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Abstract 

This dissertation studies intradav and daily foreign exchange market volatility. 

First, we address how best to model the intraday seasonality and the serial corre­

lation in return volatihty. We find there is no gain from smoothing the intraday 

seasonal volatility pattern. A model that jointly estimates the intraday seasonal 

pattern and conditional heteroskedasticity imderperforms models that remove sea­

sonal variance through deseasonaiization and then model conditional heteroskedas­

ticity with a GARCH model. Secondly, we show how intraday data can be used to 

create daily volatihty estimates. Results show intraday data allow for daily volatil­

ity estimates which are independent of a volatihty d\Tiamics specification. Lastly, 

we show that intraday data improve the performance of one-step ahead forecasts 

based on a one year sample and show that the results are consistent %\ith Monte 

Carlo simulations. 
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Chapter 1 

Conditional Heteroskedasticity and Intraday 
Seasonal Volatility in the Foreign Exchange 
Market 

1.1 Introduction 

There is a growing area of research in finance which deals with modeUng volatihty 

of asset markets. With the construction of high frequency data, it is now possible 

to model volatility in a more precise manner. Previously, one could only address 

volatihty on a week by week or day by day time frame. VVhUe this may be fine for 

some applications, like options pricing, it may not be for other applications since 

information about the natm-e of the market is unused. 

New research is now possible due to the collection of data which is of a higher fire-

quency than previously used. W'Tiereas previous studies used weekly or daily data, 

data sets with prices ever\' few minutes are now available which allow researchers 

to look at new market dynamics. For example, in high frequency exchange rate 

data, it has been observed that price changes vary a great deal per day. That is. 

depending on the time of day. the volatility of the exchange rate market fluctuates. 

This pattern is completely unobservable when working with daily data. The effect 

is very similar when working with sales data for firms. There is a big end of the 

year efiect on sales, and that is known as the Christmas/Holiday shopping season. 

In a regression analysis we need to take hohday sales into account, so too do we 

have to adjust our high frequency exchange rate models for a periodic intraday 

pattern. In this case, we have a daily pattern in the veiriance of the exchange rates. 



18 

One of the recent advances in modeling financial time series has been the work 

of Engle (1982) and Bollerslev (1986) for the ARCH model. This class of models 

estimates parameters more efficiently by directly modehng the second moment of 

the model (or variance, or volatihty), in addition to the first moment.' In financial 

time series data volatility appears to be time varying; there are periods of high 

and low volatility. Since financial models often make assumptions on the nature of 

variance it is important that one uses a class of models which allow for time-varying 

variance. Assuming that the data has constant variance when it does not could 

lead one to make incorrect statistical inference. The ARCH framework is appealing 

for the direct nature of its modeUng of time-varying variances. 

This chapter tries to address significance of intraday volatility seasonality when 

we are modeUng exchange rates with an ARCH framework. We address whether 

intraday seasonality matters, and if it does how best to handle it. To show which is 

the best way to model this seasonality, we estimate a variety of models and evaluate 

their effectiveness in forecasting out-of-sample. 

1.1.1 Literature Review 

The approach of this paper is not completely ad hoc. For one. it has been estab­

lished that high frequency returns do have an intraday seasonal variance pattern.' 

For this reason, it is important to model this seasonaUty. In addition, there is a well 

estabhshed hterature which looks at volatihty transmission.^ This tries to explain 

why there are periods of high and low volatihty in financial markets. A popular 

'A good survey Eirticle is Bollerslev, Chou, and Kroner (1992). 
-See Dacorogna et. al. (1993). 
^See Engle, Ito, £ind Lin (1988). 



19 

explanation is that there are periods of high and low 'news' activity. As news ar­

rives to a market, agents will have differing interpretations of the news and it takes 

time for a new equilibrium to result. The news process is the cause of changes in 

prices and price expectations and ARCH models are often used to model the ar­

rival of news to the market. Therefore, it seems appropriate to decompose volatility 

into two distinct components, an intraday seasonal component and a news arrival 

component. 

Secondly, but not of less importance, is that current research is yielding am­

biguous results. It has been shown by Drost and Nijman (1993) that there is a 

theoretical relationship between parameter estimates from a GARCH model as the 

sampling rate for data becomes less frequent. That is, the parameter estimates us­

ing daily returns will be related to the parameter estimates when two-day returns 

are used. Andersen and BoUerslev (1994) work with five minute Deutschemark 

exchange rate data and show that this theoretical relationship does not always 

hold. 

When GARCH models are estimated with returns calculated on small intervals 

(minutes), Andersen and BoUerslev (1994) find the GARCH parameter estimates do 

not follow the Drost and Nijman (1993) prediction. Also, the parameter estimates 

yield unreasonable volatility persistence. (VolatiUty persistence is a measure of 

how long a shock in the variance takes to dissipate. It can be measured as a 

haJf-life or as a median half-life. In either case, given the GARCH parameters, 

there is a theoretical relationship which yields these half-Uves.) Interestingly, when 

longer time periods (daily and above) are used to calculate returns, the Drost 

and Nijman (1993) theoretical predictions hold and volatility persistence estimates 

are more reasonable. It is also worth noting that Andersen and BoUerslev (1994) 
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attempt to correct for intraday seasonality, but still obtain results which they call 

"unpredictable, occasionally imprecise, and generally difficult to interpret." 

1.1.2 Effects of Deseasonalization 

The most common way to address the intraday seasonality in foreign exchange re­

turns is to remove it by deseasonalization. This is the approach taken in Andersen 

and BoUerslev (1994) and more recently by Ghose and Kroner (1997). It is not clear 

that this approach is the best way to model volatility dynamics. When we desea-

sonalize intraday returns, we are assuming that what is important is to compare 

a return with the average retinrn for that time period. It is a relative comparison 

that is important; all indications of absolute magnitude are lost. 

To illustrate this point, consider the days Friday, February 11, 1994 and Monday, 

December 6, 1993. In both cases, if one divides the fifteen minute returns of those 

days, by the corresponding sample standard deviation for each return, the difference 

between the raw retvirn and the deseasonalized returns varies greatly. When the 

intradaily returns for December 6, 1994 are deseasoned and squared, they appear 

to be very similar to the raw squared returns (see Figures A.l and A.2). In fact, 

the correlation of squared retvurn and the deseasonalized square return is 0.92. For 

February 11, 1994, deseasonalization causes the returns to appear to be different. 

When deseaonalized, the early morning returns and late night returns are much 

larger relative to the afternoon returns (see Figvnres A.3 and A.4). The correlation 

of the squared retiurns and the deseasoned returns is 0.45. 

The days just discussed were chosen as extreme examples to illustrate the point 

that days will look different depending on whether one deseasonalizes or not. The 

question then becomes whether, if one is interested in forecasting, is it best to (1) 
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deseasonalize returns, model volatility, create forecasts, seasonalize the forecasts 

or to (2) model seasonality and volatility jointly? This paper investigates whether 

this sequential modeling approach performs better than a joint modeling approach 

where the intraday seasonality and the conditional heteroskedasticity are dealt with 

simultaneously. 

1.1.3 Outline of Chapter 

This paper's goal is to compare various methods of modehng intraday seasonality. 

Some models have already been used in the context of exchange rates (Andersen 

and Bollerslev (1994)), while other models will be extended to allow for a intraday 

seasonal volatility component. Regardless, there has yet to be a systematic analysis 

of which models perform better. Such a study is useful to guide theoretical research 

in this area and further points to new undiscovered dynamics. 

The comparison of various models will require some thought. Since the true 

variance process for returns is unobserved, it is not possible to calculate an R- as 

is often done with estimates from a standard regression. Instead, we will evaluate 

models statistically with likelihood based criteria and on out-of-sample forecast 

abihty. 

This paper analyzes various models and determines which method for handling 

the intraday seasonality and conditional heteroskedasticity works best for forecast­

ing of volatility. 

The rest of the paper is organized as follows: Section 1.2 presents various models 

which incorporate intraday seasonality and conditional heteroskedasticity. Section 

1.3 discusses the data. Section 1.4 discusses how the models will be ranked or 
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compared, Section 1.5 presents the empirical results, and Section 1.6 concludes and 

summarizes. 

There have been two general methods for deahng with the seasonality in intraday 

returns. The first approach is to use the sample variance while the second is to 

create a smoothed estimate. Both are discussed below; two variants of the smoothed 

approach are presented. 

Model 1: Sample Variance 

The most straight forward measure of the intraday seasonaUty is to calculate 

the sample variance for each intraday time interval. Suppose that our returns are 

defined to be Rt^t where t = \ ...T represents the day, and i = 1... n represents 

the time of day. For example, with fifteen minute data, n = 96 and the 12AM 

return for day 1 of the sample would be denoted Similarly, /?i,2 represents 

the 12:15AM return for day 1. Defining 7(2) to be the variance of the returns at 

time i. we sum over all days T and obtain 

This approach was used in Ghose and Kroner (1997) to deseasonalize their returns. 

With their approach, to standardize the 9AM returns, one just divides the returns 

by the standard deviation of the 9AM returns. 

1.2 Models 

1.2.1 Seasonality 
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Model 2: Fourier Series 

The second method is to use paxametric smoothing. One fits the time of day 

variance to a fourier expansion (a similar approach has been used by Andersen and 

Bollerslev (1996) to model intraday seasonahty). In this case we have 7(1) being a 

function of sines and cosines 

7m( i )  =  +  c o s ( k i )  +  6 f c  s i n ( k i )  
^ A:=l fc=l 

The number of sine and cosines is determined by m, which is left to the discretion 

of the researcher. The series is defined when the weights (a^ and 6^) are estimated. 

There are a couple of approaches to fit a fourier series to the intraday variance. 

One is to use the sample variances (estimated from Model 1) and then fit a fourier 

series to the ninety-six variances. The problem with this approach is that it assigns 

equal importance to each variance estimate. Unfortunately, the confidence intervals 

for the variance estimates are much larger when the US market is open than when 

it is closed. To allow all variances to be equally important is inefficient. We can 

addressed this inefficiency with appropriate weighting of the variances. 

Another approach to fitting the fourier series is to use the individual returns 

rather than the ninety-six sample variances. In this case, given that the mean 

return is zero for each cross section'*, we can estimate the intraday variance by 

using squared returns. The fourier series solution for ojt is now extended to take 

"•Results are not reported. 
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care of the T observations per cross section interval, i.  

1 " ^ , 
" 48 X r ̂  ̂  

^ £ 53 sin(A:z) 

One of the benefits of fourier series is that all the terms are orthogonal to one 

another. This prevents problems of multicolUnearity as the number of terms (i.e. 

m) can be increased with ease. 

Model 3: Exponential Seasonality 

A variation on the fourier series method is to use polynomials. 

7(z) = exp(co + Cii H h c„2") 

The approach here is similar to that used by Dacorogna et. al. (1993). although 

there are two distinct changes. First, the polynomial is continuous throughout the 

entire day. Dacorogna et. al. (1993) use a pieced polynomial, similar in natm"e 

to a spline polynomial regression, with restrictions on the coefficients. The second 

difference is that the polynomial is exponentiated to guarantee positive variances. 

In addition we require that 7(1 = 1) = 7(2 = 96). This forces 7(z) to have the 

same value at 0 GMT and 24 GMT and is guaranteed by imposing the restrictions 

on the Cn coefficients.^ 

®If the time index i cycles from 0 to 1 (rather than 1 to 96), then the restriction is satisfied 
when Co = cq + •••+ Cn. A similar linear restriction is created if the time index is from -I to 1. 
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One of the problems with estimating a high order polynomial is that of multi-

coUinearity. The time variables become more and more coUinear as the order of 

the polynomial is increased. To see this we can write 

f \  
1 

\ ^ i  

As i cycles through 1 to 96, for example and while not identical, appear to 

be so in a numerical (or computational) environment. Our vector j" becomes more 

correlated with as n increases. A way to reduce this multicollinearity is to use 

a time index which cycles from -1 to 1 instead of 1 to 96. While this method is not 

perfect, it has the effect of making and more orthogonal to each other. 

In order to estimate seasonal exponential, the same approach for the ARCH 

class of models is used. As a result, one can think of this seasonaUty as being 

conditionally seasonal. The model and its corresponding log likehhood is 

f^t.i — Q.i 

et.i ~ N(0,ali) 

oh = Exp(co + Ci i H h Cni") 

log(L) = log(7r) - Y. log(cr2 J - Y. 
^ t t 

which obtains consistent estimates for the Cfc's. 
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1.2.2 Conditional Heteroskedasticity 

The serial correlation in foreign exchange voIatiHty has been captured by the ARCH 

(or GARCH) class of models which were developed by Engle (1982) and BoUerslev 

(1986). This class of models can be thought of as an Autoregressive Moving Average 

(ARABIA) model in variance and are presented in brief form below: 

Model 4; GARCH(1,1) 

1.2.3 Sequential Modeling: Deseasonalization 

The most common method to handle the intraday volatility seasonality has been 

to deasonahze the returns before modeling. This procedure is a sequential one. and 

involves three steps: 

1. Deseasonalize the data with an estimate for the time specific variance. Using 

our notation of 7(4) for our estimate of intraday variance, then our deseasoned 

returns are 

Vt = ft 

cjf = uj + + Pcr'j_i 

Model 5: ARCH(IO) 

Vt = ft 

af = + Q!ioe£_io 
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In this step, one can use either the time-of-day sample variance or a smoothed 

variance estimate. 

2. Model the deseasoned returns. Rt,i, with a GARCH or ARCH model, and 

obtain variance estimates 

3. We are not interested in a deseasoned volatility forecast, but a true volatility 

forecast. As a result, one needs to take the forecasts from the deseasoned 

analysis and reseasonaiize them. This is done by multiplying the variance 

forecast by a the time specific sample standard deviation. Specifically. 

1.2.4 Simultaneous Modeling: Seasonality and Conditional 

Heteroskedasticity 

An alternative approach from the one discussed above is to jointly (or simultane­

ously) model the seasonality and conditional heteroskedasticity. To investigate this 

approach, we will estimate a number of joint seasonal/heteroskedastic models. 

Model 6: PGARCH(1,1) and PARCH(IO) 

The first model is the Periodic GARCH (P-GARCH) model (and similarly P-

ARCH) from Bollerslev and Ghysels (1996). This model is a GARCH model where 

the variance pareimeters vary depending on the time of day. In our case, we will 

limit the seasonality to two terms for simplicity. This model has two sets of GARCH 

parameters which are estimated with two dummy variables. One dummy captures 

the effects of the US market being open, while the other dummy isolates the effects 
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of the US market being closed. 

^t,i — 

1  

II 

1 °  
f  

0  II 

1  

The US maxket is assumed to be open from 1300 to 2300 GMT. Melvin (1995) 

describes tMs time period as the time period from which the New York financial 

center opens to when the San Francisco financial center closes.® While the curren­

cies are traded 24 hours a day, this particular window seems to captiure the major 

activity of American traders. This divides a day's ninety-six observations into forty 

retmns for when the US maxket is open, and fifty-sLx observations for when the 

US market is closed. In Bollerslev and Ghysels (1996), the foreign exchange max­

ket returns were partitioned into two returns per day; a morning return and an 

afternoon return. 

The PARCH model is similar to the PGARCH, with the variance equation 

changed from a GARCH to ARCH framework. Otherwise, there is no difference 

between the two models. 

®We do not correct for daylight savings. In the summer, the US markets open one liour earlier 
relative to GMT. The focus here is to approximate the effect of the US market on currency 
volatility, not to exhaustively study it. 
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Model 7: Conditionally Periodic GARCH (CP-GARCH) and 

Conditionally Periodic ARCH (CP-ARCH) 

The second seasonal/heteroskedastic model is designed as a GARCH model 

where the "u;" term varies with the time of day. In fact, we assmne that "u" 

varies proportionally to the intraday seasonal variance. This model consists of 

two steps. First, the seasonal intraday variance is estimated, either using the 

sample variance for each time of day or the exponential seasonaUty. Secondly, 

the conditional heteroskedasticity is modeled with the seasonal intraday variance 

estimates obtained from the first step being placed in the variance equation. 

The second stage of the model is: 

= Q. i  

while in ARCH terms, we get: 

^t.i = €.ii 

This model does not estimate the seasonality when modeling the volatility dynam­

ics, but takes it as given (and hence the name conditionally periodic). The u term 

is necessary to deflate the 7t in the variance equation. In a GARCH model, the 

relationship between the sample variance and the parameter estimates is given by 

^ ~ therefore the a; term in this model allows the a and p parameters 

to vary freely. 
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Model 8: Seasonality & ARCH(IO) (S-ARCH) 

The last seasonaJ/heteroskedastic model is just the addition of the seasonal 

exponential model to the ARCH(IO) model, and is the univariate equivalent to the 

model in Aradhyvda and Tronstad (1994). This model jointly estimates intraday 

seasonality and conditional heteroskedasticity and is: 

Vt = ft 

erf = exp(co + CiZ H h Cni") + 

+ aioe^_io 

In this model, the seasonal effects are independent of the dynamic effects. As a 

result, there are no feedback effects of the lagged terms on the seasonal terms. A 

GARCH specification would allow for feedback between seasonality and conditional 

heteroskedasticity, and such it is much more difficult to interpret the seasonal terms 

(see LaFVance and Burt 1983). 

1.3 Data 

The data consists of 262 daily observations for the DoUar-Deutschemark, Dollar-

Swiss FVanc, and Dollar-Yen, from September 15, 1993 to September 16, 1994. The 

sample consists of all weekdays with the exception of December 24 (December 25 

and January 1 occurred on weekends.) Figures A.5. A.6, and A.7 show the exchange 

rates used in this study. 

For each day, there are returns for every fifteen minutes, yielding a total of 

ninety-six observations per day. The returns are calculated as log returns and are 
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multiplied by 100. The notation we wiU use will be 

Rt,i = logCPu) - log(Pt.(j_i)) 

where t = 1, 2,.... T, and i = 1,2,..., 96. The t variable corresponds to day in 

the sample, while i represents the intraday cycle (there is no correction for daylight 

savings time). For example, the first fifteen minute return for day 3 at 12AM is 

calculated as = log(P3j) — log(P2,96), while the fifteen minute return for day 

3 at 12:15AM is Rz,2 = log(P3,2) - log(P3.i). 

1.4 Model Selection 

There are many ways of evaluating competing models. Statistically, one can choose 

the model with the highest mean likeUhood. Alternatively, one may view the true 

value of a model in terms of its abihty to perform out of sample. Below we discuss 

the two methods which will be used to rank models statistically. 

1.4.1 Likelihood Ratio Tests 

Where one model nests another, we can just use a likelihood ratio test to determine 

model selection. The formula for a Ukehhood ratio test is given by 

^LR = -21ii A 

where A = LifLo, where LQ is the Ukelihood function for the unrestricted model, 

Li is the Ukehhood function for the restricted model and is distributed asymp­

totically as Xfc (where k is the number of restrictions). In the results section, we 
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have the mean log-likelihood for the varioiis models. Simple algebra yields the test 

statistic in terms of the mean log-likehhood. 

^LR = —2 In A 

i-iQ 

= 2n(Mean In Lq — Mean In Li) 

where n is the number of observations. 

1.4.2 Likelihood Dominance Criterion 

We are also interested in comparing models which are not nested. The likelihood 

dominance criterion proposed by Pollack and Wales (1991) provides a method for 

model selection when this occurs. A quick summary is provided below. 

Let hypothesis have ni parameters and let hypothesis H2 have 722 parameters 

where rii <712. Then, the likelihood dominance criterion: 

• Prefers Hi to Ho if L2 -  Li < c ( " 2 + i ) - C(n, - n )  ̂ 

• Indecisive between Hi to Ho if > L2 - Li > g("--+i)-c(nt+i) 

• Prefers H2 to Hi if L2 - Li > c(n2-n,H-i)-c(i) 

where Lj is the UkeUhood for model j and C{m) is the critical value of a chi-square 

with m degrees of freedom. 
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1.4.3 Heteroskedastic Mean Square Error 

The last method to compare rival models is a variant of the standard mean squared 

error (MSE) measure. Since we are dealing with time series with non-constant 

variance, it is appropriate to alter the MSE calculation so that large retiirns do 

not dominate the calculation. Bollerslev and Ghysels (1996) first proposed using a 

heteroskedastic consistent MSE measure: 

, r r 9 T 2 

HMSE = -Y: 
^  t = l  

A-2 

where ef is the realized volatility and af is the forecast of the volatility. We wiU 

use HMSE as an indicator of how well the models perform out of sample. 

1.5 Empirical Results 

The data are divided into two sets; the first for estimation, the second for out of 

sample forecasting. The estimation (or modehng) data set consists of 202 days, 

leaving 60 days for evaluating forecasts. Thus roughly 30% of the data is set 

aside for out-of-sample forecasting. Tables A.l and A.2 provide the descriptive 

statistics for the modeUng and forecasting data sets. The parameter estimates for 

all the models discussed below are provided in Tables A.3 to A.25. The mean log 

likelihood estimates for each model is provided in Table A.26; the sample kurtosis 

resulting from using the estimated variances are provided in Table A.27. 
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1.5.1 Seasonality 

The intraday retiirns clearly exhibit seasonality. As evident in Figures A.8, A.9, 

and A.IO, the variance during the day rises after 12 GMT (8 EDT) and starts to fall 

at 18 GMT (14 EDT) for the three currencies. A likelihood ratio test of intradaily 

homoskedasticity versus intradaily heteroskedasticity rejects homoskedasticity. The 

test is a chi-square test with 190 degrees of freedom. DM test statistic is 6,519. for 

JY it is 2,948, and for the SF it is 7,051; the 1% critical value is 238. 

Similarly, intradaily homoskedasticity is rejected against the alternative of the 

exponential seasonaUty model. The estimated parameters are presented in Ta­

ble A.3. Graphs of the smoothed variance estimates are shown in Figures A. 17. 

A.19, and A.21. 

As for the the merits of a smoothed variance estimate in comparison with the 

sample variance estimates, the smoothed estimates fare poorly. Using the likelihood 

dominance criteria for non-nested hypothesis, we reject the smoothed estimates in 

favor of the sample variance estimates for all three currencies (see Table A.28). 

To get a better understanding of why a likeUhood ratio test rejects the smoothed 

estimates in favor of the sample variance estimates, one just needs to compare 

the smoothed estimate with the sample variance estimates. While to the eye. the 

smooth estimates are "close" to the sample variance estimates, they are not. In fact 

a large number of smoothed variance estimates are not within the 99% confidence 

interval for the sample variance. Between one-third to half of the exponential 

estimates are outside the 99% confidence interval. Given so many estimates are 

so far away from the sample variance estimates, it is understandable we reject 

exponential seasonality in favor of sample variance seasonality. 
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It turns out that using another smoothing technique or increased number of 

parameters does not improve the smooth intraday variance estimates. We also 

estimated another smoothed estimator, a fourier series expansion for comparison. 

The fourier series expansion with about the same number of degrees of freedom as 

the exponential model estimated (m = 4) (see Figures A. 11, A. 13 and A. 15) was 

estimated along with (m = 9) (see Figures A. 12, A. 14 and A. 16) which has more 

than twice the nimiber of parameter estimates. It is clear to the eye that having a 

greater number of sines and cosines (with m = 9) provides a better fit. However, we 

still find that with m = 9, there are still roughly 40% of the time specific variance 

estimates outside the 99% confidence interval of the sample variance estimates (see 

Table A.29). 

We conclude that the parametric form of the seasonality is not an issue since two 

parameterizations do so poorly. Therefore, we proceed with exponential seasonality 

since it can be more easily nested in larger models. Given that higher order number 

of fourier terms only slightly improve the fit, and since higher ordered polynomials 

suffer from multicoUinearity, we Umit the order of the exponential seasonal model 

to degree nine.(We do not investigate the benefits of changing the degree of the 

polynomial.) 

1.5.2 Deseasonalization 

The resvdts of deseasonalization are encouraging. The ARCH, GARCH, P-ARCH, 

and P-GARCH models all improve statistically when the returns are deseasonahzed 

first, the conditional heteroskedasticity is modeled, and the variance forecasts are 

reseasoned. The likeUhood dominance criterion model selection procedure favors 
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the three step deseasonahzing the returns over modeUng the raw returns (see Table 

A.30) and is consistent with the results obtained in Andersen and BoUerslev (1994). 

Secondly, using the sample variance to deseasoneilize the returns again out­

performs using the smoothed variance estimates from the exponential seasonahty 

model. In the four models mentioned above: ARCH, GARCH, P-ARCH. and P-

GARCH all perform better when the sample variance is used (see Table A.31). 

Lastly, as seen in the tables which report coefficient estimates, there appears to 

be little variation in the parameter estimates when deseasonahzing with exponential 

seasonality or sample standard deviation. While no formal tests are presented here, 

the variations between parameter estimates are well within the heteroskedastic 

adjusted standard errors for the parameter estimates. 

1.5.3 Se£isonality &: Heteroskedasticity: Joint Modeling 

There are three attempts to incorporate the intraday seasonality and the condi­

tional heteroskedasticity. In aU cases, the addition of the seasonality term in the 

ARCH/GARCH freimework improves the models. We discuss each below. 

Addition of Seasonality 

As is to be expected, the addition of a seasonal term in a conditional heteroskedastic 

model improves modehng. The P-GARCH. P-ARCH, CP-GARCH, CP-ARCH, 

and S-ARCH models aU fail to be rejected versus the alternative of GARCH or 

ARCH on raw returns (see Table A.32). 
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S-ARCH vs. CP-GARCH/P-GARCH 

As is expected, S-ARCH is favored over P-GARCH framework for all three curren­

cies (see Table A.33). Since there is so much variation in the intraday seasonaUty. 

a model which captures it well wiU outperform a model which is more restrictive 

in its seasonality. Since P-GARCH has only two "states", the flexibility of the S-

ARCH framework is dominant. However, the case is more ambiguous in comparing 

S-ARCH and CP-ARCH/CP-GARCH. When one uses time of day variance for the 

conditional periodic variance, there is no clear winner (see Table A.33). 

S-ARCH vs. Desectsonalization 

Interestingly, at this time, there appears to be little gain in modehng the intraday 

seasonality and the conditional heteroskedasticity jointly in comparison with de-

seasonalization. All three classes of models (P-ARCH. CP-ARCH, and S-ARCH) 

are rejected in favor of the three step procedure: deseasonahzation. modeling, and 

reseasonahzation when sample variance is used as the variance to deseasonahze (see 

Table A.33). The gains from using the sample variance to deseasonahze are greater 

than the benefits of simultaneous modeUng with exponential seasonahty. 

One interesting observation from the S-ARCH estimation is that of the estimated 

seasonality. When adjusted for the conditional heteroskedasticity, the seasonail pat­

tern estimated is much more volatile than that of the seasonal exponential model. 

As shown in Figures A. 18, A.20 and A.22, the expected seasonahty conditional on 

time of day is much more peaked. 
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1.5.4 ARCH vs. GARCH 

For many empirical studies, financial retm^ns are modeled with a GARCH model. It 

is of interest to see if one would be better off with an ARCH specification instead. In 

our case here, for the majority of the model specifications, the likelihood dominance 

criterion favors the ARCH(IO) over the GARCH(1,1) specification (see Table A.36). 

With the exception of the JY, the returns are better modeled when deseasonalized 

with sample variance with ARCH than with GARCH. The conditionally periodic 

GARCH models (with or without NY dummies) are also rejected, for all three 

currencies, in favor of a conditionally periodic ARCH specification. 

1.5.5 Does Deseasonalization Capture Everything? 

The final question we ask is whether we should treat aU returns equally. When 

we deasonalize returns and then estimate a GARCH model, we are assuming that 

the volatility dynamics are the same within the day. We know that when the NY 

market is open, we have much greater volatility. Perhaps the dynamics of volatility 

vary when the NY market is open as well. 

Overwhelmingly, the models are improved when a diunmy is used as an indicator 

of when the NY market is open (see Table A.37). We would expect that the P-

GARCH model is favored over the GARCH model on raw returns. After all. we 

know that the volatility is much larger when the NY market is open and a GARCH 

model on raw returns does not address this point. However, it is not expected that 

after deseasonalizing the returns that there is still a NY effect. In the deseasoned 

GARCH, deseasoned ARCH, CP-GARCH, and CP-ARCH models all fail to reject 

that dummies for NY should be included. The likelihood dominance criterion favors 
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NY dummies being included for all four classes of models on all three currencies. 

We are left to conclude that the NY market behaves differently than the London 

and Tokyo markets. 

1.5.6 Forecasting Performance 

The results obtained with the modeUng data set hold up well out of sample (see 

Table A.39 for all the results discussed in this section). Using HMSE as the measure 

for model comparison, ail the results, with the exception of the NY diunmies being 

significant remain vahd. 

We find that out of sample the three step deseasonahzing procedure out performs 

the joint models. Still, the sample variance seasonality outperforms the exponential 

seasonahty. The sample variance appears to be quite stable as a predictor of fu­

ture variance. One would think that perhaps a smoothed variance estimate would 

perform better out of sample, but it does not. 

Again, the joint seasonal/heteroskedastic models outperform those which incor­

porate either seasonality or heteroskedasticity but not both. 

Lastly, the NY effect appears to be less pronounced. Ignoring the raw ARCH 

and GARCH models, the addition of the NY dummies improves the forecast error, 

even after deseasonalization. For the DM, both the ARCH and GARCH mod­

els deseasonalized with sample variance and exponential seasonality have reduced 

HMSE. For the JY, the GARCH models improve with the NY dummies regardless 

of method of deseasonalization. However, the addition of the NY dummies does 

not improve the ARCH models when the returns are deseasoned, again regardless 

of deseasonaUzation method. For the SF, the ARCH and GARCH models with 

deseasoned returns are improved for sample variance deseasonalization, but only 
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the GARCH model does worse with the NY dummies when the returns had been 

deseasonalized with exponential seasonality. 

1.6 Conclusions 

To simmiarize, this paper asks three questions: (1) what is the best way to model 

intraday volatility, either deseasonalize returns or jointly model seasonality and 

conditional volatility, (2) which method for deseasonalizing returns is best; and (3) 

are volatihty dynamics constant throughout the day? 

We find that: 

• Smoothed seasonal volatility does worse than expected: sample variance is 

best both in sample and out of sample. 

• Joint modeling of seasonality and conditional heteroskedasticity is dominated 

by the three step procedure of deseasonalizing, modeling, and reseasonaliza-

tion. 

• Volatility dynamics does depend on the time of day: the NY foreign exchange 

market is different and should not be ignored. 

To simimarize, what we have discovered is that of the two factors in intraday 

volatihty-seasonality and serial correlation, that getting the seasonahty correct 

has the biggest gain in improving forecast error. Care should be taken in modeling 

seasonality as it is the dominant factor. The joint models faxe so poorly because 

they are handicapped by the limited seasonality in the models. While the gains 

from modeUng the NY effect, at least in sample, are statistically significant, the 

largest reduction in HMSE comes from using the best seasonality to deseason the 
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returns. While the academic may chose to focus on the dynamics of volatiUty when 

the NY market is open, the practitioner should worry about how the intraday 

seasonaUty is affected by government announcements and national hoUdays. 

The results axe promising and provide guidance for future research. Clearly, 

volatility dynamics depend upon the time of day. When the New York market is 

open, volatility is different. Given the recent work of Andersen and BoUerslev, one 

can conjecture that macroeconomic announcements are playing a role. It seems 

plausible that announcements made diu"ing US business hours are processed by the 

foreign exchange markets differently than when other nations make announcements. 

Future work in this area, is of course, necessary. 
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Chapter 2 

Daily Foreign Exchange Volatility: Creating 
Estimates with Intraday Data 

2.1 Introduction and Motivation 

There is a growing area of research in finance which deals with modeling volatility 

of asset markets. With the construction of high frequency data, it is now possible 

to model volatility in a more precise manner. Previously, one could only address 

volatility on a week by week or day by day time frame. The initial studies on daily 

volatihty have used prices spaced twenty-four hours apart. From these observations, 

a retturn series was calculated, and the market dynamics were analyzed. 

Now due to better recording of prices, we have a much richer data set. In some 

cases, we have transaction by transaction information. Rather than using one price 

per day, there is the possibility of using thousands of prices per day. One route 

researchers are taking is to look at the short term dynamics of asset markets. This 

is understandable since these issues can now be studied. 

Many previous daily volatihty studies have focused on the issue by using daily 

data. In order to estimate a day's volatility, GARCH models use previous infor­

mation. This is feasible since volatility is serially correlated. High volatility days 

tend to follow each other while low volatility days tend to follow each other. 

One problem with such an approach is that small returns for a day do not 

necessarily mean the underlying asset did not oscillate wildly during that period. 

All it does mean is that the price levels ended up close to each other at the end of 

24 hours. There may or may not have been large movements throughout the day. 
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With laxge returns we do not face this problem. Since a large return means that 

the end point prices have changed a great deal, then one must have large price 

changes during the day. The larger the return, the more easily one can say the 

volatility for the day was high. 

Fortunately, the availabiUty of intraday data now faciUtates the issue. It is 

now possible to distinguish between a day with very little price change during the 

trading period, and a day with large price swings which happen to yield a net small 

price change at the end of the trading period. 

For example, for the Deutshemark on Friday, March II, 1994 and Monday, May 

30, 1994 (Figures B.24 and B.23 respectively), the net change in price level is small 

in comparison with the other daily returns in the sample year. However, both days 

are not equal in terms of their volatility if we are able to see the price change during 

the day. In the first case, the price does not change much during the day. In the 

second case, the price fluctuates much more wildly and ends up close to the opening 

price. If one were to focus on prices once a day (and thus look at daily returns 

only), we would be unable to distinguish between the two days. 

Similar results hold with days that have large price changes. For the Deutshe­

mark, Thursday, July 21, 1994 and Tuesday, May 10, 1994 both have large price 

changes during the day (see Figures B.25 and B.26). The price level for May 10th 

slowly increases as the day progresses, while for July 21st, the price change is much 

more rapid, perhaps as result of a macroeconomic annoimcement. Intraday data 

allows researchers to distinguish days of larger currency appreciation or deprecia­

tion. 

Previous volatiUty which looked to estimate daily volatility needed to make 

inferences regarding the dynamics of the variance process in order to create a daily 
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estimate. In a GARCH model, the variance forecast is conditional on information 

up to and including the day before. 

Recent work with intraday data has focused understanding the dynamics of 

volatility during the day. The volatility is now understood to have a regular pat­

tern throughout the day, which repeats every twenty-four hours. Andersen and 

Bollerslev (1997) model this intraday volatility seasonality and control for macroe-

conomic annoimcements and holidays. In addition, Andersen and Bollerslev (1997) 

appeal to variance estimates from intraday returns to show that GARCH models 

are good predictors of volatility. Zhou (1996) creates a variance estimator using 

tick-by-tick data, but to do so requires a huge number of observations to create a 

daily estimate. 

The goal of this paper is to show that one can use intraday returns to create 

reasonable variance estimates, but unlike Zhou (1996) who requires thousands of 

observations to create daily variance estimates, we find that fifteen minute retiurns 

(ninety-six observations) per day are sufficient for good estimates. In addition, we 

analyze two variance estimates that have been used by Andersen and Bollerslev 

and show that one is severely biased, as is therefore inappropriate. 

This chapter is organized as follows: Section 2.2 describes various ways to eval­

uate daily variance measures and discuss the limitations of some which have been 

used in the literature. Section 2.3 describes and compares two intraday volatility 

estimators, Section 2.4 discusses the empirical results from a one year sample of 

three ciurrencies, and Section 2.5 concludes. 
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2.2 Evaluating Daily Volatility Estimates 

For exchange rates we assume that the process of exchange rate determination is 

RT — JJ. -H 6T 

2 2 2 et = a-,v, 

Vt ~ iV(0,1) 

thus ei has a conditional mean of aj since the expectation of v'f which is xi is 

1. However, as pointed out by Lopez (1995) the median of a xf is 0.455 so we 

expect that using as an unbiased estimate of cr^ will lead to an underestimate 

approximately 54.5% of the time. In addition, the distribution of a x? is such that 

for a single observation, the estimate of at using et will be within 50 percent of af 

only a quarter of the time. 

Although the variance process is latent, we can still create estimates of this pro­

cess. However, we must be confident that our estimates are reasonable. Given the 

assiunptions of our model, we expect that our estimates of erf should normalize the 

data\ i.e. Rt/\f^ ~ iV(0,1) and similarly, the squared return divided by our vari­

ance estimates should be chi-squared, i.e. R^/d- xf - Thus we can use statistical 

tests which are based on the normal distribution or the chi-square distribution. Two 

standard tests are the Bera-Jarque normality tests, and the Kolmogorov-Smirnov 

cumulative distribution tests. 

^For exchange rates, theory indicates that we would expect that E [ R t ]  =  0. Formal statistical 
tests are not reported. 


