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ABSTRACT 

The advancement of optical systems arises from furthering at least one of the three fields 

of optical development: design, fabrication, and testing. One example of such 

advancement is the growth in customization of contact lenses, which is occurring in part 

due to advances in testing. Due to the diverse quantities that can be derived from it, the 

transmitted wavefront is the tested parameter. There are a number of tests that can 

evaluate a transmitted wavefront, including moire deflectometry, Shack-Hartmann 

wavefront sensing, and interferometry. Interferometry is preferred for its sensitivity and 

spatial resolution. The dynamic range issue is mitigated by the required immersion of the 

contact lenses in saline due to the complex nature of the lens material. The partial index-

match between the lens and surrounding saline reduces the measured power of the lens 

and enables testing in an absolute, or non-null, configuration. Absolute testing allows for 

the generation of ophthalmic prescriptions and power maps from the transmitted 

wavefront. 

Designing a non-null interferometer is based on three principles. The transmitted light 

must be collected, the resulting interference must be resolved, and the imaged wavefront 

must be calibrated. The first two principles are fiilfilled by proper choices for the 

imaging lens and detector. Calibration comes from removing the wavefront-dependent 

induced aberrations via reverse raytracing. Reverse raytracing demands an accurate 

model of the interferometer. With such a model, theoretical wavefronts can be produced 
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and compared to measured wavefronts. The difference between measured and modeled 

wavefronts quantifies the answer to the fundamental question in transmitted wavefront 

testing: does the optic perform as desired? 

Immersion in index-matching fluid provides an adjustable increase in the dynamic range 

of the interferometer. The increase comes at the expense of sensitivity. The tradeoff 

between dynamic range and sensitivity can be quantified by the dimensionless ratio 

between the two numbers. This ratio is interpreted as a degree of difficulty for a 

measurement. Combined with absolute testing, immersion provides the ability to 

measure fast cylindrical lenses, which are notoriously difficult to test. Understanding the 

parameters of the interferometer provides a simple condition for determining the gain 

firom immersion. 
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1 INTRODUCTION TO TRANSMITTED WAVEFRONT TESTING 

optical science encompasses a vast spectrum of research areas. There is research being 

done in all parts of the world, on all scales, in all facets of life, from medicine to national 

defense, from fundamental science to applied engineering. Within the branch of optics 

known as optical engineering there exists a wide range of research opportunities. Optical 

engineering is the application of scientific principles to specific, practical problems using 

optical techniques. Often optical engineering efforts lead to the development of a new 

device or an improvement to an existing device. Whatever the opportunity, the solution 

to the problem includes some configuration of light sources, detectors, and other optical 

elements. The development of optical elements is a field of vast research, and covers the 

scope of this dissertation. 

There are three main fields concerning the development of optical elements: design, 

fabrication, and testing. The fields are listed in this order not because of importance or 

relevance, but simply because this is the chronological order of development. Design 

defines the optical configuration. This is the time when the desired specifications are 

matched with surfaces, coatings, and materials to create the desired element. The process 

is the same regardless of the type of element or system developed; simple mirrors, lens 

assemblies, and more exotic elements, such as diffraction gratings or computer generated 

holograms (CGH), are all designed using the same principles. Fabrication takes the 
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designed model and turns it into a real element. Simply stated, though far from simple in 

practice, fabrication is the conversion from software to hardware. Finally, testing 

qualifies the manufactured optic. Often, the results of the test are compared to the 

expected results for the design, thereby closing the development loop. 

The first field, optical design, has undergone a renaissance due to the widespread use and 

advances of the personal computer. Before the personal computer, the simple act of 

tracing rays required tedious interfacing with a mainfi"ame via punch cards, or before that, 

long hours with a slide rule. Today, the computer foimd in any lab can trace millions of 

rays in a matter of seconds (Robb, 1990; Sinclair, 1991). The use of lens design code, 

such as Code V (Optical Research Associates, Pasadena, California), Oslo (Lambda 

Research Corp., Littleton, Massachusetts), or Zemax (Zemax Development Corp., San 

Diego, California), has freed the designer firom the vast majority of the mathematics 

associated with lens design. The computer has also enabled radical ideas to be explored 

with little cost of time or money. 

A particular area of growth due to the advances of lens design code is the number and 

variety of surface types available to the designer today. Later in this dissertation the 

testing of some highly aspheric optics is examined. These surfaces would not exist as 

parts of real elements if the means to design them and quickly evaluate their performance 

did not exist. One only needs to look at any of the user's guides for the design software 

to see the variety of surface types available today. The assortment of available surfaces is 



due to not only the superior computing power available, but to advances in materials and 

manufacturing. 

The second field of development is fabrication. As previously mentioned, there have 

been significant improvements in manufacturing techniques in recent decades. Again, 

the computer plays an integral role in these technologies. Techniques such as injection 

molding, single-point diamond turning (SPDT), computer-controlled polishing (CCP), 

and magnetorheological finishing (MRF) have all flourished due to in part the 

proliferation of computing power (Karow, 1993; Shorey, 2001). 

The third field, testing, complements the other two fields by providing insight into how 

well the manufacturing process carried out the instructions of the design. Testing can 

take a number of forms, from a simple measurement with a ruler or other mechanical 

gauge, to elaborate, million dollar instruments with atomic resolution. Different tests 

provide different outputs. The desired output may be a single number, such as focal 

length or diffraction efficiency, or much more complex, such as a 3D model of the optic. 

One may wonder which field is most important, or which field drives the others. Even 

though the typical development process is design, fabrication, and testing, this is not the 

order of importance. In fact, the answer is that all three fields are vital to a successful 

design and each field expands and limits the others. The three fields are of equal 

importance, and all fields influence the others, a notion supported by others (Lee, 2003). 
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The fields should be thought of as a cycle with no beginning or end, turning in whatever 

direction is necessary to produce the desired element. Figure 1.1 illustrates this idea. 

FIGURE 1.1 - The 3 fields of development. All fields are of equal importance. 

Progress is made when one field is pushed to new levels of performance. This often 

comes about from the limitations or constraints of another field. For example, a 

successful design is useless if it cannot be fabricated. Yet if this is the only design that 

meets all system requirements, then efforts may be warranted in the fabrication field to 

push current technology to make the design possible. These three fields are not 

independent; they are an intertwined set of criteria, capabilities, and techniques that make 

developing optical elements possible. 

The following discussions and presented research pertain to the field of testing. 

Advances in both design and fabrication have generated a need for new testing 

techniques. While one example is examined in detail, the metrology of soft contact 

lenses, the questions, both asked and answered, and the techniques developed are 

applicable to numerous instruments and testing scenarios. 

Design 

Testing 

Fabrication 



1.1 Common Issues with Testing Optical Elements 

Testing was introduced as the qualification of the fabricated optical element. While this 

is an accurate definition, it does not begin to indicate the magnitude of issues surrounding 

the task of testing an optic. Like any project, the paramount constraints of scope, cost, 

and time must be balanced in accordance with the development of the optical element as 

a whole. Different projects will place different weights on these constraints. For 

example, the testing of an 8 meter primary mirror for a multi-million dollar telescope will 

likely place accuracy and completeness (scope) ahead of cost and time. For mass-

produced optics, speed and cost will certainly be pressed to maximize efficiency. The 

real question in this case is to what level the accuracy of the test will be compromised to 

accommodate speed and cost. 

The issues regarding testing are summarized in a few, basic questions: 

What are the testable parameters? 

What results fi"om the test are desired? 

How will the results be judged? 

1.1.1 Testable Parameters 

Any element under test has multiple testable parameters. The task is to identify those 

parameters that are of interest. These may be the set of parameters used in designing the 

element or the set of parameters that influence the performance of the element. Often, 

these two sets have a great overlap, thereby indicating the parameters of true importance. 
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For a simple example, consider a first-surface mirror with power. While parameters such 

as thickness, weight, or thermal expansion could be measured, more likely candidates are 

curvature, surface figure, diameter, surface roughness, and reflectivity. As elements 

become more complex, or become systems with multiple elements, the determination of 

which parameters to test becomes more important. Not only will complex elements or 

systems be expected to perform over a variety of inputs (e.g. wavelengths, fields, or 

spatial firequencies), but the parameters that dictate performance will grow in number and 

complexity. This leads to the act of tolerancing, whereby a model of the element is 

analyzed to determine the parameters critical to performance (Shannon, 1997; Fischer, 

2000). Tolerancing is beyond the scope of this dissertation, save for a brief discussion of 

the need to have an accurate model in calibrating instrumentation. 

1.1.2 Types of Output 

Along with the selection of the appropriate parameters to test comes the selection of what 

output should be reported. The two selection processes are coupled. For example, 

reporting MTF can only occur if some quantity related to MTF has been tested. Once 

again, the view that testing is not an isolated act is important. The choices made in 

testing must be in accordance with the other developmental fields of design and 

fabrication. The output from the test should be relevant to the criteria under which the 

element was designed and manufactured. 
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While by no means a complete list, below are listed some common outputs from a variety 

of optical tests. This list is geared towards refractive and reflective elements, i.e. lenses 

and mirrors (Malacara, 1992; Geary, 1993; Stover, 1995). 

• Aberration Content 

• Absorption 

• Bidirectional Reflectance/Scatter/Transmittance Distribution Function 

(BRDF/BSDF/BTDF) 

• Centration 

• Coating Uniformity 

• Departure from a Standard (or Master) Element 

• Focal Length 

• Index of Refraction 

• Line Spread Function (LSF) 

• Modulation Transfer Function (MTF) 

• Optical Transfer Function (OTF) 

• Point Spread Function (PSF) 

• Polynomial Fit to Surface or Wavefront 

• Radius of Curvature (R of C) 

• Reflectivity 

• Scratch/Dig 

• Stokes Parameters 

• Strehl Ratio (SR) 
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• Stress, Strain, and Stria 

• Surface Peak-to-Valley (PV) 

• Surface Root-Mean-Square (RMS) 

• Surface Roughness 

• Transmitted Wavefront 

• Wavefront Curvature or Slope 

1.1.3 Judging the Output 

Once the type of output is selected, the criteria against which that output will be judged 

needs to be determined, hi short, this is estabUshing the go/no-go line. Obviously, the 

criteria need to be at levels that guarantee the optic will perform its designed task. 

However, setting the criteria beyond the level at which the optic was designed is a 

disservice to the entire development process. Like so many aspects of optical 

development, the optimal solution may never be found, but a serviceable solution is 

almost always available. 

One method forjudging the output is to compare the output of the real optic against the 

theoretical output of its model. The benefit of this method is that it can quantify the 

answer to the question: "Does the optic perform as designed?" The downside to this 

method is that the instrumentation used to collect the output must either be accurately 

modeled or of much greater quality than the test optic so as not to be a source of error. 



Imagine the scenario of MTF testing a lens by imaging bar targets. The modeled MTF, 

most likely formed using Fourier techniques (Goodman, 1996), will be free of errors such 

as fabrication tolerances on the bar target, alignment between the target and lens, and 

variations in illumination across the target. These errors, and many others, all must be 

considered when comparing measured versus modeled output. 

Another method for evaluating performance is to simply compare the tested parameter 

against a known optical standard. The Strehl ratio (SR) is a perfect example. Optical 

metrologists know that an SR of 0.8 or higher indicates acceptable performance for near 

diffraction-limited systems, as this number is rooted in the Rayleigh or Marechal criterion 

for resolution (Wyant, 1992; Smith, 2000). A different example is the combination of PV 

and RMS. The PV of a surface gives the extremes for departure from the ideal, while 

RMS quantifies the surface as a whole. Optical surfaces are often specified with an RMS 

expressed as a fraction of a wave, such as A,/10. 

Comparing PV to RMS gives a feel for the surface figure. If the PV is only slightly 

greater than the RMS, then the surface is fairly irregular at the PV/RMS level. If the PV 

is significantly greater (factor of ten or more) than the RMS, the PV is being skewed by 

an outlying point(s). The rule of thumb for PV to RMS is that the PV should be a factor 

of 2 to 8 for a quality optical surface (Miller, 1996). 



1.1.4 Null Optics - Pros and Cons 

At this point, a brief diversion to discuss the topic of null optics is in order. The t3^e of 

output "Departure from a Standard (or Master) Element" implies that testing be done 

against a superior part. This superior part, or at least what is supposed to be a superior 

part, is often used in such a way that the output of the test is a null condition. Thus, the 

superior part is referred to as a null optic. Examples of null results include the absence of 

fringes in the case of interferometry, or the lack of spot movement in a Shack-Hartmann 

wavefront sensor. In any case, the null optic is a test part-specific optic employed to 

make the testing possible or easier. 

Basically, there are two ways in which a null optic improves an optical test. Either the 

null optic behaves the same as or opposite of the test optic. If the null optic mimics the 

test optic, then the instrumentation should in some fashion subfract the outputs from the 

null and test optics. For example, a Mach-Zehnder interferometer with a test optic in one 

arm and a null optic in the other arm will produce no fringes if the two optics perform 

identically. 

Null optics are most often used when the cost associated with the null optic is 

insignificant to the project as a whole. In this context, cost not only means dollars, but 

also man-hours with respect to design time and fabrication. An example of a project 

where the cost of a null optic is insignificant is the production of primary mirrors for 

telescopes. The University of Arizona manufactures the largest mirrors in the world. 
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over 8 m in diameter, to serve as primary mirrors in telescopes (West, 1992). The cost of 

the mirror alone, not including the total cost of building the telescope, overwhelms the 

cost of using a null optic. This is often the case with specific, one-of-a-kind optics. So 

much effort goes into the project as a whole that the added work associated with using a 

null optic is not noticed. A popular choice for a null optic today is a CGH. For more on 

the use of CGHs with telescopes, see Burge (1995). 

The obstacles to using null optics are numerous. Going back to the idea that any project 

is constrained by scope, cost, and time, the use of null optics pushes on all three 

constraints. Scope is increased because all the issues associated with developing the test 

optic are also appUcable to the null optic. Any cost or time used in developing the null 

optic takes resources away from the test optic. In addition, using null optics to ease the 

testing of some other optic brings up a very interesting question: How do you test the null 

optic? And if testing the null optic is straightforward, why not use that method to test the 

original optic under development? Plus, the null optic must be tested to levels greater 

than those desired for the test optic and aligned to such a level of precision that alignment 

errors are negligible. The problem of qualifying the null optic, to then qualify the test 

optic is analogous to a cat chasing its tail. It's a problem with no apparent beginning or 

end, and one that is usually best avoided by not using null optics. 

Finally, there is the common case of a partial null optic: an optic that makes testing easier 

while not being identical in performance to the test optic. Usually the partial null optic 
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removes the majority of the power of the lens under test. For any test optic with power, 

power will be the dominant error, or difference from flat. Examples of partial nulls 

include the reference optics used with commercial laser Fizeau interferometers. 

Refractive partial nulls predominately contain spherical surfaces, and many single lens 

nulls have a piano surface. This is done to ease the manufacturing of these elements to 

tolerances greater than those desired for the test optic. Simple partial nulls are also easier 

to align. 

1.1.5 Qualifying Contact Lenses 

Contact lenses present several unique testing issues, which are covered throughout this 

dissertation, hiitially, the question is how best to quaUfy these lenses. These are mass 

produced optics, so the process needs to be one that can be done quickly and cheaply. 

There are thousands of different prescriptions, so the instrumentation must be able to 

handle a wide range of test part powers. Not all of the designs are rotationally symmetric 

(i.e. toric lenses for correcting astigmatism), so the instrumentation needs to be robust, 

and probably needs to examine the entire test aperture of the lens. Bifocal contact lenses 

can have regions of power less than a millimeter in diameter, so the instrumentation must 

be able to make accurate measurements over sub-millimeter regions. What is ultimately 

desired is the performance of the lens measured against the labeled, or at least known, 

performance. 
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In order to measure the performance of a lens, the lens needs to be tested in such a way 

that only its own performance is measured. Testing against a null optic measures 

performance against the null, and does not measure performance in an absolute sense. 

Plus, with the potential for thousands of different lenses being tested, the use of null 

optics is not practical. The use of null optics is unnecessary for a different reason as well. 

The lenses must be tested in saline solution (more on this in Chpt. 3). The similarity in 

index of refraction between the saline and the contact lens effectively reduces the power 

to a point that testing in an absolute sense is feasible. 

Of all possible testable parameters, the one that makes the most sense to measure in this 

case is the transmitted wavefront. The transmitted wavefront is the parameter most 

closely related to lens performance. By directly measuring the effect of the lens on an 

incident wavefront, a plethora of information can be obtained. In general, MTF, PSF, 

and aberration content can all be measured from the transmitted wavefront. Another 

advantage is that since the wavefront is being measured in an absolute sense, the power, 

and ultimately the prescription for the lens, can be measured. This would not be possible 

if null optics were being used. The use of null optics would also be cost prohibitive, as 

potentially thousands of different lens prescriptions will be tested. Each prescription 

would require its own null optic. Also, the transmitted wavefront is one of the easier lens 

parameters to measure. Since the lens is immersed in a fluid of nearly the same index, 

getting a reflection off a surface would take significantly more power from the light 

source. In addition, two surfaces would need to be measured to get an idea of the 
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performance of the lens, whereas only one transmitted wavefront is needed to measure 

performance. For these reasons, the desired fundamental quantity is the transmitted 

wavefront. The question now is how best to collect the transmitted wavefi-ont over a 

range of lens powers and wavefront profiles. 

1.2 Methods of Testing Transmitted Wavefronts 

There are several ways to examine the transmitted wavefront of an optic in order to 

qualify the optic's performance. Discussed here are some of the more common 

techniques, or techniques that have been mentioned in the hterature with regards to the 

specific testing of ophthalmic optics, including contact lenses. The first method 

discussed, star testing, is used mostly only in the qualitative sense. The next two 

methods, Shack-Hartmann (S-H) wavefront sensing and moire deflectometry, are 

geometric tests. The following three methods, lateral shearing interferometry (LSI), 

phase shifting interferometry (PSI), and sub-Nyquist interferometry (SNI) are, of course, 

tests based on the interference of optical waves. For completeness, also mentioned are 

other tests discussed in the literature specific to measuring ophthalmic optics. 

1.2.1 Star Testing 

Star testing is essentially the examination of a point image. Often used in astronomy 

(hence the name), the star test is good at quickly and straightforwardly providing 
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qualitative information. However, the star test is not designed to easily provide 

quantitative information (Welford, 1992). 

The star test is simple to set up; the only unique component to the test is a microscope 

objective, or some other type of magnifying optic. The objective images to infinity (in 

the case of use with the eye) and magnifies the test optic's focal plane, as shown in Fig. 

1.2. The objective must have a greater numerical aperture (NA) than the test lens, 

ensuring that all the light of the point image is collected. 

OBJECTIVE 

TEST LENS 

FIGURE 1.2 - Star testing. 

The illumination for the star test can either be a point source truly at infinity or a 

collimated pinhole. In the case of a collimated pinhole, great care must be taken in 

alignment to avoid the introduction of additional aberrations. 

With star testing, the aberrations are detected in the image plane of the test optic. This is 

typically done by scanning along the axis, looking at various out-of-focus images. The 

ideal image is the well known Airy disk pattern. With some training, deviations fi-om the 

Airy disk pattern can provide some quahtative information about the aberrations present. 
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In general, aberrations move energy jfrom the central core of the Airy disk to the outer 

rings (Welford, 1992). So by adding defocus, more light is present in the outer rings, 

which makes anomalies in the light distribution of the outer rings easier to detect. The 

presence of spherical aberration will cause a rotationally symmetric error in the 

distribution of the outer rings. Geary suggests the use of zonal masks at the test lens to 

map out the longitudinal spherical aberration (Geary, 1993). Astigmatism is the source 

of two-fold symmetry in the detected spot. This pattern is often referred to as the Maltese 

cross (Welford, 1992). Coma is present when the spot has only a single axis of 

symmetry. Assuming the pinhole is nominally aligned to the axis of the test optic, the 

presence of coma is then due to a slight tilt or misalignment in the optical setup. 

Star testing was performed in a qualitative sense on some bifocal contact lenses. The 

results of the tests are presented in the chapter on testing bifocal lenses. 

1.2.2 Shack-Hartmann Wavefront Sensor 

A derivative of the Hartmann screen test, the Shack-Hartmann wavefront sensor (S-H) is 

a geometric test measviring wavefront slope (Shack, 1971; Ghozeil, 1992; Piatt, 2001). 

The basic operation of a Shack-Hartmaim is illustrated in Fig. 1.3. 
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y 

FIGURE 1.3- Basic operation of a Shack-Hartmann wavefront sensor. 

The test wavefront is incident on a lenslet array. The lenslet array consists of a regular 

grid of microlenses. Each lenslet samples the wavefront. A planar wavefront produces 

focus spots that lie on a regular grid. These positions are noted as the reference locations. 

With the non-planar test wavefront incident on the lenslet array, the spots move 

according to the average wavefront slope across the aperture of each lenslet. In effect, 

each microlens forms an imaging system, with the aperture stop at the microlens. The 

ray passing through the center of the lens becomes a chief ray, as shown in Fig. 1.3, and 

locates the center of the spot. It should be noted that the spot centroid predicted by 

geometrical optics is identical to the physical optics' centroid (Mahajan, 1985). 
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By noting the change in positions for the focus spots between the planar reference 

wavefront and the test wavefront, the wavefront slope across each lenslet can be 

determined via Eq. 1.1 (Groening, 2000). 

The shift of the spots in x and y are denoted as The focal length of the microlenses 

is f. Typically, the determined wavefront slopes are then integrated to form a measure of 

the test wavefront. This can be done in either a zonal or modal fashion (Southwell, 

Clearly, the unique component in the Shack-Hartmann is the lenslet array. The design of 

the lenslet array is critical to getting the desired dynamic range, sensitivity, and spatial 

resolution. The focal length of the microlenses acts as a lever arm in this test; increasing 

the focal length increases the spot shift for a given wavefront slope, and therefore 

increases the sensitivity of the measiu-ement. However, a longer focal length may cause 

dynamic range issues, as the spots may wander too far from the reference positions, or 

cross each other, both unacceptable conditions for most Shack-Hartmann algorithms 

(Smith, 2003). 

S, 
Equation 1.1 

1980). 

Perhaps the biggest downside to the Shack-Hartmann test is the achievable spatial 

sampling. The spatial sampling is obviously dictated by the pitch of the lenslet array. 

Well-defined spots, free of diffraction effects near their center, are needed to accurately 
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determine the spot shifts. This requires that the diameter of the microlenses be 

significantly greater than the wavelength used. Typical lenslet diameters are hundreds of 

microns, so the sampling of a wavefront is on the order of only 1-10 samples/mm 

(Artzner, 1992; Groening, 2000). 

In the field of ophthalmic testing, a modified Hartmann test has been used to test 

progressive spectacle lenses (CasteUini, 1994). The modification was to scan a single 

beam across the lens, and note the deflected beam's position. The results obtained 

matched the predicted power to within 0.1 diopters. A traditional Hartmann test (screen 

instead of lenslet array) has been used to measure spectacle lenses (Statton, 1981). 

Specific tests of contact lenses using a Hartmann technique are not commonly seen in the 

literature, probably due to the poor spatial resolution. From Dr. Jim Schwiegerling at the 

University of Arizona comes Fig. 1.4, which shows a Shack-Hartmann pattern for a 

bifocal contact lens on the eye. The spacing between spots is nominally 400 ^m, making 

the identification of sub-millimeter features, such as the annular zones of bifocal contact 

lenses, impossible. 
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FIGURE 1.4 - Shack-Hartmann spot pattern for a bifocal contact lens. The spot 
pattern does not show the presence of annular rings with different powers. 

1.2.3 Moire Deflectometry 

Moire deflectometry is in many ways a combination of geometric and interferometric 

techniques. By using two binary gratings spaced some distance apart, a moire fringe 

pattern can be produced which contains information about wavefront slope in the 

direction normal to the gratings. In Optical Shop Testing, Creath and Wyant discuss the 

relationship between moire fringe patterns and interferometry (Creath, "Moire and .. 

1992). If the two gratings are considered snapshots of plane waves, then the moire 

fringes produced are in the same location as the interference fringes produced by two 

plane waves traveling in the direction of the gratings. However, the moire pattern only 

predicts the location of the fringes, and does not give the sinusoidal pattern that plane 



wave fringes would have. Since wavefront slope is measured only in one direction, 

moire deflectometry is most similar to the interferometric technique of lateral shearing 

interferometry (LSI). In fact, since the position and spacing of the fringes determines the 

wavefront slope, the results of moire deflectometry are identical to those of LSI. Moire 

deflectometry can be thought of as a geometric method for constructing the fringe pattern 

of LSI. The schematic for a moire deflectometer is shown in Fig. L5. 

GRATING 1 GRATING 2 

w 

DEFLECTED 
RAY 

SCREEN 

FIGURE 1.5 - Schematic for a moire deflectometer. The deflected 
ray is due to the test optic (Kafri, 1985). 

Each binary grating can be described by the general relationship given in Eq. 1.2, where p 

is the grating period or pitch and A: is an integer. 

y = kp Equation 1.2 

The gratings are usually inclined by an angle 0 with respect to each other { 0 / 2  with 

respect to the x-axis), so that the direction of deflection is unambiguous. For an 

undeviated ray {(p = 0), the grating equations are given in Eq. 1.3 with k and m both 

integers. 
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Solving for the ray deflection in the region of small angles gives { l  =  m -  k ) .  

Ip x = -
6 

Equation 1.4 

The fact that 0is small leads to a moire fringe spacing much greater than the spacing of 

either grating (p). This magnification, sometimes called the "moire shift amplification", 

is at the heart of the usefulness of the moire technique (Kafti, 1985). Defects in either 

grating, too small to be seen when viewed individually, become magnified by the factor 

/?/^and are thus quite visible. Back in the nineteenth century, this technique was used by 

Lord Rayle igh to  determine the  qual i ty  of  gra t ings  (Creath ,  "Moire  and . .1992) .  

For a deviated ray, a perturbation of ^ J is added in the y direction, and the ray deflection 

is now X 

X' = - — Equation 1.5 
GO 

Finally the desired quantity for the ray deviation {(p) is determined by the ray deviation 

dx. 

S x  =  x ' - x  =  — ,  
0 Equation 1.6 

5 x - e  9 = — 
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The final equation is noted as being the fundamental equation for moire deflectometry 

(Kafri, 1985). Since the ray deviation goes as Hd, the sensitivity of the measurement can 

be increased by increasing d. Not surprisingly, this increase in sensitivity carries with it a 

loss of spatial resolution (Kafri, 1985; Kreske, 1988). 

Moire deflectometry has been used to test lenses, including soft contact lenses in saline 

solution (Keren, 1992; Kreske, 1992; Kreske, 1988; Kafri, 1985). In their 1992 papers, 

Keren, et. al. and Kreske, et. al. describe a deflectometer named the OMS-101 as an 

instrument specifically designed to measure soft contact lenses in saline solution. 

Ignoring the specific packaging of the OMS-101, the basic layout (Fig. 1.6) uses two 

reference optics and a mirror to produce the test wavefront presented to the 

deflectometer. 
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FIGURE 1.6 - Schematic for the OMS-101 moire deflectometer. The 
distance traveled (Az) between the top and bottom configurations is 
related to the focal lengths of the reference lens and test lens. Note 
that the test lens is at the rear focal point (F') of the reference lens. 

The setup is such that the test lens is at the rear focal point (F") of the reference lens. The 

reference lens, contact lens cell, and mirror are all on a stage that can be scarmed along 

the optical axis. Initially, the stage is positioned so that the reference and converging 

lenses are confocal. The rear focal point for the converging lens is coincident with the 

fi-ont focal point for the reference lens, thereby producing a coUimated beam leaving the 

reference lens when a collimated beam is incident on the converging lens. When a test 

lens is added, the stage is moved the necessary distance to restore collimation (Az). This 

is determined by monitoring the moire fiinge pattern, watching the fringes rotate as the 

stage is scanned until the fnnges return to their reference location. 
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Kreske suggests that the conversion from stage travel to focal length of the test lens be 

viewed as a Newtonian imaging problem (1992). However, a more intuitive analysis 

comes from Gaussian reduction. Gaussian reduction gives the system power for the 

reference lens/test lens combination separated in air by a distance t as; 

^System ^Reference ^Test ^Reference^Test^ ^ 

t  = ——, Equat ion 1 .7  
^Reference 

^System ^Reference' 

The test lens has no influence over the system power. However, the test lens does shift 

the principal planes for the system. This shift in the front principle plane can be 

considered the cause for needing to shift the entire system to restore collimation. With no 

test lens, the principle planes are at the reference lens. The shift Az must therefore be 

equal to the shift of the front principle plane from the reference lens. This leads to a 

relationship between Az and the power of the test lens, as shown in Eq. 1.8. 

^System 

' 1 ^ 

T Reference J 

<Psys>en. = <!>Reference^ EqUation 1.8 

— ^Test _ fReference 

^Reference fTest 

This is the same result as Kreske's (1) (1992). Worth noting is that this result is identical 

to the focimeter principle described by Smith and Atchison (Smith, 1997). The obvious 

concern, which is not addressed in any of the cited papers, is how the shift Az is 

measured. The method used to measure Az may introduce significantly more error than 

that associated with checking for collimation via the moire fringe pattern's orientation. 
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Also worth noting is that the conversion between stage travel and test lens power goes 

with the square of the assumed power for the reference lens. The tolerance on this value 

must be considerably less than the desired accuracy for the measurement. 

The work lead by Bumabeu appears to have made advances to this technique (Quiroga, 

1999; Canabal, 1998). Improvements include the use of square or two-dimensional 

gratings to measure deflections in perpendicular directions and incorporating phase 

shifting algorithms for non-sinusoidal waveforms (Canabal, 1998). The phase shift is 

provided by a lateral translation of one grating with respect to the other (Quiroga, 1999). 

Quiroga also mentions that the distance d between the two gratings should be such that 

the second grating is located at a Talbot image of the first grating. This condition 

provides maximum fiinge contrast. As Talbot images are periodic phenomena, 

sensitivity can still be manipulated by selecting a different Talbot image location. Also 

discussed are Fourier transform methods for better measuring the ray deflections in x and 

y by examination of the transform of the moire fiinge pattern. The technique is used to 

map out the spherical and cylindrical power maps for a progressive spectacle lens. The 

agreement between this technique and data from a focimeter is well under 0.1 diopters. 

1.2.4 Lateral Shear Interferemetry (LSI) 

LSI is the physical optics equivalent to the geometrical test of moire deflectometry. With 

LSI, interference is used to produce a fiinge pattern which measures wavefront slope. 
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Both tests measure the wavefront deviations in one direction only, and therefore require 

two measurements to characterize toric lenses. 

A straightforward LSI system is shown in Fig. 1.7 (Wyant, 1975; Mantravadi, "Lateral 

...", 1992). 

TEST LENS SHEAR PLATE 

IMAGING 
LENS 

DETECTOR 
INTERFEROGRAM 

FIGURE 1.7 - Basic LSI system. The imaging lens has as conjugates the 
test lens and detector. The interferogram is present only in the 

region of overlap between the two beams. 

The refraction of the wavefront reflected off the back of the parallel plate (shear plate) 

provides the lateral shear between the two reflected wavefronts. LSI is an example of 

both division of amplitude and division of wavefront, as the wavefronts interfered are 

identical to the incident wavefront, except for the reduction in amplitude. 
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Briefly, the fringe pattern produced by LSI gives the wavefront slope in the direction of 

the shear (S) for a given wavefront W(x,y). Following Mantravadi, the fringes produced, 

differences in optical path, can be expressed as 

W  [ x  +  S ,  y )  - W  ( x ,  y )  =  m / l .  Equation 1.9 

for a shear in the x-direction where w is an integer. Viewing the difference as the 

numerator to the classical definition of a derivative, the wavefront slope can be 

determined from the following (Spiegel, 1999): 

d W  W { x  +  S , y ) - W { x , y )  

d x  (;c + S)-x 
Equation 1.10 

\  d x  )  

The above relationship is only true in the limit that S — * 0 ,  but is quite useful over small 

S. hi fact, if S were to go to zero, then there would be no difference in path, and the 

resulting fringe pattern would contain no useful information (Mantravadi, "Lateral.. 

1992). From this argument, and from Eq. 1.10 comes the realization that an increase in 

shear increases the sensitivity. Yet increasing S causes confiision as to the meaning of 

the measured interference, and reduces the area over which the wavefront is tested. 

Wyant and Smith wrote about the testing of ophthalmic lenses using LSI (Wyant, 1975). 

In the paper, the claim is made that relative local power can be measured directly from 

the fringe spacing. Since the fringe locations are dictated by wavefront slope, the fringe 

spacing maps out the local wavefront curvature. 
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Kasana and Rosenbruch have studied the use of LSI for measuring various lens properties 

(1983). Discussed in their work is the difficulty of LSI to accurately provide very small 

defocus errors where only a fraction of a fringe is present. To better identify the focal 

length of the test lens, they implement a scanning mirror along the optical axis and 

average the readings fi-om both sides of focus. They also discuss the idea of using LSI to 

first measure the focal length of a lens, then immersing the lens in an unknown liquid, 

and measuring the focal length again to arrive at the index of refraction for the unknown 

liquid (Kasana, 1983). 

1.2.5 Phase Shifting Interferometry (PSI) 

Phase shifting interferometry (PSI) is the enhancement of classical interferometric 

techniques via electronic detectors, precise motion control, and computing power 

(Greivenkamp, 1992). PSI improves upon the classical interferometric techniques by 

recording a series of interferograms with a known temporal phase shift (S (0) between 

each interferogram. From the addition of amplitudes for the two interfering beams comes 

the fundamental equation for PSI: 

I [ x , y , t )  -  / '(x, j)+ /"(;*:,3/)cos(^(x,>') + ^(f)). Equation 1.11 

The unknowns are the average intensity (/'), the intensity modulation (/" ), and the phase 

difference (^). The recorded intensity at each pixel is I. Therefore, a minimum of three 

interferograms are needed to produce the unwrapped phase. 
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There are several advantages to PSI. First, the problem of identifying fringe maxima or 

minima is avoided. The reconstruction process computes the local phase pixel-by-pixel 

via an algorithm that only depends on the recorded irradiance value for each pixel (/) and 

the assumed (or possibly measured) phase shift between each interferogram (S). The 

ambiguity between convex and concave wavefronts is eliminated. As Greivenkamp 

points out, the addition of phase is analogous to pushing on one side of test optic in a 

Newton interferometer, and watching which way the fringes move (Mantravadi, 

"Newton..1992). It can be shown that the phase difference is insensitive to fixed 

noise (Greivenkamp, 1992). Since the recovery of phase is done on a pixel-by-pixel 

basis, variations in source intensity do not matter (as long as the light level is well above 

the noise level of the detector). Finally, since several interferograms are recorded, the 

technique of PSI benefits from averaging. The different algorithms used to collect and 

unwrap the phase can be designed to exploit not only averaging, but other factors such as 

a decrease is sensitivity to phase shifter error or second-order detector nonlinearity 

(Creath, 1986; Greivenkamp, 1992; Strand, 1999; Schwider, 1983; Brophy, 1990; 

Ghiglia, 1998; Schmit, 1995; Joenathan, 1994). 

PSI has been used to evaluate ophthalmic optics. In Contact Lenses, Loran references the 

work of El-Nasher and Larke, who used interferometric techniques to measure radii of 

lenses to within 2% of the manufacture results (Loran, 1997). El-Nasher and Larke used 

an interference microscope to measure radii on the front and back surfaces. No phase 

shifting was used, and no discussion was given regarding the role of index in testing 
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through the lens (El-Nasher, 1980). The work of Mohr is perhaps the best example thus 

far of transmitted wavefront testing of ophthalmic optics (Mohr, 1989). Mohr discusses 

the difficulties of testing in reflection such aspheric optics as those commonly found in 

ophthalmics, and concludes that transmission testing is superior. The reported results 

include the mapping of surface astigmatism to an uncertainty of 0.005 diopters. 

However, this level of accuracy was achieved through the use of null optics, thereby 

making this level of accuracy a measure of comparison and not absolute power. PSI is 

the technique developed in this dissertation, and more on the design, calibration, and 

results of using PSI to measure contact lenses follows. 

1.2.6 Sub-Nyquist Interferometry (SNI) 

Sub-Nyquist interferometry (SNI) is not a unique form of interferometry due to a specific 

geometry, but rather how the produced interferograms are collected and analyzed 

(Gappinger, 2002). SNI can be used in all of the well-known interferometric 

configurations, and is most often used as an enhancement to phase shifting interferometry 

(PSI) (Greivenkamp, 1992). The unique aspect of SNI begins at the detector. Instead of 

trying to collect as much Ught as possible, as most detectors do, SNI uses a sparse array 

detector that allows only a fi-action of the light to fall on each pixel. Shown in Fig. 1.8, 

the sparse array detector is typically a standard detector with an opaque pinhole mask 

superimposed. 



FIGURE 1.8 - SNI detector. The red box indicates the region corresponding to a 
single pixel. The only light sensitive portion is pinhole in the upper 

right quadrant of the pixel (Gappinger, 2002). 

The pinhole mask allows for high frequency fringes to be detected, like those produced 

by highly aspheric wavefronts. This is accomplished by allowing the fringes to ahas. 

Typically aliasing is avoided, as it confuses the correct high frequency with a lower 

frequency (Greivenkamp, 1992). Since abasing is a local phenomenon, the correct 

frequency can be recovered using some very general, unrestrictive assumptions 

(Greivenkamp, 1987; Lowman, 1993). The significant assumption is that the slope or, in 

some cases, a higher derivative of the wavefront is continuous. This will be the case for 

all optics with smooth surfaces. The other assumption is that in order for the recovery of 

the high frequency fringes to be unique, there must be a region where aliasing is known 

not to exist. This region can be as small as a 2 x 2 grouping of pixels in the case of slope 

continuity. 
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The benefit of SNI comes from the fact that since high frequency fringes can be resolved, 

no null optics or other compensators are needed to measure highly aspheric parts. Due to 

the way in which the phase is collected and recovered, the dynamic range of SNI over 

traditional PSI is twice the ratio of the original pixel size to the pinhole size (assuming 

contiguous pixels). For the detector shown in Fig. 1.8, the pinholes are 2.35 |j,m spaced 

15 (xm apart (Gappinger, "High modulation..2003). The gain in dynamic range is 

therefore about 12.7 times that for PSI. The factor of two comes from the fact that the 

phase retrieval process in PSI is limited to the Nyquist frequency of the detector, while 

the technique used with SNI allows for phase unwrapping out to the sampling frequency 

of the pinhole array (Greivenkamp, 1987; Greivenkamp, 1992; Gaskill, 1978; Gappinger, 

"High modulation..2003; Lowman, 1993). 

SNI has been used to measure progressive spectacle lenses (Gappinger, "Non-null...", 

2003). The particular sub-Nyquist interferometer used was able to measure over 240 X of 

departure from a progressive spectacle lens over a diameter of about 41 mm. The 

collected wavefront was also used to produce spherical and cylindrical power maps of the 

progressive lens. 

1.2.7 Other Techniques for Testing Ophthalmic Optics 

At this point, a brief hsting of other techniques used in the qualification of ophthahnic 

optics is in order. Most of these techniques test a surface, not a wavefront, and are based 
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on common ophthalmic instrumentation. Worth mentioning is the fact that any measure 

of power from a single lens parameter must include assumptions of several other lens 

parameters. The errors associated with these assumptions must be considered when 

reporting the measured power. 

Certainly the most direct method for testing power is the focimeter. The focimeter works 

much like the described operation of the moire deflectometer, in that a coUimating lens is 

used in conjunction with the test lens. The combination is translated until collimation is 

restored, and the distance traveled is the back vertex focal length of the test lens (Loran, 

1997; Smith, 1997; Fowler, 1989). 

The radiuscope is an autostigmatic microscope (Steel, 1977; Smith, 1997). The 

radiuscope is just the measuring of the distance between two positions; the center of 

curvature and the cat's eye position. In ophthalmics, the technique of noting the distance 

between the two locations where light will be reflected back at the same angle is known 

as Drysdale's method (Mandell, 1974). Steel suggests overcoming the poor reflection of 

an immersed contact lens by using crossed polarizers and a retarder to get better visibility 

(Steel, 1977). 

The keratometer has been used to measure the radius of curvature of lenses (Loran, 

1997). However, there are several issues with this technique. First, the necessity of 

testing contact lenses in solution and therefore in some sort of cell results in added 
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refraction between the cell/air interface. This can be compensated for if the index of the 

sahne solution is known. Since the keratometer is calibrated for convex surfaces only, 

the testing of concave surfaces will give erroneous results. While not stated in the 

reference, the source of this error must be due to the sign difference for spherical 

aberration between convex and concave surfaces. Reflections off both the front and back 

surfaces may produce unwanted ghost images. Finally, Loran mentions that in an effort 

to get a brighter image by increasing the amount of light produced, the heat given off by 

the lamp may raise the temperature of the saline to a point where the reading is no longer 

valid. 

Spiers and Hull suggest a Fourier filtering technique for measuring progressive lenses. 

By placing different gratings in the transform plane, the deflection of the grating can be 

used to map out local power. This is really no different than the moire deflectometry 

techniques already mentioned (Spiers, 2000). 

1.3 Case Study for Testing Soft Contact Lenses 

When initially presented with a problem, the good scientist or engineer tries to gather as 

much information as possible about the problem before generating and analyzing possible 

solutions. The story of how the problem of testing soft contact lenses was initially 

analyzed, and how the hardware and software produced came to be is worth mentioning. 

This case study is an excellent example of both the art and science of optical engineering. 

In many ways, the following story is the blueprint by which the bulk of the work in this 
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dissertation was carried out. All topics mentioned here are covered in greater detail 

throughout the dissertation. 

The sponsor initially presented the problem as needing robust metrology to test a wide 

variety of soft contact lenses. Current technology did an adequate job of testing spherical 

lenses, but was incapable of testing more complex designs. Developed instrumentation 

was to be as flexible as possible, allowing for the potential of testing future products with 

unknown asphericities. 

Three specific types of lenses were initially discussed: spheres, torics, and bifocals. The 

complications of testing spherical contacts are those of testing contact lenses in general, 

which due to their number and complexity are given their own chapter (Chpt. 3). Toric 

contact lenses present the challenge of testing a non-rotationally symmetric optic. While 

the astigmatism of the lenses is mitigated by the index match between the lens and 

surrounding saline to the point that the aspheric wavefront can be treated no differently 

than a spherical wavefront, the ability to compare measured data to modeled data requires 

that the fiducial marks (see Fig. 1.9) at the periphery of the lens be visible in the recorded 

interferograms. Bifocal contact lenses present problems from having annular zones of 

varying diameters and powers. This leads to the requirements that the instrumentation 

not only detects the zones, but has the resolution to properly measure the zones. So the 

problem now becomes one where the whole lens must be examined (for toric angle 
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identification) and yet be tested at a high spatial resolution (for the annular zones of 

bifocals). 

Given the requirements on testing a wide variety of lenses, with potentially unusual 

asphericities, over a range of powers and with a high spatial resolution, the natural first 

choice for the instrumentation was phase shifting interferometry (PSI). PSI is the 

standard method for modem optical testing, and therefore a natural first choice. No other 

method has the combination of ease-of-use and accuracy as PSI. However, it was unclear 

whether or not interferometry would be able to handle the unusual bifocal lenses. The 

biggest unknown with bifocals was whether or not the transitions between zones would 

cause problems. While interferometry is a very robust tool, in general it lacks the 

capability to test optics where the resulting fiinge pattern is not continuous. That is to 

(a) (b) 

FIGURE 1.9 - Cartoons for (a) toric and (b) bifocal contact lenses. 



say, part discontinuities are often a downfall for an interferometer. The other common 

downfall is that the optic under test simply produces too high a fringe frequency. This 

issue is taken up in Chpt. 2. 

To check the effect of the zone junctions, a supplied model for a bifocal lens immersed in 

saline was put into Zemax, and theoretical fringes produced (see Fig. 1.10). 

FIGURE 1.10 - Zemax interferogram for a bifocal contact lens in double pass. 

The model showed no serious problems; the fiinges looked testable. Yet there was still 

some doubt due to the fact that the model itself did not contain discontinuities, but rather 

represented the annular zone surface as a spline surface in Zemax. To definitively prove 

if interferometry would work, a lens was placed in an existing Twymann-Green 


