY dummies) are also rejected, for all three 

currencies, in favor of a conditionally periodic ARCH specification. 

1.5.5 Does Deseasonalization Capture Everything? 

The final question we ask is whether we should treat aU returns equally. When 

we deasonalize returns and then estimate a GARCH model, we are assuming that 

the volatility dynamics are the same within the day. We know that when the NY 

market is open, we have much greater volatility. Perhaps the dynamics of volatility 

vary when the NY market is open as well. 

Overwhelmingly, the models are improved when a diunmy is used as an indicator 

of when the NY market is open (see Table A.37). We would expect that the P-

GARCH model is favored over the GARCH model on raw returns. After all. we 

know that the volatility is much larger when the NY market is open and a GARCH 

model on raw returns does not address this point. However, it is not expected that 

after deseasonalizing the returns that there is still a NY effect. In the deseasoned 

GARCH, deseasoned ARCH, CP-GARCH, and CP-ARCH models all fail to reject 

that dummies for NY should be included. The likelihood dominance criterion favors 
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NY dummies being included for all four classes of models on all three currencies. 

We are left to conclude that the NY market behaves differently than the London 

and Tokyo markets. 

1.5.6 Forecasting Performance 

The results obtained with the modeUng data set hold up well out of sample (see 

Table A.39 for all the results discussed in this section). Using HMSE as the measure 

for model comparison, ail the results, with the exception of the NY diunmies being 

significant remain vahd. 

We find that out of sample the three step deseasonahzing procedure out performs 

the joint models. Still, the sample variance seasonality outperforms the exponential 

seasonahty. The sample variance appears to be quite stable as a predictor of fu­

ture variance. One would think that perhaps a smoothed variance estimate would 

perform better out of sample, but it does not. 

Again, the joint seasonal/heteroskedastic models outperform those which incor­

porate either seasonality or heteroskedasticity but not both. 

Lastly, the NY effect appears to be less pronounced. Ignoring the raw ARCH 

and GARCH models, the addition of the NY dummies improves the forecast error, 

even after deseasonalization. For the DM, both the ARCH and GARCH mod­

els deseasonalized with sample variance and exponential seasonality have reduced 

HMSE. For the JY, the GARCH models improve with the NY dummies regardless 

of method of deseasonalization. However, the addition of the NY dummies does 

not improve the ARCH models when the returns are deseasoned, again regardless 

of deseasonaUzation method. For the SF, the ARCH and GARCH models with 

deseasoned returns are improved for sample variance deseasonalization, but only 
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the GARCH model does worse with the NY dummies when the returns had been 

deseasonalized with exponential seasonality. 

1.6 Conclusions 

To simmiarize, this paper asks three questions: (1) what is the best way to model 

intraday volatility, either deseasonalize returns or jointly model seasonality and 

conditional volatility, (2) which method for deseasonalizing returns is best; and (3) 

are volatihty dynamics constant throughout the day? 

We find that: 

• Smoothed seasonal volatility does worse than expected: sample variance is 

best both in sample and out of sample. 

• Joint modeling of seasonality and conditional heteroskedasticity is dominated 

by the three step procedure of deseasonalizing, modeling, and reseasonaliza-

tion. 

• Volatility dynamics does depend on the time of day: the NY foreign exchange 

market is different and should not be ignored. 

To simimarize, what we have discovered is that of the two factors in intraday 

volatihty-seasonality and serial correlation, that getting the seasonahty correct 

has the biggest gain in improving forecast error. Care should be taken in modeling 

seasonality as it is the dominant factor. The joint models faxe so poorly because 

they are handicapped by the limited seasonality in the models. While the gains 

from modeUng the NY effect, at least in sample, are statistically significant, the 

largest reduction in HMSE comes from using the best seasonality to deseason the 
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returns. While the academic may chose to focus on the dynamics of volatiUty when 

the NY market is open, the practitioner should worry about how the intraday 

seasonaUty is affected by government announcements and national hoUdays. 

The results axe promising and provide guidance for future research. Clearly, 

volatility dynamics depend upon the time of day. When the New York market is 

open, volatility is different. Given the recent work of Andersen and BoUerslev, one 

can conjecture that macroeconomic announcements are playing a role. It seems 

plausible that announcements made diu"ing US business hours are processed by the 

foreign exchange markets differently than when other nations make announcements. 

Future work in this area, is of course, necessary. 
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Chapter 2 

Daily Foreign Exchange Volatility: Creating 
Estimates with Intraday Data 

2.1 Introduction and Motivation 

There is a growing area of research in finance which deals with modeling volatility 

of asset markets. With the construction of high frequency data, it is now possible 

to model volatility in a more precise manner. Previously, one could only address 

volatility on a week by week or day by day time frame. The initial studies on daily 

volatihty have used prices spaced twenty-four hours apart. From these observations, 

a retturn series was calculated, and the market dynamics were analyzed. 

Now due to better recording of prices, we have a much richer data set. In some 

cases, we have transaction by transaction information. Rather than using one price 

per day, there is the possibility of using thousands of prices per day. One route 

researchers are taking is to look at the short term dynamics of asset markets. This 

is understandable since these issues can now be studied. 

Many previous daily volatihty studies have focused on the issue by using daily 

data. In order to estimate a day's volatility, GARCH models use previous infor­

mation. This is feasible since volatility is serially correlated. High volatility days 

tend to follow each other while low volatility days tend to follow each other. 

One problem with such an approach is that small returns for a day do not 

necessarily mean the underlying asset did not oscillate wildly during that period. 

All it does mean is that the price levels ended up close to each other at the end of 

24 hours. There may or may not have been large movements throughout the day. 
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With laxge returns we do not face this problem. Since a large return means that 

the end point prices have changed a great deal, then one must have large price 

changes during the day. The larger the return, the more easily one can say the 

volatility for the day was high. 

Fortunately, the availabiUty of intraday data now faciUtates the issue. It is 

now possible to distinguish between a day with very little price change during the 

trading period, and a day with large price swings which happen to yield a net small 

price change at the end of the trading period. 

For example, for the Deutshemark on Friday, March II, 1994 and Monday, May 

30, 1994 (Figures B.24 and B.23 respectively), the net change in price level is small 

in comparison with the other daily returns in the sample year. However, both days 

are not equal in terms of their volatility if we are able to see the price change during 

the day. In the first case, the price does not change much during the day. In the 

second case, the price fluctuates much more wildly and ends up close to the opening 

price. If one were to focus on prices once a day (and thus look at daily returns 

only), we would be unable to distinguish between the two days. 

Similar results hold with days that have large price changes. For the Deutshe­

mark, Thursday, July 21, 1994 and Tuesday, May 10, 1994 both have large price 

changes during the day (see Figures B.25 and B.26). The price level for May 10th 

slowly increases as the day progresses, while for July 21st, the price change is much 

more rapid, perhaps as result of a macroeconomic annoimcement. Intraday data 

allows researchers to distinguish days of larger currency appreciation or deprecia­

tion. 

Previous volatiUty which looked to estimate daily volatility needed to make 

inferences regarding the dynamics of the variance process in order to create a daily 
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estimate. In a GARCH model, the variance forecast is conditional on information 

up to and including the day before. 

Recent work with intraday data has focused understanding the dynamics of 

volatility during the day. The volatility is now understood to have a regular pat­

tern throughout the day, which repeats every twenty-four hours. Andersen and 

Bollerslev (1997) model this intraday volatility seasonality and control for macroe-

conomic annoimcements and holidays. In addition, Andersen and Bollerslev (1997) 

appeal to variance estimates from intraday returns to show that GARCH models 

are good predictors of volatility. Zhou (1996) creates a variance estimator using 

tick-by-tick data, but to do so requires a huge number of observations to create a 

daily estimate. 

The goal of this paper is to show that one can use intraday returns to create 

reasonable variance estimates, but unlike Zhou (1996) who requires thousands of 

observations to create daily variance estimates, we find that fifteen minute retiurns 

(ninety-six observations) per day are sufficient for good estimates. In addition, we 

analyze two variance estimates that have been used by Andersen and Bollerslev 

and show that one is severely biased, as is therefore inappropriate. 

This chapter is organized as follows: Section 2.2 describes various ways to eval­

uate daily variance measures and discuss the limitations of some which have been 

used in the literature. Section 2.3 describes and compares two intraday volatility 

estimators, Section 2.4 discusses the empirical results from a one year sample of 

three ciurrencies, and Section 2.5 concludes. 
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2.2 Evaluating Daily Volatility Estimates 

For exchange rates we assume that the process of exchange rate determination is 

RT — JJ. -H 6T 

2 2 2 et = a-,v, 

Vt ~ iV(0,1) 

thus ei has a conditional mean of aj since the expectation of v'f which is xi is 

1. However, as pointed out by Lopez (1995) the median of a xf is 0.455 so we 

expect that using as an unbiased estimate of cr^ will lead to an underestimate 

approximately 54.5% of the time. In addition, the distribution of a x? is such that 

for a single observation, the estimate of at using et will be within 50 percent of af 

only a quarter of the time. 

Although the variance process is latent, we can still create estimates of this pro­

cess. However, we must be confident that our estimates are reasonable. Given the 

assiunptions of our model, we expect that our estimates of erf should normalize the 

data\ i.e. Rt/\f^ ~ iV(0,1) and similarly, the squared return divided by our vari­

ance estimates should be chi-squared, i.e. R^/d- xf - Thus we can use statistical 

tests which are based on the normal distribution or the chi-square distribution. Two 

standard tests are the Bera-Jarque normality tests, and the Kolmogorov-Smirnov 

cumulative distribution tests. 

^For exchange rates, theory indicates that we would expect that E [ R t ]  =  0. Formal statistical 
tests are not reported. 
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2.2.1 Normality Test 

The Bera-Jaxque test uses the skewness and kinrtosis of a sample to test whether 

the sample appears to be normal. Under the assumption of normahty, the skewness 

is zero, and the kiu1;osis is three. Large deviations from either lead one to conclude 

that the data on hand is not normal. Formally the test is: 

~ xi 

2.2.2 Kolmogorov-Smirnov Test 

The Kolmogorov-Smimov test compares the empirical cumulative distribution func­

tion to a theoretical cumulative distribution function (CDF). If the mill hypothesis 

that the sample is distributed as the theoretical distribution, then the empirical 

CDF and theoretical CDF should be statistically close. The test statistic is based 

on the largest difference between the empirical and theoretical distribution func­

tions (denoted FE{X) — FT{X) respectively.) 

D = sup |F£:(x) - F7-(x)| 
X 

We can use this test to test both that standardized returns are normal, and 

that squared returns divided by daily variance are chi-square with one degree of 

freedom. 

BJ = Tx 
skewness (kvurtosis — 3)^ 

6 24 
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2.2.3 R'^ Measures 

One measure which researchers have used to evaluate volatility forecasts is looking 

at the /?- from the following regression: 

where is the squared return for day t  and af is a forecast for day i's volatility, 

from a GARCH model. 

Andersen and Bollerslev (1997) describe why using such a regression is inappro­

priate. They show that if the variance process is a GARCH process, the expected 

is low. 

2.2.4 Error Measures 

There are also several measures which are frequently used to determine the quality 

of variance estimates. They are defined below. 

Mean Squared Error 

ef = a -t- borf + Ut 
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Mean Absolute Error 

t = l  

Logarithmic Loss 

LL = ;^ [log (e^) - log (af)]' 
••• t=i 

Heteroskedasticity-adjusted Mean Square Error 

H M S E = i s  
••• t=l 

1 "2 

Gaussian Quasi-Majdmum LikeUhood 

GMLE = i f; 
t = l  

'og (»') + ̂  

A couple of issues are worth noting. First, each of the above measures of fit are 

minimized when one uses the squared return as the estimate for the day's variance. 

As a result, each measure will prefer variance estimates that are highly correlated 

with the squared return to those which are less correlated with the squared return. 

Given the lose assumptions for the variance process of returns, this feature of these 

statistical measures of fit is undesirable. 

Secondly, if we knew the true variance for each day, none of the statistical 

measures would ever equal zero. That is because each of the measures involves a 

random variable. For example, suppose we knew the true variance for each day i. 



49 

then the absolute error for the day would be 

AE = [e^ - o-2| 

= 

so the expectation of — 1)1 is not equal to zero. Theoretically, with perfect 

estimates for daily variance we are not guaranteed to minimize absolute error, or 

any of the other measures. Thus variance estimates which are based on these 

criterion are unwise. 

2.3 Creating Variance Estimates with Intraday 

Data 

2.3.1 Modeling Volatility with GARCH 

One of the ways to model asset returns has been with a GARCH model. This class 

of models estimates both a returns process and a variance process for the returns. 

The usual version used is the GARCH(1,1) model, where the return process is given 

by 

pt = M + U 

et ~ 

af = uj + 
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where yt axe the returns for some asset class. Thus we create variance estimates 

tha t  a re  condi t iona l  on  in format ion  f rom t ime  f  — 1  for  day  t .  

Now with intraday data, it is possible to create variance estimates for the 

day which take into account information from the day, unhke the estimates from 

GARCH models which use information from previous days only. Andersen and 

BoUerslev have used two estimators variance estimators which use intraday data. 

One is a cumulative absolute return estimator, the second is a cumulative square re­

turn estimator. We will now discuss both estimators and show that the cumulative 

absolute returns estimator is biased. 

2.3.2 Cumulative Absolute Returns (CAR) 

Andersen and BoUerslev (1996) suggest modeling daily volatiUty by using absolute 

moments of retinrns to create variance estimators. We present their approach below. 

Assume that our daily return is the sum of intraday returns 

where Xi ~ iV(0, cr?), and the X,'s are uncorrelated with each other. Then we have 

Then to use absolute returns as measures of volatility as Andersen and BoUerslev 

suggest yields 

X ~ A''(0, cr-) where = Z!r=i 

£^(1^1) 
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for the daily return. Using intraday retiums. we can calculate the cumulative ab­

solute retmn as 

/2 " 

V "  .=1  

Constant Intraday Varicince 

Now if all the cr, eire constant, then we have the variance of each X, as being equal 

to a-/n since 

= E-f 
1=1 

= 

1=1 
o 

= CT" 

With our assumption of normality, since X, ~ .V(0. cr'/n). 

=  V = ( ^ )  

Then we would have 

= (2/7r)i/2„^/V 
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and so, we can create estimates of the daily volatihty based on daily data and based 

on intraday data. 

and 

o-n>i = n-^/^(7r/2)^/2 
t=i 

As for the performance of the estimator, having intraday returns is preferred 

since the variance of the estimator falls as n increases. 

Var((7n=i) = Var ((7r/2)^/^|X|) 

= (7r/2)Var(|X|) 

= (7r/2)(n)Var(|X,|) 

since we have 

nVar(lXil) = Var(|Xl) 

and so in comparison, the variance of the intraday estimator is 

Var(ff„>i) = Var IXilj 

= n-'{T/2)Vsx(f;,lXi\] 
\i=l / 

= n-^(7r/2)(^Var(|X,|) + 2X:Cov(|X.|,|X._i|) 
\i=l i=l > 

= n-\ir/2)f2Vax{\Xi\) 
i = l  

= n~^{7r/2)nVax{\Xi \ )  

= (7r/2)Vax(lX,|) 
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so we can conclude that 

Var(5-i=n) = (l/n)Var(d-i=i) 

and so we should use cumulative absolute returns as an estimator for the daily 

variance rather than the absolute return as an estimate of daily variance. 

Bias Under Heteroskedasticity 

Now suppose the cTi's are not constant, that is, the intradaily return volatility 

is different throughout the day. This is a reasonable interpretation of intraday 

returns since it has been clearly demonstrated there is a seasonal pattern to intraday 

returns.^ It then turns out that the estimator for which it was assumed that the 

intraday variances were constant, <Tn>i- is biased in the presence of non-constant 

intraday variance. 

To see this, recall that our estimator is: 

Additionally, 

(7i -I- • • • + CTn 
,— <7 

yjn 

^Miiller et. al.(1990), Bailie and Bollerslev (1991), Andersen and Bollerslev(1994). 
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now E[an>i] — cr < 0 since 

CTj + 

0*1 + • • • + (Tn 
y/n 

(Ti + • • • + CTn 
\/n 

< a 

< + - + ̂ 2 

(Ti + • • • -h (Tn < \/n\l(TI + • • • ^ al 

{ a i  + • • • + (Tnf' < n (0-2 + - • • + 0-2) 

+ + 2 X] < ncr\ H + na\ 
i < j  

0 < {n — 1)0-2 _j 1_ 

0 < Z 0-2 + (TJ - 2 5] 
i < j  i < j  

0 < H-ctj 
i < j  

0 < (o'i -
i < j  

i < ]  

Hence the cumulative absolute return standard deviation estimator is biased 

downwards under intraday heteroskedasticity. The greater the difference between 

the variances for the intraday periods, the greater the bias in the estimator. 

2.3.3 Cumulative Squared Returns (CSR) 

There is a problem with cumulative absolute returns. Their appeal requires that 

one assume volatiUty is constant throughout the day. However, from the intraday 

volatility research, we know that is not true. We will now show how using cumula­

tive squared returns as the basis for an estimate for a day's volatility is robust to 
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intraday time varying volatility. As it a result, it produces superior estimation of 

daily volatility. 

Assume that our daily return is the sum of intraday retiuns 

X = Xi -{• • • • + Xn 

where Xi ~ A''(0, erf), and the Xi's are uncorrelated with each other. Then we have 

X ~ A''(0, cr^) where cr^ = 23"= i 

Then squared returns are used as measures of volatility since 

EiX"") = 

for the daily return. Using intraday returns, we can use the cumulative squared 

returns to yield another variance estimator 

= Z E i X f )  
Ki=l / :=1 

9 

= (7^ 

2 , t 2 — cr, H + a„ 

and so, we can create estimates of the daily volatility based on daily data and based 

on intraday data. 

-^•2 _ v2 ^n=i — ^ 

and 
n 

2 

i = l  
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As for the performance of two estimators, the intraday variance estimator is 

superior since it has a smaller variance. 

To show this, notice that we can write the daily squared return in terms of the 

intraday returns, 

X = (ATi + .-. + Xj-' 

= f:xf+f:x,xi 
i=l i < j  

as a result, the variance of is greater than the variance of since 

Var((T^>i) < Var(ff2=i) 

Vax(x;X?j < Var^^X? + ̂ X,Xjj 

Thus we should use cumulative squared returns as an estimator for the daily 

variance rather than the absolute return as an estimate of daily variance since it is 

more efficient. 

The final issue is an empirical one. We need to (1) make sure that our variance 

estimates appear to be reasonable, and (2) know with what frequency intraday day 

returns are needed in order to obtain the benefits of the intraday estimators. On 

the first point, we would Uke to demonstrate that we can create practical variance 

estimates with an intraday estimator. On the second point, we need to know if. for 

example, hourly returns sufficient to obtain a good daily variance estimate or are 

minute returns required, or do we need something in between. 
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2.4 Empirical Results 

2.4.1 Data 

The data consists of 262 daily observations for the Dollar-Deutschemark, Dollar-

Swiss FVanc, and Dollar-Yen, from September 15, 1993 to September 16. 1994. The 

sample consists of all weekdays with the exception of December 24 (December 25 

and January 1 occurred on weekends.) 

For each day, there are returns for every fifteen miniit.es. yielding a total of 

ninetj''-six observations per day. The returns are calculated as log returns and are 

multipUed by 100. The notation we will use will be 

Ru = log(Pt.i) -  log(Pj,(i_i)) 

where t = 1, 2,..., T, and i = 1,2,..., n. We can define Ri to be the daily realized 

return, and Rt,i to be a return dxnring part of the day, where the time interval is 

l/N. The time variable t corresponds to days, while n represents the intraday 

cycle. For example, if n = 96, then Ri_i is a fifteen minute return. Each day's 

retvirns go from 12AM GMT to 11:45PM GMT, and are not corrected for daylight 

savings time. 

From the intraday returns, the daily return series can be computed as the sum 

of ninety-six returns, 

96 

Rt = J2^t4 
1=1 

Tables B.40 and C.62 provide the descriptive statistics for the fifteen-minute 

and daily retvurns. See Figure C.44 for a plot of the Deutschemark daily returns. 



58 

2.4.2 Daily Variance Estimates 

Impressions of CSR Variance Estimates 

The cumulative squared returns (CSR) variance estimates using fifteen minute re­

turns are shown in Figure C.46. Compared to the daily squared return (see Fig­

ure C.45), the cumulative squared retmn volatiUty estimates are much less volatile. 

As shown in Table C.63, the variance of the squared returns are 0.3886. 1.0289, and 

0.5331, respectively for the DM, JY and the SF. The variance of the CSR variance 

estimates are 0.1281, 0.2104, and 0.0740 respectively (see Table C.64). Similarly 

the range of the cumulative squared retvum variance estimates is smaller than the 

range for daily squared returns for the three currencies. 

The returns for each currency are fat tailed (i.e. have excess kurtosis). For 

example. Figures B.31 and B.32 which shows a histogram for DM returns and the 

gaussian kernel density estimate with the normal distribution with the same mean 

and variance as the sample. 

As for the distribution of the CSR volatihty estimates, they are distributed 

differently than the daily squared retmrns. For example, the DM histogram for 

squared returns has many of the returns in the left most bin. In comparison, the 

CSR variance estimates are shifted to the right. The median squared return for 

the DM, JY and SF is 0.1483. 0.1624, and 0.1704, respectively. The median CSR 

variance estimate is 0.2954, 0.4014, and 0.4406 respectively. 
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Joint Distribution of Squared Retiu-n and CSR Variance Estimates 

We have thus seen that the CSR variance estimate appears to be consistent with 

our theoretic predictions for a variance estimator. We now discuss how the squared 

return compares with the CSR variance estimate. 

Table B.51 provides a summary of the joint distribution of the squared daily 

return and the corresponding CSR variance estimates. The table partitions the 

joint density into four parts, by using the median squared return and the median 

CSR estimate as divisors. We have already seen that on average the unconditional 

variance calculated from the returns is equal to the unconditional variance calcu­

lated using the average CSR variance estimate. However, for each individual day. 

predicting the daily variance using CSR will yield a different estimate than using 

the squared dally retvun. 

As in Table B.5L roughly one third of the time, both the squared return is below 

the median squared return (is "low") and the corresponding CSR estimate for the 

day is also below the median CSR estimate (is "low".) Similarly, one third of the 

time, the squared return is above the median squared return (is "high") and the 

CSR estimate for the day is above the median CSR estimate (is "high".) 

When both the squared return and CSR are low, the CSR estimate is almost 

always higher than the squared retiurn. When the squared return is low and the 

CSR is high, then the CSR estimate is always larger than the squared return. 

When the squared return is high and the CSR is high, then it is roughly equally 

likely that the CSR will be larger than the squared return, and vice-versa. (For the 

SF it is 55 of the 85 days have the CSR larger than the squeired return.) When the 

squared return is high and the CSR is low, then the squared return is larger than 

the CSR about 2 to 1. 
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WTien we look at the variance estimates for the four "samples", we see that 

when the squared return is low and the CSR is low, the meEin CSR is much greater 

than the mean squared return. Similarly, we obtain the same results when the 

squared return is low and the CSR is high. We conclude that squared return for 

those days most likely understates the true veiriance that day. When we look at 

the high squared return days, the average squared return is much larger than the 

average CSR. Thtis we conclude that on those days the true variance for the day 

is smaller than the squeired return suggests. 

It is also clearer why Andersen and Bollerslev (1996) use CAR variance estimates 

to model DM volatility. They feel it is a good daily estimate because it is more 

highly correlated with GARCH forecasts. Unfortimately. this is due to GARCH 

forecasts having a very small variance when compared to CSR estimates (see Ta­

ble B.53.) Since CAR is less volatile than CSR. it is going to be more strongly 

correlated with GARCH forecasts (see Table C.61.) 

Correlations 

While nvmierous studies have shown that squared returns are positively correlated, 

for two of the currencies that is not true. Both the DM and SF have a negative 

correlation. While this result is surprising, it is not unexpected since we only 

have one year of data to analyze. However, when we look at the serial correlation 

of CSR varieince estimates (see Table C.61). all three currencies exhibit a positive 

correlation; 0.1569 for the DM. 0.3765 for the JY. and 0.2080 for the SF. (The serial 

correlation for CAR turns out to be higher than of CSR. being 0.4011. 0.5366. and 

0.3543 for the DM, JY and SF respectively. This is misleading since the CAR has 
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a smaller variance than CSR, and is very strongly correlated with CSR. it is to be 

expected that it exhibits higher serial correlation.) 

The CSR variance estimates also exhibit higher correlation at longer lags. In 

exchange rate studies there is a significant long decay in the autocorrelogram for 

squared returns which has lead some researchers to model exchange rate volatihty 

with fractionally integrated GARCH models.^ With one year of data, there is no 

such pattern for the three currencies. Again, the CSR variance estimates exhibit 

the pattern found in longer samples when using squared returns but with much 

less data. While we are not modeling volatility dynamics, we can conclude that 

the CSR varicmce estimates appear to have the same underlying dynamic structure 

that daily squared returns possess. 

Bias in CAR Variance Estimates 

It is clear that cumulative absolute return (CAR) variance estimates using fifteen 

minute returns are biased downward. This is evident by comparing the mean CAR 

estimate (see Table B.43) with those of the CSR estimates. In addition, the variance 

of the CAR estimates in each case is lower than the variance of the CSR estimates. 

Visually, the graph of CAR volatility (see Figure B.30) is much more dampened 

when compared to that of the CSR (see Figure C.46.) 

As previous mentioned, the sample means of the CAR variance estimates are 

lower than those of the CSR variance estimates. Therefore, using the mean of 

CAR as an estimate of the unconditional variance produces a lower estimate for 

the unconditional variance than when using CSR. Table B.45 provides a hst of 

^Andersen and BoUerslev (1996), Bailie, BoUersIev and Mikkelsen (1996), and Bollerslev and 
Mikkelsen (1996). 
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four sample estimates for the sample of the three currencies along with confidence 

intervals for the estimates. 

The sample variance estimates are 

If we use the absolute value of the return to create an estimate of the standard 

deviation, then we can use the square of the estimator and use the average as an 

estimate of the unconditional variance. 

From the four sets of estimates, we see that the absolute return unconditional 

variance estimates are lower than that from using reahzed returns. However, the 

difference does not appear to be significant since the confidence intervals overlap. 

The CSR unconditional variance estimates are a httle higher than that of the 

reahzed returns unconditional variance estimates. Again, the confidence intervals 

overlap. For the CAR unconditional variance estimates, at least for the DM and the 

SF, a different story emerges. The point estimates, given the confidence intervals, 

are low enough to be statistically significant at the 5% level when compared to the 

The sample averages using CAR and CSR are just, 

and 
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realized return unconditional variance estimates. When comparing the CSR and 

CAR unconditional estimates, we reject that the unconditional variance estimates 

are equal."* 

The theory predicts that the CAR daily standard deviation estimate will be 

bieised downwards. While we do not know the true volatility for the day, we can 

compare the CAR estimates to that of the CSR estimates. Tables B.49 and B.50 

give the descriptive statistics in the percentage difference of CAR standard devia­

tion estimates to that of the CSR standard deviation estimates, and Ukewise with 

the variance estimates. As presented in the tables, the CAR estimates are almost 

always below that of the CSR estimates. Only for three days with the JY is the 

CAR estimate higher than the corresponding CSR estimate; for the SF and DM the 

CAR estimate is always lower than the CSR estimates. On average the CAR un­

derstates the daily variance by 25.86 percent for the DM, 22.12 percent for the .JY, 

and 29.58 for the SF in comparison with CSR variance estimate. For the standard 

deviation estimates, CAR understates by 14.30 percent for the DM, 12.04 percent 

for the JY, and 16.42 for the SF. 

Finally, while CAR is a biased estimator for daily variance, it sometimes appears 

to be an adequate measure of a day's volatiUty. This is a result of the high cor­

relation between CSR and CAR estimates (0.9063, 0.9390, and 0.877 respectively 

for DM, JY and SF.) For example, standardizing returns with CSR estimates yield 

returns that look normally distributed, and as a result of the high correlation, 

standardizing with CAR does also. Thus one may be mislead into using CAR as a 

variance estimate. 

•"In GARCH models, the parameter estimates are constrained under estimation to be related 
to  the  uncondit ional  var iance ,  s ince  a- = u}/( l  — a — 0).  
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2.4.3 Normality Tests 

We see (see Tables B.47) that the Bera-Jarque normality test rejects normahty for 

the DM and JY returns at the 1% level, and rejects normality for the SF at 5%. If we 

use the CSR as a variance estimate for the day, and standardize the returns, that for 

all three currencies, we reduce the Bera-Jarque statistic significantly. (Again, the 

CAR also seems to standardize the returns since it is so highly correlated with CSR.) 

In comparison, using the conditional variance estimates obtained from a GARCH 

model improves the Bera-Jarque statistic, but only slightly, and insignificantly when 

compared to the reduction when using CSR. We conclude that the CSR variance 

estimates effectively "explains" the fat-tailed nature of daily returns. 

2.4.4 B? Measures 

While one may not be interested in using the regression, = a + bdf + ut, as 

a measure to evaluate volatility forecasts, it is useful to compare how the CSR 

variance estimates perform in relation to GARCH variance estimates. This is of 

interest since many papers report the B? from the above regression. 

Table B.55 reports the H? for a number of volatility estimates, af. We see that 

when using a GARCH(1,1), the in-sample estimates for volatihty yield an R~ of 

0.001, 0.003, and 0.000, for the DM, JY and SF respectively. These results, are 

in the low range compared to those in the reported in the literature, which range 

from 0.001 to 0.106, but have more than one year of data and use daily returns. 

Finally, we see that the CSR estimates have values of of 0.216, 0.379, and 

0.189. While we expect a higher from CSR, the results help to provide a picture 

of what the best case of what the R^ could look like from a forecasting model. In 
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any case, the results here axe higher than any reported from using GARCH models. 

(Notice that the CAR estimates dominate the CSR estimates for the DM and JY. 

This is understandable since for those two currencies the correlation between the 

squared daily returns and the CAR variance estimates is higher for the squared 

daily returns and the CSR variance estimates. Since CAR variance estimates are 

biased we still do not want to use them.) 

2.4.5 Error Measures 

In our case, mean square error and their variants are more useful in providing a 

comparison of the estimates rather than as a method to rank intraday estimators 

(see Table B.54.) The reason for that, is that each uses the squared return as the 

"best" estimate for the volatihty for the day. As a result, estimators which are 

correlated with the squared return will outperform those which are less correlated. 

But, it is apparent that CSR (and sometimes CAR) both do a much better job as 

a variance estimate than a GARCH (1,1) model does since on all five measures the 

CSR estimate yield a lower value than the GARCH(1,1) estimates. 

However, it is clear that the LL and MAE measures are inappropriate to use 

when evaluating volatility estimates. Both favor CAR over the CSR estimates. 

The GMLE measure also has trouble since it incorrectly favors CAR once out of 

the three currencies. Only the MSB and HMSE measmres favor the CSR variance 

estimates. These results suggest that researchers be careful in how the evaluate 

volatihty estimates or forecasts. Basing model selection on LL, MAE, or GMLE 

may produce erroneous results and may thus be inappropriate. 
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2.4.6 Frequency of Returns 

The final issue to address is one of what frequency of returns should researchers 

analyze. For example, much of Andersen and Bollerslev's recent work on announce­

ment effects and seasonahty has used 5-minute retiurns. while Miiller et. al.(1990) 

have used hourly returns to model daily seasonality. 

Current research has shown that there are short run events which take place 

during macroeconomic announcements. These studies have shown that it takes from 

two to four hours for the new information to be processed and a new equilibrium to 

be established. Thus, one would expect that intraday data would have to be of a 

high enough frequency to capture the market's reaction to news as it is happening. 

For this reason, we would expect four hour returns (or longer) to look very much 

like daily returns. 

Researchers who have looked at ultra-high frequency data, which are transac­

tions data, have found considerable noise due to several effects, namely the bid-ask 

boimce. and from a Zhou's (1996) fighting-screen effect where institutions update 

their quotes so that they are visible on computer screens. Clearly, if one is inter­

ested in daily volatility, we wish to avoid the noise from individual transactions 

and focus on time periods where one could reasonably conclude that price changes 

are unlikely to be the result of a bid-ask spread, but from a real price change. 

To address which frequency of returns should be used, we can turn to some of 

the same measures we have already used. 

Table B.56 shows the Bera-Jarque normality test statistic when standardizing 

with different frequencies of intraday returns. Except for the JY for which it does 

not seem to matter which frequency is used, the DM and the SF test statistic 

increase as the sampling frequency for returns falls. 
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As for testing the empirical distribution for standardized returns (see Table B.59), 

we obtmn different results as compared to the the Bera-Jarque test. We find that 

up to (an including) 180 minute returns appear to be satisfactory for creating vari­

ance estimates. We fail to reject that standardized returns axe normal for all three 

currencies. 

On the other hand, when we test if the distribution of the squared daily retmrns 

divided by CSR variance estimates appear to be chi-square with one degree of 

freedom, we obtain different results (see Table B.60) For the DM and JY, the CSR 

variance estimates fail to be rejected with 15 to 30 minute returns only. For the SF, 

we reject that 15 minute returns produce valid variance estimates, but we fail to 

reject that 30 minute to 180 minute returns are adequate. The result for the SF is 

puzzling, but we can conclude that 30 minute and 15 minute returns are reasonable 

to create CSR variance estimates. 

Unfortunately, the mean square error measures, and their variants are useless in 

determining which frequency to choose. The problem is that with lower sampling of 

returns, the correlation between the squared return and the CSR variance estimates 

increases. The MSE measures all improve the higher the correlation between the 

variance estimate and the squared return. In fact, they are completely minimized 

when one uses the squared return as an estimate for the variance. Unfortunately, 

as discussed previously, this is a poor measure of variance. 

Lastly, we can look at the serial correlation in the CSR estimates as the retinrns 

axe aggregated (see Table B.58). For the SF, the serial correlation is highest for the 

15 minute retmrn CSR. For the DM, the serial correlation is high until 90 minute 

retturns are used; for the JY until 180 minute returns are used. Thus if one is 
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interested in volatility dynamics, it appears that 15 minute returns are the safest 

level of sampling. 

Thus we can conclude that while this analysis has been ad-hoc, the results 

appear to be consistent. If one uses 15 minute returns, then one can create good 

variance estimates for the day. 

2.5 Conclusions 

Previous studies which studied the time varying nature of volatility have had to 

rely on GARCH or stochastic variance models to both estimate a daily variance 

and to model the volatility dynamics. We have shown that in order to have a 

variance estimate for the day, it is no longer necessary to use a GARCH model. In 

fact, GARCH(1,1) appears to be rather poor at estimating daily volatility. We can 

now use intraday data to create a good estimate for the variance of the day using 

cumulative squared returns on fifteen minute returns (or 30 minute returns.) Unlike 

a GARCH model, this estimate is now independent of how we think volatility today 

is related to volatility yesterday. 

Secondly, cumulative squared return volatility estimates will provide a better 

measure to evaluate volatility forecasting models. Previous models have reUed on 

squared returns as a measure for the "true" variance for the day. As shown, squared 

returns tend to understate the variance on some days and overstate the variance on 

other days. As a result, we are in a position to better rank competing forecasting 

models. 

Finally, it appears that using cumulative squared returns as the "true" volatility 

for the day in place of squared returns will improve volatility forecasting models. 
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Since the cumulative squared return gives a better picture of a day's volatility, 

we should get a more precise picture of the association between today's volatility 

and yesterday's volatility. Thus the GARCH model's use becomes strictly one of 

forecasting volatility instead of estimating and forecasting simultaneously. We leave 

such issues to future research. 
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Chapter 3 

Daily Foreign Exchange Volatility: Predicting 
with Intraday Data 

3.1 Introduction and Motivation 

This paper analyzes how volatility forecasts in the foreign exchange market can 

be improved with intraday data. Intraday data now allows us to create variance 

estimates which are independent of how we model volatility dvnamics. Chapter 

2 shows that using fifteen minute returns, one can create good variance estimates 

using cmnulative squared returns. 
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1=1 

where Rt.i is the fifteen minute return for day t for interval i during the day. 

Without intraday data, researchers have typically used GARCH models to esti­

mate the time-varying nature of volatiHty. This involves having to specify volatility 

d\Tiamics in order to estimate volatihty for a given day. In GARCH models, vari­

ance estimates are conditional estimates on lagged information. 

The benefit to using intraday variance estimates is seen in Figures C.42 and 

C.43. Figure C.42 shows how the squared daily return and the previous squared 

daily return are related graphiceilly. We would expect that there be a positive 

correlation between squaired returns and its own lag. It is the positive correlation 

which is utilized by the GARCH class of models. However, in Figure C.42 we fail 

to see a positive relationship at all. In fact it appears as if the relationship is a 

reciprocal one. Figure C.43, on the other hand, provides us with a much greater 
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association between the cximulative squared return series, than the daily squared 

return series. It yields the relationship we expect to see. Consequently, one expects 

that using cumulative squared returns as the basis for forecasting variance would 

yield better forecasts, and the results are consistent with that intuition. 

This paper uses intraday data variance estimates to do two things, (1) better 

model volatihty dynamics for the purposes of forecasting and (2) better evaluate 

volatility estimates since we have less noisy volatility estimates. 

We find that (1) the usual GARCH models are improved when we use intraday 

data for calculating the variance, (2) forecasting models which fit intraday variance 

estimates rather than squared returns yield better forecasts, (3) forecasts from 

models using intraday data yield much greater variance in the forecasts, and (4) 

intraday volatihty models are less persistent than GARCH models: forecasts place 

a greater weight previous period. 

The chapter is organized as follows. Section 3.2 presents various models which 

utiUze intraday variance estimates. Section 3.3 provides the empirical results. Sec­

tion 3.4 concludes. 

3.2 Modeling Volatility Dynamics 

From Zhou (1996) and Chapter 2 we know that intraday data can be used to 

create variance estimates which are good measures of the volatility for the day. 

This is done by using the returns from the day to calculate the variance of the day. 

Unfortunately, for forecasting one still needs to specify a dyneimic model. However, 

the intraday variance measures can be used as a proxy for the true latent variance 

for the day. 
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One of the ways to model asset retiirns and volatility has been with a GARCH 

model. This class of models estimates both a returns process and a variance process 

for the returns. The variance process is worth adding because it has been observed 

that a large return will tend to be followed by a leirge return, and a low return will 

tend to follow a low return, and as a result volatility is predictable. 

The usual version which is used is the GARCH(1,1) model, where the return 

process is given by 

yt = ^Ji + et 

€t ~ A''(0, al) 

A1 = u; + aej_i + /?cr2_i 

where yt are the returns for some asset class. One thing worth mentioning is that 

the GARCH model can be written as an ARMA model in squared residuals. This 

can be shown by noting that 

= u; + Qe^_i 

is equivalent to 

Cj = U + {A + VT — [5VT-\  

VT =  -  AF 

= 

where 

V t  ~  N { 0 , 1 )  
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and so E { v t \ I t - i )  —  0, where /t-i represents all information available to the modeler 

at time t—l. In this framework, the Vt is the "error" and can also be thought of as 

the difference between the one step ahead forecast of the squared error term and 

the realized squared error. Thus the "shocks" are seen as unexpected differences 

in the forecasted squared error and the realized square error. As a result. GARCH 

models are dynamic in their specification of the volatility process and are used to 

study the time varying nature of volatility of retmrns. 

Notice that in a GARCH model, that the information from which to make 

inferences from the volatility returns come from the returns themselves (in this 

case, lagged squared returns). If one had additional information, then one would 

not have to use the returns to both describe its movement over time and how its 

own volatility changes over time. 

3.2.1 Value of Intraday Variance Estimates 

The most straight forward way to use intraday data is to replace the lagged 

squared error term with an intraday variance estimate. Now the estimation of 

the GARCH(1,1) model can be improved with intraday data. In the variance equa­

tion, in place of the we can use a variance estimator which is more efficient. 

We will be using ciunulative squared returns, in its place. Thus, 

we transform a GARCH model into a GARCH-CSR model. One can then com­

pare how a GARCH(1,1) model compares to a GARCH-CSR model (and likewise 

a constant variance model). 
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Model 1: Constant Volatility 

/?£ =  ̂

ET ~ N{0,(J^)  

2 2 (7, = (̂ 0 

log(L) = log(7r) - riog(£7^) - Yi 

t  

Model 2: GARCH 

R t  =  

et ~ iV(0,<Tj-) 

log(L) = -^log(7r)-^Iog(o-^^£_i)-^e2/^5,_j 
£ £ 

Model 3: GARCH-CSR 

R t  =  +  e j  

€t  ~  N{Q,AF) 

log(L) = -^log(7r)-Y,^og(af^,_i) 
T T 

In our case, it happens that we can create a model that nests both the GARCH 

and the GARCH-CSR models. Since ef = I3"=i + ^7<j '^f^t-i.iRt-ij- we can 
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estimate the following model, 

yt = ^l + et 

€ T  ~  N { 0 ,  A F )  
a n 

erf  =  cj  +  OfQ ,•  +  Qi  

t=l i < j  

when a I and ao are restricted to be equal, we estimate a GARCH model. When we 

restrict qi to be equal to 0, we estimate a GARCH-CSR model. We can therefore 

test whether Qi = oro and is positive, or if ai =0. That is, do the cross terms help 

us forecast volatihty. 

3.2.2 Models: Creating Better Volatility Forecasts 

The problem with forecasting variance is evaluating the success of a model. For 

instance, researchers have used mean squared error measures, to evaluate how close 

a variance forecast is to the squared error. The problem is that while the squared 

error is an unbiased estimate of the volatility, it is a verj' noisy one. Therefore, 

estimation procedures which focus on squared errors in the hkelihood function 

are try to estimate parameters to a very noisy signal. Rather than focusing on 

noisy variance estimates, we can instead focus on better variance estimates from 

cumulative squared returns. 

Since we now have better estimates of volatihty during the day, we should use 

those estimates in model building. Andersen and Bollerslev (1997) use intraday 

variance estimates to show that GARCH forecasts are reasonable by comparing 
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them to intraday variance estimates. They Umit the use of intraday variance esti­

mate to evaluating the performance of GARCH estimates. However, we can also 

use intraday variance estimates in our UkeUhood functions. 

This bring us to two different models. The first is an ARMA model on the 

cmnulative squared retm-n (Model 4). This model attempts to minimize the sum of 

squared errors between estimates of a forecast variance and the "observed" estimate. 

The second model (Model 5) is a variant of the GARCH model, where the 

forecast of the variance at time t is conditional on information available at time 

i — 1, but unlike the GARCH model, the likehhood function replaces the squared 

error from the mean process with the cumulative squared return. 

Model 4: ARMA 

= t < i  
t=i 

erf = ipQ + + 

et ~ iV(0, cr^) 

log(L)  =  log(7r)  -  Tlog{a^) -  ̂  e^/cr;  
£ 

Model 5; Conditionally HeterosKedastic CSR Variance 

RT =  FI +  ET 

E T  ~  N { Q ,  A F )  

• (§«) 

log(L)  =  -^log(7r)-53log(CTjj_J 

T T 
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We can think of these two models as trying to fit volatiUty. The ARMA model 

fits the CSR variance estimates directly. The Conditionally Heteroskedastic model 

(Hetero-CSR), is similar to a GARCH model but with two differences. Overall, the 

GARCH model uses daily information, while the Hetero-CSR model uses intraday 

information. As a result, the variance equation for the Hetero-CSR model use the 

lagged cumulative squared return rather than the lagged squared error. In the 

log-likeUhood, the Hetero-CSR model substitutes the CSR variance estimate for 

the lagged squared error. Both terms have the same expectation, i.e. = 

-^.j] = the cumulative squared return is a better estimate, then 

we would expect more efficient estimates and better forecasts. Consistency should 

not be an issue since we are substituting a more efficient estimate. 

3.2.3 Model Evaluation 

Normality Test 

The Bera-Jarque test uses the skewness and kurtosis of a sample to test whether 

the sample appears to be normal. Under the assumption of normality, the skewness 

is zero, and the kurtosis is three. Large deviations firom either lead one to conclude 

that the data on hand is not normal. Formally the test is: 

BJ = Tx skewness^ ^ (kurtosis — 3)^ 
24 xl 

Error Measures 

There are also several measures to determine the quality of variance estimates (see 

Lopez (1995) for a good discussion). We recall their definitions from Chapter 2: 
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Mean Squared Error 

Mean Absolute Error 

Logarithmic Loss 

^ t=l  

MAE = i X; jf? -
^ t=l  

LL = 4E [108(^0-'"g(•»?)]' 
t=l  

Heteroskedasticity-adjusted Mean Square Error 

HMSE = - ̂  
t=l  

Gaussian Quasi-Maximum Likelihood 

T ' 2 
GMLE=i5 :  log(h?)  +  - i  

^  t= i  L 

However, we have seen in Chapter 2 that some of these measures do not do 

a good job at discriminating against various variance estimates. The MAE. LL, 

and GMLE all favored a biased variance estimate on occasion. In addition, since 

we know we have heteroskedasticity, it maJces sense to favor the HMSE measure 

instead of the MSE measure. For these reasons, we will present error measures 

produced by all five error measures but only discuss the results from the HMSE. 
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There will be two versions of HMSE that will be analyzed. The first is based on 

the squared daily return. The second is based on the cumulative squared return. 

Given our assumptions about volatility, the expectation at time t is that both 

are equivalent. That is, E[Fi^] = ^'[CSRt]. However, as shown in Chapter 2. a 

volatiHty estimate based on cvunulative squared returns is more eflScient. Since the 

daily volatility literature has used the first volatility measure, it is therefore useful 

to use both to evaluate forecasts. 

R? Measures 

We can also determine what the coefficient of determination is from the following 

regression: 

dr'l = abht + Cf 

and see how close the variance forecasts ht are to the estimated variances, af. 

Persistence Measures 

From a GARCH model the persistence of "shocks" is given by various "half life" 

measvires. It is of interest to see if using variance estimates based on intraday data 

changes our estimates of the decay of shocks to volatility when compared to the 

results discussed in the literature. 

Two commonly used measures are; 

Half Life of Lag 

log (2) 
log (q + (3)  
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Mean Lag 

A 
I — a — 2(3 + ad + 

For Models 2, 3, and 5. the calculations are straight forward. To obtain the 

equivalent persistence measures for Model 4. we solve for the a and 0 parameters 

in terms of t/^i and ^2; using the ARM A representation of a GARCH model. This 

yields t/'i = a + and •4)2 = —/3. 

3.3 Dynamic Models Empirical Results 

3.3.1 Data 

The data used in this chapter is the same as that used in Chapter 2. It consists 

of 262 daily observations for the Dollar-Deutschemark, Dollar-Swiss Franc, and 

Dollar-Yen, from September 15, 1993 to September 16, 1994. The sample consists 

of all weekdays with the exception of December 24 (December 25 and January 1 

occurred on weekends.) 

Table C.62 provides the descriptive statistics for the daily returns. See Fig­

ure C.44 for a plot of the Deutschemark daily returns. 

3.3.2 GARCH & GARCH-CSR 

For the three currencies, the parameter estimates for GARCH (Table C.65) and the 

parameter estimates for GARCH-CSR model (Table C.66) are very similar. In all 

three cases, the constant term in the mean equation is indistinguishable from zero. 

In the variance equation, the major difference in the two parameter estimates is 
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in the a estimates. In the GARCH-CSR models, the estimates increase to 0.0369. 

0.1014, and 0.0208 for the DM, .JY and SF. from the GARCH estimates of 0.0166. 

0.0393. and 0.0063. While the difference is large in terms of a magnitude change, 

it is well within the estimated standard errors. In fact, the GARCH a estimates 

are quite low compared to Jorion (1995). He reports a estimates for the DM, .lY 

and SF. from roughly 1985 to 1992. of 0.0757. 0.0965. and 0.0521. The smaller 

estimates for a in our case is most likely due to the small sample on hand. In this 

context, it appears as if the GARCH-CSR is consistent with GARCH models.^ 

As for the nested hypothesis that the variance equation is GARCH-CSR rather 

than GARCH, unfortunately, the difference in maximized log-Ukelihoods is too 

small to be statistically significant. A constrained maximum UkeUhood estimation 

places zero weight on the cross terms from the intraday returns {Y17<j 

HMSE Measures 

The GARCH and GARCH-CSR one-step ahead in sample forecasts are quite sim­

ilar for the DM (Figure C.47) and the JY (Figiure C.51) and less so for the SF 

(Figure C.55). The correlation of the estimates is 0.792. 0.777. and 0.253 respect­

fully (Table C.61). The GARCH-CSR estimates themselves vary much more than 

the GARCH estimates, and have a larger range. Thus they sometimes yield higher 

or lower estimates than the GARCH model does. (See Figures C.47, C.51 and 

C.55). 

With respect to the HMSE results, the GARCH-CSR model reduces HMSE for 

aU three currencies, and regardless of how HMSE is calculated. For the HMSE 

^The 3 parameters in Jorion (1995) aire 0.8828. 0.7870. and 0.9042 for the DM. JY and SF. 
which is lower than those reported here. However the standard errors of our estimates are rougUy 
within one standcird error of Jorion's 3 estimates. 
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based on squaxed returns (see Table C.71. GARCH-CSR has an HMSE of 2.6873. 

4.3256, and 2.6094 for the DM, .JY and SF respectfully. While GARCH model 

produces a higher HMSE of 2.9247. 5.0515. and 2.7526 respectfully. The results 

do not change when we use an HMSE based on CSR (see Table C.72. Again, the 

GARCH-CSR model reduces HMSE when compared to the GARCH model. For 

the DM. the reduction is from 0.9049 to 0.8107. for the JY from 0.9891 to 0.9290. 

and for the SF the reduction is from 0.4112 to 0.3504. 

3.3.3 ARMA Hetero CSR 

The variance forecasts from the ARM A model and the Hetero CSR models are 

quite similar. The correlation of the two forecasts is 0.993, 0.989. and 0.998 for the 

DM, JY and SF. See Figure C.48 for graphs of the estimates. 

HMSE Measures 

The HMSE measures provide, on the surface, ambiguous results-but they are con­

sistent. For the HMSE measure based on squared returns, the Hetero-CSR model 

is favored by the DM and JY. For the SF. the ARMA has a lower HMSE. but not 

by much (see Table C.71. For the HMSE measure based on the cumulative squared 

returns (see Table C.72), the ARMA model is favored by the DM and the SF. Since 

both models produce forecasts so similar to each other, we conclude there is not 

much difference between the two. We recommend the use of the Hetero-CSR model 

as it does the best reducing HMSE based on squared return. 
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3.3.4 Choosing Between Models 

Finally, in determining whether one should use a GARCH, GARCH-CSR or an 

Hetero-CSR model, the results are very clear if we focus on the results from the 

HMSE measures. First we discuss other measures. 

3.3.5 Normality, B? and Persistence 

In terms of explaining the excess kurtosis of daily returns, model which is the best 

at explaining the excess kurtosis is the GARCH-CSR model (see Table C.73.) This 

makes sense since the this is one of the by products of maximizing the log-likelihood 

function. The ARMA and Hetero-CSR models do focus on trying to be close to 

the cumulative squared return for the day, and thus one should not expect them to 

explain excess kurtosis. In hindsight, explaining the excess kurtosis is not a useful 

method to evaluate forecasts. 

In terms of forecasting next day variance as measured by the cumulative squared 

return, moving from a GARCH model to one with cumulative squared returns 

(GARCH-CSR) increases the R^. but not dramatically. In terms of an all four 

models produce similar degrees of "fit" (see Table C.73.) 

As for the persistence shocks to the variance process, all four models are close to 

the estimates one obtains from using Jorion's (1995) parameter estimates. While 

there is some variation in the estimates, overall no discernible effect is evident. It 

appears as if all models have similar lag effects. This should be reassuring since we 

would expect the gain from using intraday data to be one of efficiency. As such, it 

is unlikely that there would be any changes in persistence for each cturrency. The 

results confirm this view. 
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Statistical Measures 

Comparing the HMSE (based on squared returns) of the various models: GARCH, 

GARCH-CSR and Hetero-CSR, we see that the Hetero-CSR model performs the 

best (see Table C.75.) If we use the GARCH model forecasts as oiu: baseUne HMSE. 

then when we use the Hetero-CSR model we reduce HMSE by 38% for the DM. 

29% for the JY, and 15% for the SF. However, given that we have shown in Chapter 

2 that the cumulative squared return is a good measure of volatihty. we can ask 

how close we are (in HMSE terms) to reaching the best volatihty forecasts we 

have-those that are based on the day's data rather than a forecast. Using the fact 

that the HMSE for the DM, JY and SF is 1.3393, 0.8313, and 1.2023 respectively, 

we can calculate the how close we have gotten to those lower Umits. It turns out 

that we do quite weU; for the DM we reach 71% of the lower limit, for the JY we 

reach 35% and for the SF we reach 25%. Considering we have no macroeconomic 

or structiurai variables in the model, the results are very encouraging. Unlike the 

results obtained when we run a regression, we find that there has been much more 

explained than previously thought. 

3.4 Conclusions 

WMle the short data set used in this study occasions the need for further research, 

the results are promising. We find that using intraday variance estimates improves 

variance forecasts. The amount of volatihty that is predicted is quite high, from 

75% to 25%. It is not clear whether the resvdts will hold with longer data sets-

however we expect them to do so. The gains from creating a richer model will also 
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have to be determined later. But given the stylized fact that announcements play 

a major role in volatihty we should expect that incorporating them will be useful. 
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Chapter 4 

A Monte Carlo Investigation of the 
Heteroskedastic Cumulative Squared Returns 
Volatility Model 

4.1 Introduction to Simulations 

In order to determine that the results obtained in Chapter 3 are significant and 

not a result of the data analyzed, we do some simulations. Recall that the analysis 

found that there were gains from using intraday data to forecast daily volatility. 

The Heteroskedastic Cumulative Squared Returns volatility model (Hetero-CSR) 

reduced Heteroskedastic Mean Squared Error for the Deutschemark, Japanese Yen, 

and Swiss Franc. 

The simulations of the Hetero-CSR model support the empirical results obtained 

and previously discussed in Chapter 3. 

The rest of this chapter is organized as follows: Section 4.2 discusses simulations 

in Bollerslev and Ghysels (1996), Section 4.3 reviews the empirical model. Section 

4.4 discusses the simulation assmnptions, Section 4.5 discusses the evaluation pro­

cess for the simulations. Section 4.6 discusses the results. Section 4.7 concludes. 

4.2 Simulations in Bollerslev and Ghysels (1996) 

To help us with our simulations, we turn to the GARCH hterature to provide us an 

illustration. In this case, we turn to Bollerslev and Ghysels (1996). In their paper, 

they present the P-GARCH model and also do simulations. Using their approach 



on a GARCH model rather than the P-GARCH model, the authors simulated 

^T,I  ~  ^T.I 

af i = 0*0 -I- aoCj 

by establishing the data generating process this way 

1. Initial Conditions 

(a) Set (TQ = u/{\ — OL — ^) 

(b) Set cTj = UQ 

(c) Draw 7/1, a normal variate 

(d) Set ei = 77i<Ti 

2. Do Loop 

(a) Set o"! = a; + Qe\ + 0a\ 

(b) Draw 772, a normal variate 

(c) Set to = T]2<J2 

3. Continue 

(a) Repeat Step 2 until end 

4.3 Empirical Model 

The model estimated that we want to simulate is 
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Model 5: Conditionally Heteroskedastic CSR Variance 

N(O, CJi) 

(tR~,i) 
t=l 

log(L) 

Here the daily returns for day t are composed of i intraday returns. With the 

assumption that the expectation of an intraday return being zero, i.e. E[Rt,i] = 0, 

and that the covariance between any intraday return being zero, then we can use 

intraday returns to compute a daily variance estimate. Both of these assumptions 

are reasonable given the efficiency of the foreign exchange markets. 

4.4 Assumptions for Simulations 

The following assumptions are used in the simulations: 

1. We use the Deutschemark intraday seasonality as the seasonal pattern for the 

intraday returns. The Deutschemark's intraday seasonal volatility pattern is 

similar to that of the Japanese Yen and the Swiss Franc, and so with no 

loss of generality it is used as the basis. No attempt is made to study other 

seasonal patterns. 

2. There will be two sets of simulations, each run with two different sample sizes: 
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Simulations 1: The parameter are set to be the following 

{1 = 0 

u = 0.0153 

a = 0.1513 

P = 0.8086 

and recall that with a GARCH model we have an unconditional variance of 

fTo = u;/(l — a — /3). In our case it is approximately 0.4. These parameters are 

similar to empirical estimates from the Deutschemark empirical results. The 

a parameter has been raised by 0.03 and the P parameter has been lowered 

by 0.03. This was done to make the a parameter farther from 0. but does 

not change the unconditional variance. 

Simulations 2: The parameter estimates are 

FJ, = Q 

u = 0.16 

a = 0.20 

/3 = 0.40 

Again, the unconditional variance is 0.4. These parameters are chosen to 

be far away from I-GARCH model. (Recall that in the I-GARCH model, 

Q + /3 = 1.) Since the parameters from Simulations 1 have the condition that 
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a + /? = 0.9599, which may be close to I-GARCH, we choose our parameters 

so that a+0 « 1. This allows us to evaluate how the models perform under 

conditions fax from I-GARCH. Again we have a less than 0 since this is what 

is commonly found in empirical work. 

3. Replications are 1000. This number is chosen to be large enough to obtain 

asymptotic results, but small enough to be mainageable. 

4. Simulations 1 and 2 will be nm with 262 observations and 262x5 observations: 

A total of four treatments will be conducted. The first sample size is exactly 

the same number of observations in the empirical analysis in Chapter 3. The 

second sample size is chosen to be consistent with the sample sizes typically 

found in empirical work with daily returns. 

5. Each replication resets the random number generator seed. The random 

number seed sequence for each treatment will be the same. 

6. The log-likelihood function used does not estimate a n parameter as it is set 

to zero in the simulations and it is not of interest. As a result, from each 

replication there will three pareimeter estimates, u.  a .  and p.  

4.4.1 Simulating Data 

Variables 

The following variables axe needed: 

1. Let Ui(i) and V2{i), both vectors (96 x 1) in length. 
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2. Let 7(i), a vector (96 x 1) which stores intraday seasonality. (In our case. 

this stores the Deutschemark seasonal pattern of standard deviations for each 

fifteen minute part of the day.) 

3. Let Rett stores the daily return. CSRt stores the cimiulative squared return. 

and Sigma^ store daily variance; both are (1040 x 1) vectors. 

4. Let k be the ratio of the day's variance over the historical variance, ctq. 

Simulation Process 

The simulations are then created in the following manner: 

1. Initied Conditions (f = 1) 

(a) Draw 96 normal variates and fill t'i(i). This creates the randomness for 

the day. 

(b) Set ^2(0 = t;i(0''/(0 for ^ = 1 to 96. This scales intraday returns with 

the seasonal pattern. 

(c) Set Ret£=i = Y,i Vo{i). We sum up the intraday returns to get a daily 

return. 

(d) Set CSRt=i = Hi 1^1(0• sum up the squared intraday returns to get 

the CSR variance estimate for the day. 

(e) Set Sigmaj'_j = ctq. We set the first day's true variance to the uncondi­

tional variance. 

2. Remaining Data (i > 1) 

(a) Draw 96 normal \^iates and re-fill t'i(z). 
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(b) Reset Signia^_j = a; + aCSRj-i + /3Sigma^_i. 

(c) Set k = Sigma^^^j/cTo-

(d) Reset V2{'i) = \/k {vi{i) '){i)) for i = 1 to 96. 

(e) Set Rett=_, = Hi V2{i). 

(f) Set CSRt=j = Eivl{i). 

3. Repeat Until j  = T, where T is the sample size and is either 262 or 262 x 5. 

4.5 Evaluating Simulations 

The data were simulated and then three models were estimated on the data. 

The first model was a standard GARCH(1,1) model. The second model was 

the GARCH-CSR model. The last model was the Heteroskedastic CSR model 

(Hetero-CSR). Note that the GARCH-CSR model is very similar to the Hetero-

CSR model. The difference in the two models is in the log-likeUhood function. 

Recall the GARCH-CSR model is; 

Model 3: GARCH-CSR Variance 

RT = 11 +ET 

€ T  ~  A ^ ( 0 ,  A F )  

ALT-I = + AA^-I + 

log(L) = -^log(7r)-
^ T 4 t t 
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In terms of evaluating the advantage of one model over the other, we will use 

a mean square error measure adjusted for heteroskedasticity (HMSE). We will use 

two variants, one that is based on squared daily return, the other is based on 

cumulative squared returns. 

Recall that mean square error is given by the following formula. 

T t=i 

For the HMSE version of MSB, we are interested how close or volatility forecast 

is to our actual volatihty in terms of a percentage. Thus we modify the MSB 

formula to get: 

HMSE = i X; 
T ^ t=i 

- 1 
A? 

Notice that the basic HMSE is actually based on the squared returns since 

= e'f. Therefore, we can call the basic HMSB, HMSEl-Squared Return. 

The second version of HMSE is called HMSB-CSR. The reasoning behind this 

version of the HMSE is that while on average E[e1] = a'f, it is not an efficient 

estimate of daily volatility when we have intraday data (see Chapter 2). As a 

result, given we have good estimates of from CSR, we create a HMSE based on 

our CSR estimates of volatility. We just substitute CSR^ for 

HMSE - CSR = ^ 
^ t=i 

1 J, rcsRt" 

0"t 

- i 2  

- 1 
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4.6 Results 

The results of the simuiatioas are consistent with expectations. We find the fol­

lowing: 

1. Simulated data lacks excess kurtosis. (Results neither reported nor tabu­

lated.) Since the daily simulated returns appear to be normal, then a constant 

variance model is going to do well. We would not, for example, expect that 

an excess kvui;osis model like a GARCH model, to be favored statistically. 

Therefore, statistical measures which are related to log-likehhood approach, 

such as the HMSE-Sq Ret. wiU not be useful as a measure of forecast perfor­

mance. However, the HMSE-Sq Ret results are presented since there was no 

reason a priori to know that the simulations would not produce daily returns 

without excess kurtosis. 

2. GARCH model estimates on both Simulation 1 and Simulation 2 fail a large 

number of times. The parameter estimates often have a equal to zero, or 

a and 13 both equal to zero. (The frequency of such occurances is neither 

reported nor tabulated.) Thus the data generating process does not appear 

to be consistent with daily empirical data. 

3. Estimating a Hetero-CSR model on the simulated data recovers the param­

eters better than the GARCH or GARCH-CSR models do (See Tables D.76 

and D.77.) 

4. A larger sample produces better forecasts for GARCH and GARCH-CSR. For 

Simulation 1, HMSEi-CSR falls from 0.0589 to 0.0506 for GARCH forecasts, 

and for GARCH-CSR forecasts it falls from 0.0521 to 0.0418 (see Table D.76.) 



95 

For Simulation 2, HMSE]-CSR falls from 0.0533 to 0.0429 for GARCH fore­

casts, and for GARCH-CSR forecasts it falls from 0.0514 to 0.0414 (see Ta­

ble D.77.) 

5. Larger sample size does not lower average HMSE-CSR for Hetero-CSR model. 

For Simulations 1, HMSE-CSR is 0.0374 for a sample size of 262, while it is 

0.0378 for a sample size 262 x 5 (see Table D.76). For Simulations 2, HMSE-

CSR is 0.0372 for sample size of 262, while it is 0.0377 for a sample size of 

262 X 5 (see Table D.77.) In both cases, the HMSE-CSR increases, but only 

slightly. 

6. A larger sample makes it more likely that GARCH-CSR model produces 

better forecasts than a GARCH model (see Table D.78.) For Simulations 1. 

775 times out of 1000, the GARCH-CSR model, with a sample size of 262. 

produced better forecasts than the GARCH forecasts when evaluated with 

HMSE-CSR. When the sample size increased by five times, the GARCH-

CSR had better forecasts 981 times. For Simulations 2, the number of times 

the GARCH-CSR produced better forecasts increased from 594 to 782. 

7. A larger sample makes it more likely that Hetero-CSR model produces bet­

ter forecasts than a GARCH model (see Table D.79.) For Simulations 1, 

996 times out of 1000, the GARCH-CSR model, with a sample size of 262, 

produced better forecasts than the GARCH forecasts when evaluated with 

HMSE-CSR. When the sample size increased by five times, the GARCH-

CSR had better forecasts 1000 out of the 1000 times. For Simulations 2, the 

number of times the GARCH-CSR produced better forecasts increased from 



96 

982 to 1000. Clearly the Hetero-CSR model does a much better job than the 

GARCH model at forecasting. 

8. Now for comparing GARCH-CSR and Hetero-CSR forecasts. We find that 

the majority of the time the Hetero-CSR model produced better forecasts 

(again using the HMSE-CSR metric.) As shown in Table D.80, Simulations 

1, 928 times out of 1000, the Hetero-CSR model, with a sample size of 262, 

produced better forecasts than the GARCH-CSR forecasts. When the sample 

size increased by five times, the Hetero-CSR model had better forecasts 828 

out of the 1000 times. For Simulations 2, the number of times the Hetero-CSR 

produced better forecasts decreased from 941 to 819. 

9. Although the result that the Hetero-CSR model appears to do less well at 

forecasting when compared to GARCH-CSR model is unexpected, it is not ex­

plainable. As denoted on Tables D.76 and D.77, the HMSE-CSR for GARCH-

CSR model falls when sample size is increased, but it stays the same for the 

Hetero-CSR forecasts. As a result, it is not that the Hetero-CSR forecasts are 

worse, it is just that the GARCH-CSR forecasts get closer to the Hetero-CSR 

forecasts. 

10. We can also look at percentage improvement in forecasts (see Table D.81.) 

If we assume that the GARCH model forecast is our basehne forecast, then 

the percentage reduction in forecast HMSE-CSR from using the GARCH-

CSR model increases with sample size. For Simulations 1, the percentage 

improvement increases from 9.44 to 17.00. For Simulations 2, it increases 

from 1.25 to 3.38. 
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11. Again, given that the HeteroCSR forecasts do not improve with increased 

sample size but the GARCH and GARCH-CSR forecasts do, then using either 

the GARCH or GARCH-CSR model forecasts a baseline yields leads us to 

conclude that benefit of Hetero-CSR forecasts decrease with sample size. 

12. In all four treatments, the Hetero-CSR estimates are better than the GARCH-

CSR estimates (see Figures D.59 to D.70.) The Gaussian kernel density for 

every treatment is more concentrated on the actual parameter for the Hetero-

CSR estimates. 

13. Finally, in both simulations, the Gaussian kernel density estimates of the 

parameters appear to converge to the true parameter estimates as the number 

of observations in the sample increases. See Figures D.71 to D.82. 

4.6.1 Possible Source of Lack of Excess Kurtosis in Simu­

lations 

The likely explanation for lack of excess kurtosis in the simulations is due to the 

large number of intraday returns that are used to create the CSR daily variance esti­

mate. The difference between the CSR vEiriable and the Sigma variable is probably 

small due to a law of large numbers effect from summing up 96 returns. 

One approach would be to create a richer model. However, at this point this 

is unnecessary for the given problem at hand. We are interested in evaluating the 

model previously estimated in Chapter 3. The results here suggest that a more 

complex model may provide better forecasts. We leave this question for future 

research. 
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4.6.2 Final Remarks 

Although the simulations fail in creating data with excess kurtosis, we can conclude 

a great deal. First, we know that the Hetero-CSR model fails to capture excess 

kurtosis in daily returns, and thus it should be possible to extend the model to 

capture this feature of the empirical data. This should lead to even better fore­

casts. Additionally, the benefit of intraday data is clearly demonstrated with the 

HMSE-CSR forecasts over GARCH forecasts. In small samples, the benefits of in­

traday data yield better forecasts since we get both better parameter estimates, but 

also better estimates of daily volatility. While in larger samples, GARCH model 

forecasts improve in quahty, they are still worse than the Hetero-CSR forecasts. As 

a result of these simulations, we conclude that the results obtained with empirical 

data are significant. 

Finally, it appears that intraday data may allow researchers to investigate whether 

volatility dynamics change over time. With daily data this has not been possible 

since estimation typically required all observations be grouped. As a result, sample 

sizes are five years or more. However, we may suspect that institutional or investor 

behaviors chang?. With more data them currently used here, it may be possible to 

study whether volatility regimes exist as it appears as if one year's worth of intraday 

data is superior to five years of daily data. The applications to investigate policy 

questions seems very promising. We leave such investigations to future researchers. 
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Appendix A: Tables and Figures for Chapter 1 

Note: In the following tables, numbers is parentheses are heteroskedastic-consistent 
standard errors and numbers in brackets are t-ratios. In the cases where a (—) or a 
[—] is present, standard error estimates were not provided by the statistical software 
used for estimating the parameters. 

Modeling Returns DM JY SF 
Min -0.6495 -0.8571 -0.6863 
Max 1.1646 0.9123 0.7814 
Range 1.8141 1.7695 1.4677 
Mean -0.0002 -0.0003 -0.0004 
Median 0 0 0 
Variance 0.0037 0.0056 0.0050 
Standard Deviation 0.0611 0.0745 0.0707 
Mean Deviation 0.0391 0.0483 0.0456 
Median Deviation 0.0265 0.0323 0.0338 
Skewness 0.3700 0.1743 0.0570 
Excess Kurtosis 19.190 12.264 8.787 

Table A.l: Descriptive statistics for fifteen minute return modeling data set (Txn = 
19,392). 
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Forecast Retiums DM JY SF 

Min -0.8200 -0.5749 -0.9632 
Max 1.2845 0.4623 0.6066 
Range 2.1046 1.0373 1.5698 
Mean -0.0001 0.0002 -0.0003 
Median 0 0 0 
Variance 0.0057 0.0053 0.0063 
Standard Deviation 0.0757 0.0726 0.0796 
Mean Deviation 0.0462 0.0497 0.0501 
Median Deviation 0.0291 0.0351 0.0373 
Skewness 0.6135 0.0131 -0.3290 
Excess Kurtosis 27.366 4.817 10.225 

Table A.2: Descriptive statistics for fifteen minute return forecasting data set {T x 
n = 5,760). 
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— 

= 7(0 

7(0 = Exp(co + cii-1 + Cgi®) 

Estimate DM JY SF 

Co -5.5210 -5.1338 -5.2099 
[-93.409] [-82.448] [-105.627] 

Cl 3.8641 2.4813 3.5814 
[12.362] [6.835] [13.856] 

Co 7.9712 5.7983 7.9524 
[6.145] [5.316] [8.206] 

C3 -22.0738 -14.9576 -22.0369 
[-5.936] [-3.831] [-7.384] 

C4 -49.5225 -34.1290 -50.1452 
[-7.670] [-6.680] [-10.205] 

C5 57.9574 43.7188 70.9155 
[4.148] [3.391] [6.618] 

C6 74.3920 50.9557 74.9036 
[6.797] [6.071] [8.799] 

Cl -68.2269 -58.9793 -98.9381 
[-3.428] [-3.577] [-6.716] 

C8 -33.6061 -23.0231 -33.5627 
[-5.727] [-5.239] [-7.203] 

Cg 28.4792 27.7369 46.4780 
[3.041] [3.871] [6.875] 

Table A.3: Parameter estimates for exponential seasonality, {T = 202. n = 96). 
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RT,I — ^£,1 
A F  I  =  U J - H  A E L , _ I  +  

Estimate DM JY SF 

U! 1.7831 X IQ-^ 
(-) 

H 

2.7745 X 10-» 
(-) 
[-] 

2.9422 X lO"'' 
(-) 
[-] 

a 0.2521 
(0.0233) 
[10.816] 

0.1654 
(0.0157) 
[10.519] 

0.2548 
(0.0183) 
[13.947] 

(3 0.7385 
(0.0238) 
[31.041] 

0.7955 
(0.0186) 
[42.872] 

0.7199 
(0.0159) 
[45.264] 

Table A.4: Parameter estimates for GARCH on raw data (T x n = 19,392). 

ALI = UJ + 

Estimate DM JY SF 

u 0.07130 
(0.0164) 
[4.350] 

0.02985 
(0.0069) 
[4.338] 

0.09475 
(0.0947) 
[5.232] 

a 0.1324 
(0.0171) 
[7.734] 

0.09029 
(0.0120) 
[7.528] 

0.1186 
(0.0157) 
[7.552] 

0.7967 
(0.0327) 
[24.400] 

0.8826 
(0.0178) 
[49.610] 

0.7877 
(0.0312) 
[25.234] 

Table A.5: Parameter estimates for GARCH on deseasoned by sample standard 
deviation. (T x n = 19,392). 
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Estimate DM JY SF 
Ul 0.07135 

(0.0188) 
[3.802] 

0.02898 
(0.0068) 
[4.237] 

0.1132 
(0.0261) 
[4.346] 

a 0.1282 
(0.0186) 
[6.883] 

0.09351 
(0.0131) 
[7.142] 

0.1234 
(0.0183) 
[6.749] 

0 0.8062 
(0.0354) 
[22.778] 

0.8803 
(0.0185) 
[47.471] 

0.7669 
(0.0415) 
[18.458] 

Table A.6: Parameter estimates for GARCH on deseasoned by exponential season­
ality. {T X n = 19,392). 
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^T.I — 

<^T.X = U! +  t t i e j f H  +  o : i o e ^ _ i o  

Estimate DM JY SF 
U 7.0739 X IQ-'^ 

[-] 
1.5892 X lO"'' 

[14.633] 
1.0923 X lO"'' 

[-] 
AI 0.3117 0.1934 0.2825 

[9.278] [10.557] [11.650] 
Qfa 0.1541 0.1493 0.1542 

[8.197] [7.429] [8.597] 
as 0.0895 0.0984 0.1466 

[4.414] [5.049] [5.016] 
Q!4 0.1139 0.0656 0.0782 

[4.601] [4.483] [4.079] 
as 0.0703 0.0735 0.0699 

[3.377] [3.681] [3.819] 

^6 0.0606 0.0410 0.0391 
[3.581] [3.219] [2.912] 

A-J 0.0522 0.0399 0.0409 
[3.247] [2.669] [3.384] 

OIS, 0.0173 0.0317 0.0323 
[1.850] [2.664] [2.902] 

Og 0.0384 0.0235 0.0177 
[1.763] [1.967] [1.586] 

Q!IO 0.0520 0.0498 0.0428 
[2.373] [3.410] [1.689] 

Table A.7; Parameter estimates for ARCH(IO) on raw data, {T y. n = 19. 392). 
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^T.I — ^t.i 
arf i = u + -I h aioet.j_io 

Estimate DM .JY SF 

UL 0.4111 0.3743 0.5023 
[19.555] [17.373] [20.468] 

OTL 0.1990 0.1581 0.1619 
[10.373] [10.813] [10.712] 

A2 0.0946 0.1064 0.0997 
[7.186] [7.443] [4.825] 

as 0.0489 0.0695 0.0609 
[4.139] [4.540] [4.579] 

"4 0.0489 0.0521 0.0368 
[3.444] [4.270] [2.846] 
0.0498 0.0557 0.0412 
[3.952] [3.794] [3.889] 

ae 0.0361 0.0339 0.0251 
[3.414] [3.210] [2.518] 

A-J 0.0302 0.0346 0.0187 
[2.812] [2.821] [2.425] 

as 0.0143 0.0317 0.0132 
[1.678] [2.905] [1.582] 

ag 0.0482 0.0254 0.0273 
[2.336] [2.076] [2.205] 

aio 0.0408 0.0717 0.0298 
[2.249] [3.558] [2.207] 

Table A.8: Parameter estimates for ARCH(IO) on returns deseasoned by sample 
standard deviation, (T x n = 19,392). 
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R-T.I — 

~ + <^10^£.i-10 

Estimate DM .JY SF 

UI 0.4071 0.3544 0.5139 
[16.081] [17.023] [19.831] 
0.2114 0.1638 0.1753 
[9.132] [10.205] [10.333] 

ao 0.0911 0.11.30 0.0953 
[6.797] [7.049] [6.059] 

OiZ 0.0469 0.0697 0.0605 
[3.571] [4.163] [4.173] 

OCi 0.0485 0.0583 0.0307 
[3.273] [4.255] [2.325] 

OL-o 0.0590 0.0573 0.0297 
[3.022] [3.609] [2.881] 

ae 0.0280 0.0305 0.0224 
[2.453] [2.967] [2.256] 

Oil 0.0315 0.0364 0.0203 
[2.671] [2.541] [2.392] 

^8 0.0101 0.0325 0.0124 
[1.310] [2.596] [1.272] 

ag 0.0532 0.0262 0.0221 
[2.055] [2.069] [1.897] 

0:io 0.0475 0.0807 0.0360 
[2.475] [4.212] [2.350] 

Table A-9: Parameter estimates for ARCH(IO) on returns deseasoned exponential 
seasonality. [T K n = 19.392). 



Rt.i — ^t.i 
= {ujodi 

f 1 
do = 1 0 

f 0 di = 
1 

New York open 

New York closed 

Estimate DM JY SF 

UIQ 1.7239 X lO"'' 
R \ 

2.2439 X 10"* 
( \ 

3.8425 X lO--* 
/ \ 

{-) 

[-] 

\-) 

[-] H 
UI 2.4887 X 10"^ 

(0.0006) 
[3.964] 

1.2407 X 10-^ 
(0.0003) 
[3.679] 

3.5489 X 10-^ 
(0.0008) 
[4.592] 

ao 0.2208 
(0.0355) 
[6.225] 

0.1483 
(0.0184) 
[8.068] 

0.2462 
(0.0242) 
[10.166] 

ai 0.2407 
(0.0481) 
[5.008] 

0.2076 
(0.0287) 
[7.227] 

0.2042 
(0.0314) 
[6.493] 

/3o 0.7352 
(0.0552) 
[14.071] 

0.8119 
(0.0269) 
[30.162] 

0.6520 
(0.0317) 
[20.597] 

A 0.4454 
(0.0893) 
[4.985] 

0.6459 
(0.0559) 
[11.552] 

0.4835 
(0.0797) 
[6.067] 

Table A. 10; Parameter estimates for P-GARCH (T x n = 19,392) 
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^£,1 
{UJQDO +u;idi) + (ororfo + AIDI) e^i_i + {PODO + PIDI) CR^I^I 

{1 New York open 
0 New York closed 

Jo New York open 
11 New York closed 

Estimate DM JY SF 

O/'o 0.07403 
(0.0199) 
[3.714] 

0.03188 
(0.0064) 
[4.951] 

0.09599 
(0.0231) 
[4.150] 

U J L  0.06925 
(0.0225) 
[3.073] 

0.01854 
(0.0096) 
[1.938] 

0.09509 
(0.0257) 
[3.693] 

AO 0.1272 
(0.0208) 
[6.110] 

0.08001 
(0.0106) 
[7.532] 

0.1138 
(0.0199) 
[5.723] 

CTI 0.1359 
(0.0207) 
[6.551] 

0.1153 
(0.0185) 
[6.215] 

0.1348 
(0.0201) 
[6.717] 

00 0.8024 
(0.0387) 
[20.708] 

0.8902 
(0.0160) 
[55.635] 

0.7925 
(0.0400) 
[19.816] 

01 0.8004 
(0.0379) 
[21.118] 

0.8681 
(0.0238) 
[36.551] 

0.7771 
(0.0366) 
[21.252] 

Table A. 11: Parameter estimates for P-GARCH on returns deseasoned by sample 
standard deviation, {T x n = 19,392). 

^£,i — 
^LI = 

DO = 

D, = 
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(uJodo +uJidi) -f- {aodo + cuidi) + [Podo -f- ^\di) a'f i_y 

{1 New York open 
0 New York closed 

{0 New York open 
1 New York closed 

Estimate DM JY SF 
LUQ 0.06820 

(0.0221) 
[3.092] 

0.03023 
(0.0064) 
[4.757] 

0.10694 
(0.0313) 
[3.414] 

UJI 0.06676 
(0.0275) 
[2.426] 

0.02139 
(0.0121) 
[1.760] 

0.10741 
(0.0335) 
[3.206] 

OLQ 0.1176 
(0.0230) 
[5.113] 

0.08354 
(0.0120) 
[6.966] 

0.1141 
(0.0237) 
[4.818] 

Ql 0.1486 
(0.0266) 
[5.584] 

0.1173 
(0.0217) 
[5.397] 

0.1412 
(0.0219) 
[6.462] 

PO 0.8197 
(0.0428) 
[19.152] 

0.8896 
(0.0166) 
[53.736] 

0.7817 
(0.0522) 
[14.964] 

A 0.7906 
(0.0458) 
[17.252] 

0.8614 
(0.0306) 
[28.162] 

0.7565 
(0.0461) 
[16.417] 

Table A. 12: Parameter estimates for P-GARCH on returns deseasoned by expo­
nential seasonality, {T xn = 19,392). 

RT.I — 
^LI = 

DO = 

D, = 
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— ^T,I 
~ {'^ODO + UJIDI) + {OCI^ODO + aijtfi) 

1- (Qio.QC^O + Q:io,i(ii) 

j  1 New York open 
I 0 New York closed DO 

d\ — 1 — do 

Estimate 
DM JY SF 

Estimate 7 = 0  j = l  J = 0 i = i j = o J = 1 

Uj 0.0007 
[-] 

0.0035 
[11.400] 

0.0015 
[14.545] 

0.0035 
[10.280] 

0.0011 
[-] 

0.0057 
[14.123] 

0.2854 
[7.491] 

0.2458 
[4.314] 

0.1767 
[8.915] 

0.1953 
[6.118] 

0.2518 
[9.804] 

0.1711 
[4.581] 

<^2,j 0.1333 
[7.152] 

0.0745 
[2.950] 

0.1108 
[5.609] 

0.1569 
[4.801] 

0.1226 
[6.323] 

0.1110 
[4.247] 

Ol3,j 0.0455 
[2.256] 

0.0714 
[2.648] 

0.0879 
[4.297] 

0.0644 
[2.013] 

0.1220 
[3.234] 

0.0821 
[3.541] 

^4,j 0.0911 
[4.253] 

0.0301 
[1.379] 

0.0732 
[4.113] 

0.0384 
[2.161] 

0.0475 
[2.512] 

0.0252 
[1.192] 

^5,j 0.0637 
[2.675] 

0.0395 
[2.141] 

0.0698 
[2.957] 

0.0524 
[2.020] 

0.0616 
[1.531] 

0.0413 
[2.344] 

0.0420 
[2.342] 

0.0225 
[1.458] 

0.0329 
[2.713] 

0.0182 
[1.176] 

0.0183 
[1.907] 

0.0315 
[1.961] 

0.0353 
[2.191] 

0.0244 
[2.062] 

0.0444 
[2.522] 

0.0065 
[0.502] 

0.0264 
[1.292] 

0.0299 
[1.965] 

0.0027 
[0.488] 

0.0212 
[1.764] 

0.0243 
[1.925] 

0.0353 
[1.887] 

0.0176 
[1.292] 

0.0065 
[0.615] 

^9,j 0.0716 
[2.072] 

0.0003 
[0.041] 

0.0065 
[0.075] 

0.0407 
[1.628] 

0.0116 
[0.862] 

0.0043 
[0.577] 

<^10 J 0.0578 
[1.764] 

0.0472 
[1.989] 

0.0792 
[3.465] 

0.0182 
[1.012] 

0.0515 
[1.252] 

0.0136 
[1.184] 

Table A.13: Parameter estimates for PARCH(IO), {T x n = 19,392). 
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^C.I 
(CVODO + ̂ IDI) + ( O I  O D O  + aijdi) ̂ F^-I + 

1- (orio.oc'o + Qfio^i^i) e^j_io 

{1 New York open 
0 New York closed 

1 — rfo 

Estimate 
DiM JY SF 

Estimate j  =  0  i = 1 j  =  0  j  =  1 j  =  0  j  =  l  

U j  0.4081 
[17.827] 

0.4212 
[11.980] 

0.3979 
[16.156] 

0.2968 
[9.752] 

0.4987 
[18.086] 

0.5146 
[13.519] 

0.2019 
[9.220] 

0.2037 
[5.250] 

0.1447 
[9.208] 

0.1919 
[6.240] 

0.1659 
[9.809] 

0.1459 
[4.654] 

0.1058 
[6.678] 

0.0619 
[2.880] 

0.0889 
[5.932] 

0.1562 
[4.994] 

0.1011 
[3.892] 

0.0940 
[3.695] 

0.0439 
[3.477] 

0.0579 
[2.302] 

0.0768 
[4.420] 

0.0470 
[1.544] 

0.0625 
[3.968] 

0.0515 
[2.545] 

"4.J 0.0535 
[3.440] 

0.0346 
[1.220] 

0.0555 
[3.890] 

0.0403 
[2.082] 

0.0425 
[2.766] 

0.0119 
[0.643] 

0.0515 
[3.470] 

0.0410 
[2.230] 

0.0564 
[3.451] 

0.0625 
[2.094] 

0.0375 
[3.082] 

0.0543 
[2.712] 

®6.j 0.0349 
[2.961] 

0.0388 
[1.799] 

0.0354 
[2.983] 

0.0319 
[1.506] 

0.0246 
[2.254] 

0.0239 
[1.187] 

0.0305 
[2.446] 

0.0308 
[1.753] 

0.0418 
[2.947] 

0.0136 
[0.817] 

0.0144 
[1.853] 

0.0353 
[1.949] 

®8,j 0.0095 
[0.965] 

0.0343 
[1.947] 

0.0269 
[2.293] 

0.0598 
[2.383] 

0.0105 
[1.112] 

0.0221 
[1.370] 

(^9,3 0.0549 
[2.268] 

0.0212 
[1.238] 

0.0149 
[1.288] 

0.0629 
[2.205] 

0.0275 
[1.845] 

0.0326 
[1.584] 

<^lOj 0.0266 
[1.478] 

0.0821 
[2.005] 

0.0762 
[3.233] 

0.0462 
[1.502] 

0.0278 
[1.765] 

0.0420 
[1.916] 

Table A. 14: Parameter estimates for PARCH(10) deseasoned with sample variance 
seasonality, (T x n = 19,392). 

^T,I — 
^LI = 

DO = 

DI = 
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ff.i 

(UODO + OJIDI) + (o^i.o^^o + ^t,t-i "I" 

• • • + (aio.oC^o + ckio.i 

{1 New York open 
0 New York closed 

1 — do 

Estimate 
DM JY SF 

Estimate 7 = 0  3 = 1 i = o 3 = 1 i = 0 j = 1 

UJj 0.4081 
[14.458] 

0.4007 
[10.735] 

0.3636 
[15.753] 

0.3184 
[9.880] 

0.5091 
[17.488] 

0.5296 
[13.739] 

»i.j 0.2140 
[8.776] 

0.2154 
[4.052] 

0.1578 
[8.682] 

0.1801 
[6.091] 

0.1834 
[9.503] 

0.1465 
[4.309] 

(^2.j 0.0999 
[6.342] 

0.0640 
[2.639] 

0.0985 
[5.573] 

0.1459 
[4.764] 

0.0942 
[4.862] 

0.0993 
[3.932] 

a3,i 0.0362 
[2.804] 

0.0738 
[2.483] 

0.0786 
[4.022] 

0.0417 
[1.320] 

0.0610 
[3.602] 

0.0571 
[2.620] 

a4.j 0.0587 
[3.433] 

0.0167 
[0.958] 

0.0655 
[4.033] 

0.0389 
[2.010] 

0.0380 
[2.342] 

0.0007 
[0.047] 

^5.j 0.0595 
[2.688] 

0.0491 
[2.077] 

0.0601 
[3.313] 

0.0538 
[1.986] 

0.0260 
[2.200] 

0.0438 
[2.323] 

(^6,j 0.0291 
[2.281] 

0.0202 
[1.075] 

0.0334 
[2.835] 

0.0229 
[1.251] 

0.0209 
[1.994] 

0.0272 
[1.200] 

Oi7.j 0.0326 
[2.370] 

0.0302 
[1.586] 

0.0447 
[2.708] 

0.0123 
[0.767] 

0.0181 
[2.009] 

0.0279 
[1.572] 

0.0048 
[0.708] 

0.0453 
[1.828] 

0.0294 
[2.055] 

0.0523 
[2.251] 

0.0099 
[0.840] 

0.0191 
[1.162] 

^9j 0.0610 
[1.964] 

0.0205 
[1.276] 

0.0138 
[1.349] 

0.0708 
[2.078] 

0.0221 
[1.564] 

0.0267 
[1.353] 

®lO,i 0.0375 
[1.652] 

0.0785 
[2.241] 

0.0895 
[3.824] 

0.0503 
[1.647] 

0.0356 
[1.951] 

0.0424 
[1.775] 

Table A. 15: Parameter estimates for PARCH(IO) deseasoned with exponential sea­
sonality, (T X n = 19,392). 

RT,I — 
= 

DO = 

D, = 
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F^T.I — ^T.I 
crli = Exp(co + Cii-I h Cn^) + 

+00^^-1 H 1- ONO^II-IO 

Estimate DM JY SF 

Co -6.3233 -6.0113 -5.7920 
[-58.099] [-63.564] [-58.843] 

Cl 5.9681 4.0708 4.9549 
[8.287] [7.667] [10.520] 

Co 9.7621 6.8001 9.2353 
[4.822] [3.815] [5.657] 

C3 -53.1047 -40.9258 -41.9588 
[-5.273] [-6.544] [-6.840] 

C4 -68.0510 -47.0271 -59.7734 
[-6.565] [-5.271] [-7.273] 

C5 162.2698 131.4393 139.4167 
[4.219] [5.803] [5.993] 

C6 107.1158 72.6594 88.5169 
[6.149] [4.913] [6.258] 

cy -197.6123 -165.8812 -186.3538 
[-3.655] [-5.317] [-5.598] 

cs -49.7033 -32.5576 -38.7135 
[-5.535] [-4.240] [-5.021] 

Cg 82.4120 71.0907 84.0627 
[3.298] [4.943] [5.277] 

Table A. 16: Seasonality parameter estimates for the joint exponential seasonality 
and conditional heteroskedasticity model. (T = 202, n = 96). 
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^£.1 
af i = Exp(co + Cii H 1- c„i") -I-

+Q:oet,,_i 1-Q:ioei,i_io 

Estimate DM JY SF 

"1 0.2029 0.1610 0.1691 
[9.444] [10.216] [10.567] 

as 0.0881 0.1168 0.0962 
[6.626] [7.321] [6.003] 

0:3 0.0418 0.0691 0.0562 
[3.814] [4.305] [4.275] 

"4 0.0416 0.0565 0.0356 
[3.131] [4.522] [2.689] 

"5 0.0597 0.0549 0.0317 
[3.301] [3.935] [3.149] 
0.0298 0.0295 0.0226 
[2.630] [3.156] [2.324] 

A? 0.0299 0.0326 0.0161 
[3.217] [2.346] [2.085] 

OC& 0.0161 0.0341 0.0113 
[2.139] [2.731] [1.403] 

AG 0.0768 0.0252 0.0248 
[2.259] [2.400] [2.629] 

0:10 0.0469 0.0625 0.0197 
[2.711] [4.192] [1.924] 

Table A. 17: Conditional heteroskedasticity parameter estimates for the joint expo­
nential seasonality and conditional heteroskedasticity model, {T = 202, n = 96). 
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^L.I ^£,1 

7(2) = Sample Variance 

Estimate DM JY SF 
ul 0.3244 

(0.0641) 
[5.065] 

0.1187 
(0.0295) 
[4.031] 

0.4497 
(0.0667) 
[6.737] 

a 0.2428 
(0.0202) 
[12.018] 

0.1832 
(0.0234) 
[7.827] 

0.2225 
(0.0144) 
[15.455] 

,d 0.4339 
(0.0722) 
[6.012] 

0.7030 
(0.0507) 
[13.862] 

0.3284 
(0.0656) 
[5.007] 

Table A. 18: Parameter estimates for conditionally periodic GARCH with sample 
variance seasonality, (T x n = 19,392). 

7(z) = Exp(co + CiiH +c„i") 

Estimate DM JY SF 
Ul 0.2167 

(0.0289) 
[7.492] 

0.1376 
(0.0327) 
[4.210] 

0.3627 
(0.0360) 
[10.065] 

a 0.2094 
(0.0185) 
[11.323] 

0.1716 
(0.0198) 
[8.667] 

0.1974 
(0.0138) 
[14.302] 

0 0.5802 
(0.0383) 
[15.163] 

0.7602 
(0.0357) 
[21.318] 

0.5282 
(0.0289) 
[18.304] 

Table A. 19: Parameter estimates for conditionally periodic GARCH with exponen­
tial seasonality, (T x n = 19,392). 
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{uJodo + ujidi) "/(i) + (ao^o + oiidi) + ('3odo + *31^1) ^[ ,^1 

{1 New York opea 
0 New York closed 

{0 New York opea 
1 New York closed 

Sample Variance 

Estimate DM JY SF 

^'o 0.3308 
(0.0701) 
[4.717] 

0.1041 
(0.0436) 
[2.388] 

0.4608 
(0.0690) 
[6.683] 

u.'i 0.2847 
(0.0937) 
[3.038] 

0.1216 
(0.0297) 
[4.098] 

0.3347 
(0.0996) 
[3.359] 

Cto 0.2504 
(0.0209) 
[12.004] 

0.1667 
(0.0330) 
[5.045] 

0.2264 
(0.0166) 
[13.638] 

Cki 0.2147 
(0.0511) 
[4.197] 

0.2085 
(0.0288) 
[7.246] 

0.1949 
(0.0359) 
[5.425] 

^0 0.4282 
(0.0774) 
[5.534] 

0.7397 
(0.0755) 
[9.803] 

0.3155 
(0.0655) 
[4.814] 

3: 0.4769 
(0.1177) 
[4.052] 

0.6514 
(0.0493) 
[13.208] 

0.4645 
(0.1195) 
[3.888] 

Table A.20: Parameter estimates for conditionally periodic GARCH with sample 
variance seasonality. (T x n = 19.392). 

^T.I — 
= 

DO = 

DI = 

7(z) = 
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^T.I 
{UJODO + UIIDI) 7(2) + (OCODO + AIDI) + (PODO + F3IDI) 

{1 New York open 
0 New York closed 

{0 New York open 
1 New York closed 

Exp(co + Cii-\ h c„z") 

Estimate DM JY SF 

UQ 0.1913 
(0.0362) 
[5.284] 

0.08555 
(0.0237) 
[3.610] 

0.3114 
(0.0377) 
[8.255] 

U J I  0.2705 
(0.0538) 
[5.030] 

0.1263 
(0.0345) 
[3.657] 

0.3366 
(0.0705) 
[4.777] 

ao 0.1991 
(0.0214) 
[9.314] 

0.1569 
(0.0232) 
[6.760] 

0.2023 
(0.0161) 
[12.582] 

Ql 0.2275 
(0.0462) 
[4.929] 

0.2119 
(0.0283) 
[7.494] 

0.2014 
(0.0329) 
[6.115] 

00 0.6236 
(0.0525) 
[11.877] 

0.7694 
(0.0444) 
[17.347] 

0.4928 
(0.0384) 
[12.841] 

0X 0.4793 
(0.0658) 
[7.281] 

0.6416 
(0.0547) 
[11.729] 

0.4609 
(0.0820) 
[5.622] 

Table A.21: Parameter estimates for conditionally periodic GARCH with exponen­
tial seasonality, {T x n = 19,392). 

RT.I — 
(^LI = 

DO = 

D, = 

7(0 = 



118 

— ^T,I 

- ' ^ 7 ( 0  + " •  ' - ' ^ l O ^ U - l O  
7(1) = Sample Variance 

Estimate DM JY SF 

U 0.4851 0.4184 0.5803 
[21.530] [19.334] [22.853] 
0.1920 0.1607 0.1664 
[9.556] [10.599] [10.637] 

A2 0.0900 0.1067 0.0902 
[7.152] [7.101] [5.039] 

Q3 0.0372 0.0604 0.0477 
[3.492] [4.046] [3.779] 

04 0.0343 0.0507 0.0200 
[2.953] [4.382] [1.976] 

Q!5 0.0400 0.0464 0.0319 
[3.578] [3.759] [3.353] 
0.0250 0.0244 0.0126 
[2.344] [2.633] [1.436] 

A-R 0.0143 0.0248 0.0049 
[1.736] [1.889] [0.771] 

AS 0.0051 0.0220 0.0000 
[1.005] [2.199] [-1 

AG 0.0275 0.0128 0.0185 
[1.593] [1.555] [2.078] 

a; 10 0.0247 0.0511 0.0056 
[1.693] [3.167] [0.679] 

Table A.22: Parameter estimates for conditionally periodic ARCH(IO) with sample 
variance seasonality, (T x n = 19,392). 
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— ^T,I 

"I "^lO^t.t-io 
7(i) = Exp(co + Cii H 1- Cni") 

Estimate DM JY SF 

U 0.4523 
[18.161] 

0.3926 
[18.537] 

0.5597 
[20.861] 

AI 0.2102 
[9.038] 

0.1660 
[10.323] 

0.1746 
[10.196] 

OL2 0.0912 
[6.536] 

0.1156 
[6.939] 

0.0915 
[6.063] 

AS 0.0366 
[3.036] 

0.0701 
[4.094] 

0.0547 
[3.938] 

0:4 0.0406 
[3.004] 

0.0551 
[4.231] 

0.0264 
[2.242] 

as 0.0559 
[2.823] 

0.0518 
[3.456] 

0.0293 
[2.945] 

0C6 0.0216 
[1.920] 

0.0241 
[2.639] 

0.0154 
[1.670] 

AJ 0.0195 
[2.081] 

0.0291 
[2.068] 

0.0099 
[1.346] 

AS 0.0035 
[0.680] 

0.0240 
[2.097] 

0.0031 
[0.371] 

AG 0.0372 
[1.604] 

0.0138 
[1.600] 

0.0161 
[1.783] 

AIO 0.0342 
[1.885] 

0.0563 
[3.606] 

0.0131 
[1.277] 

Table A.23: Parameter estimates for conditionally periodic ARCH(IO) with, expo­
nential seasonality, {T x n = 19,392). 
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^T,I 
(UJODO + UJIDI) 7(z) + (tti.oc'o + 

• • • + (oio.oc^o + Q!10.1 dl) 4.1-10 

(1 New York open 
0 New York closed 

1 — rfo 

Sample Variance 

Estimate 
DM JY SF 

Estimate j = Q j = 1 J = 0  j = 1 j = o J = 1 

UJJ 0.4692 
[18.404] 

0.5066 
[14.209] 

0.4255 
[17.394] 

0.3746 
[11.525] 

0.5729 
[19.262] 

0.6074 
[16.377] 

0.1924 
[8.909] 

0.2046 
[4.417] 

0.1478 
[8.987] 

0.1985 
[6.302] 

0.1694 
[9.764] 

0.1620 
[4.661] 

a2j 0.1005 
[6.539] 

0.0538 
[3.041] 

0.0890 
[5.677] 

0.1470 
[4.685] 

0.0909 
[3.993] 

0.0873 
[3.775] 

A3.J 0.0319 
[2.851] 

0.0468 
[2.065] 

0.0664 
[3.870] 

0.0479 
[1.573] 

0.0501 
[3.274] 

0.0359 
[2.010] 

<^A.J 0.0424 
[3.066] 

0.0166 
[1.165] 

0.0564 
[4.102] 

0-0368 
[2.142] 

0.0245 
[1.997] 

0.0049 
[0.382] 

0.0413 
[2.997] 

0.0328 
[2.162] 

0.0491 
[3.423] 

0.0488 
[2.057] 

0.0287 
[2.608] 

0.0400 
[2.231] 

^6.J 0.0263 
[2.051] 

0.0173 
[1.211] 

0.0279 
[2.569] 

0.0129 
[1.053] 

0.0107 
[1.006] 

0.0137 
[0.965] 

^7,J 0.0178 
[1.619] 

0.0128 
[1.253] 

0.0351 
[2.198] 

0.0031 
[0.262] 

0.0002 
[0.024] 

0.0134 
[1.140] 

®8j 0.0036 
[0.700] 

0.0140 
[1.260] 

0.0220 
[1.801] 

0.0293 
[1.776] 

0.0000 
[-] 

0.0040 
[0.521] 

0.0476 
[1.736] 

0.0052 
[0.736] 

0.0061 
[0.793] 

0.0292 
[1.528] 

0.0286 
[2.145] 

0.0069 
[0.848] 

<^10 J 0.0176 
[1.007] 

0.0341 
[1.545] 

0.0679 
[2.810] 

0.0211 
[1.199] 

0.0008 
[0.074] 

0.0093 
[0.948] 

Table A.24: Parameter estimates for condtionally periodic ARCH(IO) with with 
sample variance seasonality and NY dummies, (T x n = 19,392). 

^£,t — 
= 

DO = 

D, = 

l{i) = 
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{UIADO +UJID\)'Y{I) + (AI,ODO + AIJDI) EFJ_I + 

1- (Q!IO.O^^O + Qfiojrfi) et,j_io 

f l New York open 
0 iNew York closed 

1 — da 

Exponential Seasonality 

Estimate 
DM JY SF 

Estimate i = o i = i i = o j = 1 i = o j = 1 

Uj 0.4275 
[14.765] 

0.4750 
[12.974] 

0.3869 
[16.490] 

0.3838 
[11.562] 

0.5438 
[17.572] 

0.6074 
[16.136] 

0.2125 
[8.733] 

0.2268 
[4.074] 

0.1579 
[8.739] 

0.1908 
[6.216] 

0.1788 
[9.433] 

0.1612 
[4.381] 

^2,j 0.1015 
[6.203] 

0.0554 
[2.578] 

0.0992 
[5.541] 

0.1434 
[4.666] 

0.0918 
[4.905] 

0.0917 
[3.773] 

0.0278 
[2.367] 

0.0581 
[2.250] 

0.0787 
[3.942] 

0.0451 
[1.485] 

0.0596 
[3.519] 

0.0437 
[2.253] 

0.0543 
[3.359] 

0.0098 
[0.767] 

0.0642 
[4.060] 

0.0336 
[1.958] 

0.0347 
[2.351] 

0.0004 
[0.031] 

0.0580 
[2.598] 

0.0342 
[2.124] 

0.0572 
[3.201] 

0.0429 
[1.833] 

0.0262 
[2.248] 

0.0361 
[2.038] 

OIE.J 0.0241 
[1.773] 

0.0133 
[0.985] 

0.0279 
[2.572] 

0.0142 
[1.095] 

0.0147 
[1.399] 

0.0186 
[1.138] 

<^7,J 0.0250 
[1.978] 

0.0176 
[1.623] 

0.0402 
[2.387] 

0.0026 
[0.215] 

0.0081 
[0.937] 

0.0156 
[1.254] 

0.0018 
[0.361] 

0.0159 
[1.349] 

0.0256 
[1.820] 

0.0297 
[1.710] 

0.0009 
[0.055] 

0.0025 
[0.305] 

^9,J 0.0654 
[1.869] 

0.0041 
[0.550] 

0.0074 
[0.972] 

0.0337 
[1.489] 

0.0245 
[1.762] 

0.0057 
[0.706] 

0.0363 
[1.336] 

0.0380 
[1.757] 

0.0773 
[3.272] 

0.0240 
[1.318] 

0.0155 
[0.883] 

0.0100 
[0.953] 

Table A.25: Parameter estimates for condtionally periodic ARCH(IO) with with 
exponential variance seasonality and NY dummies, (T x n = 19,392). 

JIT,I — 

DO = 

DI = 

j{i) = 
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Model DM JY SF 
Constant Variance 
Sample Variance Seasonality 
Exponential Seasonality 

2.29471 
2.46281 
2.43974 

2.09645 
2.17245 
2.15404 

2.14999 
2.33182 
2.31079 

GARCH 
GARCH: TOD 
GARCH: EXP 

2.46480 
2.52887 
2.51358 

2.23215 
2.26983 
2.25951 

2.29638 
2.37662 
2.35621 

ARCH 
ARCH: TOD 
ARCH: EXP 

2.46834 
2.53483 
2.51535 

2.22995 
2.26374 
2.25386 

2.29629 
2.37832 
2.35662 

P-GARCH 
P-GARCH: TOD 
P-GARCH: EXP 

2.48152 
2.53408 
2.51384 

2.23721 
2.27146 
2.26066 

2.31740 
2.37883 
2.35632 

P-ARCH 
P-ARCH: TOD 
P-ARCH: EXP 

2.48865 
2.53554 
2.51618 

2.23868 
2.26507 
2.25485 

2.32035 
2.37876 
2.35712 

S-ARCH 2.51650 2.25645 2.35815 
Cond. Periodic GARCH: TOD 
Cond. Periodic GARCH: EXP 

2.51498 
2.50264 

2.24473 
2.23714 

2.36377 
2.34897 

Cond. Periodic GARCH: TOD with dummies 
Cond. Periodic GARCH: EXP with dummies 

2.51513 
2.50342 

2.24580 
2.24371 

2.36397 
2.34991 

Cond. Periodic ARCH: TOD 
Cond. Periodic ARCH: EXP 

2.52746 
2.51115 

2.25698 
2.24948 

2.37276 
2.35442 

Cond. Periodic ARCH: TOD with dummies 
Cond. Periodic ARCH: EXP with dummies 

2.52817 
2.51266 

2.25818 
2.25077 

2.37323 
2.35501 

Table A.26: Mean log-likelihood for all models, {T x n = 19, 392). 
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Model DM JY SF 

Constant Variance 22.193 15.266 11.788 
Sample Variance Seasonality 10.310 9.711 7.902 
Exponential Seasonality 13.764 12.110 8.413 
GARCH 15.441 9.467 12.628 
GARCH: TOD 7.700 7.408 7.387 
GARCH: EXP 10.904 8.110 8.142 
ARCH 14.079 9.566 11.932 
ARCH: TOD 7.390 8.256 7.327 
ARCH: EXP 10.250 8.614 7.990 
P-GARCH 15.405 9.140 13.367 
P-GARCH: TOD 7.685 7.294 7.357 
P-GARCH: EXP 10.714 8.035 8.052 
P-ARCH 13.453 9.036 11.672 
P-ARCH: TOD 7.233 8.048 7.348 
P-ARCH: EXP 10.105 8.425 8.007 
S-ARCH 10.984 8.506 8.010 
Cond. Periodic GARCH: TOD 11.512 10.062 8.332 
Cond. Periodic GARCH: EXP 14.540 9.461 8.979 
Cond. Periodic GARCH: TOD with dunmiies 11.483 9.574 8.310 
Cond. Periodic GARCH: EXP with dummies 14.066 9.094 8.985 
Cond. Periodic ARCH; TOD 9.003 8.660 7.400 
Cond. Periodic ARCH: EXP 11.516 8.826 8.395 
Cond. Periodic ARCH: TOD with dummies 8.671 8.394 7.426 
Cond. Periodic ARCH: EXP with dummies 10.867 8.588 8.398 

Table A.27: In-sample kurtosis of returns standardized by sample variance esti­
mates for aU models, {T x n = 19,392). 
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Model Selected 
Hypothesis: Hi Hypothesis; H2 DM JY SF Test 
Constant Variance Sample Variance H2 H2 H2 LR 
Constant Variance Exponential Seasonality H2 H2 H2 LR 
Exponential SeasonaUty Sample Variance H2 H2 H2 LDC 

Table A.28: Model selection: Seasonality Likelihood Ratio Tests {T xn = 19,392). 

Currency 
Rejections (out of 96) 

Currency m = 4 m = 9 

DM 64 45 
JY 55 43 
SF 71 52 

Table A.29: Number of Fourier Series variance estimates which are outside 99% 
sample variance estimates confidence invervals {T x n = 19,392). 

Model Selected 
Hypothesis: Hy Hypothesis: H2 DM JY SF Test 
ARCH ARCH:TOD H2 H2 H2 LDC 
ARCH ARCH:EXP H2 H2 H2 LDC 
GARCH GARCH:TOD H2 H2 H2 LDC 
GARCH GARCH:EXP H2 H2 H2 LDC 
P-GARCH P-GARCH:TOD H2 H2 H2 LDC 
P-GARCH P-GARCH:EXP H2 H2 H2 LDC 
P-ARCH P-ARCH:TOD H2 H2 H2 LDC 
P-ARCH P-ARCH;EXP H2 H2 H2 LDC 

Table A.30: Model selection: Deseasonalization Likelihood Tests { T x n  =  19, 392). 
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Hypothesis: Hi Hypothesis; H2 
Model Selected 

Test Hypothesis: Hi Hypothesis; H2 DM JY SF Test 

ARCH:EXP ARCH:TOD H2 H2 H2 LDC 
GARCH:EXP GARCH:TOD H2 H2 H2 LDC 
P-GARCH:EXP P-GARCH:TOD H2 H2 H2 LDC 
P-ARCH:EXP P-ARCH:TOD H2 H2 H2 LDC 
CP-ARCH:EXP CP-ARCH:TOD Hn H2 H2 LDC 
CP-GARCH:EXP CP-GARCH:TOD H2 H2 H2 LDC 

Table A.31: Model selection: Testing for Exponential Seasonality versus Sample 
Variance Seasonality {T x n = 19,392). 

Model Selected 
Hypothesis: Hypothesis: H2 DM JY SF Test 

ARCH CP-ARCH:TOD H2 H2 H2 LDC 
ARCH CP-ARCH:EXP H2 H2 H2 LDC 
GARCH CP-GARCH:TOD H2 H2 H2 LDC 
GARCH CP-GARCH:EXP Ho H2 H2 LDC 
ARCH S-ARCH H2 Hn H2 LR 
GARCH S-ARCH H2 H2 H2 LDC 
ARCH P-ARCH H2 H2 H2 LR 
GARCH P-GARCH H2 H2 H2 LR 

Table A.32: Model selection: Testing Joint Modeling versus Raw Modeling {Txn = 
19,392). 
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Model Selected 
Hypothesis: Hi Hypothesis: H2 DM JY SF Test 

P-ARCH CP-GARCH:TOD H2 H2 H2 LDC 
P-ARCH CP-GARCH:EXP H2 Hi H2 LDC 
P-ARCH CP-ARCH:TOD H2 H2 H2 LDC 
P-ARCH CP-ARCH: EXP H2 H2 H2 LDC 
P-ARCH ARCH:TOD H2 H2 H2 LDC 
P-ARCH ARCH:EXP H2 H2 H2 LDC 
P-ARCH GARCH:TOD H2 H2 H2 LDC 
P-ARCH GARCH:EXP H2 H2 H2 LDC 
P-GARCH CP-GARCH:TOD Ho H2 H2 LDC 
P-GARCH CP-GARCH:EXP H2 Inc. H2 LDC 
P-GARCH CP-ARCH:TOD H2 H2 H2 LDC 
P-GARCH CP-ARCH:EXP H2 H2 Ho LDC 
P-GARCH ARCH:TOD H2 H2 H2 LDC 
P-GARCH ARCH;EXP H2 H2 Ho LDC 
P-GARCH GARCH:TOD H2 Ho H2 LDC 
P-GARCH GARCH:EXP H2 H2 H2 LDC 

Table A.33: Model selection: Testing Joint Modeling versus Sequential Modeling 
(Tx n = 19, 392). 

Model Selected 
Hypothesis: Hi Hypothesis: H2 DM JY SF Test 

GARCH:TOD CP-GARCH:EXP Hi Hi Hi LDC 
GARCH:TOD CP-ARCH:TOD Hi Hi Hi LDC 
GARCH:TOD CP-ARCH:EXP Hi Hi Hi LDC 
GARCH:EXP CP-GARCH:TOD Inc. Hi H2 LDC 
GARCH:EXP CP-ARCH:TOD H2 Inc. H2 LDC 
GARCH:EXP CP-ARCH:EXP Hi Hi Hi LDC 
ARCH:TOD CP-GARCH:TOD Hi Hi Hi LDC 
ARCH:TOD CP-GARCH:EXP Hi Hi Hi LDC 
ARCH:TOD CP-ARCH:EXP HI HI HI LDC 
ARCH:EXP CP-GARCH:TOD Inc. HI H2 LDC 
ARCH:EXP CP-GARCH:EXP HI HI HI LDC 
ARCH:EXP CP-ARCH:TOD H2 H2 H2 LDC 

Table A.34: Model selection: Testing Joint Modeling versus Sequential Modeling 
{Txn = 19,392). 
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Hypothesis: Hi Hypothesis; H2 
Model Selected 

Test Hypothesis: Hi Hypothesis; H2 DM JY SF Test 

S-ARCH GARCH:TOD H2 Ho H2 LDC 
S-ARCH ARCH:TOD H2 H2 H2 LDC 
S-ARCH GARCH:EXP Hi H2 Hi LDC 
S-ARCH CP-ARCH:TOD H2 Inc. H2 LDC 
S-ARCH CP-GARCH:TOD Inc. Hi Ho LDC 
S-ARCH CP-GARCH:EXP Hi Hi Hi LDC 
S-ARCH P-GARCH Hi Hi Hi LDC 
S-ARCH P-ARCH Hi Hi Hi LDC 

Table A.35: Model selection; Testing Joint Modeling versus Sequential Modeling 
{Txn = 19,392). 
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Model Selected 
Hypothesis: Hi Hypothesis: Ho DM JY SF Test 

GARCH ARCH Ho Hi Inc. LDC 
GARCH:TOD ARCH:TOD H2 Hi Ho LDC 
GARCH:EXP ARCH:EXP H2 Hi H2 LDC 
P-GARCH P-ARCH H2 Ho H2 LDC 
P-GARCH:TOD P-ARCH:TOD H2 Hi Inc. LDC 
P-GARCH:EXP P-ARCH:EXP H2 Hi Hi LDC 
CP-GARCH:TOD CP-ARCH:TOD H2 Ho H2 LDC 
CP-GARCH:EXP CP-ARCH:EXP H2 Ho Ho LDC 
CP-GARCH:TOD + dum CP-ARCH:TOD + dum H2 Ho H2 LDC 
CP-GARCH:EXP + dum CP-ARCH:EXP + dum H2 H2 H2 LDC 

Table A.36: Model selection: Testing ARCH versus GARCH {T x n = 19.392). 

Model Selected 
Hypothesis: Hi Hypothesis: H2 DM JY SF Test 

GARCH P-GARCH H2 H2 Ho LR 
GARCH:TOD P-GARCH:TOD Ho Ho Ho LR 
GARCH:EXP P-GARCH:EXP Hi Ho Hi LR 
ARCH P-ARCH H2 H2 H2 LR 
ARCH:TOD P-ARCH:TOD Ho H2 Ho LR 
ARCH:EXP P-ARCH:EXP H2 Ho Ho LR 
CP-GARCH:TOD CP-GARCH:TOD + dum Hi H2 Hi LR 
CP-GARCH:EXP CP-GARCH:EXP + dum Ho H2 H2 LR 
CP-ARCH:TOD CP-ARCH:TOD -h dum Ho Ho Ho LR 
CP-ARCH:EXP CP-ARCH:EXP + dum Ho Ho H2 LR 

Table A.37: Model selection: Testing for NY Effect (T x n = 19.392). 
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Model DM JY SF 
Constant Variance 21.186 14.262 10.786 
Sample Variance Seasonality 9.321 8.704 6.917 
Exponential Seasonality 12.762 11.108 7.414 
GARCH 14.437 8.465 11.629 
GARCH: TOD 7.050 6.308 6.551 
GARCH: EXP 9.901 7.106 7.140 
ARCH 13.082 8.570 10.921 
ARCH: TOD 6.392 7.259 6.321 
ARCH: EXP 9.254 7.619 6.986 
P-GARCH 14.396 8.129 12.363 
P-GARCH: TOD 6.686 6.291 6.354 
P-GARCH: EXP 9.710 7.032 7.057 
P-ARCH 12.444 8.028 10.664 
P-ARCH: TOD 6.230 7.042 6.346 
P-ARCH: EXP 9.102 7.418 7.006 
S-ARCH 9.986 7.510 7.005 
Cond. Periodic GARCH: TOD 10.511 9.062 7.330 
Cond. Periodic GARCH: EXP 13.535 8.455 8.045 
Cond. Periodic GARCH; TOD with dummies 10.483 8.572 7.310 
Cond. Periodic GARCH: EXP with dummies 13.060 8.087 7.984 
Cond. Periodic ARCH: TOD 8.006 7.663 6.395 
Cond. Periodic ARCH: EXP 10.517 7.831 7.388 
Cond. Periodic ARCH: TOD with dummies 7.665 7.386 6.420 
Cond. Periodic ARCH; EXP with dummies 9.885 7.581 7.394 

Table A.38: In-sample heteroskedastic mean square error (HMSE) measures for all 
models, {T x n = 19,392). 
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Model DM JY SF 
Constant Variance 69.296 6.143 19.821 
Sample Variance Seasonality 46.796 4.824 9.598 
Exponential Seasonality 41.980 4.826 11.674 
GARCH 24.667 6.233 9.766 
GARCH; TOD 12.963 5.351 8.122 
GARCH: EXP 16.928 5.355 8.543 
ARCH 28.435 6.023 9.253 
ARCH: TOD 16.694 4.963 8.306 
ARCH: EXP 20.273 5.146 8.380 
P-GARCH 28.884 5.541 11.078 
P-GARCH: TOD 12.162 5.331 7.909 
P-GARCH: EXP 16.883 5.244 8.627 
P-ARCH 34.852 5.141 9.625 
P-ARCH: TOD 15.336 5.060 8.229 
P-ARCH: EXP 19.313 5.195 8.269 
S-ARCH 18.216 5.156 8.319 
Cond. Periodic GARCH: TOD 20.599 5.196 8.537 
Cond. Periodic GARCH: EXP 20.052 5.352 8.343 
Cond. Periodic GARCH: TOD with dummies 20.499 5.212 8.604 
Cond. Periodic GARCH: EXP with dummies 20.018 5.313 8.231 
Cond. Periodic ARCH: TOD 16.749 4.938 8.377 
Cond. Periodic ARCH: EXP 20.871 5.186 8.401 
Cond. Periodic ARCH: TOD with dimimies 15.704 4.985 8.124 
Cond. Periodic ARCH: EXP with dummies 20.574 5.151 8.244 

Table A.39: Out-of-sample heteroskedastic mean square error (HMSE) measures 
for all models, (T" x n = 5, 760). 



131 

Return *2 

8 

7 

6 

5 

4 

3 

2 

1 

L IIAa AJL 
0 10 15 20 

GMT 

Figure A.l: Raw DM returns for December 6, 1993 (standardized by sample vari­
ance). 

Return *2 

8 

7 

6 

5 

4 

Li aa 
10 15 20 

GMT 

Figure A.2: Deseasoned DM returns for December 6, 1993 (standardized by intra-
day sample variance). 
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Return "2 

GMT 

Figure A.3: Raw DM returns for February 11, 1994 (standardized by sample vari­
ance). 
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Figure A.4: Deseasoned DM returns for February 11, 1994 (standardized by intra-
day sample variance). 
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Figure A.5: DM exchange rate sample. 
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Figure A.6: JY exchange rate sample. 
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Figure A. 7: SF exchange rate sample. 
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Figure A.8: DM time of day variance. 
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Figure A.9: JY time of day variance. 
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Figure A. 10: SF time of day variance. 
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Figure A.11: DM fourier series fit for time of day variance m = 4. 
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Figure A.12: DM fourier series fit for time of day variance m = 9. 
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Figure A.13: JY fourier series fit for time of day variance m = 4. 
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Figure A.14: JY fourier series fit for time of day variance m = 9. 
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Figure A.15: SF fourier series fit for time of day variance m = 4. 
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Figure A.16: SF fourier series fit for time of day variance m = 9. 
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Figure A.17: DM exponential seasonality time of day variance. 
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Figure A.18: Comparison of unconditional time of day variance for DM. 
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Figure A.19: JY exponential seasonality time of day variance. 
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Figure A.20: Comparison of unconditional time of day variance for JY. 
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Figure A.21: SF exponential seasonality time of day variance. 

0.0175 

0.015 

0.0125 

0.01 

0.0075 ExpSeasonali ty 

0.005 

0 0.5 

Figure A.22: Comparison of unconditional time of day variance for SF. 
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Appendix B: Tables and Figures for Chapter 2 

Note: In the following tables, numbers is parentheses are heteroskedastic-consistent 
standard errors and numbers in brackets are t-ratios. See table and figiure notes at 
the end of the tables and figures respectfully for more details. 

Fifteen Minute Returns DM JY SF 
Equal to Zero 2292 3002 4879 
Min -0.8200 -0.8571 -0.9632 
Max 1.2845 0.9123 0.7814 
Range 2.1046 1.7695 1.7446 
Mean -0.0002 -0.0002 -0.0004 
Median 0 0 0 
Variance 0.0042 0.0055 0.0053 
Standard Deviation 0.0648 0.0741 0.0728 
Mean Deviation 0.0407 0.0486 0.0466 
Median. Deviation 0.0269 0.0326 0.0340 
Skewness 0.4665 0.1394 -0.0582 
Excess Kurtosis 23.573 10.699 9.394 

Table B.40: Descriptive statistics for fifteen minute returns {T x n = 25,152). 
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Daily Realized Returns DM .JY SF 

Min -1.7194 -3.6904 -1.8069 
Max 1.9924 1.9046 2.1870 
Range 3.7118 5.5949 3.9939 
Mean -0.0152 -0.0154 -0.0373 
Median -0.0299 -0.0587 -0.0354 
Variance 0.3721 0.4466 0.4370 
Standard Deviation 0.6100 0.6683 0.6610 
Mean Deviation 0.4669 0.5060 0.5026 
Median Deviation 0.3860 0.4107 0.4124 
Skewness 0.2220 -0.4589 0.2080 
Excess Kurtosis 0.8079 3.0872 0.8078 

Table B.41: Descriptive statistics for realized returns (T=262). 
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Daily Squared Daily Returns DM JY SF 

Min 0 0 0 
Max 3.9697 13.6187 4.7832 
Range 3.9697 13.6187 4.7832 
Mean 0.3709 0.4451 0.4367 
Median 0.1483 0.1624 0.1704 
Variance 0.3886 1.0289 0.5331 
Standard Deviation 0.6234 1.0144 0.7301 
Mean Deviation 0.3894 0.4638 0.4577 
Median Deviation 0.1309 0.1480 0.1572 
Skewness 3.0579 8.9118 3.0306 
Excess Kurtosis 10.3977 107.084 10.6857 

Table B.42: Descriptive statistics for squared daily returns (T=262). 

CAR Variance Estimates DM JY SF 

Min 0.0381 0.0502 0.0811 
Max 1.4103 3.4045 1.0992 
Range 1.3722 3.3543 1.0181 
Mean 0.2684 0.3962 0.3427 
Median 0.2287 0.3124 0.3132 
Variance 0.0258 0.1114 0.0246 
Standard Deviation 0.1607 0.3338 0.1568 
Mean Deviation 0.1116 0.1979 0.1184 
Median Deviation 0.0748 0.1079 0.0910 
Skewness 2.5168 4.4776 1.3304 
Excess Kurtosis 11.460 32.523 3.0910 

Table B.43: Descriptive statistics for cumulative 
estimates (n=96). 

absolute returns daily variance 
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CSR Variance Estimates DM JY SF 

Min 0.0443 0.0826 0.0983 
Max 3.5016 4.2520 1.7748 
Range 3.4573 4.1694 1.6764 
Mean 0.4026 0.5271 0.5089 
Median 0.2954 0.4014 0.4406 
Variance 0.1281 0.2104 0.0740 
Standard Deviation 0.3579 0.4587 0.2720 
Mean Deviation 0.2210 0.2798 0.2055 
Median Deviation 0.1079 0.1519 0.1466 
Skewness 4.4001 3.6680 1.5432 
Excess Kurtosis 30.021 19.942 3.4130 

Table B.44: Descriptive statistics for ctirnulative squared returns daily variance 
estimates (n=96). 

Unconditional Daily 
Variance Estimates DM JY SF 

realized returns 0.3709 
(0.32, 0.45) 

0.4451 
(0.38, 0.53) 

0.4367 
(0.37, 0.52) 

absolute retiuns 0.3433 

(0.28. 0.42) 

0.4041 

(0.32, 0.49) 

0.3991 

(0.32, 0.49) 
cumulative absolute returns 0.2684 

(0.25, 0.29) 

0.3962 

(0.36, 0.44) 

0.3427 

(0.32, 0.36) 

cumulative squared returns 0.4026 

(0.36, 0.45) 

0.5271 

(0.47, 0.58) 

0.5089 

(0.48, 0.54) 

Table B.45: Different estimates of variance for daily realized returns with 95% 
confidence intervals. 
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Daily CSR Standardized Returns DM JY SF 

Min -2.4046 -2.0579 -2.1800 
Max 2.8303 2.1051 2.5093 
Range 5.2348 4.1630 4.6893 
Mean -0.0300 -0.0140 -0.0513 
Median -0.0586 -0.0795 -0.0648 
Variance 0.8735 0.7752 0.7780 
Standard Deviation 0.9346 0.8804 0.8821 
Mean Deviation 0.7609 0.7291 0.7035 
Median Deviation 0.6543 0.6541 0.7035 
Skewness 0.1614 0.1886 0.1720 
Excess Kurtosis -0.2574 -0.6993 -0.0767 

Table B.46: Descriptive statistics for returns standardized by dividing by square 
root cumulative squared returns (n=96). 

Bera Jarque Normality Test DM .JY SF 

Fifteen minute retiu'ns 
RT,I 

583247 120045 92503 

Realized returns 
RT 

9.27 113.24 9.01 

CSR Standardized returns 

fl</v/ES., Rh 

1.86 6.89 1.36 

CAR Standardized retiurns 
i?£/y27r96i:r=i|i?Ml 

1.71 7.31 1.58 

GARCH (1,1) Standardized returns 
i?t/v/GARCH 

8.06 88.47 8.66 

Table B.47: Normality tests (5% critical value is 5.99; the 1% critical value is 9.21). 
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Correlations DM JY SF 

Rt and Rt-i -0.0612 -0.1213 -0.0888 
|i?t| and -0.1257 0.0363 -0.1423 

and -0.1278 0.0752 -0.1155 
CSRt and CSRt_i 0.1569 0.3765 0.2080 
CARt and CARt-i 0.4011 0.5366 0.3543 

and CSRt 0.4649 0.6156 0.4353 
Rj and CARt 0.4656 0.6510 0.3904 
CSRt and CARt 0.9063 0.9390 0.8777 

GARCH and Kf 0.0349 0.0501 -0.0029 
GARCH and CSRt 0.2237 0.3520 0.1666 
GARCH and CARt 0.2588 0.4552 0.1594 

Table B.48: Serial Correlations and contemporaneous correlations (T=262). 

Percentage Bias in CAR DM JY SF 
Min 0.22 -3.49 2.92 
Max 47.12 39.55 51.92 
Range 46.90 43.05 49.00 
Mean 14.30 12.04 16.42 
Median 13.05 10.73 15.25 
Variance 69.44 50.84 56.78 
Standard Deviation 8.33 7.13 7.54 
Mean Deviation 6.25 5.39 5.59 
Median Deviation 4.63 3.88 4.24 
Skewness 1.27 1.10 1.21 
Excess Kurtosis 2.04 1.63 2.36 

Table B.49: Descriptive statistics for 100 x ('^^csr^^) > percentage difference 
in CAR relative to CSR as a daily standard deviation estimator (n=96). 
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Percentage Bias in CAR DM JY SF 

Min 0.43 -7.11 5.76 
Max 72.03 63.46 76.88 
Range 71.60 70.57 71.13 
Mean 25.86 22.12 29.58 
Median 24.39 20.30 28.17 
Variance 180.63 144.22 142.74 
Standard Deviation 13.44 12.01 11.95 
Mean Deviation 10.40 9.25 9.06 
Median Deviation 7.97 7.08 7.30 
Skewness 0.92 0.80 0.82 
Excess Kurtosis 0.87 0.81 0.99 

Table B.50: Descriptive statistics for 100 x percentage difference 
in CAR relative to CSR as a daily variance estimator (n=96). 
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Low Ret^ Low Ret^ High Ret^ High Ret^ 
Currency Low CSR^ High CSR2 Low CSR2 High CSR'^ 

DM Variance Estimate 0.044 0.049 0.389 0.846 
from Returns 
Variance Estimate 0.157 0.333 0.174 0.395 
from CSR 
Total Number 88 43 43 88 
Number where 1 0 30 45 
Ret- > CSR 
Number where 87 43 13 43 
Ret^ < CSR 

JY Variance Estimate 0.054 0.057 0.387 1.086 
from Returns 
Variance Estimate 0.215 0.542 0.222 0.592 
from CSR 
Total Nimiber 84 47 47 84 
Number where 1 0 33 39 
Ret^ > CSR 
Number where 83 47 14 45 
Ret^ < CSR 

SF Variance Estimate 0.048 0.053 0.615 0.937 
from Returns 
Variance Estimate 0.221 0.429 0.253 0.466 
from CSR 
Total Nimiber 85 46 46 85 
Number where 1 0 33 30 
Ret^ > CSR 
Number where 84 46 13 55 
Ret^ < CSR 

Table B.51: Joint distribution comparison of daily CSR variance estimates and 
daily squared returns (T=262). 
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RT — ^J• + 

AF = U! + aet_i  +  3AF_^ 

Estimate DM JY SF 

-0.0156 
(0.0367) 
[-0.425] 

-0.0038 
(0.412) 
[-0.093] 

-0.0360 
(0.0406) 
[-0.886] 

u 0.0089 
(0.0097) 
[0.923] 

0.0392 
(0.0319) 
[1.229] 

0.0119 
(0.0193) 
[0.615] 

a 0.0166 
(0.0148) 
[1.124] 

0.0393 
(0.0367) 
[1.070] 

0.0063 
(0.0147) 
[0.430] 

3 0.9587 
(0.0309) 
[31.068] 

0.8696 
(0.0841) 
[10.339] 

0.9666 
(0.0461) 
[20.981] 

Table B.52: GARCH parameter estimates (T=262). 

GARCH Variance Estimates DM JY SF 

Min 0.2993 0.3411 0.4081 
Max 0.4617 0.9725 0.4827 
Range 0.1624 0.6314 0.0746 
Mean 0.3611 0.4371 0.4352 
Median 0.3464 0.4201 0.4333 
Variance 0.0016 0.0077 0.0003 
Standard Deviation 0.0400 0.0876 0.0168 
Mean Deviation 0.0346 0.0545 0.0132 
Median Deviation 0.0237 0.0368 0.0101 
Skewness 0.5991 3.0856 0.7587 
Excess Kurtosis -0.8666 12.975 0.0169 

Table B.53: Descriptive statistics for GARCH(1,1) conditional variance estimates. 
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Currency Model MSE MAE LL HMSE GMLE 

DM Constant 0.3871 0.3894 9.8666 2.8138 0.0082 
DM CSR 0.3091 0.3449 8.8677 1.3393 -0.2666 
DM CAR 0.3304 0.3116 8.1489 3.1040 -0.2015 
DM GARCH 0.3870 0.3862 9.7135 2.9247 0.0075 
JY Constant 1.0250 0.4638 9.5624 5.1732 0.1906 
JY CSR 0.6706 0.4350 8.8256 0.8313 -0.0947 
JY CAR 0.6992 0.3880 8.2585 1.4045 -0.1009 
JY GARCH 1.0238 0.4597 9.4724 5.0515 0.1832 
SF Constant 0.5310 0.4577 24.628 2.7847 0.1715 
SF CSR 0.4377 0.4418 23.903 1.2023 -0.0241 
SF CAR 0.4753 0.3896 22.809 2.7526 -0.0067 
SF GARCH 0.5314 0.4569 24.618 2.7526 0.1724 

Table B.54: In-sample statistical evaluation of estimates for daily volatility. 

Coefficient of Determination DM JY SF 

CSR 
= Efii RH 

0.216 0.379 0.189 

CAR 0.217 0.424 0.152 

GARCH 
o-f = a; -1- + fiht-i 

0.001 0.003 0.000 

Table B.55: Coefficient of determination (/2^) from regressing daily squared return 
on daily variajice estimates for various variance estimators, = a + bot + Ut. 
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Bera-Jarque Statistic DM JY SF 
15 minute retiums (n=96) 1.86 6.89 1.35 
Rt/VCSR 
30 minute returns (n=48) 1.94 6.91 0.86 
Rt/VCSR 
60 minute retxims (n=24) 3.85 6.59 2.91 
Rt/y/CSR 
90 minute returns (n=18) 7.35 6.03 4.20 
Rt/VCSR 
120 minute returns {n=12) 8.73 7.52 6.81 
i?£/v/CSR 
180 minute returns (n=8) 10.23 8.56 8.68 
Rt/y/CSR 
Daily retmn. Rt 9.29 113.24 9.01 

Table B.56: Bera-Jarque normality test when standardizing daily returns with cu­
mulative squared return daily standard deviation estimates with differing intraday 
returns (5% c.v is 5.99: 1% c.v. is 9.21). 

Correlation between 22 R^ti aJid R^ DM JY SF 

15 minute retmns (n= :96) 0.465 0.616 0.435 
30 minute retiums (n= 48) 0.507 0.599 0.465 
60 minute returns (n= :24) 0.582 0.571 0.573 
90 minute retiims (n= =18) 0.596 0.658 0.571 
120 minute retiUTis (n =12) 0.648 0.621 0.623 
180 minute returns (n =8) 0.716 0.617 0.701 

Table B.57: Correlation between CSR and daily squared return for different levels 
of aggregation. 
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Correlation between and DM .lY SF 

15 minute returns (n=96) 0.157 0.376 0.208 
30 minute returns (n=48) 0.178 0.377 0.092 
60 minute returns (n=24) 0.147 0.323 0.062 
90 minute returns (n=18) 0.075 0.208 0.066 
120 minute returns (n=12) 0.086 0.229 0.052 
180 minute returns (n=8) 0.059 0.137 0.042 

Table B.58: Serial correlation between CSR and its previous value for different 
levels of aggregation. 

Frequency DM JY SF 
15 minute returns (n= :96) 0.0483 0.0521 0.0720 
30 minute returns (n= 48) 0.0428 0.0534 0.0517 
60 minute returns (n= =24) 0.0649 0.0581 0.0475 
90 minute returns (n= =18) 0.0705 0.0655 0.0519 
120 minute returns (n =12) 0.0623 0.0633 0.0578 
180 minute returns (n =8) 0.0757 0.0822 0.0664 
daily returns (n=l) 0.0659 0.0472 0.0619 

Table B.59; Kolmogorov-Smirnov test of normal distribution for Rt/y/CSR^ (5% 
critical value is 0.0840; 1% critical value is 0.1007.) 

Frequency DM JY SF 
15 minute returns (n= :96) 0.0581 0.0688 0.0907 
30 minute returns (n= :48) 0.0573 0.0601 0.0432 
60 minute returns (n= :24) 0.0878 0.0757 0.0494 
90 minute returns (n= :18) 0.0958 0.0876 0.0587 
120 minute returns (n =12) 0.0948 0.1020 0.0716 
180 minute returns (n =8) 0.1204 0.1260 0.0742 
daily returns (n=l) 0.0689 0.0681 0.0819 

Table B.60: Kolmogorov-Smirnov test of chi-square distribution for i?^/CSRt (5% 
critical value is 0.0840; 1% critical value is 0.1007). 
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Table Notes 

Table B.45: Unconditional Variance Estimates. (1) Realized returns is the usual 
sample variance estimate. (2) Absolute returns variance estimate is the average of 
the squared of the standard deviation estimate for each day using the absolute value 
of the retiurn. (3) The cvunulative absolute return variance estimate (n = 96) is 
the average of the square of the cumulative absolute standard deviation estimates. 
(4) The cumulative square return variance estimate (n = 96) is the average over 
aU days. 

Table B.46; Daily standardized returns. The daily return is standardized by divid­
ing by the square root of the CSR variance estimate for the day. 

Table C.61: CAR and CSR estimates are variance estimates. 

Table B.49; Descriptive statistics for bias in CAR when comparing the CAR and 
CSR standard deviation estimates. 

Table B.50: Descriptive statistics for bias in CAR when comparing the CAR and 
CSR variance estimates. 

Table B.51: Joint distribution of CSR variance estimates and daily squared retiurns. 
Variance estimate from returns is the variance estimate when using the days which 
satisfy the restrictions for the column. The variance estimate using CSR daily 
estimates is the average CSR for the days which satisfy the restrictions for the 
column. 

Table B.52: GARCH estimates. The GARCH estimates were calculated using a 
likelihood function which assumed conditional normality. 

Table B.55: Coefficient of determination results. The parameter estimates for the 
regression are available from the author. 
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Figure B.23: DM relative price level changes for May 30, 1994. A low volatility 
day, with a small realized return for the day. 
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Figure B.24: DM relative price level changes for March 11, 1994. A high volatility 
day, but small realized return for the day. 
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Figure B.25: DM relative price level changes for July 21, 1994. A high volatiUty 
day, and a large realized return for the day. 
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Figiire B.26: DM relative price level changes for May 10, 1994. A high volatility 
day, and a large realized return for the day. 
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Figure B.27: DM daily realized returns. 
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Figure B.28: DM daily squared returns. 



Figure B.29; DM daily cumulative squared return variance estimates 
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Figure B.30: DM daily cumulative absolute return variance estimates 
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Figure B.31: DM daily realized return histogram. 
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Figure B.32: DM daily realized 
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Figure B.33: DM daily squared returns. 
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Figure B.34: DM cumulative squared return variance estimator histogram. 
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Figure B.35: DM cumulative absolute return variance estimator histogram. 



Corr 

Figiire B.36: DM realized squared returns correlogram. 
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Figure B.37: DM cumulative absolute returns correlogram. 
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Figure B.38: JY realized squared returns correlogram. 
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Figure B.39: JY cumulative absolute returns correlograin. 
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Figure B-40: SF realized squared returns correiogram. 
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Figure B.41; SF cumulative absolute returns correiogram. 
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Figure Notes 

Figiire 1-4: The starting level for the day for each graph has been normahzed to 
100, thus the difference between the starting and ending value represents the net 
appreciation or depreciation for the day in terms of logarithmic percentage. 
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Appendix C: Tables and Figures for Chapter 3 

Note: In the following tables, numbers is parentheses are heteroskedastic-consistent 
standard errors and numbers in brackets are t-ratios. 

Correlations DM JY SF 

Rt and Rt-i -0.0612 -0.1213 -0.0888 
|/2t| and -0.1257 0.0363 -0.1423 
Hj and -0.1278 0.0752 -0.1155 
CSRt and CSRt-i 0.1569 0.3765 0.2080 
Rf and CSRt 0.4649 0.6156 0.4353 

Table C.61: Serial Correlations and contemporaneous correlations (T=262). 



Daily Realized Returns DM JY SF 

Min -1.7194 -3.6904 -1.8069 
Max 1.9924 1.9046 2.1870 
Range 3.7118 5.5949 3.9939 
Mean -0.0152 -0.0154 -0.0373 
Median -0.0299 -0.0587 -0.0354 
Variance 0.3721 0.4466 0.4370 
Standard Deviation 0.6100 0.6683 0.6610 
Mean Deviation 0.4669 0.5060 0.5026 
Median Deviation 0.3860 0.4107 0.4124 
Skewness 0.2220 -0.4589 0.2080 
Excess Kurtosis 0.8079 3.0872 0.8078 

Table C.62; Descriptive statistics for realized returns (T=262). 

Daily Squared Daily Returns DM JY SF 
Min 0 0 0 
Max 3.9697 13.6187 4.7832 
Range 3.9697 13.6187 4.7832 
Mean 0.3709 0.4451 0.4367 
Median 0.1483 0.1624 0.1704 
Variance 0.3886 1.0289 0.5331 
Standard Deviation 0.6234 1.0144 0.7301 
Mean Deviation 0.3894 0.4638 0.4577 
Median Deviation 0.1309 0.1480 0.1572 
Skewness 3.0579 8.9118 3.0306 
Excess Kurtosis 10.3977 107.084 10.6857 

Table C.63: Descriptive statistics for squared daily returns (T=262). 
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CSR Variance Estimates DM JY SF 

Min 0.0443 0.0826 0.0983 
Max 3.5016 4.2520 1.7748 
Range 3.4573 4.1694 1.6764 
Mean 0.4026 0.5271 0.5089 
Median 0.2954 0.4014 0.4406 
Variance 0.1281 0.2104 0.0740 
Standard Deviation 0.3579 0.4587 0.2720 
Mean Deviation 0.2210 0.2798 0.2055 
Median Deviation 0.1079 0.1519 0.1466 
Skewness 4.4001 3-6680 1.5432 
Excess Kurtosis 30.021 19.942 3.4130 

Table C.64: Descriptive statistics for cumulative squaxed returns daily variance 
estimates (n=96). 

Rt = 11 + 

— a;-I-acj.i + 

Estimate DM JY SF 

-0.0156 
(0.0367) 
[-0.425] 

-0.0038 
(0.412) 
[-0.093] 

-0.0360 
(0.0406) 
[-0.886] 

UJ 0.0089 
(0.0097) 
[0.923] 

0.0392 
(0.0319) 
[1.229] 

0.0119 
(0.0193) 
[0.615] 

a 0.0166 
(0.0148) 
[1.124] 

0.0393 
(0.0367) 
[1.070] 

0.0063 
(0.0147) 
[0.430] 

(3 0.9587 
(0.0309) 
[31.068] 

0.8696 
(0.0841) 
[10.339] 

0.9666 
(0.0461) 
[20.981] 

Table C.65: GARCH estimates (using realized returns, T=262). 
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RT — M "t" 

A'F = UJ + A(F^R^_ 1^") + 0(T'F_ I 
w=i 

Estimate DM JY SF 
-0.0235 
(0.0367) 
[-0.640] 

-0.0181 
(0.0390) 
[-0.464] 

-0.0438 
(0.0413) 
[-1.060] 

u 0.0116 
(0.0135) 
[0.864] 

0.0104 
(0.0181) 
[0.575] 

0.0107 
(0.0221) 
[0.484] 

a 0.0369 
(0.0268) 
[1.377] 

0.1014 
(0.0468) 
[2.166] 

0.0208 
(0.0253) 
[0.819] 

0 0.9279 
(0.0557) 
[16.645] 

0.8555 
(0.0630) 
[13.586] 

0.9516 
(0.0573) 
[16.619] 

Table C.66; GARCH estimates using lagged cumulative squared returns instead of 
lagged squared error (T=262). 
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RT — L-T 'I' 

— a;H-a;o ^^t-i 

Estimate DM JY SF 

-0.0235 -0.0181 -0.0438 
(0.0367) (0.0390) (0.0413) 
[-0.640] [-0.464] [-1.060] 

U 0.0116 0.0104 0.0107 
(0.0135) (0.0181) (0.0221) 
[0.864] [0.575] [0.484] 

OCQ 0.0369 0.1014 0.0208 
(0.0268) (0.0468) (0.0253) 
[1.377] [2.166] [0.819] 

AI 0 0 0 

P 0.9279 0.8555 0.9516 
(0.0557) (0.0630) (0.0573) 
[16.645] [13.586] [16.619] 

Table C.67: GARCH estimates using lagged cumulative squared returns and cross 
terms (T=262). 
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RT — M "t" 
€t ~ iV(0,o-f) 

'• - (s®) 
^^§£-1 = ^+OLCT'F-I+0(^1-L\T-2-

Estimate DM JY SF 

U! 0.0153 
(0.0198) 
[0.772] 

0.0388 
(0.0458) 
[0.847] 

0.0352 
(0.0585) 
[0.602] 

a 0.1213 
(0.0907) 
[1.337] 

0.1741 
(0.1050) 
[1.659] 

0.1071 
(0.1230) 
[0.871] 

0 0.8386 
(0.1168) 
[7.183] 

0.7479 
(0.1611) 
[4.642] 

0.8206 
(0.2016) 
[4.071] 

Table C.68: Couditional heteroskedastic CSR volatility model (T=262). 

1=1 

— 00 + + ft + 

Estimate DM JY SF 
FPQ 0.0162 

(0.0120) 
[1.354] 

0.0691 
(0.0460) 
[1.503] 

0.0343 
(0.0185) 
[1.851] 

01 0.9564 
(0.0302) 
[-31.678] 

0.8628 
(0.0867) 
[9.957] 

0.0185 
(0.0369) 
[25.203] 

02 -0.8749 
(0.0520) 
[-16.841] 

-0.6627 
(0.1402) 
[-4.725] 

-0.8379 
(0.0589) 
[-14.229] 

Table C.69: ARMA estimates on cumulative squared retiuns (T=262). 



Correlations DM JY SF 

and CSR 0.465 0.616 0.435 
and GARCH 0.035 0.050 -0.003 
and GARCH-CSR 0.106 0.099 0.002 
and ARA'IA 0.074 0.095 0.031 

R^ and Hetero-CSR 0.089 0.097 0.025 

CSR and R:f 0.465 0.616 0.435 
CSR and GARCH 0.224 0.352 0.167 
CSR and GARCH-CSR 0.263 0.354 0.203 
CSR and ARiMA 0.261 0.389 0.275 
CSR and Hetero-CSR 0.254 0.383 0.277 

GARCH and R:^ 0.035 0.050 -0.003 
GARCH and CSR 0.224 0.352 0.167 
GARCH and GARCH-CSR 0.792 0.777 0.253 
GARCH and ARMA 0.745 0.789 0.413 
GARCH and Hetero-CSR 0.704 0.805 0.416 
GARCH-CSR and Kf 0.106 0.099 0.002 
GARCH-CSR and CSR 0.263 0.354 0.203 
GARCH-CSR and GARCH 0.792 0.777 0.253 
GARCH-CSR and ARMA 0.961 0.911 0.775 
GARCH-CSR and Hetero-CSR 0.924 0.957 0.740 
ARMA and R:^ 0.074 0.095 0.031 
ARMA and CSR 0.261 0.389 0.275 
ARMA and GARCH 0.745 0.789 0.413 
ARMA and GARCH-CSR 0.961 0.911 0.775 
ARMA and Hetero-CSR 0.993 0.989 0.998 

Hetero-CSR and Rf 0.089 0.097 0.025 
Hetero-CSR and CSR 0.254 0.383 0.277 
Hetero-CSR and GARCH 0.704 0.805 0.416 
Hetero-CSR and GARCH-CSR 0.924 0.957 0.740 
Hetero-CSR and ARMA 0.993 0.989 0.998 

Table C.70; Correlations of in-sample variance forecasts (T=262). 
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Currency Model MSE MAE LL HMSE GMLE 

DM Constant 0.3871 0.3894 9.8666 2.8138 0.0082 
DM GARCH 0.3870 0.3862 9.7135 2.9247 0.0075 
DM GARCH-CSR 0.3827 0.3869 9.7237 2.6873 -0.0066 
DM ARMA 0.3861 0.3960 9.8529 2.6095 0.0029 
DM Hetero-CSR 0.3906 0.3989 9.8504 1.8056 0.0146 
JY Constant 1.0250 0.4638 9.5624 5.1732 0.1906 
JY GARCH 1.0238 0.4597 9.4724 5.0515 0.1832 
JY GARCH-CSR 1.0197 0.4681 9.3993 4.3256 0.1512 
JY ARMA 1.0281 0.3946 9.8393 3.8105 0.1702 
JY Hetero-CSR 1.0298 0.4972 9.8246 3.5841 0.1659 
SF Constant 0.5310 0.4577 24.628 2.7847 0.1715 
SF GARCH 0.5314 0.4569 24.618 2.7526 0.1724 
SF GARCH-CSR 0.5382 0.4779 24.752 2.6094 0.1814 
SF ARMA 0.5444 0.4997 25.174 2.3212 0.1939 
SF Hetero-CSR 0.5462 0.5008 25.188 2.3602 0.1970 

Table C.71: In-sample statistical evaluation of volatility forecasts using squared 
return as measure of true volatility. 

Currency Model MSE MAE LL HMSE GMLE 

DM Constant 0.1276 0.2210 0.4594 0.7875 0.0901 
DM GARCH 0.1246 0.1995 0.3881 0.9049 0.0794 
DM GARCH-CSR 0.1204 0.1935 0.3652 0.8107 0.0646 
DM ARMA 0.1190 0.1941 0.3642 0.7597 0.0579 
DM Hetero-CSR 0.1201 0.1933 0.3609 0.7835 0.0579 
JY Constant 0.2096 0.2798 0.4555 0.7545 0.3597 
JY GARCH 0.1972 0.2372 0.3438 0.9891 0.3451 
JY GARCH-CSR 0.1882 0.2276 0.3034 0.9290 0.3260 
JY ARMA 0.1779 0.2397 0.3195 0.7053 0.3089 
JY Hetero-CSR 0.1790 0.2395 0.3164 0.6965 0.3080 
SF Constant 0.0737 0.2055 0.2677 0.2845 0.3245 
SF GARCH 0.0779 0.1953 0.2463 0.4112 0.3343 
SF GARCH-CSR 0.0733 0.1942 0.2408 0.3504 0.3249 
SF ARMA 0.0681 0.1928 0.2372 0.2727 0.3131 
SF Hetero-CSR 0.0681 0.1925 0.2368 0.2731 0.3129 

Table C.72: In-sample statistical evaluation of volatility forecasts using CSR as 
measure of true volatility. 



Cmrrency Model BJ (CSR) 

DM Constant 9.29 -

DM GARCH 8.06 0.050 
DM GARCH-CSR 6.22 0.069 
DM ARMA 8.17 0.067 
DM Hetero-CSR 10.67 0.064 
JY Constant 113.24 -

JY GARCH 88.47 0.124 
JY GARCH-CSR 64.09 0.125 
JY ARMA 106.64 0.151 
JY Hetero-CSR 87.73 0.147 
SF Constant 9.01 -

SF GARCH 8.66 0.028 
SF GARCH-CSR 9.01 0.041 
SF ARMA 10.23 0.076 
SF Hetero-CSR 10.82 0.077 

Table C.73: More in-sample statistical evaluation of volatility forecasts. 

Model 
Half Life Mean Lag 

Model DM JY SF DM^ JY SF 

GARCH 27.71 7.26 25.23 16.27 3.31 6.96 
GARCH-CSR 19.34 15.73 24.77 14.54 16.28 15.57 
ARMA 15.55 4.70 9.45 14.94 4.32 7.98 
Hetero-CSR 16.94 8.54 9.24 18.74 8.85 8.26 
GARCH (Jorion) 16.35 5.59 15.51 15.56 3.89 12.44 

Table C.74: Half life, mean lag, and median lag. 
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Currency DM JY SF 
Constant Variance 2.8138 5.1732 2.7847 
GARCH 2.9247 5.0515 2.7526 
GARCH-CSR 2.6873 4.3256 2.6094 
Hetero-CSR 1.8056 3.5841 2.3602 
Actual CSR 1.3393 0.8313 1.2023 

Table C.75: HMSE measures (based on squared return) for differing models. 
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Figure C.42: DM squared realized returns versus lagged squared realized returns. 
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Figure C.43: DM cumulative squared returns versus lagged cumulative squared 
returns. 
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Figtire C.44: DM daily realized returns. 

i 
Figure C.45: DM daily squared returns. 
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250 

Figure C.46: DM daily cumulative squared return vaxiance estimates. 



Figure C.4 7: DM GARCH and GARCH-CSR forecast variances. 
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Figure C.48: DM ARMA and Hetero-CSR forecast variances. 
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Figure C.49: DM GARCH-CSR and Hetero-CSR forecast variances. 
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Figure C.50: DM CSR variance estimates and Hetero-CSR forecast variances. 
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Figure C.51: JY GARCH and GARCH-CSR forecast variances. 
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Figure C.52: JY ARMA and Hetero-CSR forecast variances. 
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Figure C.53: JY GARCH-CSR and Hetero-CSR forecast variances. 
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Figure C.54: JY CSR variance estimates and Hetero-CSR forecast variances. 
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Figure C.55: SF GARCH and GARCH-CSR forecast variances. 
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Figure C.56: SF ARMA and Hetero-CSR forecast variances. 
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Figure C.57: SF GARCH-CSR and Hetero-CSR forecast variances. 
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Figure C.58: SF CSR variance estimates and Hetero-CSR forecast variances. 
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Appendix D: Tables and Figures for Chapter 4 

Average Estimates Average HMSE 
Model UJ a P Sq Ret CSR 

True 0.0153 0.1513 0.8086 - -

GARCH 
n = 262 0.2372 0.0299 0.3141 1.9790 0.0589 
n = 262 X 5 0.2657 0.0171 0.2452 2.0158 0.0506 
GARCH-CSR 
n = 262 0.0398 0.2370 0.6536 1.9444 0.0521 
n = 262 X 5 0.0297 0.1873 0.7300 1.9849 0.0418 
Hetero-CSR 
n = 262 0.0274 0.1484 0.7755 1.9916 0.0374 
n = 262 X 5 0.0167 0.1491 0.8046 1.9950 0.0378 

Table D.76: Simulations 1. Mean parameter estimates and average HMSE measures 
from simulations. 



186 

Average Parameter Average HMSE 
Model UJ a /? Sq Ret CSR 

True 0.1600 0.2000 0.4000 - -

GARCH 
n = 262 0.2124 0.0278 0.4302 1.9632 0.0533 
n = 262 X 5 0.2313 0.0152 0.3950 1.9949 0.0429 
GARCH-CSR 
n = 262 0.1220 0.2898 0.3941 1.9433 0.0514 
n = 262 X 5 0.1525 0.2269 0.3846 1.9850 0.0414 
Hetero-CSR 
n = 262 0.1781 0.1940 0.3520 1.9884 0.0372 
n = 262 X 5 0.1620 0.1968 0.3905 1.9940 0.0377 

Table D.77: Simulations 2. Mean parameter estimates and average HMSE measures 
from simulations. 

Number of HMSE-Sq Ret HMSE-CSR 
Better Forecasts GARCH GARCH-CSR GARCH GARCH-CSR 
Simulation 1: (u!,a, 0 )  = 
(0.02,0.15,0.81) 
n = 262 356 638 207 775 
n = 262 X 5 185 815 19 981 
Simulation 2: (a;, a, (3) = 
(0.16,0.20,0.40) 
n = 262 393 602 392 594 
n = 262 X 5 340 660 218 782 

Table D.78: Pairwise comparisons between GARCH and GARCH-CSR forecasts. 
The number of times each model produced better forecasts. (Note: Cases do not 
always add up to 1000 due to forecasts occasionally being equal.) 
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Number of HMSE-Sq Ret HMSE-CSR 
Better Forecasts GARCH Hetero-CSR GARCH Hetero-CSR 

Simulation 1: {u ,a ,P)  =  
(0.02,0.15,0.81) 
n = 262 470 530 4 996 
n = 262 X 5 447 553 0 1000 
Simulation 2: {u j ,  a ,  P)  =  
(0.16,0.20,0.40) 
n  = 262 487 513 18 982 
n = 262 X 5 488 512 7 993 

Table D.79: Pairwise comparisons between GARCH and Hetero-CSR forecasts. 
The number of times each model produced better forecasts. 

Number of HMSE-Sq Ret HMSE^CSR 
Better Forecasts GARCH-CSR Hetero-CSR GARCH-CSR Hetero-CSR 

Simulation 1: 
(a;, a, /?) = 
(0.02,0.15,0.81) 
n  =  262 518 482 72 928 
n = 262 X 5 519 481 172 828 
Simulation 2: 
(u j ,a , /3}  =  
(0.16,0.20,0.40) 
n  =  262 508 492 59 941 
n  =  262 X 5 506 494 181 819 

Table D.80; Pairwise comparisons between GARCH-CSR and Hetero-CSR fore­
casts. The number of times each model produced better forecasts. 
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Alternate Model's Average 
Alternative Base Percent Reduction in 

Treatment Forecast Forecast HMSE-Ret Sq HMSE-CSR 
Simulation 1; 
n = 262 GARCH-CSR GARCH 1.61 9.44 
n = 262 X 5 1.50 17.00 
Simulation 2: 
n = 262 GARCH-CSR GARCH 0.89 1.25 
n  = 262 X 5 0.48 3.38 

Simulation 1: 
n = 262 Hetero-CSR GARCH -0.73 30.85 
n  = 262 X 5 0.98 24.41 
Simulation 2: 
n = 262 Hetero-CSR GARCH -1.37 23.97 
n  =  262 X 5 0.01 11.20 

Simulation 1: 
n = 262 Hetero-CSR GARCH-CSR -2.48 22.24 
n  = 262 X 5 -0.54 8.62 
Simulation 2: 
n  =  262 Hetero-CSR GARCH-CSR -2.32 21.82 
n  — 262 X 5 -0.48 7.90 

Table D.81: Pairwise comparisons between forecasts. The average percentage im­
provement in forecasts. 
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Figure D.59; Simvilations 1 (T = 262), Gaussian kernel density estimates for u for 
Hetero-CSR and GARCH-CSR, (true value is 0.0153). 
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Figure D.60: Simulations 1 (T — 262), Gaussian kernel density estimates for a for 
Hetero-CSR and GARCH-CSR, (true value is 0.1513). 
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Figure D.61: Simulations 1 (T = 262), Gaussian kernel density estimates for for 
Hetero-CSR and GARCH-CSR, (true value is 0.8083). 
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Figure D.62: Simulations 1 (T = 262 x 5), Gaussian kernel density estimates for lj 
for Hetero-CSR and GARCH-CSR, (true value is 0.0153). 
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Figure D.63: Simulations 1 (T = 262 x 5), Gaussian kernel density estimates for a 
for Hetero-CSR and GARCH-CSR, (true value is 0.1513). 
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Figure D.64: Simulations 1 (T = 262 x 5), Gaussian kernel density estimates for (3 
for Hetero-CSR and GARCH-CSR, (true value is 0.8083). 
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FigTire D.65: Simulations 2  {T  =  262), Gaussian kernel density estimates for u  for 
Hetero-CSR and GARCH-CSR, (true value is 0.02). 
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Figure D.66: Simulations 2 (T = 262), Gaussian kernel density estimates for a for 
Hetero-CSR and GARCH-CSR, (true value is 0.20). 
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Figure D.67: Simulations 2 (T = 262), Gaussian kernel density estimates for [5 for 
Hetero-CSR and GARCH-CSR, (true value is 0.40). 
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Figure D.68; Simulations 2 (T = 262 x 5), Gaussian kernel density estimates for u 
for Hetero-CSR and GARCH-CSR, (true value is 0.02). 
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Figure D.69: Simulations 2 (T = 262 x 5), Gaussian kernel density estimates for a 
for Hetero-CSR and GARCH-CSR. (true value is 0.20). 

Density 

3.5 

Hetero-CSR 

2.5 

GARCH-CSR 

0.5 

0.8 0.2 0.4 0.6 

Figtnre D.70: Simulations 2 (T = 262 x 5), Gaussiaji kernel density estimates for (5 
for Hetero-CSR and GARCH-CSR, (true vaiue is 0.40). 
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Figure D.71: Simulations 1, Gaussian kernel density for GARCH-CSR a; estimates, 
(true value is 0.0153). 
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Figiire D.72; Simulations 1, Gaussian kernel density for GARCH-CSR a estimates, 
(true value is 0.1513). 
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Figvure D.73: Simulations 1, Gaussian kernel density for GARCH-CSR (3 estimates, 
(true value is 0.8083). 
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Figure D.74: Simulations 2, Gaussian kernel density for GARCH-CSR u estimates, 
(true value is 0.02). 
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Figure D.75: Simulations 2. Gaussian kernel density for GARCH-CSR a estimates, 
(true \'alue is 0.20). 
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Figure D.76: Simulations 2. Gaussian kernel density for GARCH-CSR d estimates, 
(true value is 0.40). 
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Figure D.77: Simulations 1. Gaussian kernel density for Hetero-CSR ui estimates, 
(true value is 0.0153). 
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Figure D.78: Simulations 1. Gaussian kernel density for Hetero-CSR a estimates, 
(true value is 0.1513). 
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Figure D.79: Simulations 1. Gaussian kernel density for Hetero-CSR 3 estimates, 
(true value is 0.8083). 
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Figure D.80: Simulations 2. Gaussiein kernel density for Hetero-CSR u estimates, 
(true value is 0.02). 
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Figure D.81: Simulations 2, Gaussian kernel density for Hetero-CSR q estimates, 
(true value is 0.20). 
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Figure D.82: Simulations 2, Gaussian kernel density for Hetero-CSR /3 estimates, 
(true value is 0.40). 
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