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RESULTS 

10 Greenhouse conditions 

Trial 1 

During the experiment the weekly maximum and minimum air temperatures (mean 

± SE) in the greenhouse were 3000 ± 0023°C and 11.00 ± 0015°Co Mean daily solar 

radiation over the course of the experiment was 240 3 MJ/m2/day and light transmission 

was about 59% of ambient. 

Trial2 

During the experiment the weekly maximum and minimum air temperatures (mean 

± SE) in the greenhouse were 6 0 7± 10 12 and 31 0 8 ± 0 0 61 °C 0 Mean daily solar radiation 

over the course of the experiment was 17082 MJ/m2/day and light transmission was about 

59% of ambient. 

20 Nitrogen content in sand 

Trial 1 

The organic nitrogen content in the washed river sand, used for this experiment 

was 48.4 Jlg/go Inorganic nitrogen was 309 Jlg/g with 106Jlg/g and 203Jlg/g N03-

N o 

Trial2 

The organic nitrogen content in the washed river sand, used for this experiment 

was 790 7 Jlg/go Inorganic nitrogen was 208Jlg/g with 101 Jlg/g and 10 7Jlg/g N03-

No 



3. Nitrogen content in fish effluent 

Trial I 

73 

Total nitrogen in the pooled sample offish effluent, used to irrigate plants. was 

28.04 mg/L with 0.2611 atoms% of 15N. Treatment 1 (no fish effluent) had I44.9 mg/L 

nitrogen (no atoms% of 1~ in excess of background), treatment 2 had 1794 mgfL 

nitrogen with 0.0280 atoms% of 15N, treatment 3 had 69.86 mgfL nitrogen with 0 0392 

atoms% of 1~ and treatment 4 had 28.04 mgfL nitrogen with 0.2611 atoms% of 15N. 

The total amount of nitrogen and 1~ applied varied by treatment (Table 1 ). The 

percentage of organic and inorganic nitrogen in irrigation water also varied by treatment 

(Figure 1). 

Trial 2 

Total nitrogen in the pooled sample offish effluent was 10.28 mg!L with 0.6535 

atoms% of 1~. Treatment I, 3 and 5 that did not contain fish effluent had respectively 

73.6, 52.5 and 1.36 mg/L nitrogen (no atoms% of 15N in excess of background). 

Treatment 2 had 81.5 mg!L nitrogen with 0.0280 atoms% of 15N, treatment 4 had 564 

mg/L nitrogen with 0.0498 atoms% of 15N and treatment 6 had I0.28 mg/L nitrogen with 

0.2872 atoms% of 1 ~. The total amount of nitrogen and 1~ applied varied by treatment 

(Table 2). The percentage of organic and inorganic nitrogen in irrigation water also varied 

by treatment (Figure 2). 
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Table 1- Total nitrogen and 15N in excess ofbackground levels in the lysimeter and lettuce 

in trial 1. 

Treatments Blocks Total N 15N in Total N 15N in excess 
retained in excesstn produced by in lettuce 
lysimeter (J.lg) lysimeter lettuce (Jig) (J.lg) 

Jl 
T1 I 1500584.0 0 463156.9 0 

II 1450014.0 0 454846.1 0 

II 1488123.0 0 484030.0 0 

IV 1582308.0 0 348484.3 0 

T2 I 1976182.0 415 .67 508236.9 68.61 

II 1789758.0 385.72 480954.0 54.82 

II 1797660.0 399.23 433974.7 47.30 

IV 1940089.0 414.53 552658.8 74.06 

T3 I 928481.9 388.16 446012.3 128.01 

II 893899.1 367.03 468107.4 139.96 

III 846097.0 370.55 373509.1 110.93 

IV 955063 .2 395 .68 413316.9 136.40 

T4 I 129425.8 430.97 14853.1 54.10 

II 131617.5 438.92 39041.0 136.53 

III 128930.6 430.12 23184.0 92.90 

IV 131076.0 436.74 32179.1 128.46 
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Figure 1-Percentage of organic and inorganic nitrogen in 

irrigation water (trial1 ). 
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4. The percentage of 1~ recovered by lettuce 

Trial I 

76 

The percentage of 1~ recovered by plants differed among treatments ( F:z.6 

=12.19, p =0.008). Mean percentage of 1~ recovered by plants from the 1~ provided by 

the fish efiluent was 15.11, 39.91and 23.67% for treatments 2, 3 and 4 respectively 

(Figure.3). Treatment 2 versus 3 and treatment 3 versus 4 were significantly different 

(Table 3). Treatment 3 showed the highest percentage of recovery (Figure 3) There was 

no block effect in these analyses. 

Trial2 

The percentage of 1~ recovered was analyzed only for treatments 2, 4 and 6 that received 

fish effluent. The percentage of 1~ recovered by plants differed among treatments ( F2. 6 

=12.19, p =0.008). Mean percentage of 1~ recovered by plants from the 15N provided by 

the fish efiluent was 57.00, 71.35 and 53.76% for treatments 2, 4 and 6 respectively 

(Figure 4). T2 versus T4 and T4 versus T6 were significantly different (Table 4). T4 

showed the highest percentage of recovery (Figure 7). There was no block effect in these 

analyses. 

5. Fresh plant weight. number of leaves per plant. dry matter produced and water used 

Trial I 

Plant dry matter produced varied by treatment ( F 3. 9 =225. 94, p< 0. 000 1 ), even though 

water use did not ( F 3.9 =0. 71, p = 0.57)( Table 5). Differences in dry matter production 
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Table 2- Total nitrogen and 15N in excess of background levels in the lysimeter and lettuce 
in trial 2. 

Treatments Blocks Total N 15N in excess Total N 15N in excess 
retained in in lysimeter produced by in lettuce 
lysimeter {J.tg} {J.tg 2 lettuce {J.tg} {J.tg} 

T1 I 428352.0 0 224464.6 0 

II 396556.8 0 214051.7 0 

II 416208.0 0 251743 .6 0 

IV 369619.2 0 295827.0 0 

T2 I 451595 .7 151.80 264378.7 80.90 

II 439894.9 150.74 218694.4 83 .10 

II 463224.4 159.95 245812.9 82.59 

IV 346697.3 127.71 238543 .6 81.58 

T3 I 244732.5 0 196932.7 0 

II 282555 .0 0 217411.0 0 

III 287070.0 0 192529.8 0 

IV 289012.5 0 190936.0 0 

T4 I 271701.6 178.21 194191.7 124.09 

II 265351.1 170.28 204938.4 128.50 

III 

IV 265177.2 167.94 190489.1 115.82 

T5 I 6803 .3 0 6518 .1 0 

II 6902.3 0 7965 .8 0 

III 7108.2 0 6809.9 0 

IV 6685 .8 0 6096.6 0 

T6 I 54660.0 181.72 26650.1 85 .25 

II 54117.1 178.18 27043 .5 116.87 

III 54341.6 180.98 20339.9 77.63 

IV 53389.4 176.05 28303.0 104.95 
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Table 3. Treatment effects (trial 1) on the percentage of 15N recovered by lettuce, dry 
matter produced, total N content, total N uptake, ratio of total N uptake to total N in the 
lysimeter (linear combination of treatment means). 

Treatments contrast t o.o5. 6 p value 
Percentage of 15N recovered by lettuce from fish effluent 

T2 vs T3 -4.86 0.0028 
T2vsT4 -1.68 0.02 
T3 vs T4 4.64 0.004 

t 0.05, 9 

Dry matter produced 
T1 vs T2 -0.95 0.37 
T1 vs T3 1.13 0.29 
T2 vs T3 2.08 0.07 
T1 , T2, T3 vs T4 25.9 <0.0001 

Total N content in lettuce 
T1 vs T2 -1.81 0.10 
T1 vs T3 -0.38 0.71 
T2 vs T3 1.43 0.19 
T1 , T2, T3 vs T4 13.50 <0.0001 

Total N uptake 
T1 vs T2 -1 .62 0.14 
T1 vs T3 0.40 0.70 
T2 vs T3 -2.02 0.07 
T1 , T2, T3 vs T4 15.28 < 0.0001 

Ratio of total N uptake to total N retained in the lysimeter 
T1 vs T2 
T1 vs T3 
T2 vs T3 
Tl , T2, T3 vs T4 

1.11 
-6.66 
-7.78 
7.98 

0.29 
<0.0001 
<0.0001 
< 0.0001 
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Figure 4-Mean percentage of 15N recovered by lettuce (trial2). 
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Table 4.Treatment effects (trial2), on the percentage of 15N recovered by lettuce, fresh 
weight, number of leaves per lettuce plant, dry matter produced, total N content, total N 
uptake, ratio of total N uptake to total N retained in the lysimeter (linear combination of 
treatment means). 

Treatments contrast t o.os, 14 p value 
Percentage of 15N recovered by lettuce from fish effluent 

T2 vs T4 -3 .12 0.03 
T2 vs T6 0.45 0.67 
T4 vs T6 3.51 0.02 

Lettuce fresh weight 
T1 vs T2 0.15 0.88 
T3 vs T4 0.35 0.73 
T5 vs T6 -16.29 <0.0001 
T1 , T2 vs T3 , T4 

Number of leaves per lettuce plant 
T1 vs T2 -0.05 0.96 
T3 vs T4 -0.84 0.42 
T5 vs T6 -7.34 <0.0001 
T1 , T2 vs T3 , T4 2.76 0.02 

Dry matter produced 
Tl vs T2 0.34 0.74 
T3 vs T4 0.28 0.79 
T5 vs T6 -17.82 <0.0001 
T1 , T2 vs T3 , T4 3.43 0.004 

Total N uptake 
T1 vs T2 0.15 0.87 
T3 vs T4 0.32 0.75 
T5 vs T6 -15 .58 <0.0001 
Tl , T2 vs T3 , T4 3.31 0.005 

Ratio of total N uptake to total N retained in the lysimeter 
Tl vs T2 0.74 0.47 
T3 vs T4 
T5 vs T6 
T1 , T2 vs T3 , T4 

-0.30 
8.31 

-2 .79 

0.77 
<0.0001 

0.01 



was significant only for treatment 1. 2 and 3 combined versus treatment 4 (Table 3 ). 

Treatments l, 2 and 3 did not differ from one another (Table 3). Mean dry matter 

produced per treatment, in treatments 1. 2 and 3 were more than 8 times as much as 

produced in treatment 4 (Figure 5). There was no block effect in these analyses. 

Trial2 
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Fresh plant weight (Fz. 1" = 88.57 p <0.0001), number ofleaves per plant CFz.14 = 

15.53, p=0.0003) and dry matter ( F2.14 =106.47, p< 0.0001}, varied among treatments. 

However, treatment effects were significant only for T5 versus T6, and T I and T2 

combined versus T3 and T4 combined (Table 4). \\"ater use did not differ among 

treatments ( F 2. 14 =1.67, p = 0.22) (Table 6). Mean dry matter production in treatment 6 

was 3.6 times higher than that in treatment 5, but only about l/5 of the amount in 

treatments 1 and 2 (Figure 6). There was no block effect in these analyses. 

6. Total nitrogen content. total nitrogen uptake. and the ratio of total nitrogen uptake to 

total nitrogen retained in lysimeter. 

Trial 1 

Total nitrogen content in lettuce differed among treatments (F 3. 9 = 61. 92, p < 0. 000 1). 

Lettuce from treatments that received high nitrogen inputs (treatment 1 ,2 and 3) had high 

total nitrogen content. In treatment 4, total nitrogen content was about half of the levels in 

the other treatments (Figure 7). There was a significant difference in total nitrogen in 

lettuce only in treatments 1, 2 and 3 combined versus 4 (Table 3). Total nitrogen uptake 

by lettuce varied among treatments ( F 3.9 = 79.35, p < 0.0001), however contrast analysis 

showed that only differences in T1, T2, T3 combined vs T4 were significant (Table 3). 



The ratio of total nitrogen uptake to total N retained in the lysimeter varied among 

treatments ( F 3. 9 =23. 02, p< 0. 000 1 ), and were different for all treatments except for 

treatment 1 versus 2 (Table 3). Treatment 3 showed the highest percentage of nitrogen 

uptake relative to nitrogen retained in the lysimeter. 

Trial2 
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Total nitrogen content in lettuce did not differ among treatments (Fus = 0.23, p = 0.80) 

but total nitrogen uptake by lettuce ( F 2.1.s = 81.04, p < 0. 000 1 ) and the ratio of total 

nitrogen uptake to total N retained in the lysimeter ( F2.1.s =21.24, p< 0.0001) did. 

However, only differences between T 1 and T2 combined versus T3 and T 4 combined and 

TS versus T6 were significantly different (Table 4). 
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Table 5. Mean treatment values(± SE, N = 4) for the amount of dry matter produced and 

water used (trial 1 ) . 

Treatments 

T1 

T2 

T3 

T4 

12 

10 
"@) 

8 '-" 
'-' 
<1) g 6 

c 4 
0 

2 

0 

Mean final dry matter (g) 
produced (and standard 
error 

9. 72 ( 0.065) 

10.14 ( 0.486) 

9.27 ( 0.333) 

1.12 (0.216) 

Water use ( mL) and 
standard error 

10138.25 ( 90.0) 

10298.75 ( 201.76) 

10115 .50 ( 240.67) 

9.960.25 ( 33.08) 

Figure 5- Mean dry matter produced (trial 1). 
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TABLE 6- Mean treatment values (± SE, N=4 *) for amount of dry matter produced and 

water used (trial 2) . 

Mean final dry matter (g) Water used ( mL) and 
Treatments and standard error standard error 

T1 5.51 (0 .143) 5571.25 (101.96) 

T2 5.45 (0 .352) 5238.00 (275 .16) 

T3 4 .61 (0 .090) 5397.00 ( 60.43) 

T4 4 .52 (0 .197) 5317.33 ( 14.62) 

T5 0.28 (0 .011) 5200.75 ( 73.26) 

T6 1.01 (0.069) 5305.25 ( 29.50) 

*Treatment 4 only had 3 replications 

Figure 6- Mean dry matter produced (trial2). 
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Figure 7- Mean total nitrogen content in lettuce (trial 1). 
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DISCUSSION 

The first goal of this research was to determine the efficacy of using a tracer to 

quantify nitrogen transfer from fish effluent to plants. There is a great need to quantify 

nutrient transfer, especially nitrogen transfer. Brune (1994) pointed out that detailed 

quantification of nutrient flows in an integrated farm system is an important area of 

research. However, attempts to quantify nitrogen transfer in an integrated aquaculture and 

agriculture system have not been successful. Khan ( 1996) could only conclude from his 

experiment that some nitrogen was transferred, but could not determine how much. 

Seawright ( 1993) concluded that even a carefully controlled experiment did not allow him 

to quantify nitrogen dynamics. 

I was able to use 1~ as a tracer to measure nitrogen transfer from fish effluent to 

plants in an integrated system. At several different levels of fish effluent and nitrogen 

fertilizers. I was able to measure the amount of nitrogen transferred from the aquaculture 

facility to plants. Labeled nitrogen could be distinguished from both nitrogen already in the 

soil and from the chemical fertilizer added to the system. 

Lettuce in treatment 4 (trial 1 ), received only fish effluent as a source of nitrogen, 

but recovered 23.67% of the 15N applied. Since the total N in fish effluent was mostly 

organic (77.22 %) and consequently unavailable over the short term. plants recovered 

most of the available nitrogen. Unfortunately this amount of nitrogen did not allow 

optimal plant growth. The organic nitrogen remained in the soil. but was not immediately 

available to plants. However. after bacterial decomposition. this nitrogen would become 

available to plants. Therefore in a system where fish effluent is consistently used for 



89 

irrigation, nitrogen availability would increase over time because of the residual fertility of 

the organics in the fish effluent. Gradual decomposition and progressive availability of 

nitrogen may explain why highly significant increased yields were observed after the 

second, third and fourth applications offish manure to silage com (Smith 1985). 

The same trend occurred in trial 2 as in trial 1. Overall, fish effluent applied as the 

only source of nitrogen had a significant effect on plant growth. Plants irrigated with fish 

effluent produced three times as much dry matter as plants that were irrigated with 

nutrient solution without nitrogen. Plants recovered practically all the inorganic nitrogen 

available (around 50% of the total nitrogen) . However, there was not enough nitrogen to 

promote good plant growth, the amount of dry matter produced was 1/5 of the amount 

produced in treatments where plants received chemical fertilizer . 

Al-Jaloud et al. 1993 found that irrigating wheat (triticum aestivum L. ), with an 

aquaculture effluent that contained 40 mg NIL reduced the inorganic fertilizer needs by 

50% . However, such high nitrogen levels (40 mg NIL) are rarely found in unconcentrated 

fish effluents. Total Kjeldahl nitrogen is generally between 4-10 mg NIL in effluent from 

intensive aquaculture of more then 5000 kg/ha (Seim et al. 1997). In my experiment, the 

mean total nitrogen was 28.04 mg!L in the first trial and 10.28 mg/L in the second trial. 

Levels in the first trial were higher than those generally found in effluent from intensive 

aquaculture, but still below the amount used by Al-Jalout et al. (1993). 

Crops generally take up more NH4 +than N03- at low nitrogen concentrations and 

more N03- than NH4 + at higher N concentration ( Barraclough et al. 1985, Bloom 1988). 

In my experiment nitrogen levels were low and the nitrogen that was present was mostly 
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in the organic form. In addition most of the inorganic nitrogen was converted to nitrate in 

the biofilter (only a small percentage was~ + ) . Therefore, because large amounts of 

ammonia were not available, uptake was low even if plants were nitrogen deficient. The 

importance of the presence of inorganic nitrogen is highlighted by the results of treatment 

6 in trial 2. In this experiment, around half of the nitrogen was inorganic, and therefore 

available, even though the overall nitrogen application was lower than in the other 

experiment. Thus, mean dry matter production in effluent only treatment 6, was about the 

same as it was in effluent only treatment 4 in trial 1. 

In trial 1, plants that received a combination of fish effluent and chemical fertilizer 

(nutrient+ effluent) had low levels of transfer of 15N. However they became more efficient 

at extracting 15N from the fish effluent as the amount of commercial fertilizer decreased. 

Plants in treatment 2 (nitrogen+ effluent) were less efficient at nitrogen uptake from fish 

effluent than plants in treatment 3 {1/2 nitrogen+ effluent). Plants in treatment 3 showed 

the highest rate ofN uptake. Despite the high efficiency of uptake of 15N by plants there 

was no difference in dry matter production between plants which received nutrient 

solution prepared with tap water and those with nutrient solution prepared with fish 

effluent. Plants exposed to a combination of a chemical fertilizer and fish effluent were 

more efficient at recovering nitrogen from the chemical fertilizer than from fish effluent. 

The same trend was shown in trial 2 where plants in treatments 2 and 4 

respectively took up 57.00o/o and 71 .35 %of 15N. Despite this relatively efficient uptake, 

there was no significant effect on dry matter production between treatments that received 

the same levels of chemical nitrogen (treatment containing tap water versus those 



containing fish effluent). In fact. the mean dry matter production was lower but not 

significantly lower in treatments where fertilizer was combined with fish effluent. The 

standard error of dry matter produced was also higher in treatments where commercial 

fertilizer was combined with fish effluent. 
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The effect of fish effluent was significant on plants when it was the only source of 

nitrogen but when plants received a combination of chemical fertilizer and fish effluent. the 

nitrogen from the effluent produced no increase in dry matter production. 

One purpose of establishing an aquaculture production system in places where 

water is scarce is to conserve water. Using the effluent fi·om the fish culture facility to 

irrigate vegetable crops removes the problem of effluent disposal. However. the assertion 

that using fish effluent to irrigate crops reduces the need for chemical fertilizer is more 

difficult to substantiate. Plants appear to be more efficient at the uptake of nitrogen from 

commercial fertilizers than they are at capturing the nitrogen present in fish effluent. In 

addition the nitrogen content in unconcentrated fish eflluent is so low that plants do not 

receive sufficient nutrients for optimum growth. Therefore for developed countries it may 

be more efficient to utilize commercial fertilizers rather than to rely on plants being able to 

obtain nitrogen from fish effluent. However, for a developing country the logic might be 

quite different. Reducing the amount of pollution released to receiving streams is 

important. However, even more important is producing enough crop to feed the populace. 

Fertilizers are often cost prohibitive or unavailable to farmers. There is a need for any 

reduction in the amount of nitrogen needed or any increased yield. In a developed country, 

the focus is often on immediate gains. However, in a developing country there is often a 
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longer term focus. Over time the organic matter in fish effluent would increase the water 

holding capacity of the soil. After organic decomposition the long tenn nutrient availability 

in the soil would also be increased. Nutrient leaching and ground water contamination 

would decrease. These factors are especially important in sandy soils that have low 

capacity for holding nutrients. Thus, in developing countries reducing fertilizer cost even 

slightly and eliminating pollution, while improving soil conditions and encouraging water 

reuse is equivalent to obtaining more cash for the same crop. 

My data show only a low percentage of the nitrogen in fish etlluent was recovered 

by lettuce plants. Plants that have lower requirements for nitrogen than lettuce may 

respond better to the use of fish effluent for irrigation than was seen in this experiment. 

Khan ( 1996) found that fish effluent can provide some nutrients, but effluent alone did not 

promote the best growth for native shrub species in Texas. However, for turfgrass he 

observed a positive effect on growth and color from using fish effluent. Perhaps for plants 

with low nitrogen requirements, fish effluent could be used as the only source of nitrogen. 

D'silva and Maughan ( 1994 ), used fish effluent to irrigate mesquite trees and found that 

plants grew twice as fast as plants irrigated with well water. Since mesquite trees fix 

nitrogen these authors had difficulty explaining these results. Perhaps, fish effluent 

provides nitrogen at lower energetic cost, than nitrogen obtained by fixation. According 

to Brill (1979) plants require as many as 36 ATP molecules to fix a molecule ofN2. The 

supply of available carbon in the soil is one of the major factors controlling the amount of 

biological N2 that is fixed ( Killhan 1994). Therefore, the carbon in the fish etlluent might 

make nitrogen fixation more efficient. Higher yields of alfalfa have been produced in 



Arizona when fish eflluent rather than weil water is used for irrigation (Jimmy Joy. fish 

farm manager. personal communication). 

To make an integrated system work efficiently we need to find the right 

combination of plants and fish. 1~ can be used to quantify the rate of transference from 

fish eflluent to several kinds of plants at different application rates of chemical fertilizer. 

These studies need to be done. 
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CONCLUSIONS 

Four main findings emerge from my study: I) Nitrogen transfer from fish 

effluent to plants can be accurately quantified based on the percentage of 15N recovered 

from fish effluent by the plants, 2) Lettuce that received fish effluent as the only source of 

nitroge~ recovered practically all the available inorganic nitrogen. 3) Lettuce that 

received a combination of fish effluent and chemical fertilizer, was more efficient at 

uptaking the nitrogen in the chemical fertilizer than that in the fish effluent. 4) Available 

inorganic nitrogen levels in fish effluent were generally too low to meet the nitrogen needs 

of the plants tested. However, decomposition of organic material over time may improve 

long term soil fertility. Concentration offish culture effluent might also increase nutrient 

content. 
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