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ABSTRACT 

The advancement of optical systems arises from furthering at least one of the three fields 

of optical development: design, fabrication, and testing. One example of such 

advancement is the growth in customization of contact lenses, which is occurring in part 

due to advances in testing. Due to the diverse quantities that can be derived from it, the 

transmitted wavefront is the tested parameter. There are a number of tests that can 

evaluate a transmitted wavefront, including moire deflectometry, Shack-Hartmann 

wavefront sensing, and interferometry. Interferometry is preferred for its sensitivity and 

spatial resolution. The dynamic range issue is mitigated by the required immersion of the 

contact lenses in saline due to the complex nature of the lens material. The partial index-

match between the lens and surrounding saline reduces the measured power of the lens 

and enables testing in an absolute, or non-null, configuration. Absolute testing allows for 

the generation of ophthalmic prescriptions and power maps from the transmitted 

wavefront. 

Designing a non-null interferometer is based on three principles. The transmitted light 

must be collected, the resulting interference must be resolved, and the imaged wavefront 

must be calibrated. The first two principles are fiilfilled by proper choices for the 

imaging lens and detector. Calibration comes from removing the wavefront-dependent 

induced aberrations via reverse raytracing. Reverse raytracing demands an accurate 

model of the interferometer. With such a model, theoretical wavefronts can be produced 
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and compared to measured wavefronts. The difference between measured and modeled 

wavefronts quantifies the answer to the fundamental question in transmitted wavefront 

testing: does the optic perform as desired? 

Immersion in index-matching fluid provides an adjustable increase in the dynamic range 

of the interferometer. The increase comes at the expense of sensitivity. The tradeoff 

between dynamic range and sensitivity can be quantified by the dimensionless ratio 

between the two numbers. This ratio is interpreted as a degree of difficulty for a 

measurement. Combined with absolute testing, immersion provides the ability to 

measure fast cylindrical lenses, which are notoriously difficult to test. Understanding the 

parameters of the interferometer provides a simple condition for determining the gain 

firom immersion. 
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1 INTRODUCTION TO TRANSMITTED WAVEFRONT TESTING 

optical science encompasses a vast spectrum of research areas. There is research being 

done in all parts of the world, on all scales, in all facets of life, from medicine to national 

defense, from fundamental science to applied engineering. Within the branch of optics 

known as optical engineering there exists a wide range of research opportunities. Optical 

engineering is the application of scientific principles to specific, practical problems using 

optical techniques. Often optical engineering efforts lead to the development of a new 

device or an improvement to an existing device. Whatever the opportunity, the solution 

to the problem includes some configuration of light sources, detectors, and other optical 

elements. The development of optical elements is a field of vast research, and covers the 

scope of this dissertation. 

There are three main fields concerning the development of optical elements: design, 

fabrication, and testing. The fields are listed in this order not because of importance or 

relevance, but simply because this is the chronological order of development. Design 

defines the optical configuration. This is the time when the desired specifications are 

matched with surfaces, coatings, and materials to create the desired element. The process 

is the same regardless of the type of element or system developed; simple mirrors, lens 

assemblies, and more exotic elements, such as diffraction gratings or computer generated 

holograms (CGH), are all designed using the same principles. Fabrication takes the 
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designed model and turns it into a real element. Simply stated, though far from simple in 

practice, fabrication is the conversion from software to hardware. Finally, testing 

qualifies the manufactured optic. Often, the results of the test are compared to the 

expected results for the design, thereby closing the development loop. 

The first field, optical design, has undergone a renaissance due to the widespread use and 

advances of the personal computer. Before the personal computer, the simple act of 

tracing rays required tedious interfacing with a mainfi"ame via punch cards, or before that, 

long hours with a slide rule. Today, the computer foimd in any lab can trace millions of 

rays in a matter of seconds (Robb, 1990; Sinclair, 1991). The use of lens design code, 

such as Code V (Optical Research Associates, Pasadena, California), Oslo (Lambda 

Research Corp., Littleton, Massachusetts), or Zemax (Zemax Development Corp., San 

Diego, California), has freed the designer firom the vast majority of the mathematics 

associated with lens design. The computer has also enabled radical ideas to be explored 

with little cost of time or money. 

A particular area of growth due to the advances of lens design code is the number and 

variety of surface types available to the designer today. Later in this dissertation the 

testing of some highly aspheric optics is examined. These surfaces would not exist as 

parts of real elements if the means to design them and quickly evaluate their performance 

did not exist. One only needs to look at any of the user's guides for the design software 

to see the variety of surface types available today. The assortment of available surfaces is 



due to not only the superior computing power available, but to advances in materials and 

manufacturing. 

The second field of development is fabrication. As previously mentioned, there have 

been significant improvements in manufacturing techniques in recent decades. Again, 

the computer plays an integral role in these technologies. Techniques such as injection 

molding, single-point diamond turning (SPDT), computer-controlled polishing (CCP), 

and magnetorheological finishing (MRF) have all flourished due to in part the 

proliferation of computing power (Karow, 1993; Shorey, 2001). 

The third field, testing, complements the other two fields by providing insight into how 

well the manufacturing process carried out the instructions of the design. Testing can 

take a number of forms, from a simple measurement with a ruler or other mechanical 

gauge, to elaborate, million dollar instruments with atomic resolution. Different tests 

provide different outputs. The desired output may be a single number, such as focal 

length or diffraction efficiency, or much more complex, such as a 3D model of the optic. 

One may wonder which field is most important, or which field drives the others. Even 

though the typical development process is design, fabrication, and testing, this is not the 

order of importance. In fact, the answer is that all three fields are vital to a successful 

design and each field expands and limits the others. The three fields are of equal 

importance, and all fields influence the others, a notion supported by others (Lee, 2003). 
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The fields should be thought of as a cycle with no beginning or end, turning in whatever 

direction is necessary to produce the desired element. Figure 1.1 illustrates this idea. 

FIGURE 1.1 - The 3 fields of development. All fields are of equal importance. 

Progress is made when one field is pushed to new levels of performance. This often 

comes about from the limitations or constraints of another field. For example, a 

successful design is useless if it cannot be fabricated. Yet if this is the only design that 

meets all system requirements, then efforts may be warranted in the fabrication field to 

push current technology to make the design possible. These three fields are not 

independent; they are an intertwined set of criteria, capabilities, and techniques that make 

developing optical elements possible. 

The following discussions and presented research pertain to the field of testing. 

Advances in both design and fabrication have generated a need for new testing 

techniques. While one example is examined in detail, the metrology of soft contact 

lenses, the questions, both asked and answered, and the techniques developed are 

applicable to numerous instruments and testing scenarios. 

Design 

Testing 

Fabrication 



1.1 Common Issues with Testing Optical Elements 

Testing was introduced as the qualification of the fabricated optical element. While this 

is an accurate definition, it does not begin to indicate the magnitude of issues surrounding 

the task of testing an optic. Like any project, the paramount constraints of scope, cost, 

and time must be balanced in accordance with the development of the optical element as 

a whole. Different projects will place different weights on these constraints. For 

example, the testing of an 8 meter primary mirror for a multi-million dollar telescope will 

likely place accuracy and completeness (scope) ahead of cost and time. For mass-

produced optics, speed and cost will certainly be pressed to maximize efficiency. The 

real question in this case is to what level the accuracy of the test will be compromised to 

accommodate speed and cost. 

The issues regarding testing are summarized in a few, basic questions: 

What are the testable parameters? 

What results fi"om the test are desired? 

How will the results be judged? 

1.1.1 Testable Parameters 

Any element under test has multiple testable parameters. The task is to identify those 

parameters that are of interest. These may be the set of parameters used in designing the 

element or the set of parameters that influence the performance of the element. Often, 

these two sets have a great overlap, thereby indicating the parameters of true importance. 
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For a simple example, consider a first-surface mirror with power. While parameters such 

as thickness, weight, or thermal expansion could be measured, more likely candidates are 

curvature, surface figure, diameter, surface roughness, and reflectivity. As elements 

become more complex, or become systems with multiple elements, the determination of 

which parameters to test becomes more important. Not only will complex elements or 

systems be expected to perform over a variety of inputs (e.g. wavelengths, fields, or 

spatial firequencies), but the parameters that dictate performance will grow in number and 

complexity. This leads to the act of tolerancing, whereby a model of the element is 

analyzed to determine the parameters critical to performance (Shannon, 1997; Fischer, 

2000). Tolerancing is beyond the scope of this dissertation, save for a brief discussion of 

the need to have an accurate model in calibrating instrumentation. 

1.1.2 Types of Output 

Along with the selection of the appropriate parameters to test comes the selection of what 

output should be reported. The two selection processes are coupled. For example, 

reporting MTF can only occur if some quantity related to MTF has been tested. Once 

again, the view that testing is not an isolated act is important. The choices made in 

testing must be in accordance with the other developmental fields of design and 

fabrication. The output from the test should be relevant to the criteria under which the 

element was designed and manufactured. 
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While by no means a complete list, below are listed some common outputs from a variety 

of optical tests. This list is geared towards refractive and reflective elements, i.e. lenses 

and mirrors (Malacara, 1992; Geary, 1993; Stover, 1995). 

• Aberration Content 

• Absorption 

• Bidirectional Reflectance/Scatter/Transmittance Distribution Function 

(BRDF/BSDF/BTDF) 

• Centration 

• Coating Uniformity 

• Departure from a Standard (or Master) Element 

• Focal Length 

• Index of Refraction 

• Line Spread Function (LSF) 

• Modulation Transfer Function (MTF) 

• Optical Transfer Function (OTF) 

• Point Spread Function (PSF) 

• Polynomial Fit to Surface or Wavefront 

• Radius of Curvature (R of C) 

• Reflectivity 

• Scratch/Dig 

• Stokes Parameters 

• Strehl Ratio (SR) 
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• Stress, Strain, and Stria 

• Surface Peak-to-Valley (PV) 

• Surface Root-Mean-Square (RMS) 

• Surface Roughness 

• Transmitted Wavefront 

• Wavefront Curvature or Slope 

1.1.3 Judging the Output 

Once the type of output is selected, the criteria against which that output will be judged 

needs to be determined, hi short, this is estabUshing the go/no-go line. Obviously, the 

criteria need to be at levels that guarantee the optic will perform its designed task. 

However, setting the criteria beyond the level at which the optic was designed is a 

disservice to the entire development process. Like so many aspects of optical 

development, the optimal solution may never be found, but a serviceable solution is 

almost always available. 

One method forjudging the output is to compare the output of the real optic against the 

theoretical output of its model. The benefit of this method is that it can quantify the 

answer to the question: "Does the optic perform as designed?" The downside to this 

method is that the instrumentation used to collect the output must either be accurately 

modeled or of much greater quality than the test optic so as not to be a source of error. 



Imagine the scenario of MTF testing a lens by imaging bar targets. The modeled MTF, 

most likely formed using Fourier techniques (Goodman, 1996), will be free of errors such 

as fabrication tolerances on the bar target, alignment between the target and lens, and 

variations in illumination across the target. These errors, and many others, all must be 

considered when comparing measured versus modeled output. 

Another method for evaluating performance is to simply compare the tested parameter 

against a known optical standard. The Strehl ratio (SR) is a perfect example. Optical 

metrologists know that an SR of 0.8 or higher indicates acceptable performance for near 

diffraction-limited systems, as this number is rooted in the Rayleigh or Marechal criterion 

for resolution (Wyant, 1992; Smith, 2000). A different example is the combination of PV 

and RMS. The PV of a surface gives the extremes for departure from the ideal, while 

RMS quantifies the surface as a whole. Optical surfaces are often specified with an RMS 

expressed as a fraction of a wave, such as A,/10. 

Comparing PV to RMS gives a feel for the surface figure. If the PV is only slightly 

greater than the RMS, then the surface is fairly irregular at the PV/RMS level. If the PV 

is significantly greater (factor of ten or more) than the RMS, the PV is being skewed by 

an outlying point(s). The rule of thumb for PV to RMS is that the PV should be a factor 

of 2 to 8 for a quality optical surface (Miller, 1996). 



1.1.4 Null Optics - Pros and Cons 

At this point, a brief diversion to discuss the topic of null optics is in order. The t3^e of 

output "Departure from a Standard (or Master) Element" implies that testing be done 

against a superior part. This superior part, or at least what is supposed to be a superior 

part, is often used in such a way that the output of the test is a null condition. Thus, the 

superior part is referred to as a null optic. Examples of null results include the absence of 

fringes in the case of interferometry, or the lack of spot movement in a Shack-Hartmann 

wavefront sensor. In any case, the null optic is a test part-specific optic employed to 

make the testing possible or easier. 

Basically, there are two ways in which a null optic improves an optical test. Either the 

null optic behaves the same as or opposite of the test optic. If the null optic mimics the 

test optic, then the instrumentation should in some fashion subfract the outputs from the 

null and test optics. For example, a Mach-Zehnder interferometer with a test optic in one 

arm and a null optic in the other arm will produce no fringes if the two optics perform 

identically. 

Null optics are most often used when the cost associated with the null optic is 

insignificant to the project as a whole. In this context, cost not only means dollars, but 

also man-hours with respect to design time and fabrication. An example of a project 

where the cost of a null optic is insignificant is the production of primary mirrors for 

telescopes. The University of Arizona manufactures the largest mirrors in the world. 
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over 8 m in diameter, to serve as primary mirrors in telescopes (West, 1992). The cost of 

the mirror alone, not including the total cost of building the telescope, overwhelms the 

cost of using a null optic. This is often the case with specific, one-of-a-kind optics. So 

much effort goes into the project as a whole that the added work associated with using a 

null optic is not noticed. A popular choice for a null optic today is a CGH. For more on 

the use of CGHs with telescopes, see Burge (1995). 

The obstacles to using null optics are numerous. Going back to the idea that any project 

is constrained by scope, cost, and time, the use of null optics pushes on all three 

constraints. Scope is increased because all the issues associated with developing the test 

optic are also appUcable to the null optic. Any cost or time used in developing the null 

optic takes resources away from the test optic. In addition, using null optics to ease the 

testing of some other optic brings up a very interesting question: How do you test the null 

optic? And if testing the null optic is straightforward, why not use that method to test the 

original optic under development? Plus, the null optic must be tested to levels greater 

than those desired for the test optic and aligned to such a level of precision that alignment 

errors are negligible. The problem of qualifying the null optic, to then qualify the test 

optic is analogous to a cat chasing its tail. It's a problem with no apparent beginning or 

end, and one that is usually best avoided by not using null optics. 

Finally, there is the common case of a partial null optic: an optic that makes testing easier 

while not being identical in performance to the test optic. Usually the partial null optic 
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removes the majority of the power of the lens under test. For any test optic with power, 

power will be the dominant error, or difference from flat. Examples of partial nulls 

include the reference optics used with commercial laser Fizeau interferometers. 

Refractive partial nulls predominately contain spherical surfaces, and many single lens 

nulls have a piano surface. This is done to ease the manufacturing of these elements to 

tolerances greater than those desired for the test optic. Simple partial nulls are also easier 

to align. 

1.1.5 Qualifying Contact Lenses 

Contact lenses present several unique testing issues, which are covered throughout this 

dissertation, hiitially, the question is how best to quaUfy these lenses. These are mass 

produced optics, so the process needs to be one that can be done quickly and cheaply. 

There are thousands of different prescriptions, so the instrumentation must be able to 

handle a wide range of test part powers. Not all of the designs are rotationally symmetric 

(i.e. toric lenses for correcting astigmatism), so the instrumentation needs to be robust, 

and probably needs to examine the entire test aperture of the lens. Bifocal contact lenses 

can have regions of power less than a millimeter in diameter, so the instrumentation must 

be able to make accurate measurements over sub-millimeter regions. What is ultimately 

desired is the performance of the lens measured against the labeled, or at least known, 

performance. 
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In order to measure the performance of a lens, the lens needs to be tested in such a way 

that only its own performance is measured. Testing against a null optic measures 

performance against the null, and does not measure performance in an absolute sense. 

Plus, with the potential for thousands of different lenses being tested, the use of null 

optics is not practical. The use of null optics is unnecessary for a different reason as well. 

The lenses must be tested in saline solution (more on this in Chpt. 3). The similarity in 

index of refraction between the saline and the contact lens effectively reduces the power 

to a point that testing in an absolute sense is feasible. 

Of all possible testable parameters, the one that makes the most sense to measure in this 

case is the transmitted wavefront. The transmitted wavefront is the parameter most 

closely related to lens performance. By directly measuring the effect of the lens on an 

incident wavefront, a plethora of information can be obtained. In general, MTF, PSF, 

and aberration content can all be measured from the transmitted wavefront. Another 

advantage is that since the wavefront is being measured in an absolute sense, the power, 

and ultimately the prescription for the lens, can be measured. This would not be possible 

if null optics were being used. The use of null optics would also be cost prohibitive, as 

potentially thousands of different lens prescriptions will be tested. Each prescription 

would require its own null optic. Also, the transmitted wavefront is one of the easier lens 

parameters to measure. Since the lens is immersed in a fluid of nearly the same index, 

getting a reflection off a surface would take significantly more power from the light 

source. In addition, two surfaces would need to be measured to get an idea of the 
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performance of the lens, whereas only one transmitted wavefront is needed to measure 

performance. For these reasons, the desired fundamental quantity is the transmitted 

wavefront. The question now is how best to collect the transmitted wavefi-ont over a 

range of lens powers and wavefront profiles. 

1.2 Methods of Testing Transmitted Wavefronts 

There are several ways to examine the transmitted wavefront of an optic in order to 

qualify the optic's performance. Discussed here are some of the more common 

techniques, or techniques that have been mentioned in the hterature with regards to the 

specific testing of ophthalmic optics, including contact lenses. The first method 

discussed, star testing, is used mostly only in the qualitative sense. The next two 

methods, Shack-Hartmann (S-H) wavefront sensing and moire deflectometry, are 

geometric tests. The following three methods, lateral shearing interferometry (LSI), 

phase shifting interferometry (PSI), and sub-Nyquist interferometry (SNI) are, of course, 

tests based on the interference of optical waves. For completeness, also mentioned are 

other tests discussed in the literature specific to measuring ophthalmic optics. 

1.2.1 Star Testing 

Star testing is essentially the examination of a point image. Often used in astronomy 

(hence the name), the star test is good at quickly and straightforwardly providing 
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qualitative information. However, the star test is not designed to easily provide 

quantitative information (Welford, 1992). 

The star test is simple to set up; the only unique component to the test is a microscope 

objective, or some other type of magnifying optic. The objective images to infinity (in 

the case of use with the eye) and magnifies the test optic's focal plane, as shown in Fig. 

1.2. The objective must have a greater numerical aperture (NA) than the test lens, 

ensuring that all the light of the point image is collected. 

OBJECTIVE 

TEST LENS 

FIGURE 1.2 - Star testing. 

The illumination for the star test can either be a point source truly at infinity or a 

collimated pinhole. In the case of a collimated pinhole, great care must be taken in 

alignment to avoid the introduction of additional aberrations. 

With star testing, the aberrations are detected in the image plane of the test optic. This is 

typically done by scanning along the axis, looking at various out-of-focus images. The 

ideal image is the well known Airy disk pattern. With some training, deviations fi-om the 

Airy disk pattern can provide some quahtative information about the aberrations present. 
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In general, aberrations move energy jfrom the central core of the Airy disk to the outer 

rings (Welford, 1992). So by adding defocus, more light is present in the outer rings, 

which makes anomalies in the light distribution of the outer rings easier to detect. The 

presence of spherical aberration will cause a rotationally symmetric error in the 

distribution of the outer rings. Geary suggests the use of zonal masks at the test lens to 

map out the longitudinal spherical aberration (Geary, 1993). Astigmatism is the source 

of two-fold symmetry in the detected spot. This pattern is often referred to as the Maltese 

cross (Welford, 1992). Coma is present when the spot has only a single axis of 

symmetry. Assuming the pinhole is nominally aligned to the axis of the test optic, the 

presence of coma is then due to a slight tilt or misalignment in the optical setup. 

Star testing was performed in a qualitative sense on some bifocal contact lenses. The 

results of the tests are presented in the chapter on testing bifocal lenses. 

1.2.2 Shack-Hartmann Wavefront Sensor 

A derivative of the Hartmann screen test, the Shack-Hartmann wavefront sensor (S-H) is 

a geometric test measviring wavefront slope (Shack, 1971; Ghozeil, 1992; Piatt, 2001). 

The basic operation of a Shack-Hartmaim is illustrated in Fig. 1.3. 
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y 

FIGURE 1.3- Basic operation of a Shack-Hartmann wavefront sensor. 

The test wavefront is incident on a lenslet array. The lenslet array consists of a regular 

grid of microlenses. Each lenslet samples the wavefront. A planar wavefront produces 

focus spots that lie on a regular grid. These positions are noted as the reference locations. 

With the non-planar test wavefront incident on the lenslet array, the spots move 

according to the average wavefront slope across the aperture of each lenslet. In effect, 

each microlens forms an imaging system, with the aperture stop at the microlens. The 

ray passing through the center of the lens becomes a chief ray, as shown in Fig. 1.3, and 

locates the center of the spot. It should be noted that the spot centroid predicted by 

geometrical optics is identical to the physical optics' centroid (Mahajan, 1985). 
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By noting the change in positions for the focus spots between the planar reference 

wavefront and the test wavefront, the wavefront slope across each lenslet can be 

determined via Eq. 1.1 (Groening, 2000). 

The shift of the spots in x and y are denoted as The focal length of the microlenses 

is f. Typically, the determined wavefront slopes are then integrated to form a measure of 

the test wavefront. This can be done in either a zonal or modal fashion (Southwell, 

Clearly, the unique component in the Shack-Hartmann is the lenslet array. The design of 

the lenslet array is critical to getting the desired dynamic range, sensitivity, and spatial 

resolution. The focal length of the microlenses acts as a lever arm in this test; increasing 

the focal length increases the spot shift for a given wavefront slope, and therefore 

increases the sensitivity of the measiu-ement. However, a longer focal length may cause 

dynamic range issues, as the spots may wander too far from the reference positions, or 

cross each other, both unacceptable conditions for most Shack-Hartmann algorithms 

(Smith, 2003). 

S, 
Equation 1.1 

1980). 

Perhaps the biggest downside to the Shack-Hartmann test is the achievable spatial 

sampling. The spatial sampling is obviously dictated by the pitch of the lenslet array. 

Well-defined spots, free of diffraction effects near their center, are needed to accurately 
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determine the spot shifts. This requires that the diameter of the microlenses be 

significantly greater than the wavelength used. Typical lenslet diameters are hundreds of 

microns, so the sampling of a wavefront is on the order of only 1-10 samples/mm 

(Artzner, 1992; Groening, 2000). 

In the field of ophthalmic testing, a modified Hartmann test has been used to test 

progressive spectacle lenses (CasteUini, 1994). The modification was to scan a single 

beam across the lens, and note the deflected beam's position. The results obtained 

matched the predicted power to within 0.1 diopters. A traditional Hartmann test (screen 

instead of lenslet array) has been used to measure spectacle lenses (Statton, 1981). 

Specific tests of contact lenses using a Hartmann technique are not commonly seen in the 

literature, probably due to the poor spatial resolution. From Dr. Jim Schwiegerling at the 

University of Arizona comes Fig. 1.4, which shows a Shack-Hartmann pattern for a 

bifocal contact lens on the eye. The spacing between spots is nominally 400 ^m, making 

the identification of sub-millimeter features, such as the annular zones of bifocal contact 

lenses, impossible. 
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FIGURE 1.4 - Shack-Hartmann spot pattern for a bifocal contact lens. The spot 
pattern does not show the presence of annular rings with different powers. 

1.2.3 Moire Deflectometry 

Moire deflectometry is in many ways a combination of geometric and interferometric 

techniques. By using two binary gratings spaced some distance apart, a moire fringe 

pattern can be produced which contains information about wavefront slope in the 

direction normal to the gratings. In Optical Shop Testing, Creath and Wyant discuss the 

relationship between moire fringe patterns and interferometry (Creath, "Moire and .. 

1992). If the two gratings are considered snapshots of plane waves, then the moire 

fringes produced are in the same location as the interference fringes produced by two 

plane waves traveling in the direction of the gratings. However, the moire pattern only 

predicts the location of the fringes, and does not give the sinusoidal pattern that plane 



wave fringes would have. Since wavefront slope is measured only in one direction, 

moire deflectometry is most similar to the interferometric technique of lateral shearing 

interferometry (LSI). In fact, since the position and spacing of the fringes determines the 

wavefront slope, the results of moire deflectometry are identical to those of LSI. Moire 

deflectometry can be thought of as a geometric method for constructing the fringe pattern 

of LSI. The schematic for a moire deflectometer is shown in Fig. L5. 

GRATING 1 GRATING 2 

w 

DEFLECTED 
RAY 

SCREEN 

FIGURE 1.5 - Schematic for a moire deflectometer. The deflected 
ray is due to the test optic (Kafri, 1985). 

Each binary grating can be described by the general relationship given in Eq. 1.2, where p 

is the grating period or pitch and A: is an integer. 

y = kp Equation 1.2 

The gratings are usually inclined by an angle 0 with respect to each other { 0 / 2  with 

respect to the x-axis), so that the direction of deflection is unambiguous. For an 

undeviated ray {(p = 0), the grating equations are given in Eq. 1.3 with k and m both 

integers. 



44 

>>008 

>"008 

r n\ 
= xsin 

v2y 

e 

= -jc sm 

2 

>.2y 

+ kp 

+ mp 

Equation 1.3 

Solving for the ray deflection in the region of small angles gives { l  =  m -  k ) .  

Ip x = -
6 

Equation 1.4 

The fact that 0is small leads to a moire fringe spacing much greater than the spacing of 

either grating (p). This magnification, sometimes called the "moire shift amplification", 

is at the heart of the usefulness of the moire technique (Kafti, 1985). Defects in either 

grating, too small to be seen when viewed individually, become magnified by the factor 

/?/^and are thus quite visible. Back in the nineteenth century, this technique was used by 

Lord Rayle igh to  determine the  qual i ty  of  gra t ings  (Creath ,  "Moire  and . .1992) .  

For a deviated ray, a perturbation of ^ J is added in the y direction, and the ray deflection 

is now X 

X' = - — Equation 1.5 
GO 

Finally the desired quantity for the ray deviation {(p) is determined by the ray deviation 

dx. 

S x  =  x ' - x  =  — ,  
0 Equation 1.6 

5 x - e  9 = — 
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The final equation is noted as being the fundamental equation for moire deflectometry 

(Kafri, 1985). Since the ray deviation goes as Hd, the sensitivity of the measurement can 

be increased by increasing d. Not surprisingly, this increase in sensitivity carries with it a 

loss of spatial resolution (Kafri, 1985; Kreske, 1988). 

Moire deflectometry has been used to test lenses, including soft contact lenses in saline 

solution (Keren, 1992; Kreske, 1992; Kreske, 1988; Kafri, 1985). In their 1992 papers, 

Keren, et. al. and Kreske, et. al. describe a deflectometer named the OMS-101 as an 

instrument specifically designed to measure soft contact lenses in saline solution. 

Ignoring the specific packaging of the OMS-101, the basic layout (Fig. 1.6) uses two 

reference optics and a mirror to produce the test wavefront presented to the 

deflectometer. 
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FIGURE 1.6 - Schematic for the OMS-101 moire deflectometer. The 
distance traveled (Az) between the top and bottom configurations is 
related to the focal lengths of the reference lens and test lens. Note 
that the test lens is at the rear focal point (F') of the reference lens. 

The setup is such that the test lens is at the rear focal point (F") of the reference lens. The 

reference lens, contact lens cell, and mirror are all on a stage that can be scarmed along 

the optical axis. Initially, the stage is positioned so that the reference and converging 

lenses are confocal. The rear focal point for the converging lens is coincident with the 

fi-ont focal point for the reference lens, thereby producing a coUimated beam leaving the 

reference lens when a collimated beam is incident on the converging lens. When a test 

lens is added, the stage is moved the necessary distance to restore collimation (Az). This 

is determined by monitoring the moire fiinge pattern, watching the fringes rotate as the 

stage is scanned until the fnnges return to their reference location. 



47 

Kreske suggests that the conversion from stage travel to focal length of the test lens be 

viewed as a Newtonian imaging problem (1992). However, a more intuitive analysis 

comes from Gaussian reduction. Gaussian reduction gives the system power for the 

reference lens/test lens combination separated in air by a distance t as; 

^System ^Reference ^Test ^Reference^Test^ ^ 

t  = ——, Equat ion 1 .7  
^Reference 

^System ^Reference' 

The test lens has no influence over the system power. However, the test lens does shift 

the principal planes for the system. This shift in the front principle plane can be 

considered the cause for needing to shift the entire system to restore collimation. With no 

test lens, the principle planes are at the reference lens. The shift Az must therefore be 

equal to the shift of the front principle plane from the reference lens. This leads to a 

relationship between Az and the power of the test lens, as shown in Eq. 1.8. 

^System 

' 1 ^ 

T Reference J 

<Psys>en. = <!>Reference^ EqUation 1.8 

— ^Test _ fReference 

^Reference fTest 

This is the same result as Kreske's (1) (1992). Worth noting is that this result is identical 

to the focimeter principle described by Smith and Atchison (Smith, 1997). The obvious 

concern, which is not addressed in any of the cited papers, is how the shift Az is 

measured. The method used to measure Az may introduce significantly more error than 

that associated with checking for collimation via the moire fringe pattern's orientation. 
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Also worth noting is that the conversion between stage travel and test lens power goes 

with the square of the assumed power for the reference lens. The tolerance on this value 

must be considerably less than the desired accuracy for the measurement. 

The work lead by Bumabeu appears to have made advances to this technique (Quiroga, 

1999; Canabal, 1998). Improvements include the use of square or two-dimensional 

gratings to measure deflections in perpendicular directions and incorporating phase 

shifting algorithms for non-sinusoidal waveforms (Canabal, 1998). The phase shift is 

provided by a lateral translation of one grating with respect to the other (Quiroga, 1999). 

Quiroga also mentions that the distance d between the two gratings should be such that 

the second grating is located at a Talbot image of the first grating. This condition 

provides maximum fiinge contrast. As Talbot images are periodic phenomena, 

sensitivity can still be manipulated by selecting a different Talbot image location. Also 

discussed are Fourier transform methods for better measuring the ray deflections in x and 

y by examination of the transform of the moire fiinge pattern. The technique is used to 

map out the spherical and cylindrical power maps for a progressive spectacle lens. The 

agreement between this technique and data from a focimeter is well under 0.1 diopters. 

1.2.4 Lateral Shear Interferemetry (LSI) 

LSI is the physical optics equivalent to the geometrical test of moire deflectometry. With 

LSI, interference is used to produce a fiinge pattern which measures wavefront slope. 
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Both tests measure the wavefront deviations in one direction only, and therefore require 

two measurements to characterize toric lenses. 

A straightforward LSI system is shown in Fig. 1.7 (Wyant, 1975; Mantravadi, "Lateral 

...", 1992). 

TEST LENS SHEAR PLATE 

IMAGING 
LENS 

DETECTOR 
INTERFEROGRAM 

FIGURE 1.7 - Basic LSI system. The imaging lens has as conjugates the 
test lens and detector. The interferogram is present only in the 

region of overlap between the two beams. 

The refraction of the wavefront reflected off the back of the parallel plate (shear plate) 

provides the lateral shear between the two reflected wavefronts. LSI is an example of 

both division of amplitude and division of wavefront, as the wavefronts interfered are 

identical to the incident wavefront, except for the reduction in amplitude. 
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Briefly, the fringe pattern produced by LSI gives the wavefront slope in the direction of 

the shear (S) for a given wavefront W(x,y). Following Mantravadi, the fringes produced, 

differences in optical path, can be expressed as 

W  [ x  +  S ,  y )  - W  ( x ,  y )  =  m / l .  Equation 1.9 

for a shear in the x-direction where w is an integer. Viewing the difference as the 

numerator to the classical definition of a derivative, the wavefront slope can be 

determined from the following (Spiegel, 1999): 

d W  W { x  +  S , y ) - W { x , y )  

d x  (;c + S)-x 
Equation 1.10 

\  d x  )  

The above relationship is only true in the limit that S — * 0 ,  but is quite useful over small 

S. hi fact, if S were to go to zero, then there would be no difference in path, and the 

resulting fringe pattern would contain no useful information (Mantravadi, "Lateral.. 

1992). From this argument, and from Eq. 1.10 comes the realization that an increase in 

shear increases the sensitivity. Yet increasing S causes confiision as to the meaning of 

the measured interference, and reduces the area over which the wavefront is tested. 

Wyant and Smith wrote about the testing of ophthalmic lenses using LSI (Wyant, 1975). 

In the paper, the claim is made that relative local power can be measured directly from 

the fringe spacing. Since the fringe locations are dictated by wavefront slope, the fringe 

spacing maps out the local wavefront curvature. 
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Kasana and Rosenbruch have studied the use of LSI for measuring various lens properties 

(1983). Discussed in their work is the difficulty of LSI to accurately provide very small 

defocus errors where only a fraction of a fringe is present. To better identify the focal 

length of the test lens, they implement a scanning mirror along the optical axis and 

average the readings fi-om both sides of focus. They also discuss the idea of using LSI to 

first measure the focal length of a lens, then immersing the lens in an unknown liquid, 

and measuring the focal length again to arrive at the index of refraction for the unknown 

liquid (Kasana, 1983). 

1.2.5 Phase Shifting Interferometry (PSI) 

Phase shifting interferometry (PSI) is the enhancement of classical interferometric 

techniques via electronic detectors, precise motion control, and computing power 

(Greivenkamp, 1992). PSI improves upon the classical interferometric techniques by 

recording a series of interferograms with a known temporal phase shift (S (0) between 

each interferogram. From the addition of amplitudes for the two interfering beams comes 

the fundamental equation for PSI: 

I [ x , y , t )  -  / '(x, j)+ /"(;*:,3/)cos(^(x,>') + ^(f)). Equation 1.11 

The unknowns are the average intensity (/'), the intensity modulation (/" ), and the phase 

difference (^). The recorded intensity at each pixel is I. Therefore, a minimum of three 

interferograms are needed to produce the unwrapped phase. 
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There are several advantages to PSI. First, the problem of identifying fringe maxima or 

minima is avoided. The reconstruction process computes the local phase pixel-by-pixel 

via an algorithm that only depends on the recorded irradiance value for each pixel (/) and 

the assumed (or possibly measured) phase shift between each interferogram (S). The 

ambiguity between convex and concave wavefronts is eliminated. As Greivenkamp 

points out, the addition of phase is analogous to pushing on one side of test optic in a 

Newton interferometer, and watching which way the fringes move (Mantravadi, 

"Newton..1992). It can be shown that the phase difference is insensitive to fixed 

noise (Greivenkamp, 1992). Since the recovery of phase is done on a pixel-by-pixel 

basis, variations in source intensity do not matter (as long as the light level is well above 

the noise level of the detector). Finally, since several interferograms are recorded, the 

technique of PSI benefits from averaging. The different algorithms used to collect and 

unwrap the phase can be designed to exploit not only averaging, but other factors such as 

a decrease is sensitivity to phase shifter error or second-order detector nonlinearity 

(Creath, 1986; Greivenkamp, 1992; Strand, 1999; Schwider, 1983; Brophy, 1990; 

Ghiglia, 1998; Schmit, 1995; Joenathan, 1994). 

PSI has been used to evaluate ophthalmic optics. In Contact Lenses, Loran references the 

work of El-Nasher and Larke, who used interferometric techniques to measure radii of 

lenses to within 2% of the manufacture results (Loran, 1997). El-Nasher and Larke used 

an interference microscope to measure radii on the front and back surfaces. No phase 

shifting was used, and no discussion was given regarding the role of index in testing 
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through the lens (El-Nasher, 1980). The work of Mohr is perhaps the best example thus 

far of transmitted wavefront testing of ophthalmic optics (Mohr, 1989). Mohr discusses 

the difficulties of testing in reflection such aspheric optics as those commonly found in 

ophthalmics, and concludes that transmission testing is superior. The reported results 

include the mapping of surface astigmatism to an uncertainty of 0.005 diopters. 

However, this level of accuracy was achieved through the use of null optics, thereby 

making this level of accuracy a measure of comparison and not absolute power. PSI is 

the technique developed in this dissertation, and more on the design, calibration, and 

results of using PSI to measure contact lenses follows. 

1.2.6 Sub-Nyquist Interferometry (SNI) 

Sub-Nyquist interferometry (SNI) is not a unique form of interferometry due to a specific 

geometry, but rather how the produced interferograms are collected and analyzed 

(Gappinger, 2002). SNI can be used in all of the well-known interferometric 

configurations, and is most often used as an enhancement to phase shifting interferometry 

(PSI) (Greivenkamp, 1992). The unique aspect of SNI begins at the detector. Instead of 

trying to collect as much Ught as possible, as most detectors do, SNI uses a sparse array 

detector that allows only a fi-action of the light to fall on each pixel. Shown in Fig. 1.8, 

the sparse array detector is typically a standard detector with an opaque pinhole mask 

superimposed. 



FIGURE 1.8 - SNI detector. The red box indicates the region corresponding to a 
single pixel. The only light sensitive portion is pinhole in the upper 

right quadrant of the pixel (Gappinger, 2002). 

The pinhole mask allows for high frequency fringes to be detected, like those produced 

by highly aspheric wavefronts. This is accomplished by allowing the fringes to ahas. 

Typically aliasing is avoided, as it confuses the correct high frequency with a lower 

frequency (Greivenkamp, 1992). Since abasing is a local phenomenon, the correct 

frequency can be recovered using some very general, unrestrictive assumptions 

(Greivenkamp, 1987; Lowman, 1993). The significant assumption is that the slope or, in 

some cases, a higher derivative of the wavefront is continuous. This will be the case for 

all optics with smooth surfaces. The other assumption is that in order for the recovery of 

the high frequency fringes to be unique, there must be a region where aliasing is known 

not to exist. This region can be as small as a 2 x 2 grouping of pixels in the case of slope 

continuity. 
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The benefit of SNI comes from the fact that since high frequency fringes can be resolved, 

no null optics or other compensators are needed to measure highly aspheric parts. Due to 

the way in which the phase is collected and recovered, the dynamic range of SNI over 

traditional PSI is twice the ratio of the original pixel size to the pinhole size (assuming 

contiguous pixels). For the detector shown in Fig. 1.8, the pinholes are 2.35 |j,m spaced 

15 (xm apart (Gappinger, "High modulation..2003). The gain in dynamic range is 

therefore about 12.7 times that for PSI. The factor of two comes from the fact that the 

phase retrieval process in PSI is limited to the Nyquist frequency of the detector, while 

the technique used with SNI allows for phase unwrapping out to the sampling frequency 

of the pinhole array (Greivenkamp, 1987; Greivenkamp, 1992; Gaskill, 1978; Gappinger, 

"High modulation..2003; Lowman, 1993). 

SNI has been used to measure progressive spectacle lenses (Gappinger, "Non-null...", 

2003). The particular sub-Nyquist interferometer used was able to measure over 240 X of 

departure from a progressive spectacle lens over a diameter of about 41 mm. The 

collected wavefront was also used to produce spherical and cylindrical power maps of the 

progressive lens. 

1.2.7 Other Techniques for Testing Ophthalmic Optics 

At this point, a brief hsting of other techniques used in the qualification of ophthahnic 

optics is in order. Most of these techniques test a surface, not a wavefront, and are based 
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on common ophthalmic instrumentation. Worth mentioning is the fact that any measure 

of power from a single lens parameter must include assumptions of several other lens 

parameters. The errors associated with these assumptions must be considered when 

reporting the measured power. 

Certainly the most direct method for testing power is the focimeter. The focimeter works 

much like the described operation of the moire deflectometer, in that a coUimating lens is 

used in conjunction with the test lens. The combination is translated until collimation is 

restored, and the distance traveled is the back vertex focal length of the test lens (Loran, 

1997; Smith, 1997; Fowler, 1989). 

The radiuscope is an autostigmatic microscope (Steel, 1977; Smith, 1997). The 

radiuscope is just the measuring of the distance between two positions; the center of 

curvature and the cat's eye position. In ophthalmics, the technique of noting the distance 

between the two locations where light will be reflected back at the same angle is known 

as Drysdale's method (Mandell, 1974). Steel suggests overcoming the poor reflection of 

an immersed contact lens by using crossed polarizers and a retarder to get better visibility 

(Steel, 1977). 

The keratometer has been used to measure the radius of curvature of lenses (Loran, 

1997). However, there are several issues with this technique. First, the necessity of 

testing contact lenses in solution and therefore in some sort of cell results in added 
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refraction between the cell/air interface. This can be compensated for if the index of the 

sahne solution is known. Since the keratometer is calibrated for convex surfaces only, 

the testing of concave surfaces will give erroneous results. While not stated in the 

reference, the source of this error must be due to the sign difference for spherical 

aberration between convex and concave surfaces. Reflections off both the front and back 

surfaces may produce unwanted ghost images. Finally, Loran mentions that in an effort 

to get a brighter image by increasing the amount of light produced, the heat given off by 

the lamp may raise the temperature of the saline to a point where the reading is no longer 

valid. 

Spiers and Hull suggest a Fourier filtering technique for measuring progressive lenses. 

By placing different gratings in the transform plane, the deflection of the grating can be 

used to map out local power. This is really no different than the moire deflectometry 

techniques already mentioned (Spiers, 2000). 

1.3 Case Study for Testing Soft Contact Lenses 

When initially presented with a problem, the good scientist or engineer tries to gather as 

much information as possible about the problem before generating and analyzing possible 

solutions. The story of how the problem of testing soft contact lenses was initially 

analyzed, and how the hardware and software produced came to be is worth mentioning. 

This case study is an excellent example of both the art and science of optical engineering. 

In many ways, the following story is the blueprint by which the bulk of the work in this 
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dissertation was carried out. All topics mentioned here are covered in greater detail 

throughout the dissertation. 

The sponsor initially presented the problem as needing robust metrology to test a wide 

variety of soft contact lenses. Current technology did an adequate job of testing spherical 

lenses, but was incapable of testing more complex designs. Developed instrumentation 

was to be as flexible as possible, allowing for the potential of testing future products with 

unknown asphericities. 

Three specific types of lenses were initially discussed: spheres, torics, and bifocals. The 

complications of testing spherical contacts are those of testing contact lenses in general, 

which due to their number and complexity are given their own chapter (Chpt. 3). Toric 

contact lenses present the challenge of testing a non-rotationally symmetric optic. While 

the astigmatism of the lenses is mitigated by the index match between the lens and 

surrounding saline to the point that the aspheric wavefront can be treated no differently 

than a spherical wavefront, the ability to compare measured data to modeled data requires 

that the fiducial marks (see Fig. 1.9) at the periphery of the lens be visible in the recorded 

interferograms. Bifocal contact lenses present problems from having annular zones of 

varying diameters and powers. This leads to the requirements that the instrumentation 

not only detects the zones, but has the resolution to properly measure the zones. So the 

problem now becomes one where the whole lens must be examined (for toric angle 
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identification) and yet be tested at a high spatial resolution (for the annular zones of 

bifocals). 

Given the requirements on testing a wide variety of lenses, with potentially unusual 

asphericities, over a range of powers and with a high spatial resolution, the natural first 

choice for the instrumentation was phase shifting interferometry (PSI). PSI is the 

standard method for modem optical testing, and therefore a natural first choice. No other 

method has the combination of ease-of-use and accuracy as PSI. However, it was unclear 

whether or not interferometry would be able to handle the unusual bifocal lenses. The 

biggest unknown with bifocals was whether or not the transitions between zones would 

cause problems. While interferometry is a very robust tool, in general it lacks the 

capability to test optics where the resulting fiinge pattern is not continuous. That is to 

(a) (b) 

FIGURE 1.9 - Cartoons for (a) toric and (b) bifocal contact lenses. 



say, part discontinuities are often a downfall for an interferometer. The other common 

downfall is that the optic under test simply produces too high a fringe frequency. This 

issue is taken up in Chpt. 2. 

To check the effect of the zone junctions, a supplied model for a bifocal lens immersed in 

saline was put into Zemax, and theoretical fringes produced (see Fig. 1.10). 

FIGURE 1.10 - Zemax interferogram for a bifocal contact lens in double pass. 

The model showed no serious problems; the fiinges looked testable. Yet there was still 

some doubt due to the fact that the model itself did not contain discontinuities, but rather 

represented the annular zone surface as a spline surface in Zemax. To definitively prove 

if interferometry would work, a lens was placed in an existing Twymann-Green 



61 

interferometer. The resulting fringe pattern for the lens, with the same prescription as the 

lens that was modeled in Zemax, is shown in Fig. 1.11. 

FIGURE 1.11 - Twymann-Green interferogram for same lens as Fig. 1.10. 

Not only were the fringes testable well beyond the required test aperture, the visual 

agreement between the measured and modeled interferograms was proof that PSI would 

work on contact lenses. 

One can go back over the criteria for testing and see why other methods are inferior to 

PSI. The Shack-Hartmann simply doesn't have the spatial resolution for testing bifocals. 

A look back at Fig. 1.4 shows that the annular zones of a bifocal contact lens would not 

be resolved with most Shack-Hartmann instruments. Star testing, while usefril in a 

qualitative sense, is very hard to quantify. Measuring power via a star test is not practical 
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at all. Moire deflectometry, as discussed earlier, is the principle behind the current 

metrology in the sponsor's lab. While adequate on spherical lenses, the necessary 

tradeoff between spatial resolution and sensitivity make it a poor candidate for testing 

bifocals. The same can be said for lateral shear interferometry. Plus, both the shearing 

tests of moire deflectometry and LSI only measure power in one direction. Two tests 

would have to be run to measure toric lenses. This leaves interferometry as the best 

choice for an initial test bed. Sub-Nyquist interferometry (SNI) was determined to be 

unnecessary. SNI is typically only used when the dynamic range of a part is so great that 

testing by other means is not possible. With the lenses tested in solution, the reduction in 

effective power is enough to allow a conventional sensor to resolve the interference 

pattern. The conclusion was that PSI would be the most viable method of testing. A 

custom interferometer would be needed, one that could accommodate a range of powers, 

track part rotation, and provide high spatial resolution. 

1.4 Scientific Questions Regarding the Testing of Immersed Optics 

The testing of contact lenses while immersed in saline solution raises some interesting, 

more general questions regarding the pros and cons of such a technique. While contact 

lenses must be tested in some sort of liquid to preserve the optical properties of the lens' 

material, the vast majority of optics can be tested in air. Yet there is a benefit to this 

immersion technique, namely the effective power of the optic is reduced. Thus the 

dynamic range of the interferometer is increased. The range of powers (really wavefront 

slopes) that can be resolved is increased by the ratio of differences in index between the 
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lens and its surrounding medium. This factor, here called the solution factor (SF) since it 

comes from the index of the solution surrounding the test optic (Ford, 1997), is given by 

Eq. 1.12. For this definition, the dynamic range of the interferometer is increased by SF. 

SF = Equation 1.12 
^Lens ^Solution 

An added benefit to the increase in dynamic range is that the errors associated with 

transmitted wavefront testing are reduced with a reduction in the power of the test optic. 

Not surprising, a flat test wavefront, nominally identical to the reference wavefront, can 

be tested at the resolution of the interferometer. 

Of course, there is a downside to immersion testing. While the dynamic range of the 

interferometer is increased by the ratio of the differences in index, the sensitivity of the 

interferometer should be reduced by that same ratio. An easy way to think of this is to 

imagine a divot on the test optic. As the index of the surroimding solution approaches the 

index of the test optic, the divot becomes harder to resolve. The first question is then at 

what point is resolution lost. This should define an upper bound on the gain in dynamic 

range possible due to immersion. Second, what is the resolution near this limit? What is 

the general trend as the index match is increased? These are the more fundamental, 

scientific questions taken in up in a later chapter (Chpt. 7). 
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2 DESIGN OF AN EXTENDED DYNAMIC RANGE INTERFEROMETER 

In Chpt. 1 the argument was made that the best way to test contact lenses is by using an 

interferometer in a single-pass configuration, thereby measuring the transmitted 

wavefront. With the testing method estabUshed, the next task is to design an 

interferometer that meets the necessary requirements. These requirements stem from the 

variety of optics to be tested, the desired output from the test, and achieving the best 

precision and accuracy possible. Table 2.1 lists some of the general requirements handed 

down from the sponsor for the testing of contact lenses. Note that optical power is 

expressed in the ophthalmic units of diopters (D), which are equivalent to inverse meters. 

Range of Base Powers (D) -20.00 to+14.00 

Range of Added Cylinder Powers (D) 0.00 to -5.00 

Range of Added Bifocal Powers (D) 0.00 to +5.00 

Wavelengtli (nm) ~ 550 (peak photopic) 

Max. Diam. Optical Zone (mm) 9 

Max. Diam. Contact Lens (mm) 15 

TABLE 2.1 - Selected requirements for interferometer. 

Given the above requirements, one must select the appropriate interferometer 

components, from source to detector, which will make testing the fiill range of contact 

lenses possible. Since a single-pass configuration is desired, the obvious choice for a 

layout is one based on a Mach-Zehnder interferometer (Malacara, "Twymann-Green.. 
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1992). For the specific instrument built, a codename was given by the sponsor: 

CLOVER (Contact Lens Optical VERification). 

Testing in a non-null configuration brings into play three crucial considerations for the 

design of the interferometer. First, the wavefront must be collected and captured by the 

imaging optics. This requires matching the parameters of the test wavefront, imaging 

lens, and detector. Second, the interference incident on the detector must be resolved. 

The standard solution, and the solution used in CLOVER, is not to let the interference 

fiinges change in phase by more than 7i/pixel, thereby demanding that the fiinge 

frequency is less than the Nyquist frequency for the detector (Gappinger, 2002; Gaskill, 

1978). If this condition cannot be met, then a technique like SNI would be needed. 

Finally, the wavefront reconstructed at the detector must be calibrated to account for the 

induced aberrations by the interferometer's imaging optics. The lack of a common path 

between the reference and test arm wavefronts results in different aberrations in each 

wavefront. The specific calibration process used to remove the induced aberrations is 

discussed in the third section of this chapter. 

It should be mentioned for clarity that the term wavefront is being used to describe the 

distribution of phase, or optical path length, at a given plane in the interferometer or its 

model. This is different from the classical definition of a wavefront: a surface of constant 

phase (Hecht, 1987). Yet the definition used here is widely used in the testing 

community, and should not be the source of confiision. 



2.1 Design Principles 

The starting point for the selection of the imaging optics (imaging lens and detector) is 

determining the necessary dynamic range of the interferometer. Dynamic range is 

measured in fringe frequency, which comes directly from wavefront slope. So a 

relationship is needed is between the given test optics' power and subsequent fringe 

frequency. A convenient unit for this conversion is waves/radius. Waves/radius is a 

measure of the wavefront derivative and describes, at any point along the wavefront, the 

amount of departure across a length equal to the radius due to the local wavefront slope 

(Wyant, 1992). Figure 2.1 shows a typical wavefront across its normalized radius 

(JV(p^0)) and the subsequent derivative in waves/radius. 

o 
Q. 
o 

0.2 0,4 0,6 

NORMALIZED RADIUS (p) 

FIGURE 2.1- Plot of typical aspheric wavefront and its derivative. The maximum of the 
derivative gives the maximum expected fringe frequency. 
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If the test optic is modeled in lens design code, such as Zemax, then the maximum waves 

per radius can be determined from the maximum absolute value for the ray fan. 

Assuming rotational symmetry, the relationship between wave and ray fans (assuming 

that the wave fan is in waves and the ray fan is in units of length) is; 

The benefit of using waves/radius is that this quantity is invariant on magnification. This 

parameter is not tied to any specific set of conjugates or detector size. 

Once the maximum fiinge frequency is estabhshed, the minimum number of pixels/radius 

falls out directly from the sampling requirement of at least two pixels/wave of OPD to 

satisfy the Nyquist condition (Gaskill, 1978; Greivenkamp, 1992). This minimum 

number of pixels/radius may be superseded by a required spatial resolution. If the 

required sampling frequency associated with this spatial resolution is greater than the 

sampling frequency derived from the Nyquist requirement, then this becomes the 

necessary sampling frequency of the detector. 

With the necessary number of pixels across the imaged wavefront established, the next 

step is to evaluate the candidates for the detector. A detector is decided on before the 

imaging optics because, on the whole, the choices for detectors will be more limited than 

those for the imaging optics. The only condition imposed thus far is that the number of 

pixels must be greater than the maximum waves per radius by a factor of four; one factor 

max 
max Equation 2.1 
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of two for the Nyquist condition, and another factor of two for the conversion between 

radius and diameter. A convenient means to start the selection process is to plot the 

detector's two major sampling parameters: number of pixels and pixel spacing, expressed 

as a frequency, as shown in Fig. 2.2. The requirement on the number of pixels across the 

diameter can be added to this plot, eliminating a certain portion of the solution space. In 

the limit towards a 100% fill factor, the reciprocal of pixel frequency becomes the pixel 

size. Note that square, contiguous pixels are being assumed, so that pixel size is the 

reciprocal of pixel frequency. 

By assuming that the test part will be imaged to fill the detector, the same graph can be 

used to show the different magnifications {m) associated with each detector. The graph 

(Fig. 2.3) spans the range of all possible magnifications, from 0 to infinity (ignoring any 

sort of sign convention). 

Requirement: minimum no. of pixels 
(4 times maximum waves/radius) 

© Detector A 

o Detector B 

o Detector 0 

No. of Pixels 

FIGURE 2.2 - Solution space of acceptable detectors. 
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m = 0 

No. of Pixels 

Increasing 
magnification 

Contours of constant 
magnification 

—>• m = 'x^ 

FIGURE 2.3 - Magnification over the space of possible detectors. 

The vertical axis represents zero magnification (no pixels), while the horizontal axis 

represents an infinite magnification (the pixels are infinitely big). Lines extending from 

the origin are contours of equal magnification. The magnification for a specific detector 

comes from the following formula: 

At this point, the selection of which detector to use can be made using a variety of factors 

such as the number of frames/second, SNR, and cost. These are in addition to the already 

mentioned parameters regarding sampling and magnification. The choice of an 

acceptable detector not only fixes the magnification, but helps constrain the imaging lens 

as well. 

No. of Pixels/Pixel Frequency m = ; 
Diameter of Test Part 

Equation 2.2 
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To understand how the imaging lens' parameters fit with the test optics and detector, a 

good starting point is to determine the maximum fnnge frequency supported by the 

imaging lens. The imaging lens has a maximum supported frequency coming from two 

conditions. The first condition is that the interfering rays must pass through the imaging 

lens. The second condition is that the two rays meet at the detector. The maximum 

possible fnnge frequency allowed by the imaging lens comes from the construction of 

Fig. 2.4. Note that this is independent of the test part. 

FIGURE 2.4 - Construction for determination of maximum fnnge frequency supported 
by the imaging lens. 

Intuitively, the maximum fnnge frequency will occur when the two rays interfering span 

the maximum angle possible. This condition is satisfied by two rays, one from the top of 

the imaging lens, the other from the bottom, meeting on axis. Describing the two rays in 

common optical terms, the difference in phase (A^) is: 

D 
y 

ImagingLens Detector 

I 

Equation 2.3 

Taking the position vector r and the propagation vectors k to be 
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r =x\ + y] + zk, 

k  ̂2 ~ ̂ 1,2 

Equation 2.4 

and using the facts that k\=k2 = lnlX and g)\ = o>i since the rays are coming from the 

same source, the difference in OPD in the yz-plme at the detector (z = 0) is; 

OPD =  =  { M , - M 2 ) y  =  I s i n d y .  
In 

Equation 2.5 

In the region of small angles, this OPD becomes 

OPD = 2 
'£>/2' 

y 
Equation 2.6 

(/#). 

The distance between fringes (Ay) is given by the following: 

mX = . , 
(/A 

yi (m + l)2 = v . , 

^ y  =  y 2 - y x  =  { f # ) ^ ^ -

Equation 2.7 

Finally, the maximum fringe frequency supported by the imaging lens is the reciprocal of 

A;;: 

f = —= 
J Imaging Lens A 

1 
Equation 2.8 

' imaging Uns (/#)^A' 

Note that this is identical to the cutoff frequency for a lens imder the conditions of 

incoherent illumination (Goodman, 1996). The reason for this is that the optical transfer 

fimction (OTF) for a lens in the case of incoherent illumination is related to the 
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autocorrelation of the lens' pupil function, which is just the circular aperture of the lens. 

The displacement associated with the cutoff frequency for the autocorrelation leads to the 

same geometry as that of Fig. 2.4. Given this maximum frequency supported by the 

imaging lens, this must be greater than the maximum fringe frequency at the detector, as 

stated in Eq. 2.9. 

yimagingLens ~ ^ ^ ^Max. @ Detector Equation 2.9 

Another condition needs to be brought in at this point, one that relates the pixel frequency 

(or pixel size) to the imaging lens. This condition is the desired matching of the 

resolutions of the imaging lens and detector. By doing this, neither system is limiting the 

performance of the other. For the imaging lens, the resolution is given by the Airy disk 

diameter. The detector's resolution is the reciprocal of the plotted pixel frequency, which 

approaches the pixel size as the fill factor is increased. Setting these equal gives: 

-^ = 2.44(/#)^^, 
J Pixel 

OR Equation 2.10 

ŷ̂  ̂= 2.44/pi,„. 

So now there exists an equation between pixel frequency and working/-number, and an 

inequality between working/-number and the maximum fringe frequency at the detector. 

But by having satisfied the sampling condition of at least two pixels/fiinge, an inequality 

between pixel frequency and maximum fiinge frequency already exists: 

^Pixel ^ 2 Alax. @ Detector • EqUatioU 2.11 
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Building off this relationship using the equations above leads to; 

Max. @ Detector > 

^ Detector' Max. @ Detector' Equation 2.12 

^Imaging Lens ^ @ Detector' 

The conclusion is that by demanding that the resolution of the imaging lens match the 

resolution of the detector, the maximum frequency supported by the imaging lens is 

guaranteed to be greater than the maximum frequency at the detector by almost a factor 

of five. So the condition of matching resolutions is a good one to impose, for it ensures 

that the imaging lens will have no trouble supporting the interference pattern produced by 

the test part. 

The criterion of matching resolutions fixes the working/-number for the imaging lens. 

Since magnification is also known, the independent /-number for the lens is set from 

At this point, the first-order parameters not yet established are the focal length of the 

imaging lens (f), the diameter of the lens (D), and the object (z) and image (z") distances. 

There exist only three constraints for these four parameters: 

Equation 2.13 

1 1 1 
Equation 2.14 

z' z /' 

z' 
m — — 

z 
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Therefore, the problem is under-constrained and one of the remaining parameters may be 

freely set. 

Considerations on setting the free parameter should start with the fact that the imaging 

lens must collect all of the light coming from the test arm. If the test optic has negative 

power, then the initially collimated light will be diverging, and the yet-unknown distance 

from the test optic to the imaging lens will determine an acceptable diameter. Another 

consideration is the overall packaging of the interferometer. The desired object-to-image 

distance can be used as a fourth constraint. If using off-the-shelf optics is important, then 

the available combinations of diameters and focal lengths may help determine the 

parameters for the imaging lens. 

To summarize, the design of a non-null interferometer must account for the expected 

frequency of interference fringes produced by the class of optics to be tested. This drives 

the necessary sampUng across the imaged wavefront, which aids in the selection of an 

appropriate detector. With the detector selected, the resolution of the imaging lens can be 

matched to the detector's resolution, thereby guaranteeing that the imaging lens will 

support the maximum fringe frequency. The remaining imaging parameters fall out of 

the standard imaging equations once an assumption is made regarding any one of the 

remaining free parameters. Following this design philosophy meets the first two 

conditions regarding testing in a non-null configuration. 



75 

2.2 Specifics of CLOVER Hardware 

The design principles outlined above were used as they were discovered in the 

development of CLOVER. This resulted in an implementation not nearly as efficient, but 

just as effective, as outlined in the prior explanation. At this time, going over the 

specifics of the interferometer developed for the testing of contact lenses is in order. 

Figure 2.5 shows the hardware configuration for CLOVER. 

FIGURE 2.5 - CLOVER interferometer. 

The beam path starts with the HeNe laser (A). The laser has a 2 mW maximum output at 

a wavelength of 543.5 nm. The coherence length is about 16 cm, from the manufacturer, 

due to the presence of six longitudinal modes in an effort to get more power out of the 

laser. This coherence length is significantly greater than those available from known 



solid state lasers at the time of selection. This source was selected due to the 

wavelength's close proximity to the peak of the photopic curve, around 550 nm. The 

relatively low power coming from the laser is still many times more than what is needed 

to saturate the detector over a typical integration time. 

Following the laser is the acoustic-optic, or AO, modulator (B). The AO modulator is 

used to provide vibration-free shuttering. This is accomplished by using the AO 

modulator to deflect the beam out of or into alignment with the spatial filter system (E). 

When the modulator is on, the first-order diffracted beam is in alignment with the spatial 

filter. The modulator is aligned with the laser so that when it is on, the efficiency of the 

first-order is as high as possible. When the modulator is off, all of the light is in the zero-

order beam, and is blocked by the pinhole in the spatial filter. By aligning the 

interferometer to the first order beam, a nearly infinite extinction ratio is achieved for the 

shuttering operation. The need for this shuttering is due to the camera, and will be 

explained further in the discussion on the camera. 

After the AO modulator comes the neutral density filters (C). The neutral density filters 

provide a convenient means for adjusting the light level presented to the interferometer. 

The AO modulator could be adjusted to attenuate the beam, but this adjustment would be 

very fine and would risk misaUgning the entire interferometer. 
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The next component is two beam steering mirrors (D). Not only do the beam steering 

mirrors help keep the footprint of the interferometer to a minimum size, but they are 

crucial to ahgnment. Two mirrors provide all of the degrees of freedom needed to 

position a beam. A beam at any point can be described by six parameters: three 

positional parameters (x, y, z) and three angular parameters (Z, M, N). With a two mirror 

beam steerer, the first mirror dictates the desired positional parameters at the second 

mirror, and the second mirror dictates the angle at which the beam leaves. So by using 

two mirrors, the beam can be presented to the interferometer with all six parameters 

coincident with the interferometer's axis. 

Next the beam passes through the spatial filter system (E), which consists of an infinitely-

corrected microscope objective and 5 |j,m pinhole. The original thinking was to use an 

infinitely-corrected objective since the beam was collimated entering the objective. 

However, the beam does not fill the objective, and the spatial filtering achieved is not 

optimal. Either an afocal beam expander should be added to fill the objective, or a 

negative lens and finite objective used to optimize the spatial filtering. While not 

optimal, the system in place provides a clean beam, so no changes are planned. 

The beam coming out of the spatial filter is diverging, and so is collimated by the 

collimating lens (F). The collimating lens, along with the pinhole, defines the axis for the 

interferometer. For diffraction considerations, the collimating lens is nearly overfilled by 

the diverging beam. The collimating lens is an off-the-shelf achromatic doublet. Even 
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though this is a monochromatic instrument, the doublet is used for its correction of 

spherical aberration and coma, which can be introduced by misaligning the lens to the 

beam. 

After the collimating lens, an iris is placed to allow for beam diameter adjustment (G). 

This is not possible in some interferometers, as diffraction from this aperture creeps 

fiirther and further into the beam. However, the size of the desired beam combined with 

the short beam paths prevents diffraction effects from being an issue. 

The collimated beam is then presented to the first of two beamsplitters (H). The test arm 

(I) and the reference arm (J) are laid out to provide a vertical beam to a horizontal test 

part. The two beams are recombined at the second beamsplitter (K). The test arm is the 

arm reflected off the beamsplitters so that the aspheric wavefronts coming from the test 

lens are not transmitted through, but more simply reflected off, the beamsplitter. 

hnmediately following the second beamsplitter is the imaging lens (L). The imaging lens 

is placed as close as possible to the test plane (plane of the test lens) to maximize 

magnification. The role of the imaging lens is to enable testing of the wavefront 

immediately following the test lens by imaging that wavefront onto the detector. Like the 

collimating lens, the imaging lens is an off-the-shelf achromatic doublet. 



79 

The final component is the detector (M). The detector is a Dalsa 4M15, with 2048 x 

2048 square pixels, 14 |am in size. The camera has a 100% fill factor, meaning that no 

opaque regions exist on the CCD to shift the collected charge to during readout. This is 

known as a full fi-ame sensor (Polderdijk, 2002). The other type of 100% fill factor 

sensor is a fi"ame transfer sensor, which shifts the collected charge from the sensor to an 

identical, shielded sensor. Due to the size of the 4M15 collection area, over one square 

inch, having a second sensor is cost prohibitive. The solution is to shutter the light, 

blocking the hght during readout. This explains the need for the AO modulator. 

Going back to the design principles, the pixel frequency should be greater than twice the 

expected maximum fringe frequency. Also, if the resolution of the imaging lens matches 

that of the detector, then the imaging lens will support the expected maximum fringe 

frequency. So, how does CLOVER stack up to these constraints? 

Given a maximum power of 25 diopters, the highest toric power possible, the expected 

maximum fringe fi-equency can be found. First, the power is reduced by the solution 

factor due to the immersion in saline during testing: 

_ TAir 
Aqueous SF 

d,, = . = 4.063 D.  ̂
VAqueous (1.4012-1.336) 

(1.4012-1) 

For all spherical and toric lenses, the wavefront slope monotonically increases along a 

radius. This fact can be used to make a tidy formula for the maximum fiinge firequency. 
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The paraboHc approximation works well for contact lenses, as their focal lengths are 

significantly greater than their optical zone diameters. So starting with the parabohc 

approximation relating OPD to the wavefi"ont's curvature (R), which is the reciprocal of 

power, 

r' 
OPD = —, Equation 2.16 

2i? 

where r is the radius of the optical zone (4.5 mm). Assuming the maximum fiinge 

fi-equency is at the edge, the distance between fringes (^) is found fi-om: 

(r — SY 
A0PD = 2 = -^^— 

2R 2R Equation 2.17 

2 R A  =  r ^ - ( r ^ - 2 S r  +  S ^ ) .  

Since r is much greater than S, the S term can be dropped, leaving a simplified 

relationship: 

5 = . Equation 2.18 
r 

Finally, the maximxmi fiinge fi-equency can be computed at the detector by using the 

magnification, 

1 r 
/Max. @ Detector ^ ^ Equation 2.19 

The necessary magnification is one that allows for the highest possible spatial resolution 

while imaging enough of the lens to identify the locations of the alignment fiducial marks 

for a toric lens (see Fig. 1.9 (a)). For the typical diameters of the lenses in question, a 

magnification of 2.044 meets these requirements. The detector is 2048 pixels across, and 
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each pixel is 14 ^im in width. This leads to a testable diameter just over 14 mm. Using 

this magnification and the values already stated gives a maximum fiinge fi"equency of: 

4 5 I 
Aiax fi) Detector = ^ = 16.5 mm". Equation 2.20 

Max. @ Detector 2.044 •0.5435-10"^ • 246.13 

Note that if the term had been included, the maximum fiinge frequency would be 16.4 

nim'\ How does this frequency compare to the pixel frequency? Given 14 fxm pixels, 

the pixel frequency is: 

/pi,ei = —~— = 71.4 mm"'. Equation 2.21 
0.014 

The pixel frequency (71.4 mm"') is greater than twice the expected maximum fiinge 

frequency (16.5 mm"'), so the detector choice was a good one. 

As for the imaging lens, the magnification (2.044) and pixel size (14 |im) leads to a 

desired working/-number of: 

(/#) ^ = 10.6. Equation 2.22 
\J v'w DESIRED /p.^^,2.44;i 

The selected imaging lens has a 200 mm focal length. Combined with the magnification, 

this leads to an image distance of 608.8 mm. The imaging lens is 50.8 mm in diameter, 

and the mount provides a 95% clear aperture. The actual working/-number is therefore: 

i f # )  =12.6. Equation 2.23 
ACTUAL 0.95-50.8 
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The actual /-number is slower than the desired by about 20%. The loss in resolution is 

insignificant; all fiducial marks are still clearly imaged, as later figures will show. The 

maximum fringe fi-equency supported by the imaging lens is: 

/imarine Len, = 7—\— = T = 145.9 Him"'. Equation 2.24 
Staging Lens 12.6 • 0.5453 • 10"' 

Even with the higher-than-desired working/-number, the imaging lens can support 

fi-equencies well beyond the expected maximum fringe frequency of 16.5 mm"'. This is 

positive not only from a first-order point of view, but from a Fourier optics point of view 

as well. Considering the MTF imposed by the lens, even the maximum fnnge frequency 

will have a high modulation. 

The CLOVER interferometer is capable of imaging and resolving the fringes over the 

complete range of desired test optics. Thus, the first two conditions for non-null 

interferometry, collecting the wavefront and resolving the fringes, have been met. The 

third condition, wavefront calibration, is taken up next. 

2.3 Theory of Wavefront Calibration 

The third criterion mentioned in using an interferometer in a non-null setup is the 

calibration of the wavefront. While the first two criteria dealt with the hardware of the 

interferometer, calibration is a software issue. The use of raytracing code is critical to 

any non-null interferometer for a variety of reasons. First, the raytracing code enables 

calibration. Second, raytracing code allows for theoretical wavefronts to be generated, 
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providing a prescription for the test part. This allows a measured-to-modeled comparison 

to be made at the transmitted wavefront level. 

Understanding the calibration process starts with examining what exactly is detected by 

the interferometer; the interference produced by two wavefronts in the plane of the 

detector. Given the well-known algorithms of PSI, the interference reveals the relative 

OPD between the two wavefronts (Creath, 1986; Greivenkamp, 1992). A known 

reference wavefront can then be used in conjunction with the OPD to infer the unknown 

test wavefront at the detector. The issue is that the desired wavefront is the test 

wavefront at the test part, and not at the detector. As the test wavefront propagates 

through the interferometer's optics, aberrations are induced. A calibration process is 

needed to convert this inferred test wavefront at the detector into a best estimate of the 

test wavefront at the contact lens. 

To appreciate the need for calibration, consider a Mach-Zehnder interferometer in a null 

configuration, with a perfect null optic providing the reference wavefront. In the Mach-

Zehnder configuration, two wavefronts are imaged simultaneously: the test and reference 

wavefronts. These wavefronts are nominally identical. Consequently, the aberrations 

added to each wavefront in imaging the wavefronts are also identical. The resulting OPD 

is zero. In this case, the aberrations have no effect on the OPD. The induced aberrations 

are effectively cancelled. Now consider the non-null case with an absolute, or planar, 

reference wavefront. The planar wavefront receives one set of aberrations (primarily 
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spherical aberration, since this wavefront is the result of an on-axis point source) while 

the test wavefront, spherical or aspheric, receives a different set of aberrations. No 

longer do the aberrations cancel when the OPD is produced, and thus the resulting test 

wavefront is affected by these aberrations. 

The issue of induced aberrations has been addressed before. The errors caused by 

induced aberrations in a transmission test are analogous to retrace errors in a reflection 

test (Lowman, 1996; Greivenkamp, 1992; Gappinger, "Non-null...", 2003). Several 

authors have taken on the task of computing analytic expressions for interferometric 

setups (Jozwicki, 1991; Huang, 1993). Murphy, Brown, and Moore discuss the notion 

that the influence of the induced aberrations can be divided into two groups: errors on 

phase and errors on mapping, or the location of the fringes (Murphy, 2000). In almost all 

cases, the derived equations for the imaging errors are shown to vanish in the absence of 

fringes at the detector. In the case of a Mach-Zehnder interferometer, the lack of fringes 

indicates that the reference and test wavefronts are identical, and there are no errors due 

to the imaging optics, regardless of the shape of the wavefronts. More recently, the 

process of removing the induced aberrations via a model of the interferometer has been 

discussed (Gappinger, "Non-null..2003). Gappinger and Greivenkamp have 

developed an iterative reverse optimization procedure to improve the estimate of the 

model over given lens prescriptions and measured distances. Examined here is the 

technique at the heart of the reverse optimization procedure: reverse rayfracing. 



The problem of wavefront cahbration is rooted in the fact that the induced aberrations 

depend on the incident wavefront. However, the magnitude of the added aberrations is 

typically a small fraction of the wavefront's magnitude. This allows for the aberrations 

to be treated as a perturbation to the wavefront. Mathematically, the operation of 

imaging the wavefront is defined in this context as 

where Wis the original wavefront, and A{W) are the induced aberrations. The notation 

A(W) is used to indicate that the induced aberrations are a fianction of the wavefront. The 

imaging lens is the source of the induced aberrations. An intuitive way to see why 

different wavefronts receive different aberrations is to view the different wavefronts as 

shifts in conjugates. 

The detected interference patterns represent the difference between the images of two 

wavefronts, and not the wavefronts themselves. Therefore, the OPDT (OPD of the test 

beam) between the images of the test wavefront (WT) and reference wavefront (WR) at the 

detector plane is: 

An inverse operation to the imaging process is needed. When the prescription of the 

interferometer is known, the system that generated the aberrations is not a black box, but 

rather a collection of optics that can be modeled. The model is the tool that enables an 

inverse operation to imaging, namely reverse raytracing. With reverse raytracing, the 

l m g { W ] ^ W  +  A { W ) ,  Equation 2.25 

OPDT=Img{fFy}-Img{lF«} 
Equation 2.26 



wavefront at the test plane, typically the plane immediately following the test optic, is 

produced from the OPD and reference wavefront at the detector by tracing rays 

backwards through the system. The rays are said to be traced backwards because, in the 

interferometer, light travels from test plane to detector and now rays are traced from 

detector to test plane. This inverse operation, using Eq. 2.25 and Eq. 2.26, is defined as: 

Equation 2.27 illustrates how the process of reverse raytracing is implemented. Given 

the model of the interferometer, rays are traced along the reference arm, through the 

imaging optics and onto the detector. This is the image of Wji (Img{^IJ}). OPDT is then 

added to the rays, changing both their position and angle. At this point, the image of Wr 

can be obtained. The rays are then traced back to the test plane. At the test plane the rays 

are converted to a wavefront, which is fVj., the estimate of the original test wavefront Wr. 

The above explanation as to how best estimate the original test wavefront JVr ignores a 

key piece of available information, namely the wavefront detected when no test optic is 

in place. A common technique used in interferometry is to measure nothing, and then 

subtract this baseline measurement from subsequent measurements. Going back to 

equation 2.26, subtracting off a baseline measurement's OPD (OPDQ) would give: 

= Img-'{OPD^+Img{fr,}}. 
Equation 2.27 

OPD, - OPD<,=(lmg{»;}-Img{»',})-(lmg{»i}-Img{»',}) 
Equation 2.28 
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By subtracting off a baseline measurement, the reference wavefront is completely 

eliminated, and the resulting OPD is the difference between the test arm with and without 

the test lens. In the common use of this technique, this result is taken as the best estimate 

for the original test wavefront. This is true in the limit that fVo goes to zero, a reasonable 

assimiption, and in the limit where the difference between the induced aberrations 

(A(WT) - A(Wo)) goes to zero. The assumption on the second limit is the dominant 

source of error in this technique, for this limit does not go to zero when Wo goes to zero. 

The limit on the difference of the induced aberrations goes to zero when the two 

wavefronts (Wt and Wo) become identical. That would only happen if the test lens was 

nonexistent or being tested in a perfect null condition. 

The technique of subtracting a baseline measurement does not provide a benefit to 

reverse raytracing. This can be shown by reverse raytracing the difference in OPDs in 

Eq. 2.28. Applying reverse raytracing would give: 

and so the estimate for the test wavefront would be (substituting Eq. 2.30 into Eq. 2.29) 

Equation 2.29 
Img-^ {OPD, -OPD0+ Img{JFo}}. 

However, the image of the baseline wavefront is 

Img{fFo} = OPDo + Img{r,}, Equation 2.30 

W^ = Img"' {OPDt -OPD0+ OPDo + lmg{W^}} 

= Img-^{OPD,+Img{PF«}}. 
Equation 2.31 
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This is identical to the result of Eq. 2.27. The benefit of including the baseline 

measurement has been eliminated. 

The choice of calibration technique is between correcting for the induced aberrations via 

reverse raytracing and correcting for the errors in the interferometer via subtraction of a 

baseline measurement. The errors in CLOVER are quite small. Over a 12 mm aperture, 

typical numbers for the PV for a baseline measurement is 0.36 X, while the RMS is 

0.038 X. Over a 5 mm aperture, the diameter of the test aperture under normal testing 

conditions, the numbers drop to 0.090 X PV and 0.010 X RMS. The magnitudes of these 

nimibers are far less than what will be shown for the induced aberrations in Chpt. 4. 

Therefore, the calibration technique used with CLOVER is reverse raytracing. Baseline 

measurements are not used in conjunction with the data contained in this dissertation. 

So, what's really going on here? Clearly the baseline wavefi*ont contains useful 

information, and yet there seems to be no way of incorporating that information into the 

reverse raytracing calibration process. The problem is that the baseline measurement 

says something about the difference between the empty test arm and reference arm, but 

says nothing to the origin of the measured errors. Suppose the baseline measurement 

gives an RMS of A,/20, in the shape of astigmatism. To which arm should the 

astigmatism be attributed? Or what fi-action of the astigmatism should be attributed to 

each arm? This is the problem - only the magnitude, and not the origin, of the wavefi"ont 

error is known. If the error could be divided between the two interfering wavefi*onts. 
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then a reversed raytraced baseline wavefront could be saved, waiting at the test plane to 

be subtracted off from reversed raytraced test wavefronts. Furthermore, the assumption 

of a perfect plane wave in the reference arm could be improved by reverse raytracing the 

error not associated with the test arm. This under-constrained problem - two wavefronts, 

but only one OPD map - needs to be solved to take full advantage of the baseline 

measurement and reverse raytracing. 

A brief explanation of the algorithm used in converting rays associated with Wji into rays 

describing ^7 is in order. The ampUtude of W/{, ER, where = WR, can be described 

in general, optical vernacular terms as 

=  A g  e x p ) j .  E q u a t i o n  2 . 3 2  

Using the same definition for IVr, the difference in phase is then 

= - cOj-t^ -{kg-r - cOgty Equation 2.33 

The two beams are from the same source, and therefore the following is true: 

COj' 
2n Equation 2.34 

kr = kn = k = —. 
^ A 

Taking the positive z-axis as the direction of light propagation, the position vector r is 

A A A 

f = jci+>'j+zk. Equation 2.35 

the propagation k-vector (using direction cosines) is 

k = k ̂ Zi+il^+Mc j, Equation 2.36 

and the OPDT between the rays of the test and reference wavefronts can be expressed as 
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OPDt = — A 
In  Equation 2.37 

= (Z,j. — Lg^x + (A/j. — Mn ) 3^ + (-^r ~ ̂ R ) 

OPDT is described in the plane of the detector. Setting this plane to z = 0 gives the final 

form relating OPDT to the rays, 

OPD^ = (Lj. - )X + (M^ - ) y. Equation 2.38 

At any location in the model, each ray traced is described by seven parameters. The first 

six are the positional coordinates (x, y, and z) and the direction cosines (Z, M, and N) 

which completely describe the trajectory of the ray. The seventh parameter is OPL, the 

optical path length of the ray fi"om its origin. The conversion of rays fi-om the reference 

arm to the test arm takes place in the plane of the detector, on a ray-by-ray basis. The 

formulas for converting the seven ray parameters are; 

X'p 

yT = yR^ 

aoPD, 

dx 

aoPD 

Equation 2.39 
{^T^yr) 

M j .  -  M j f  + ~  
dy 

N r  =  y l l - L / - M / ,  

OPL^, = OPL,^ + OPD^.. 

The first three equations are the result of the two rays meeting at the plane of the detector. 

The equations for Lj and Mj come directly fi"om differentiating Eq. 2.38. The equation 

for Nt comes fi^om the normalization of the direction cosines, and the last equation is the 

definition of OPD. In practice, the derivatives are evaluated by least-squares fitting a 



91 

second-order polynomial to a grouping of pixels centered at {xt, yi), and computing the 

coefficients on the linear terms. The conversion between rays and wavefronts can be 

done at any time by simply interpolating the positional coordinates and OPL values, 

thereby producing a wavefront on a regular grid. 

Back to the general discussion on reverse raytracing, the reason that the result of the 

inverse operation is labeled an estimate is that a model of the interferometer is used to 

provide the correction. The model and the actual interferometer differ to some level. 

This difference is what is minimized by the iterative reverse optimization procedure 

outlined by Gappinger ("Non-null..2003). This technique is not used with CLOVER 

because, on the whole, this level of correction is not necessary to produce output at 

acceptable levels of accuracy. 

The model of the interferometer is verified by measuring the magnification between the 

imaging lens' conjugates. Only two distances are not known fi-om a prescription: the 

distance fi-om the top of the cuvette (the cell containing the contact lens and saline 

solution) to the imaging lens and the distance fi-om the imaging lens to the detector. In 

effect, these two distances are the object and image distances for the imaging lens. Since 

the imaging lens is known, knowledge of the magnification between the conjugate planes 

provides enough information to uniquely determine the two distances in question. A 

paraxial raytrace is used to update the model given the most recent magnification 

measurement. 



2.4 Specifics of CLOVER Software 

The software associated with CLOVER is critical not only from the standpoint of 

collecting the data, but analyzing the data as well. Since the reverse raytracing technique 

is used to calibrate wavefronts, a raj^racing capability is needed. This capability also 

enables measured-to-model comparisons at the transmitted wavefront level. The 

software suite needs to be robust. The capabilities to model test optics and the 

interferometer, raytrace through such models, collect interferograms, and analyze 

calibrated wavefronts must be present. 

There are three main, commercially available application used with CLOVER. The first 

is XCAP (EPIX, Inc., Buffalo Grove, Illinois). XCAP is used primarily to provide 

diagnostics and real-time control of the camera. The XCAP interface provides control 

over integration time, gain, and binning. Binning is the process of combining pixels at 

readout to form theoretical pixels of a larger size. XCAP provides real-time readout of 

the digital number (DN) at each pixel, a handy feature in adjusting the neutral density 

filters. XCAP is also used to determine the magnification. The magnification target 

(Edmund Industrial Optics, Barrington, New Jersey) is shown in Fig. 2.6. 
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FIGURE 2.6 - Magnification target used to correlate test aperture 
diameter to number of pixels. Each ring increases by 1 mm in diameter. 

The rings at 4, 6, and 8 mm are measured by overlaying a circle of known radius (in 

pixels) using the XCAP software and the average is taken. The depth of focus and 

resolution of the imaging system is such that variations in magnification when the cuvette 

is removed and replaced are on the order of 0.002. 

The second piece of software is Intelliwave (Engineering Synthesis Design, Tucson, 

Arizona). Intelliwave is used for interferometer control, data acquisition, and phase 

unwrapping. Intelliwave provides the controls and timing signals necessary to make the 

phase shifter, detector, and AO modulator work in harmony. 
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The collection of interferograms is done in Intelliwave using the Bucket 5B algorithm 

(Engineering Synthesis Design, 2002; Schmit, 1995). This algorithm is similar to the 

widely-used Hariharan algorithm, in that both algorithms use five interferograms with a 

7i/2 phase shift between each interferogram. However, the 5B algorithm comes about 

from averaging the numerator and denominators for two sets of four-frame algorithms. 

This averaging technique, first developed by Schwider, reduces the sensitivity to phase-

shifter calibration error, as demonstrated by Schmit and Creath (Schwider, 1983; Schmit, 

1995). By using this particular algorithm, the benefit of averaging is gained by taking a 

single exfra frame. Taking two data sets and averaging the results would require twice as 

many frames. With each frame taking a significant amount of memory and time to 

collect, the fewer the frames the better. The 5B equation for the wrapped phase is: 

tan (^) = ^ ^ —. Equation 2.40 
^ ' I,+11^-61^ + 11,+1, 

The phase is then unwrapped using a tiled modulation method. In short, the modulation 

for the wrapped phase is computed over a contiguous set of tiles, each tile containing 

several pixels. The tiles are unwrapped individually. Starting with the tiles of highest 

modulation, piston is added to eliminate the discontinuities in phase. This algorithm is 

designed to minimize the propagation of unwrapping errors and has proven to be more 

robust than the faster path following, or branch cut, algorithms (GhigUa, 1998). The tiled 

algorithm in Intelliwave is the Tiled Modulation Guided (TMG) algorithm (Engineering 

Synthesis Design, 2002). 
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The final piece of software is IDL (Research Systems, hic.. Boulder, Colorado). IDL 

(Interactive Data Language) is used to model, raytrace, and analyze the collected OPD 

coming from Intelliwave. The real benefit to using IDL comes from its ability to treat 

arrays of data as single entities. Operations that need to be made on a pixel-by-pixel 

basis can be done using code that does not loop over the entire array. This greatly speeds 

up the raytracing and analysis process. The raytracing engine and overall modeling 

syntax used in IDL was developed by Dan Smith of the University of Arizona. The code 

was quaUfied against Zemax. 

The two main programs, Intelliwave and IDL, can "talk" to each other on some levels. 

While simple IDL routines can be run within Intelliwave, the complete analysis process is 

too large to run under Intelliwave. However, data can be saved from Intelliwave in a 

native IDL format. This eliminates any "by-hand" data transfers. 

To make a measurement, the following data is needed: 

• Diameter of test aperture 

• System magnification 

• Model of interferometer (updated using given system magnification) 

• Surface in model corresponding to the test plane 

To compare the output to modeled output, the following additional data is needed: 

• Prescription for test lens / cuvette 

• Index of surrounding saline 



• Type of lens (contact lenses only, choice of: sphere, toric, bifocal) 

All other information is determined from the data present in Intelliwave. Efforts are 

ongoing to make providing the above information as smooth as possible. 
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3 VARIOUS ISSUES WITH TESTING SOFT CONTACT LENSES 

Alluded to throughout the first two chapters is that this research is in support of the 

advancement of the development of soft contact lenses. There are a number of reasons 

why this is a worthwhile endeavor. First and foremost, advancing the capabihties of 

human vision and being able to better correct the natural defects of the eye benefits all. 

Improving vision will have trickle-down effect across all aspects of life, especially as life 

spans lengthen. Second, the ophthalmic industry is rapidly growing. This is due to the 

emerging ability of manufacturers to provide contact lenses for an increasing percentage 

of patients by developing the capability to customize lenses. Third, the industry is ripe 

for advancement in all three fields of development. Work is being done to improve the 

design process of contact lenses. This task is complicated by the fact that the 

combination of the human eye and brain is by far the most complex detector/image 

processor combination known to man. Efforts are ongoing in the fabrication field as 

well. Providing customized lenses requires tooling that can be customized at a 

reasonable cost. And, thanks in some small way to the work described in this 

dissertation; the field of testing is being advanced. The metrology of both contact lenses 

and the eye is being expanded and refined. Current techniques for measuring lenses, such 

as the aforementioned moire deflectometry or use of optical sphereometers simply aren't 

the right tools for the expanding complexity of soft contact lenses (Mandell, 1974). New 
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metrology is being developed both to improve the measurements possible and to 

accommodate the unique issues that contact lenses as test optics pose. 

3.1 Understanding the Material of Soft Contact Lenses 

The name "soft contact lenses" gives a clue toward discovering the issues associated with 

testing this class of optics: they're "soft". This is to say that the lenses are not rigid but 

pliant. In general, the lenses conform to the eye, obviously a desired feature with respect 

to fit and comfort for the wearer. On the other hand, this flexibility does not make for an 

ideal optic to test, hi fact, the nature of the material used in the lenses, along with other 

lens parameters, makes them quite difficult to test. 

Briefly, soft contact lenses are made from a material chemically known as a hydrogel. 

Hydrogels are hydrophilic polymers, whose water content when ftilly hydrated can be 

anywhere from 30% to over 70% (Larsen, 1985; Tighe, 1997). The fradeoff in water 

content is between the abiUty to control the optical properties of the lens, mechanical 

strength, and comfort on the eye. Lenses with low water content are both more optically 

and mechanically stable, yet lenses with high water content are more gelatinous and 

therefore more comfortable to wear (Larsen, 1985). 

Making hydrogel material, or simply a hydrogel, is a complex chemical process. The 

hydrogels specific to contact lenses start out as a combination of monomers, carbon 

chains of only a few atoms (Pimentel, 1963). Almost all combinations of monomers used 



to manufacture soft contact lenses contain hydroxyethyl methacrylate (HEMA). HEMA 

is used because of its ability to use water to provide the hydrogel's unique flexibility 

(Tighe, 1997). Figure 3.1 shows the chemical structure of HEMA. Note that 

polymerization occurs at the left side of the molecule, and not with the fimctional group 

at the right side. 

I  ^  — C  —  C  —  O H  

—  C  —  C  —  C  I  I  

I I ^ ' ' O 

FIGURE 3.1 - Chemical structure for the monomer hydroxyethyl 
methacrylate (HEMA) (Mandell, 1974). 

Table 3.1 shows the monomer combinations for several manufactured brands of soft 

contact lenses (Tighe, 1997; Proctor, 1997; CooperVision, 2003). Disputed values are 

listed as given by Proctor/Tighe. The ftill monomer names are given in Table 3.2. 

Lens Brand Name Manufacturer Monomer Combination Water Content Material Trade Name 

Acuvue Vistakon HEMA, MA 58% Etafllcon-A 

CSI Wesley Jessen MMA, G, M 38/41% Crofilcon-A 

Durasoft Wesley Jessen HEMA, EEMA, MA 30/38% Phemefilcon-A 

Focus Ciba HEMA, PVP, MA 55% Vifilcon-A 

Frequency 38 CooperVision HEMA 38% Polymacon 

Optima Bausch & Lomb HEMA 38% Polymacon 

TABLE 3.1 - Composition and characteristics of leading soft contact lenses. 
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Monomer Aiitorayiation FullName 

EEMA ethoxyethyl methacrylate 

G glyceryl 

HEMA hydroxyethyl methacrylate 

M methacrylate 

MA mathacryllc acid 

MMA methyl methacrylate 

PVP polyvinyl pyrrolidone 

TABLE 3.2 - Full names for monomers used in soft contact lenses (Tighe, 1997). 

Added to the monomers is a combination of esters. Esters are acid derivatives, and make 

good solvents, as well as provide the strong odor of model airplane glue or fingernail 

polish remover (Pimentel, 1963). The role of the ester is to better facilitate the 

conversion of the monomers into polymers of the desired molecular weight. That is to 

say, the ester enables the gelling of the hydrogel. The most common ester used is one 

derived from boric acid. This ester is preferred because it is easily replaced with water 

after the lens is formed. Possible additions to the mixture are a cross-linking agent and a 

photoinitiator or UV catalyst. Once the hquid cocktail of monomers, esters, and catalysts 

is complete, the mixture is exposed to UV Ught. UV hght is the mechanism by which 

polymerization occurs. The polymers are then cross-Hnked. Cross-Hnking is the process 

of placing the long polymer chains in the proper orientation to achieve the desired 

chemical and material properties. The new material is then washed, replacing the boric 

acid ester and other chemicals with water. This completes the process of making a 

hydrogel material. For more details on the various chemical compositions used, see U. S. 

Patents 4,495,313 and 4,680,336. 
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3.1.1 Making Soft Contact Lenses 

An overview of one specific contact lens manufacturing process, soft stabilized molding, 

is shown in Fig. 3.2 (Loran, 1997). 

4 Steel Molds 

2 Plastic Molds 

Liquid Monomers & 
Chemicals Injected 

Polymerization & 
Cross-linking 

Fluid Exchange 

Packaging 

FIGURE 3.2 - Soft stabilized molding manufacturing 
process for hydrogel contact lenses. 

Four steel molds are used to make two plastic molds, one for each surface of the contact 

lens. The plastic molds are at a minimum UV transparent. The two plastic molds are 

brought together, and the liquid cocktail of monomers and other chemicals is injected. 

UV light is then shined on the cavity, and polymerization and cross-linking occur. Then 
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the lenses are washed free of the boric acid ester and other chemicals, and replaced with 

saline solution. The final step is packaging in more saline solution. The introduction of 

saline solution, while vital to performance, is also the point where the ability to work 

with this material dramatically increases in difficulty. 

In addition to stabilized molding, other manufacturing techniques exist. Spin casting is 

used by Bausch & Lomb on certain products (Loran, 1997). The parameters of mold 

diameter, amount of monomer, and spin speed can be manipulated to produce different 

curvatures and refractive powers. A cast molding process exists where a lens blank is 

molded and then polished before hydration. Lathe cut lenses have also been tried, both in 

the solid and hydrated states. Larsen writes in U. S. Patent 4,680,336 that the success of 

turning hydrated lenses is low, and "the method has not been adopted commercially". 

3.1.2 The Need for Saline 

Taking a step back, the definition of a hydrogel given above, while chemically accurate, 

does not satisfactorily describe the material. A good analogy is to consider hydrogel like 

a sponge. Analogous to a sponge, the material has some solid-Uke shape and volume, 

and yet that volume will change given the availability of a solution. While the material 

has no long-term memory, the relaxation time is significant. People who wear these 

lenses talk about having to let them soak in saline solution overnight if exposed to air for 

a significant amount of time. When hydrogels dry out, they become very brittle, and 

since they are so thin, they easily break. Again, imagine a very thin sponge, and how 



brittle it would be if allowed to dry. Another useful analogy is to consider hydrogel 

materials like a net. The process of cross-linking can be thought of as making a net out 

of the strings of polymers. Like a net, hydrogels capture particles that are bigger than the 

net spacing, and allow smaller particles to pass through. This helps explain how oxygen 

and water can be passed through to the cornea, and how proteins and pollens can be 

caught in the lens, leading to allergic reactions and/or eye disease (Larsen, 1985). 

Only when immersed in solution is the material consistent with its performance on the 

eye. On the eye, the tear film provides the necessary hydration (Mandell, 1974). Since 

this is wholly the area of interest, the lenses must be tested in saline solution. So now the 

test optic grows. Instead of testing just a lens, the test is done on the lens, some amount 

of saline solution, and the cuvette which holds the lens and saline solution. Needless to 

say, this presents some issues. 

3.2 Measuring the Index of Refraction 

From an optics standpoint, one of the critical parameters of any material is its index of 

refraction. In the case of testing lenses in solution, this is doubly important, for the index 

of both the lens material and the surrounding solution dictate the power of the lens. 

Furthermore, the measured power is the power of the lens in the solution. If there is any 

hope in inferring power in air, then the value for the index of the saline must be knovm to 

such a level as not to be the dominant source of error. As shown in both this chapter and 

the next, this is not an easy level to achieve. 
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3.2.1 Measuring Saline 

For saline solution, the determination of index at any given time is straightforward. Since 

saline is a liquid, an Abbe refractometer does the job. The Abbe refractometer measures 

index by determining the critical angle between a known reference (a high-index prism) 

and the unknown sample. The challenge with the saline solution is that the refractive 

index varies over time due to evaporation. Figure 3.3 shows the change in index over 

time for an exposed sample of solution (Brumfield, 2003). 

Exposed saline solution 

Covered saline solution 
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FIGURE 3.3 - Index of refraction of saline solution versus time (Brumfield, 2003). 

Consequently, a design challenge for the lens holding system, or cuvette, is that the index 

of the saline must either be monitored or the system designed to minimize evaporation. 



105 

3.2.2 Measuring Hydrogels 

Measuring the index of refraction of hydrogels is an even more daunting task than 

measuring a Uquid whose index changes over time. This is largely due to the now 

apparent fact that the index of the hydrogel has to be measured while in solution. 

Before diving into testing the index of a sponge-like material, now is a good time to 

discuss just how well these measurements need to be made. After all, if the value for 

index is only needed to about 0.1 or so, the argument based on the logic that the hydrogel 

is mostly saline, and saline is mostly water, and the index of water is 1.33, so the index of 

the hydrogel is mostly 1.33 would work. Since the lenses really are thin lenses, the thin 

lens approximation for power works quite well. The error in using the thin lens 

approximation for a 10 diopter lens is less than 1%. The basic equation relating power, 

index, and curvature is then 

(2^ = («Le„s - «sa.i„e)(Q "  Q) Equation 3.1 
= AnAC, 

where An is the difference in index between the lens and surrounding medium, and AC is 

the difference in curvature between the two surfaces. Computing the differential of Eq. 

3.1 leads to 

dip SAn SAC . » -—^ = 1 . Equation 3.2 
(j) An AC 

Assuming that the curvature is fixed - a questionable assumption given the nature of the 

lenses, but one that seems to hold up against the collected experimental data - the 

uncertainty in power given as an uncertainty in index is 
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5(l> SAn I -I — = . Equation 3.3 
(p An 

The nominal values for index are WLens - 1.4012 and nsaime - 1.3358, putting An at 0.0654. 

As a result, a 1% error in power comes from an uncertainty in An of 0.000654. The 

difference in index comes from two different index values. Even though those two index 

values are not necessarily independent, given the nature of the hydrogels, this is at best an 

upper bound on the uncertainty in measuring index. The challenge now is determining 

how to measure the index of hydrogels to this level of accuracy or better. 

Armed with at least a layman's understanding of hydrogel materials, one quickly realizes 

that conventional techniques for measuring index of refraction simply will not work. 

There are a variety of reasons why this is. For example, the conventional method for 

determining index of refraction in the large-scale production of glass optics is to cast a 

prism at the same time the lenses are casted. The prism is then polished, and a prism 

spectrometer used to identify the index of refraction to an accuracy on the order of 1 part 

in 10^ (Twyman, 1998). Unfortunately, hydrogels can not be made into prisms with 

highly-pohshed surfaces. Going back to the analogy of hydrogels as nets, consider 

cutting a net. Where exactly is the edge? This reasoning also precludes making a thin 

disc or prism out of the hydrogel, and measuring the index via focal length or angle of 

minimum deviation. 
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Stated earlier was the fact that the saline solution can be measured using an Abbe 

refractometer. Since the majority of the hydrogel is saline, perhaps this is a possibility. 

Unfortimately, the assumed index for the hydrogel is higher than that for the saline. The 

hydrogel is more solid-like than the saline, so it only makes sense that it should have a 

slightly higher index. Since the lowest index belongs to the saline, it is at this index that 

the shadow line of the Abbe refi"actometer will be formed. 

Apparently, a more elegant technique is needed. Efforts have been ongoing here at the 

University of Arizona to develop instrumentation for measuring the index of hydrogels. 

The problem is complex for a variety of reasons. No assumptions can be made regarding 

the shape or surfaces of the sample. The sample must be tested in saline solution. Not 

only is the refractive index different between the saline and the hydrogel, but the 

dispersion is likely different as well. 

Scanning techniques have been proposed, such as the use of an interference microscope 

or confocal microscopy (El-Nasher, 1980; Brumfield, 2003). The problem is that the test 

beam must pass through different materials: saline and hydrogel. This prevents 

dispersion compensation in the reference arm, complicating any interferometric 

technique. Another complication is that the reflection off each surface is quite small, and 

the surfaces are close together (about 100 jam). 
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Perhaps the biggest challenge is ensuring that the phase index is measured, and not the 

group index. Any probing technique is likely to measure the group index, and not the 

phase index, as most probing techniques use a source with a finite bandwidth for 

coherence considerations. The phase index is required to correlate data taken with an 

interferometer, as the OPD measured by an interferometer is generated by differences in 

phase index. The group index (no) is the ratio of the speed of light (c) to the group 

velocity (VG). Group velocity is 

do) 
^G = 

dk 

r J.. \ 

U p - X  
dn 

\ d X  J  

so that the group index becomes 

Equation 3.4 

= 

=  n p - X  
^dn, ^ 

\d?i J 

Equation 3.5 

Equation 3.5 shows that the group index depends on both the phase index («/>) and the 

dispersion of the material {dnpldX) (Saleh, 1991; Steel, 1967). If both quantities are 

unknown, then the group index does not provide enough information to produce the 

phase index. 

Since the phase index gives rise to the OPD measured by an interferometer, one would 

think that an interferometric solution would be trivial. The problem with this is that no 

assumption can be made regarding the physical parameters of the hydrogel sample. 
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Therefore, the OPD measured cannot be separated into the index and path length, for both 

are unknown quantities. Again, there are two unknowns equaling only one piece of 

known information. The ultimate answer must be a technique were the physical 

characteristics are determined independent of the optical characteristics, and then the 

known dimensions of the sample used in conjunction with an interferometer to measure 

the phase index. 

3.3 Mounting Soft Contact Lenses 

Already established is the need to test the lenses in saline. The question here is how best 

to mount the lenses in a saline bath, providing maximum visibility and minimum stress or 

distortion to the lens, all while making the loading/unloading process as fast and simple 

as possible. A very simple cuvette, really just a box with pohshed windows is used with 

the current instrumentation in the sponsor's lab. This cuvette uses a V-block and gravity 

to position and hold the lens. With the resolution of an interferometer, one can quickly 

see that this type of cuvette distorts the lens, as shown in Fig. 3.4. 
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FIGURE 3.4 - Simple cuvette with V-block holding a lens in a 
vertical orientation. The deviation from circular fringes 

in the vicinity to the V-block indicates deformation of the lens. 

The deviation from circular fringes apparent where the contact lens is touched by the V-

block is proof that the lens is bending abnormally in these areas. So what's needed is a 

new cuvette, one that is optimized to the above criteria. 

The design of the following cuvettes was a collaborative effort, between the team here at 

the University of Arizona and the sponsor. All cuvettes shown were provided by the 

sponsor. 
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3.3.1 Initial Cuvette Design 

The initial philosophy was to keep the lenses hydrated and stabilized with regards to 

temperature before and during testing. To that end, the overall testing system consisted 

of an external holding tank with temperature stability and a pump to allow for circulation 

of stabilized sahne solution between the holding tank and cuvette. Pumping the sahne 

not only provides temperature stability but allows for passive filtering of the saline. This 

is a key benefit, for any debris in the saline could potentially get in between the two 

windows of the cuvette and ruin a measurement. Lenses are transported between the 

holding tank and cuvette in a barrel, thereby remaining in saline solution at all times. The 

third cuvette based off this design philosophy is shown in Fig. 3.5 along with the lens 

barrel carrier and sample lens barrel. 

(a) 
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(b) 

FIGURE 3.5 - Third iteration of initial cuvette design. Shown are 
the (a) cuvette, (b) lens barrel clamp and lens barrel. 

The reason why the above cuvette was the third iteration was that the first two cuvettes 

were not made from plastic, but rather from stainless steel. The corrosive nature of saline 

was not appreciated, as corrosion occurred wherever the bare stainless came in contact 

with saline. Another lesson learned. 

Lens barrels with different interfaces with the contacts were tried. Some provided a 

beveled surface, others a simple ring contact. This necessarily assumed that the surface 

at the point of contact would be rotationally symmetric. This assumption is not true for 

all types of lenses analyzed. 
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There were other problems with this design, most notably the time involved in getting a 

lens in place. First the lens was loaded into the barrel, and then the barrel loaded into the 

cuvette. Neither step was guaranteed to be a success. Sometimes the lens barrel clamp 

would bump the barrel while grabbing it, sending the lens outside the barrel where the 

clamp would shear the lens. This arrangement maximized the likelihood of dripping 

saline on or near the interferometer. Given the now respected corrosive nature of saline, 

this was not a preferred condition of operation. 

3.3.2 Current Cuvette Design 

The current design does not rely on any surface of the lens being rotationally symmetric, 

only that the edge of the lens be circular. The current design is also an improvement in 

terms of loading time, minimizing the possibility of dripping saline on the interferometer, 

and overall streamlining of the loading process. Lenses are now held by simply placing 

the lens concave-side down on a third window, which is then slid on a dovetail stage 

between the two fixed windows of the cuvette, as shown in Fig. 3.6. This does mean that 

the lenses are exposed to air, but the exposure time can be under one second with a little 

practice. Comparing this time to the time it takes to put a lens on an eye, the exposure 

time of less than one second is negligible with regards to the integrity of the 

measurement. 



FIGURE 3.6 - Current cuvette. Lenses are inserted on a middle window, and pushed on 
a dovetail stage between the two fixed windows of the cuvette. 

The concern with this mounting scheme is whether or not the lenses can support 

themselves. There is nothing preventing the lens from sagging in the middle. Yet the 

lenses do not sag, as verified by the normal transmitted wavefi-onts produced. Apparently 

the lenses can support themselves. This is not surprising, given that the majority of the 

lens is saline. The lenses are in enough of an equilibrium state with the surrounding 

saline that apparently supporting them is not a problem. A rigorous finite element 

analysis would have to be performed to unquestionably verify this claim. 

The lenses are now reversed in their orientation with respect to the optical axis fi"om the 

initial cuvette design. Light travels through the test lens opposite how it would on the 

eye. This means that the measured aberrations of the lens will be different, as this 

difference in orientation is really just a difference in lens bending, or shape factor. The 
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power of the lens remains the same. Since the lenses are compared to their respective 

model's performance, this difference in measured aberrations does not prohibit making 

measured-to-modeled performance evaluations. 

Figure 3.8 shows no means for pumping saline between the cuvette and external holding 

tank. There is no inherent reason for its absence, and will most likely be added in the 

futixre for as much the filtering aspects as for the temperature stability. Also note that the 

amount of saline exposed to air is greater in this design than in the initial design. A cap is 

placed over the opening when lenses are not being tested to slow evaporation. 

3.4 Automated Lens Centering 

With the nonrestrictive mounting scheme used in the current cuvette, centering the lens is 

important. This does not necessarily mean moving the lens; the test aperture can be 

moved in software. As long as the center of the lens corresponds to the center of the test 

aperture, and the entire test aperture is in the field of view of the camera, a successful 

measurement can be made. The problem is that getting the test aperture and contact lens 

aligned is a tedious and subjective process. This is especially true for toric lenses, where 

there are no circular features (i.e. fringes) in the central region of the lens. Also at issue 

is that the quality of the alignment is subject to operator variation. Wherever possible, 

the instrumentation and testing algorithms should be independent of the operator. For 

these reasons, an automated process for centering is desired. 



116 

Assuming that the center of the optical zone is concentric with the lens, the problem 

becomes one of finding the edge of the lens. Luckily, the edge of the lens provides two 

possibilities for easy identification. First, since the test lens is conjugate with the 

detector, the test lens is like a field lens in some ways. Only at scattering points on the 

test lens will there be a noticeable change in the local irradiance at the detector. If the 

scattering point is slight, that is the ray deviation isn't enough for rays to miss the 

imaging lens, then a bright spot will appear. If the scattering is more severe, then the 

scattered light will miss the imaging lens, and that spot on the detector will be dark. If 

the edge of the lens is a source of strong scattering, then the edge of the lens will appear 

dark, as it does in Fig. 3.7. This image can then be processed to determine the center of 

the lens. While Fig. 3.7 looks like a bright field image, it is in fact the summation of four 

interferograms, with a itH phase step between each interferogram. 



FIGURE 3.7 - Pseudo-bright field image created by summing four interferograms. 
The dark ring is the edge of the lens where light is scattered out of the imaging 

lens' aperture. The outermost ring is the edge of the cuvette's window. 

The four interferograms are two pairs of interferograms n out of phase. In each pair a 

pixel with high modulation will sum to the peak of the intensity scale. However, bright 

spots in both interferograms will sum to twice the peak intensity. Consequently, the 

majority of the lens, the regions of high modulation, will appear in the middle of the 

black-to-white intensity scale of the bright field image. Two pairs are used simply for 

averaging. The central bright ring is the junction between the optical zone and the 

periphery of the lens. The optical zone is the central portion of the lens where the desired 

prescription is located. In this case, the scattered light is captured by the imaging lens, so 

the junction appears bright. 
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The other possibility, also rooted in the fact that the edge of the lens is a source of 

scattering, is to unwrap the phase of the entire camera and generate the subsequent 

modulation map. The edge - dark in all of the interferograms - has very poor 

modulation. So this map can be processed in a similar fashion to the bright field image to 

determine the lens center. Using the modulation map shown in Fig. 3.8 may be more 

robust than using the bright field image due to the better contrast visible in the 

modulation map. However, this is an extra piece of data that must be computed and 

stored. The tradeoff is between speed and contrast. 

• 

FIGURE 3.8 - Modulation map for soft contact lens. 



At this time, neither method is used with CLOVER to provide automated lens centering. 

Centering is done by hand, using whatever rotationally symmetric features are available. 

This is part of the future work planned for this instrument. 
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4 TRANSMITTED WAVEFRONT TESTING OF SPHERICAL GLASS AND 

CONTACT LENSES 

The issues regarding the design and implementation of an interferometer to test contact 

lenses in transmission have been addressed in the preceding chapters. The following is 

the treatment, both in general and specific terms, of the output from such an 

interferometer, with an emphasis on the output fi"om contact lenses. The need for the 

reverse raytracing calibration process is established first. Once the output is calibrated, 

the transmitted wavefront can be analyzed in any way desired, including comparisons to 

modeled wavefi-onts. Since the emphasis is on ophthalmic optics, the paramount output 

is the prescription. For spherical lenses, this is simply the power of the lens. Toric and 

bifocal lenses are more comphcated and will be discussed in the next chapter. The 

majority of the discussion on the induced aberrations and overall performance of 

CLOVER will be made in imits of diopters (D), so that the impact on the ophthalmic 

prescription is known immediately. 

4.1 Detailed Explanation of Testing a Glass Calibration Lens 

The explanation starts with the calibration process itself, and what it says about the 

magnitude of the induced aberrations. A study of the induced aberrations needs to be 

done to see if they are in fact significantly greater than the errors of the interferometer. 
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Remembering that there are two possible calibration techniques, reverse raytracing or 

subtracting a baseline measurement, the need for reverse raytracing must be established. 

Going back to the theory of wavefront calibration discussed in Chpt. 2, the operation of 

reverse raytracing is 

W ^ = l m g ' i W ^ + A ( W j . ) ]  
Equation 4.1 

= Img' {OPDt + Img {Wg}}. 

The idea is to generate an estimate of the transmitted wavefront at the test part {Wj . )hy  

tracing rays from the sum of the measured OPD (OPDT) and the image of the reference 

wavefront (Img {PFR}). The process of generating fFj. is shown in Fig. 4.1. Alongside 

each step is a corresponding mathematical expression or equation. 
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Model of Interferometer 

Rayset Initialized at 
reference plane 

1 r 

Rays traced to detector 

1 ' 

l^yset perturbed via OPDj 

r 

Rays traced back to test 
plane 

Img{frr}=OPDT+Img{PP,} 

= Img-' {Img {Wr}} = Img' {OPD^ + Img {W, }} 

FIGURE 4.1 - Outline of calibration process used to estimate 
the test wavefront at the test plane. 

Figure 4.1 outlines both ray and wavefront descriptions of the calibration process. The 

transition between the rayset and a wavefront can be done at any location. The 

wavefronts described here are really the distribution of optical path length across a plane 

in the interferometer, as mentioned in the introduction to Chpt. 2. To compute a 

wavefront at any plane, the OPL values for the rayset are used. A 2D interpolation is 

used to put the OPL values on a regular grid. This is done in IDL by using the functions 

TRIANGULATE and TRIGRID. The OPL values on a regular grid are then the 

discrete representation of the wavefront at the specified plane. 



The cahbration process starts with a model of the interferometer. The key to this model, 

and really to the instrument as a whole, is simplicity. The interferometer is designed in 

such a way that the two arms are identical except for the test optic. The design also has 

the test wavefront reflecting off the second beamsphtter, minimizing the influence of the 

beamsplitter on the wavefront. hi keeping the model simple, catalog values for elements 

are used. Along with the design of the interferometer, this allows for the exclusion of all 

the nominally planar surfaces from mirrors and beamspUtters. The second beamsplitter 

would have to be included if the test wavefront passed through it. The benefits of 

eliminating the planar surfaces include the lack of needing coordinate breaks and faster 

raytracing speeds. The resulting model contains only the test optic and imaging lens. 

The specific implementation of the model in IDL can be seen in Appendix A. The model 

is twofold in that it describes the reference and test arms at the same time, surface-by-

surface. Each surface is listed twice; the first listing is the reference arm, the second 

listing is the test arm. In keeping with the design of the interferometer, all distances are 

identical between the two arms. 

The next step in the calibration process is initializing a rayset in the reference plane. The 

reference plane is the plane in the reference arm that is conjugate with the detector, as 

shown in Fig. 4.2 on a simple Mach-Zehnder interferometer. 
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REFERENCE PLANE IMAGING LENS 

TEST PLANE 
TEST OPTIC 

FIGURE 4.2 - Mach-Zehnder interferometer with labeled test and reference planes. 

The test plane, being the more important plane to place, dictates the location of the 

reference plane. The most common location for the test plane in a transmission test is 

immediately behind the test optic. This is the case with CLOVER. The sample model 

shows that the test plane is 1 |a,m beyond the test optic. 

The reference plane is the origin for the rays that will be traced to the detector, then back 

to the test plane. At the reference plane, the ray direction cosines and OPL values are all 

set to 0. A square pattern is used to position the rays. This is done simply out of 

convenience. 

The next step is tracing the rays to the detector. This is done in a straightforward manner, 

and the resulting wavefront, Img{ffR}, is shown in Fig. 4.3. The number of rays traced is 

specified by 201 rays across the diameter. 
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FIGURE 4.3 - Image of the reference wavefront (ImglfFij}). 

A common misconception is to assume that the reference wavefront at the detector is flat 

since it is the image of a planar wavefront. This misconception comes from treating the 

wavefront in the reference plane as a fraditional object. The term traditional object refers 

to an object that is the summation of point sources. With normal, or collinear imaging, 

each point source emits a wavefront that fills the aperture stop, and is imaged to a point in 

the image plane (Bom, 1980). The source of the wavefront is in the object plane. This is 

not the case for the interferometer. 

In the interferometer, the reference plane contains a planar wavefront. This wavefront is 

converging to an image point that is infinitely far away, as the source for this wavefront 

is the illuminated pinhole that is coincident with the front focal point of the collimating 

lens. The imaging lens, seeing a collimated beam, focuses the light at its rear focal point. 
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This bright spot at the rear focal point is the image of the illuminated pinhole. The 

detector is well beyond the focal point of the imaging lens, and so the reference 

wavefront in the plane of the detector is necessarily diverging. The curvature of the 

wavefront corresponds to the distance from the focal point of the imaging lens to the 

detector. This situation of imaging a planar wavefront is illustrated in Fig. 4.4. 

FIGURE 4.4 - Portion of a Mach-Zehnder interferometer illustrating the relationship 
between the reference wavefront and its image. 

The next step, as outlined in Fig. 4.1, is to perturb the rayset using the measured OPD. In 

simple terms, the measured OPD is the difference in optical path between the two 

wavefronts interfering at the detector. As a reminder, the relationship between the two 

wavefronts and the OPD is 

OPD^ = Img {Wj.} -Img {Wg}. Equation 4.2 

Note that this convention - test minus reference - is consistent with general aberration 

theory (Shannon, 1997). Data transfer between Intelliwave and IDL is done by saving 

the data in Intelliwave in a native IDL format. Before the OPD data is used to perturb the 



rays, a mask of bad pixels is created. An uncommon approach is taken to identifying bad 

pixels. Experiments showed that most bad pixels were due to debris in the saline 

solution. The debris is usually over several pixels, all of which should ultimately be 

deemed bad pixels. One would expect the pixels containing debris to have a low 

modulation and to be removed in a simple algorithm that thresholds the modulation map. 

This was shown not to be the case, for the pixels only partially blocked by the debris 

would have a fairly high modulation. Raising the threshold on the modulation map 

causes more pixels in good regions of the interferogram to be labeled as bad pixels. The 

speckled or spotty nature of the mask is not improved by raising the modulation 

threshold. The ideal algorithm is one that allows the modulation threshold to remain low, 

and then enlarges the bad pixel regions to encompass nearby pixels. This is the algorithm 

used with CLOVER, and is accomplished by using the ERODE function in IDL. Figure 

4.5 shows (a) an interferogram along with (b) the bad pixel mask due to modulation alone 

and (c) the enhanced bad pixel mask. The fringes of the interferogram make the debris 

stand out more then they do in the modulation map or unwrapped wavefront. 
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(a) (b) (c) 

FIGURE 4.5 - Bad pixel identification by eroding regions of poor 
modulation: (a) typical interferogram, (b) bad pixel mask 
due to modulation only, and (c) enhanced bad pixel mask. 

The bad pixel mask is used in the ray perturbation. The perturbation is done by fitting 

over a window of pixels (typically 9 x 9), as outlined in Chpt. 2. If not enough good 

pixels exist in the window, then the perturbation is not performed and the corresponding 

rays are dropped fi"om the rayset. In this way, the bad pixels associated with the surface 

can be used to drop rays from the rayset. Remember that the final quantity sought is the 

test wavefi"ont at the test plane, which will come from the rayset at the test plane. The 

OPD is really just part of the tool used in determining the rayset at the test plane. 

Whenever the rayset is converted to a wavefront, the interpolation produces a wavefront 

with no missing data. In the big picture, the notion of bad pixels in the OPD is 

inconsequential. 

Once the test rays have been perturbed, but before they are propagated, a wavefront can 

be made from the rays. Generating this wavefront serves as a check on the consistency of 

the calibration process. This generated wavefront is the image of the test wavefront 



129 

(Img{ PFj-}), and should be consistent with the modeled reference wavefront and measured 

OPD. The image of the test wavefront produced by a glass calibration optic is shown in 

Fig. 4.6. Table 4.1 gives the prescription for the calibration optic, showing that this is 

about a +6.5 D lens in air. Testing is done over the central 5 mm of the calibration optic 

immersed in saline in a cuvette. Testing is done over a 5 mm aperture because this is the 

ANSI standard for contact lenses (White, 1998), and is the size aperture over which the 

sponsor wishes to evaluate lenses. This is the same optic responsible for the 

interferogram and pixel masks in Fig. 4.5. 
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FIGURE 4.6 - Image of the test wavefront produced by 
the calibration optic specified in Table 4.1. 
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First Surface Curvature 0 

Second Surface Curvature -0.012815 

Thickness (mm^ 2.750 

Index of Refraction 1.5128 

Gaussian Power (D) 6.57 

TABLE 4.1 - Parameters for calibration optic. 

To check the consistency of the calibration process, the two images of the interfering test 

and reference wavefronts can be subtracted, giving back what should be OPDT. This is 

simply carrying out the math of Eq. 4.2. Figure 4.7 shows (a) the difference between the 

two imaged wavefronts and (b) OPDJ for the calibration lens. 
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FIGURE 4.7 - Check on the generation of the wavefronts: 
(a) ImgiWr} - Img{PF«} and (b) OPDj. 

The most noticeable difference between the two wavefronts is that OPDx shows missing 

pixels while Img{fFr} - Img{ is not missing data. This is because each imaged 
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wavefront, fonned by interpolating a rayset, contains no regions of missing data. A far 

more subtle difference, one that may not even be ascertainable with the above images, is 

that the difference of the imaged wavefironts is smoother than OPDj. The two surfaces 

have different spatial resolutions. OPDx is sampled pixel-by-pixel, while the wavefronts 

are sampled ray-by-ray. For measurements made with CLOVER, imaged wavefronts of 

this size will cover over 700 pixels, while the rayset samples at 201 rays across the 

diameter. 

The obvious final step in checking the calibration process is to subtract the two surfaces 

shown in Fig. 4.7. The ideal result is a plane. However, the plane will not necessarily be 

at zero waves along the vertical axis because the two surfaces may have different 

amounts of piston. Figure 4.8 shows the difference between the two surfaces, where the 

vertical axis is in waves. 
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FIGURE 4.8 - Difference between ImgjfFr} - Img{PF/j} and OPDj. 
The ideal result is a plane. 

The difference certainly appears to be planar, but the general shape is obscured by high 

frequency noise. This noise comes from a variety of factors, including the difference in 

spatial sampling between the two surfaces, all detector noises, and the inhomogeneity in 

index of the saline surrounding the test optic (this is a test of the calibration lens in the 

cuvette). Plots of single rows or columns show that the ampUtude of the noise is about 

X/50. A variety of techniques could be used to alleviate this problem; Zemike fitting 

provides a nice solution. Not only does Zemike fitting remove the high spatial frequency 

noise, but the Zemike coefficients can be used to compute aberration information about 

the wavefront (Wyant, 1992). The 36-term Zemike fit, using the Fringe or University of 

Arizona ordering, is shown in Fig. 4.9 (Focus Software, 2000). Note that the resolution 

on the vertical axis scale has been increased. 
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FIGURE 4.9 - Zemike fit to difference between Img{ FFR} - Img{ and OPDT. 

The Zemike fit reveals that the dominant aberration is tilt. This tilt is assumed to be 

artificial due to a lack of centering between the two surfaces. Small displacements 

between two spherical surfaces that are subtracted result in a linear term. As the 

displacement grows a cubic term will appear. The centering between the surfaces in 

CLOVER is done by computing the centroid for the surfaces and then shifting one 

surface until the centroids match. This method gives about tenth-pixel accuracy. 

Removing the erroneous tilt gives a better feel for the magnitude of the difference 

between the two surfaces in question, as shown in Fig. 4.10. Again note the increase in 

the vertical resolution. 
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FIGURE 4.10 - Zemike fit to difference with tilt removed. The PV of this surface is 
0.00038 X, while the RMS is 0.000031 "k, or about 17 picometers. 

This level of accuracy is well beyond other sources of error, and so the conclusion is that 

the inferred image of the test wavefront is in agreement with the modeled image of the 

reference wavefront and the measured OPD. 

The final step is to estimate the test wavefi-ont at the test plane via reverse raytracing. In 

theory, this removes the induced aberrations due to imaging the wavefront. For the given 

test optic, the calibrated test wavefront is in Fig. 4.11. 
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FIGURE 4.11 - Measured wavefront ( J V j . )  for the calibration lens. 

Note that this wavefront looks more like the wavefronts of Fig. 4.7, the measured OPD, 

than the image of the test wavefront shown in Fig. 4.6. Li fact, the wavefront and its 

image have different concavities. This occurs for the same reason why the image of the 

planar reference wavefront is not planar. Figure 4.12 shows a representative imaging 

lens and detector for an interferometer operating in a non-null condition. The solid line 

represents the reference wavefront while the dashed lines are two possible test 

wavefronts. 
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IMAGING LENS DETECTOR 

FIGURE 4.12 - Positive and negative powered test beams (dashed) with 
respect to the planar reference beam (solid). The reference beam 
comes to focus at the rear focal point for the imaging lens (F'/). 

A converging test beam, produced by an optic with positive power, will come to focus 

before the reference beam. At the detector, this beam will have less sag across the same 

diameter as the reference beam. A diverging test beam will come to focus after the 

reference beam and have more sag than the reference beam at the detector. But for both 

converging and diverging test beams leaving the test optic, the beam at the detector will 

be diverging. 

At this point, the impact of reverse raytracing can be quantified. The goal is to compare 

the levels of the induced aberrations and baseline measurement. The best surfaces to use 

to judge the magnitude of the induced aberrations are the surfaces from the difference 
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between the two imaged wavefronts and the calibrated test wavefront. The difference 

between the imaged surfaces gives 

l m g { W , } - l m g { W , }  =  W , + A { W , ) - { W , + A { W , ) )  
Equation 4.3 

=  W , - W , + { A ( W r ) - A ( W , ) ) .  

This difference is OPDT to the level of accuracy demonstrated in the preceding check on 

the formation of the imaged wavefronts. So this difference represents the OPD at the 

detector. The OPD in the test plane is the difference between the estimated W^. and the 

assumed . Since is assumed to be zero, the OPD in the test plane is just the 

calibrated test wavefront. The compassion is therefore made between the OPD at the 

detector and the OPD at the test plane. To summarize: 

Equation 4.4 
Test Plane ~ ^T-

Figure 4.13 shows the two OPD surfaces, and Table 4.2 gives the PV, RMS, and 

measured power numbers (in-air equivalent) for the two surfaces. The measured power is 

determined from the Zemike coefficients corresponding to a 36-term fit to the surface. 
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FIGURE 4.13 - Comparison of OPD surfaces for the purpose of determining the level of 
induced aberrations: (a) OPDJ @ Detector and (b) OPDT @ Test Plane-

OPD SURFACE PV(X) RMS { X )  POWER (D) 

OPDT @ Detector 12.364 3.548 6.646 

OPDT @ Test Plane 12.981 3.734 6.515 

DIFFERENCE 0.617 0.186 0.131 

TABLE 4.2 - PV and RMS values for the two comparable OPD surfaces. 

Over the same sized aperture, the baseline measurement gives a PV of 0.090 X and an 

RMS of only 0.010 X, as stated earlier in Chpt. 2. The need for reverse raytracing over 

simply removing a baseUne measurement is now evident. The difference RMS from the 

calibration optic, whose power is in the lower half of the desired measurement range for 

CLOVER, is a factor of 18 greater than the RMS for a baseline measurement. The 

difference in the computed power represents 2% of the power of the calibration lens. 



140 

A subtle, but important, point to make is that the above numbers regarding the induced 

aberrations for the calibration lens are not the magnitude of the aberrations, but rather the 

magnitude of the difference of the aberrations. Taking a closer look at Eq. 4.4, the 

substitution of Wjt equaling zero can be made in the top equation, giving: 

OPD, 8 + (^ (If,) - ̂  )), 

OPD = I V  
Test Plane 

Equation 4.5 

The term present in the top equation that is not present in the bottom equation is the 

difference in induced aberrations between the test and reference wavefronts. The 

magnitude of either aberration is not known. While WJ{ is assumed to be zero, A(WR) 

cannot be assumed to be zero as well. A planar wavefront is not excused from picking up 

aberrations while passing through the imaging lens. Modeling could be done to 

determine the level of the aberration, but that misses the main point: the difference in the 

induced aberrations is all that matters with regards to calibrating the test wavefront. 

With the calibration process complete and justified, the next point to take up is the 

comparison of the measured wavefront to a modeled wavefront. This moves the analysis 

towards answering the ultimate question: does the test optic perform as modeled? Figure 

4.14 shows the complete analysis routine, generating both measured and modeled 

wavefronts. Note that the entire calibration process of reverse raytracing is but one step 

in the complete analysis algorithm. 
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FIGURE 4.14 - Complete analysis routine for 
comparing measured-to-modeled performance. 

There are two paths for the analysis routine: measured and modeled. The measured path 

had already been analyzed. This is the collecting of OPD data to produce the test 

wavefront at the detector, then calibrating that wavefront via reverse raytracing to 

estimate the wavefront at the test plane. The modeled path takes the design of the optic 

and performs a forward raytrace through the design of the test optic inserted into the 

design for the interferometer, stopping at the test plane. This produces the modeled 

wavefront at the test plane. The final step is to compare the measured and modeled 

wavefronts by subtracting the two surfaces, forming a wavefront difference. This 

difference is then analyzed and used to quantify the answer to the question of whether or 

not the optic performs as modeled. 
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The model of the interferometer is used in both paths. This illustrates the importance that 

the model plays in the overall analysis. Because the model is used both to calibrate 

measured data and to compute modeled data, the model must be accurate. As mentioned 

earlier, the key to the model is simplicity. By limiting the number of surfaces and 

parameters in the model, a high level of accuracy is achieved. The role of simplicity in 

hardware design and instrument calibration should not be overlooked. 

Using the complete analysis routine on the calibration optic, the prescription for the lens 

(Table 4.1) is inserted into the model of the interferometer (see Appendix A) and the 

modeled wavefront at the test plane produced. The modeled wavefront () is in Fig. 

4.15. 

FIGURE 4.15 - Modeled wavefront ) for calibration lens. 
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The final step in the complete analysis routine is the subtraction of the measured and 

modeled wavefi"onts, forming a wavefront difference surface. The operation of 

subtraction is not as straightforward as it seems. The two wavefironts are contained in 

rectangular 2D arrays in IDL. These arrays must be made the same size for pixel-by-

pixel subtraction to work. Furthermore, the wavefronts are circular, and so their size and 

location within the 2D array must be made the same as well. Due to the pixilated edges 

of the circular data, the wavefiront difference surface is reduced by 1% in diameter to 

avoid edge effects. While these are just software issues, performing these operations in 

such a way as to not jeopardize the integrity of the data is important. The wavefront 

difference for the measured and modeled wavefronts is in Fig. 4.16. 

^0 .2  

FIGURE 4.16 - Measured minus modeled (JVj-- Wj.'^) 
wavefi-ont difference for calibration lens. 
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The wavefront difference suffers from the same problem that the check on the formation 

of the imaged wavefronts does: high frequency noise. This will be true for all wavefront 

differences, and so the Zemike fit to the difference is the quantity of interest. The 

Zemike fit to the above wavefront difference surface is in Fig. 4.17. 

FIGURE 4.17 - Zemike fit to the measured minus modeled wavefront difference. 

The wavefront difference is primarily power, or defocus. A difference in power like this 

is most likely due to a discrepancy in the difference in index for the immersed test optic 

and saline solution versus the values used in the model. For the data presented, the 

difference in index is 0.1772. Any error in this number will result in erroneous power in 

the wavefront difference. 
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How much of an error in index would it take to produce the power measured in the 

wavefront difference? This question goes back to the discussion in Chpt. 3, where this 

same question was asked with regards to determining the index for hydrogels. The 

answer can be determined by using the Zemike coefficients to produce the power of the 

wavefront difference. For the given wavefi"ont difference, the power is -0.004 D. This is 

the power in saline; in air, the power becomes -0.011 D. Using this value and the power 

of the lens (+6.529), the percent error is 0.17%. So the error in the index difference is 

only 0.17% of 0.1772, or 0.0003. The divisions of the Abbe refi"actometer used are at 

0.0005, giving a resolution of about 0.0003. Since this matches the error in index needed 

to account for the power of the wavefi*ont difference, the claim that the power error can 

be attributed to a discrepancy in index is credible. Also note that the difference in power 

of 0.17% is a factor of six better than the 1% condition that describes normal conditions 

(Shaimon, 1997). Even with the Ukely index discrepancy, a pass/fail condition of 1% 

would pass this lens. 

The results from this one measurement lead to important conclusions. First, there is a 

need for reverse raytracing. The wavefront RMS removed via reverse raytracing is 18 

times the wavefi"ont RMS for a baseline measurement. So for any lens of consequential 

power, reverse raytracing will provide a better estimate of the test wavefi"ont than 

subtracting a baseline measurement. Furthermore, the calibration technique works well 

enough that the difference between measured and modeled data can be explained single-

handedly by the uncertainty in index. Finally, the discrepancy in index is probably not 
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large enough to alter the results of comparing lenses against a 1% criterion on power 

between measured and modeled data. 

4.2 Study on Repeatability 

The repeatability of CLOVER is an important parameter to the sponsor. RepeatabiUty 

addresses the random errors associated with testing the same lens, on the same 

instrument, by the same operator, over a short time interval (White, 1998). A common 

measure of repeatability is the ratio between the random errors and the tolerance of the 

quantity measured. Since repeatability is a measure of the instrument's precision, this 

ratio is called the precision-to-tolerance (P/T) ratio. The sponsor desires a P/T ratio of 

30%, where the precision is taken to be the 3a point of the measured data. The quantity 

measured is the power of the lens, calculated from Zemike coefficients, at the test plane. 

The ANSI standard for the tolerance on power is ±0.25 D for all lenses up to ±10.00 D. 

Combining these criteria gives: 

T ~  T  '  

3 0% = , Equation 4.5 
0.25 

.-. a = 0.025 D 

A study was done where the calibration lens was tested ten times, both in air and in the 

cuvette surrounded by saline. The hypothesis was that the measurements made with the 

cuvette would have a higher variance because they are multiplied by the solution factor to 

get the equivalent in-air power. Plus, the saline inhomogeneity and possible cuvette 
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errors combine to increase the random errors of the measurement. Table 4.3 lists the 

measured standard deviation (in-air equivalent) and the corresponding P/T ratio. 

Testing Condition a(D) P/T(%) 

Lens in Air 0.0041 4.9 

Lens in Cuvette 0.0095 11.4 

TABLE 4.3 - Repeatability study on CLOVER using the 
calibration lens. Data was collected over ten trials. 

As predicted, the variance for testing the lens immersed is higher than testing in air. The 

P/T ratio in air is only half that for immersion testing. Yet in both cases, the P/T ratio 

meets the needs of the sponsor by at least a factor of two. 

4.3 Testing Other Spherical Glass and Contact Lenses 

To push the limits of the interferometer, a -20 D glass lens was tested in air. A contact 

lens of over -100 D would be needed to produce the same OPD. Testing was done over a 

3 mm aperture to avoid aliasing. The interferogram over the test aperture is in Fig. 4.18. 



FIGURE 4.18 - Interferogram of -20 D glass lens in air over 3 mm. 
The departure for this interferogram is 41.36 A,. 

The Zemike fit to the wavefront difference is in Fig. 4.19. The power of this surface is 

-0.269 D. The measured power is -20.115 D, while the modeled power is -19.855 D. 

The difference between these two powers is -0.260 D, showing that the powers are in 

agreement with the wavefront difference. The wavefront difference power represents 

1.3% of the modeled power, a much higher error than the 0.17% for the calibration lens. 

An investigation into this discrepancy follows. 
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FIGURE 4.19 - Zemike fit to wavefront difference for -20 D lens. 

The accuracy of the model is checked first. Satisfied that the model is okay, the next 

item to consider is the wavefi"ont difference surface. The surface shows that the 

difference is primarily power, but there is a strong upslope to the surface at one edge. 

This is indicative of coma. However, there are a couple of reasons why coma may be 

present, one of which is a misalignment between the measured and modeled surfaces 

when subtracted. To show that the coma is in fact due to the measured data, the 

measured wavefront is shown in Fig. 4.20 with tilt and focus removed. 
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FIGURE 4.20- Measured wavefront (Wj.) minus tilt and focus. 

Clearly there is coma in the measured wavefront. The erroneous coma will change the 

determined average curvature for the measured data. Since the modeled wavefront has 

no coma, the presence of coma accovmts for the difference between the measured and 

modeled powers. To be sure that coma was not introduced during the calibration process, 

the OPD fi-om Intelliwave can be analyzed for the presence of coma. Figure 4.21 shows 

the OPD fi"om Intelliwave with tilt and focus removed. 
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Range (PV) = 0.6400 waves, RMS = 0.0888 waves, Strehl = 0.7326 
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FIGURE 4.21 - Measured OPD from Intelliwave minus tilt and focus. 

The similarities in shape and PV indicate that the coma originated with the measured 

data, and exists due to the hardware. This leads to questioning the alignment of the test 

part with the interferometer. 

Modeling is necessary to determine the amount of tilt necessary to produce the given 

wavefront difference error. In Zemax, modeling was done by using two configurations, 

with the difference being field angle. The PV output from Zemax's 

INTERFEROGRAM was monitored until it matched the PV of the wavefront 

difference. Since the wavefront difference is void of any noise, comparing PV numbers 

is not as dangerous as it would be with noisy data. The result of the modeling is that a tilt 

of 3.99° would give the same PV. While not a complete analysis, this answer does 

indicate that the tilt necessary could have been present in the setup. In mounting the lens, 

the mount is checked for parallelism using a bubble level on an exterior surface. The lens 
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sits on a different surface buried in the mount, and the possibility for such a tilt is 

possible. The overriding conclusion is that the coma is probably not a defect in the lens, 

but rather comes from how the lens was mounted. 

Moving on to contact lenses, the interferogram over the central 5 mm for a lens with a 

labeled power of-10.0 D is in Fig. 4.22. Figure 4.23 shows the Zemike fit to the 

wavefront difference. 

FIGURE 4.22 - Interferogram of -10 D contact lens over 5 mm. 



153 

FIGURE 4.23 - Zemike fit to wavefront difference for -10 D contact lens over 5 mm. 

The power of the wavefront difference is 0.005 D. The measured power is -10.005 D, 

while the model gives -9.999 D. This gives the remarkably low percent error of 0.06%. 

The success of this measurement is due solely to the agreement between the stated 

measured and modeled powers, and not the agreement between these powers and the 

labeled power of -10 D. Comparisons are always made between the measured and 

modeled powers derived fi"om Zemike fits to the respective wavefronts. 

One of the many interesting aspects to contact lenses is that they have a lot of spherical 

aberration. The lens bending or shape factor of these lenses, necessary to fit on the eye, 

puts them far from the shape for minimizing spherical aberration. Figure 4.24 shows the 

measured wavefront with tilt and focus removed. The residual surface is dominated by 
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negative spherical aberration. Summing the Zemike terms that contain terms places 

t h e  s p h e r i c a l  a b e r r a t i o n  a t  - 1 . 6 5  X .  

. o 025 vv. AVES-

FIGURE 4.24 - Measured wavefront for -10 D contact lens with tilt and focus removed. 

4.4 Testing Over the Complete Aperture of Contact Lenses 

The current cuvette design allows for complete lens testing. As long as the fringe spacing 

does not exceed the Nyquist limit, there is no reason why the wavefront cannot be 

determined outside the optical zone. The only possible complication could be the 

junction at the optical zone, where the modulation is low (see Fig. 3.9). Figure 4.25 

contains one of the captured frill interferograms for the -lOD lens analyzed in the last 

section. 
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FIGURE 4.25 - Full lens interferogram for -10 D lens. 

The central portion of the interferogram is the optical zone. The fringes over this portion 

of the lens are dictated by the desired optical prescription. The remainder of the lens is 

designed not for refractive correction but for other considerations. These considerations 

may include fit, rotational stability on the eye (critical for toric lenses), or stability off the 

eye in order to improve lens insertion. For this particular lens, the periphery has two 

distinct regions. The region surrounding the optical zone has very little power. Perhaps 

this is a result of simplifying the design or to accommodate a smooth surface over the 

front of the lens. The zone at the edge of the lens has a rapidly changing thickness, 

indicative of an edge bevel. The "123" mark at the top of the lens is imprinted on the 

lens to help wearers determine if the lens is inverted or not (JJVCI, 2003). Outside the 

contact lens, especially on the right side of the lens as shown in Fig. 4.25, is the near-null 
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fringe between light through the cuvette and the reference beam. The four comers of the 

complete interferogram show only the reference beam, as the test beam is blocked by the 

cuvette at this point. The Fresnel zones of the reference beam can be seen in the comers 

of the full interferogram. Figure 4.26 is the full unwrapped wavefront as shown in 

Intelliwave. 

FIGURE 4.26 - Unwrapped wavefi-ont for -10 D lens over a 14 mm aperture. 

The blue circle is the 14 mm analysis aperture. Gray spots inside the aperture are bad 

pixels as determined by a modulation threshold of 0.7. Not only was the wavefront 

imwrapped over the optical zone junction, but even the wavefront between and around 

the "123" mark was unwrapped using the TMG unwrapping algorithm in Intelliwave. 

The color scale of the unwrapped wavefiront indicates that the concavity of the wavefiront 

switches near the edge. This is corroborated by viewing the surface of the OPD as seen 
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in Fig 4.27. The OPD surface also illustrates the change in power between the optical 

zone and the periphery. 

^ 0 f  

FIGURE 4.27 - Unwrapped wavefront for -10 D lens. 

The OPD has been passed through a 5x5 median filter. The remaining bad pixels account 

for the spikes in the OPD surface. The concentration of spikes at the top is due to the 

"123" mark. 

The ability to test the full lens is a welcome benefit to the sponsor. Just from a quality 

control standpoint, the ability to collect data over the full lens is valuable. Different zone 

junctions can be analyzed to determine if the wavefront is continuous over the junction. 
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The design of the periphery can be verified. The benefit of this capability will be made 

all the more impressive when toric lenses are tested. 
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5 TRANSMITTED WAVEFRONT TESTING OF TORIC, BIFOCAL, AND 

MULTIFOCAL CONTACT LENSES 

The treatment in the preceding chapter dealt with the testing of spherical glass and 

contact lenses. The next step is to look at more complicated designs and understand the 

issues with testing such lenses. These are lenses that may lack rotational symmetry, a 

constant power across the optical zone, or both. Combining the design of these lenses 

with their physical makeup, one sees that these are truly complex optics. 

There are three main classes of soft contact lenses: spheres, torics, and bifocals. 

Spherical lenses have already been analyzed, and once the difficulties of the lens material 

are understood, testing these lenses is straightforward. The other two classes, torics and 

bifocals, were introduced in Chpt. 1. For toric lenses, the challenge comes from the lack 

of rotational stability and, therefore, the need to rotationally orientate the measured and 

modeled data. Bifocal contact lenses have annular zones of differing power. These 

zones must be identified for accurate generation of the prescription by the analysis 

software. In addition, the annular zone structure of bifocals precludes the use of standard 

Zemike polynomials as a set of basis functions for fitting to the produced wavefronts. 

While complicated, spheres, torics, and bifocals are established products that have proven 

themselves in the marketplace. Beyond these lenses are new classes of lenses. These are 
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lenses that exploit the advances in the fields of design, fabrication, and testing to provide 

a suitable correction to a greater number of eye conditions, such as presbyopia. This is a 

significant growth area in the ophthalmic industry; the need to swiftly prove the validity 

of designs and fabricated lenses is critical. 

5.1 Testing Toric Contact Lenses 

Toric lenses are spherocylinder lenses designed to correct astigmatism in the eye. The 

major challenge is not the asphericity of the wavefront, but rather the orientation of the 

test optic relative to the modeled data. Determining the orientation is necessary to 

accurately report the cylinder axis in the prescription of the lens. Perhaps, a way to solve 

this problem would simply be to put the lens in at a given orientation. This is a textbook 

example of "easier said than done". In the current cuvette, lenses are dropped into the 

saline, and then float down until they hit the window on the dovetail stage. Maintaining a 

given orientation to within the desired tolerance would be impossible. Rotating the 

lenses once seated would have to be done outside the cuvette, for controlled spinning of 

the lenses would also be incredibly difficult. Furthermore, rotating the entire cuvette 

causes further complications, such as ensuring parallelism between the axis of rotation 

and the test beam, rotating about the lens center, and increasing the time needed for a 

measurement. 

The superior solution is to identify the orientation of the test lens and then rotate either 

the measured or modeled data. The cylinder axis of the lens is referenced fi^om the 
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fiducial marks at the periphery of the lens. Using the trick of adding pairs of 

interferograms that are 180° out-of-phase to make a pseudo-bright field image makes the 

fiducial marks easily identifiable, as shown in Fig. 5.1. 

0 

o 
o 

0 

o 
o 

(b) 

FIGURE 5.1 - Identifying the orientation of a toric contact lens: (a) the 
pseudo-bright field image via interferograms, and (b) the image with the 

fiducial marks identified by placing three "0"s on each central mark. 

Determination of the angle of the line passing through the central mark of each fiducial 

set is made by identifying three points on each central mark, and then fitting a line to the 

points using a least-squares fit. The identification of the points on the image is done by 

hand. The operator selects the points by placing an "O" at each location, as shown in Fig. 

5.1. While this process could be automated with some additional work, the error with the 

by-hand method is quite low. For the above orientation, over ten trials, the angle of the 

fiducial marks is found to be 71.94° with an error (standard deviation of the mean) of 
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only 0.028°. The spread in the data is 0.31°. The 3CT point for the data is 0.25°, from 

which the claim is made that this method is good to a quarter-degree. For compassions, 

the ANSI tolerance on finding the cylinder axis is 8°, and the angle between the central 

fiducial mark and the secondary marks on either side is 10°. 

With the orientation angle set, the lens is analyzed using the same procedure outlined for 

spherical lenses. Figure 5.2 shows the interferogram over 5 mm. Note the orientation of 

the elliptical fringes as compared to the orientation of the fiducial marks. The labeled 

angle for this lens is 180°, so the major axis of the ellipse should be aligned with the 

fiducial marks. 

FIGURE 5.2 - Interferogram of a toric contact lens over 5 mm. 
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Figure 5.3 shows the Zemike fit to the difference between the measured and modeled 

wavefronts. To achieve this surface, the modeled data is rotated to match the given 

orientation angle of the measured data. 
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FIGURE 5.3 - Zemike fit to wavefi*ont difference over 5 mm. 

A discrepancy between the indices of refi^action in the model and those present in the 

hardware can again be pointed to as a possible source for the power seen in the wavefront 

difference. In addition, centering the analysis aperture used to collect data seems to be 

more critical with these lenses than with spherical lenses. To first order, an error in 

centering the analysis aperture will have no effect on the data for both types of lenses, as 

tilt is removed from the unwrapped phase. However, displacements lead to higher-order 

odd terms as well, which may be contributing to the wavefi-ont difference. A third 

possibility is that a decentration of the imaging lens could be introducing additional 
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astigmatism. The lack of rotational symmetry may leave these lenses more susceptible to 

errors when compared to perfectly-centered modeled data. The wavefront difference 

does not exhibit much astigmatism. This is a sign that the rotation of the modeled data 

has matched the measured data. If the two datasets were clocked differently, erroneous 

astigmatism would result. A fourth possibility is that the lens does not match the design 

due to fabrication errors. The measured prescription (in-air equivalent, in diopters) is 

-5.373 / -1.233 x 177.8°. The modeled prescription is -5.720 / -1.190 x 180.0°. The 

differences between the measured and modeled sphere and cylinder powers (in-air 

equivalents) lead to a percent error of 6.0% for the sphere and 3.6% for the cylinder 

power. The measured axis of 177.8° differs from the labeled axis of 180° by 2.2°, or 

1.2%. 

The full lens interferograms for toric lenses are fascinating. Figure 5.4 shows the full 

interferogram for the above analyzed lens. 
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FIGURE 5.4 - Full lens interferogram for analyzed toric lens. 

The optical zone is the central portion of the lens containing the elliptical fnnges. 

Outside the optical zone, the fringes take on unusual shapes. This is due to the need for 

rotational stability on the eye. The interferogram reveals two crescent-shaped regions on 

either side of the lens. The OPD in these regions is such that it increases towards the 

lens. In effect, these two regions are wedges. The design of this lens must be relying on 

a blink of the eye to keep the lens in proper ahgnment. When the eye blinks, the eyelids 

would pass over these two wedges and presumably spin the lens into place. The full lens 

interferogram for a weaker toric lens is in Fig. 5.5. 
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FIGURE 5.5 - Full lens interferogram for a weaker toric lens. 

For some unknown reason the center of the fringe pattern is not coincident with the 

geometric center of the lens, as has been the case with prior lenses. The absence of 

fringes outside the lens suggests that the displacement of the central fringe in the optical 

zone is not due to a global tilt. In any event, this lens is included to show that the 

wavefront can be unwrapped outside the optical zone. Figure 5.6 shows the unwrapped 

wavefront. The wedged-shaped regions are sloped up, heading towards zero OPD near 

the edge. The spikes on either side of the lens are the fiducial marks which have been 

interpolated over during reverse raytracing. 
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FIGURE 5.6 - Measured wavefront at test plane for a toric contact lens over 13 mm. 

5.2 Testing Bifocal Contact Lenses 

The final established class of contact lenses is bifocal lenses. Bifocal lenses are the most 

complex lenses of the three classes examined. One reason for this is that the surfaces for 

spherical and toric lenses can be described as biconics. This is not the case for bifocals. 

This particular design operates on the principle of simultaneous vision, or bivision 

(Mandell, 1974). As mentioned in Chpt. 1, within the optical zone of these lenses are 

annular zones with different powers. Each zone contains either the prescription for near 

or distance correction, thereby creating a bifocal. The zones are arranged so that in all 

but the brightest light levels both types of zones are illuminated. The eye receives two 

images, one that is in-focus and another that is out-of-focus. For the bifocals in this 
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study, the zones are five concentric annular rings, alternating distance/near correction, 

starting with distance correction in the central zone. Placing distance correction in the 

central zone must come from the fact that typically the eye's pupil is smallest under 

bright conditions, such as being outside, where the need for distance correction 

dominates. 

Not surprisingly, bifocals are the hardest of the three types of lenses to model. A major 

reason for this is that the annular ring structure is not completely described by the given 

lens prescription. The labeled lens prescription gives all the information necessary to 

model spherical and toroidal contact lens. This is not the case with bifocal lenses for two 

reasons. First, the zones must have piston added to them to eliminate discontinuities in 

the wavefront. Assuming the surfaces of the contact are continuous, a good assumption 

given the discomfort associated with wearing a contact lens with edges and given a lack 

of discontinuity of the interferogram, the wavefront produced by a bifocal should be 

continuous. The only way for this to happen with multiple zones is to piston the zones. 

Figure 5.7 shows synthetic data (data not made from a prescription for a real lens but 

rather data made from the sag equation) for a -2.00 / +1.00 D bifocal (a) without and (b) 

with piston between the zones. 
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FIGURE 5.7 - Synthetic wavefronts for a bifocal contact lens (a) without piston 
and (b) with piston between the zones. Piston is necessary to 

provide a continuous surface on the lens. 

The surface without piston is not continuous, but does have the axial vertex for all zones 

coincident. The surface with piston is continuous, but does not have the zones' axial 

vertices coincident. Therefore, the zones with the same radius of curvature will no longer 

come to focus at the same position, but rather their foci will be separated by the amount 

of added piston. However, comparing the amount of shift to the radius of curvature for 

each zone reveals that the necessary shift is several orders of magnitude less than the 

radius and the difference in focal position is therefore negligible. 

The other unknown piece of information regarding the modeling of bifocals is the blend 

between zones. Again using the argument that the surfaces of these lenses must be 

smooth enough to be comfortable on the eye, there can be no edges between the zones. 

Adding piston removes discontinuities, but could still leave peaks or troughs in the lens 
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surface. So some sort of blend must be designed between the zones to eliminate the 

peaks/troughs. For these reasons, modeled data is not provided for comparison. The lack 

of modeled data has no bearing on showing that the technology is capable of measuring 

these lenses. 

There are two major analysis issues unique to bifocals. The first is the identification of 

the annular zones. This is necessary to produce a consistent prescription for the lens. 

The second issue is polynomial fitting to the wavefronts. The Standard Zemikes do not 

fit well to these surfaces, so a different technique is necessary. 

5.2.1 Annular Zone Finding for Bifocal Lenses 

Figure 5.8 contains the interferogram for a bifocal contact lens over the standard analysis 

aperture of 5 mm. The fringe spacing does not follow the familiar spacing of a spherical 

lens, indicating that some asphericity exists. Yet the fringes are continuous, and do not 

reveal the location of the annular zones. 



FIGURE 5.8 - Interferogram of a bifocal contact lens over 5 mm. 

The measured wavefront over the same aperture is shown in Fig. 5.9. Now the presence 

of annular zones is obvious, both from the wavefront and the below contours. With an 

analysis aperture of 5 mm, three zones are fully captured, and a fourth zone is partially 

captured. 
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FIGURE 5.9 - Measured wavefront at the test plane for a bifocal lens over 5 mm. 

The question is how best to identify theses zones. What makes a zone unique, and how 

can it be identified with no assumptions or as few assumptions as possible? 

The algorithm developed to identify zones starts with subtracting off a best-fit sphere 

(BFS) from the wavefront. Since the aimular zones of bifocals are all one of two powers, 

the BFS's power is ideally the average of these two powers, or is at least between the two 

powers. Spherical aberration is present in differing amounts in each zone, a fact that will 

be repeated during the discussion of radial power maps for bifocal lens. Figure 5.10 

shows the measured wavefront minus the BFS. 



173 

0-5  

0 . 0  

. 0 .5  

. 1 . 0  

cO NTOUP: ).05 VV. 

FIGURE 5.10 - Measured wavefront minus best-fit sphere (BFS). 

Removing the BFS has left the near and distant zones with nearly equal-but-opposite 

powers, as can be seen in the more uniform spacing of the contours in Fig. 5.10 as 

opposed to Fig. 5.9. More importantly, the zones now alternate in slope. The central and 

third zones are now concave-down, while the second and forth zones are concave-up. 

This condition of alternating signs for curvature is the key to finding zones. The 

condition is exploited by once again using the technique of fitting a low-order polynomial 

to a small grouping of pixels. In this case, only the constant and linear terms are fit. 

Using a coordinate transformation allows for the slope along the radius of the wavefront 

to be determined. For the above wavefront, the concave-down zones have a negative 

radial slope, while the other zones have a positive radial slope. Keeping track of only the 

sign of the radial slope produces the map shown in Fig. 5.11. 
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FIGURE 5.11 - Map of the sign for radial slope. 

Once produced, the map is processed to eliminate small, erroneous zones. Use of EDL's 

LABEL_REGION simplifies this task. The final map used for zone identification is in 

Fig. 5.12, with each zone now a unique color. 
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FIGURE 5.12 - Processed map of radial slope used for zone identification. 

An important fact is the zones have been identified without assimiing rotational 

symmetry. This gives a truer pixel-by-pixel identification for the zones than if a radial 

averaging technique was used. This technique ensures that zones contained in the 

analysis aperture will not suffer from centering issues when a polynomial fit is 

performed. The impact of this will be seen in the radial axial power maps discussed in 

the next chapter. 

5.2.2 Modal-Zonal Fitting for Bifocal Lenses 

The surfaces and wavefronts produced by spherical and toric lenses can be described 

quite nicely using Zemike polynomials. Unfortunately, this can not be said for bifocal 

lenses. These lenses produce wavefronts with specific, locahzed changes in curvature. 
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An infinite number of terms are needed to allow the Zemikes to match the changes in 

curvature at the specific locations. Figure 5.13 shows the residual map between a bifocal 

wavefront and the Zemike fit to the surface. The zone structure is still evident. 

FIGURE 5.13 - Residual map between a bifocal wavefront 
and the Zemike fit to the same wavefiront. 

The apparent solution is a modal-zonal fit where a modal fit is performed over each zone 

of the bifocal wavefront. Annular Zemikes were studied as a possible set of basis 

functions for such a fit (Mahajan, 1981; Mahajan, 1994). Since each zone after the 

central zone is an annular region, Annular Zemikes could be used to provide the 

necessary fit. The other possibility is to simply fit a high-order polynomial to each zone 

(Schwiegerling, 1995). Polynomial fitting is used primarily as a means to suppress high-

spatial frequency noise and to provide coefficients that can be used to generate a 
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prescription for the lens or annular portion of the lens. The benefit of Annular Zemikes 

over a simple polynomial set is the orthogonal nature of the Annular Zemikes. The 

downside is that the higher-order terms are quite long, and estimates for the annular and 

til 
unit radii would be needed for each zone. Since a simple fit of a high-order (5 order) 

polynomial over each zone provides a nice representation of a bifocal wavefiront, this 

method is used in the analysis software. The polynomial fit to the measured bifocal 

wavefront (see Fig. 5.9) is shown in Fig. 5.14. 

FIGURE 5.14 - Polynomial fit to measured wavefront in Fig 5.9. 

Figure 5.15 contains the residual map between the measured wavefront and the 

polynomial fit to the wavefront. The zone structure is now eliminated from the residual 

map. 
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FIGURE 5.15 - Residual map between a bifocal wavefiront 
and the polynomial fit to the same wavefi-ont. 

In order for the prescription generation routine to be run with bifocals, a conversion 

between the coefficients of the polynomial terms and the Zemike terms is needed. Table 

5.1 lists the polynomial terms, nicknamed bifocal terms, while Table 5.2 lists the 

equations between bifocal terms and Zemike terms. 
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Bifocal Term Expression Bifocal Terp Expr^jsion 

Bo 1 Bio x'̂  

Bi X Bii x^y 

B2 y BI2 x^y  ̂

Bs x" Bi3 V 
B4 xy Bi4 / 
Bs / BI5 

B6 BI6 x^y 

B7 x^y BI7 xY 

Bg xy' BI8 xY 

B9 / BI9 4 

B20 

TABLE 5.1 - Polynomial terms used in fitting bifocal wavefronts. 

Bifocal Term Zemike Equivalent 

Bo Z0-Z3+Z8 

Bi Z1-2Z6 

B2 Z2-2Z7 

B3 2Z3+Z4-6Z8 

B4 2Z5 

Bs 2Z3-Z4-6Z8 

B6 3Z6 

B7 3Z7 

Bg 3Z6 

B9 3Z7 

Bio 6Z8 

BI2 12Z8 

Bi4 6Z8 

TABLE 5.2 - Relationships between bifocal and Zemike coefficients. 

Table 5.2 shows that the mapping from bifocal to Zemike coefficients is overconstrained. 

The anal)1:ic solution to the least-squares matrix method is used to provide a 
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transformation matrix between the two sets of coefficients. This enables bifocal 

coefficients to be used instead of Zemike coefficients in the code that generates the lens 

prescription. 

For the bifocal lens analyzed, the coefficients put the power of the first zone at 3.155 D, 

the second zone at 6.486 D, and the third zone at 3.234 D. The fourth zone is not 

reported since a portion of the zone is outside the analysis aperture. Since no modeled 

data is available for comparison, the validity of these numbers is supported by the overall 

performance of the interferometer. 

5.3 Multifocal Contact Lenses 

Multifocal lenses are the next emerging class of contact lenses. These are aspheric lenses 

that are designed to provide an acceptable level of vision correction over a wide range of 

object distances. Judging by the wavefronts produced firom these lenses, the mechanism 

being used to achieve such a long depth of focus is spherical aberration. Spherical 

aberration can be used to stretch the caustic to a point where the range of acceptable spot 

sizes in image space spans the complete range of object distances. The price that is paid 

for this extended depth of focus is that the spot size at all conjugates is greater than if the 

lens was designed for a single conjugate. For example, instead of having outstanding 

distance vision and poor near vision, these lenses can be used to provide good vision at 

both distance and near vision. 
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5.3.1 Comparing Different Designs 

Due to the aspheric nature of these lenses, traditional metrology used to evaluate contact 

lenses does not provide easy-to-use information. Current metrology techniques, such as 

focimetry, work best with single-powered lenses. With CLOVER, the type of shape of 

the lens does not matter. As long as fringes can be resolved, the wavefront can be 

collected. This flexibility and robustness in the instrumentation is a real asset in 

developing new types of lenses. 

Figure 5.16 shows the measured wavefront for a multifocal lens over 5 mm. The 

wavefront is dominated by two powers, near and distance correction, with a gradual 

transition between the two powers. 

yvAVES-

FIGURE 5.16 - Measured wavefront at the test plane for a multifocal lens over 5 mm. 
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The transition between powers is appreciably larger than the transitions between annular 

rings in bifocals. Figure 5.17 shows the measured wavefront for a multifocal lens of a 

different design. The overall shape of the wavefront is the same, but the depression in the 

center of the wavefront in noticeably bigger. The difference between the two designs 

will be expanded when the radial axial power maps for the two designs are compared in 

the next chapter. 

FIGURE 5.17 - Measured wavefront for a multifocal lens of a 
different design. Note the larger depression. 

5.3.2 Star Testing 

At the request of the sponsor, a modified star test was performed on bifocal and 

multifocal lenses. CLOVER was used to perform the test. The reference arm was 
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blocked, and the camera moved to point where the focus spot of the combined test 

lens/imaging lens fell on the detector. Figure 5.18 shows the modified CLOVER 

arrangement for star testing. 

BEAM BLOCK IMAGING LENS 

•j 

FIGURE 5.18 - Modified CLOVER arrangement for star testing. 

The goal was to qualitatively uncover the difference in the focus spot between an 

armular-ring bifocal and a multifocal lens. To see the difference in the focus spots, a 

series of images were taken through focus for each lens. Conditions such as 

magnification and irradiance were held constant between the two lenses. The in-focus 

spot saturated the CCD, causing the vertical stretching or vertical lines seen in the focus 

spots. Figure 5.19 shows the series of images for (a) an annular-ring bifocal and (b) a 

multifocal lens. The two lenses have a nominal base power of -1.00 D. 

CCD 

TEST OPTIC 
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(b) 

FIGURE 5.19 - Modified star test to compare bifocal and multifocal lenses: (a) through-
focus images for a bifocal and (b) through-focus images for a multifocal lens. 

The size and intensity of the focus spots make it hard to identify significant differences 

between the two focus spots. One obvious difference is the star-like shape to the Fresnel 

rings for the multifocal lens. The impact of this difference on the vision correction 

provided by the lens is not known. Also, more experiments would be needed to verify 

that the artifact is due to the lens and not due to some misalignment or vignetting in the 

modified interferometer configuration. 
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6 TREATMENT ON RADIAL AXIAL POWER MAPS 

The ability to measure contact lenses and compare the results to modeled outputs has 

been demonstrated in the last two chapters. Comparing the measured performance to the 

modeled performance quantifies how well the lens operates compared to its design. 

There are a number of ways to make this comparison; in the preceding chapters the 

comparison was made by subtracting the measured and modeled wavefi"onts and 

computing a power for the wavefi"ont difference. Power is used as the metric for the 

wavefront difference because power is the desired parameter for the lens. However, a 

single number does not capture the complexity of these lenses, nor does it provide much 

insight as to why the lens is or is not performing as expected. 

To make better use of power, its locahzed nature can be utilized to make maps of power 

on a pixel-by-pixel basis. The formation of such a power map is a common technique in 

ophthalmics and can be used to quantify lens surfaces, transmitted wavefronts, and even 

the eye itself (Alonso, 1997; Sullivan, 1991; Roberts, 1994; Roberts, "Characterization of 

the...", 1994; Roberts, "The Accuracy of..1994; Klein, "Shape and Refractive.. 

1995; Klein, "Axial and Instantaneous..1995). In ophthalmics, a common use of 

power maps is in describing the output from keratometers (Mandell, 1974; Loran, 1997; 

Schwiegerling, 2000). However, the power typically described in association with 
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keratometers is not the standard optical definition of power, i.e. the reciprocal of the 

effective focal length (Smith, 2000). 

6.1 Various Definitions of Power 

The term "power" has been expanded in the ophthalmic community to include any 

parameter that can be expressed in units of diopters. The standard optical definition, 

based on the difference in index and curvature for a refracting surface, is called 

"refractive", "focal", or "corneal refractive" power in ophthalmic Hterature (Klein, 

"Shape and Refractive...", 1995; Roberts, "The Accuracy of...", 1994). Other types of 

powers are also mentioned, and they arise from expressing different distances in diopters. 

These varying definitions of power are designated as shape-based powers by Klein and 

Mandell ("Shape and Refractive...", 1995). There are three identified shape-based 

powers: position, axial, and instantaneous powers. Figure 6.1 shows a refracting surface 

with labeled distances pertaining to the three shape-based powers. 
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FIGURE 6.1 - Single refracting surface used in describing the various definitions of 
power. The subscripts on d refer to the three types of power: position, axial, and 
instantaneous. Note that the distances corresponding to axial and instantaneous 

power lie in the same plane but differ in length. 

The three shape-based powers are specified using different distances. The distances are 

converted into a power-like quantity using 

An 
Pp,a,i = -1—' Equation 6.1 

PMJ 

where An is the difference in refractive index at the refracting surface. The distances are 

defined using two points, one of which is always the point where the incoming ray 

intersects the refracting surface. For positional power, the other point is defined by the 

radius of curvature for the vertex (noted as Ry in Fig. 6.1). This point is independent of 

the incoming ray's position, so positional power is only a function of the ray's 

intersection with the refracting surface. Axial power defines the second point as the 

intersection of the vertex normal with the normal to the surface at the point of the ray's 

intersection. This second point depends not only on the position of the ray, but also on 
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the slope of the surface at the ray's intersection. For instantaneous power, the second 

point is the center of curvatiwe for the surface at the point of the ray's intersection. The 

position of the center of curvature is computed using the standard definition from 

calculus: the center of a circle whose radius is the reciprocal of the curvature at the given 

point and whose center lies on the normal to the surface at the given point (Leithold, 

1990; Schwiegerling, 2000). Instantaneous power depends on the position, slope and 

curvature of the surface at the ray's intersection. The different dependencies on shape for 

the three powers explain the name shape-based powers. Positional power is based on 

position alone, while axial power includes a slope-based component and instantaneous 

power is based on position, slope, and curvature (Klein, "Axial and histantaneous.. 

1995). For a spherical refracting surface, all three powers give the same result, which is 

identical to the standard answer for optical power. 

As mentioned in the introduction, the use of power maps is common in describing the 

output of a keratometer or other videokeratographic device (Roberts, "The Accuracy 

of...", 1994; Klein, "Axial and Instantaneous...", 1995; Schwiegerling, 1995). The 

devices operate on technology based on Placido disks and, according to Klein and 

Mandell, measure axial power. This claim is also supported by Schwiegerhng, who 

states that the ring spacing in the image and a priori knowledge of the device can produce 

the radial slope of the cornea (1995). A quantity based on axial power is what is desired 

by the sponsor, and the derivation of this power is the next topic of discussion. 
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6.2 Radial Axial Power Maps for Contact Lens Wavefronts 

In the realm of contact lenses, the sag of the wavefront produced is small over the 

diameter of the lens being examined. A more accurate construction for axial power in the 

region of wavefronts produced by contact lenses is shown in Fig. 6.2. 

FIGURE 6.2 - Determination of axial power for contact lens wavefronts. 

Figure 6.2 represents a meridian of a contact lens wavefront. While the derived quantity 

for radial axial power is not limited to surfaces of revolution, the derivation of axial 

power is carried out in a plane. Since axial power is a based on slope, the goal is to 

express the distance R as it relates to the slope of the surface. Since this is the treatment 

of wavefronts, and not refracting surfaces, there is no index of refraction dependence for 

the power. The quantity HR is the desired power. 

The starting point for deriving radial axial power for contact lens wavefronts is the 

triangle whose sides are y, z, and R, giving: 

yP' + -R^. Equation 6.2 

Differentiation of Eq. 6.2 leads to the following: 
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— = —. Equation 6.3 
z dy 

The angle 9 is related to y, z, and R by 

sin0 = —, 
D 

Equation 6.4 
tan0 = —. 

z 

In the region of small angles, sin 6 and tan 9 are equal, which combined with Eq. 6.3 and 

Eq. 6.4 leads to 

y  _  y  _ d z  

R z dy^ 
Equation 6.5 

\ _ \ dz 

R y dy 

Equation 6.5 is the basic relationship between the slope of the surface and the reported 

axial power used in the following power maps for wavefronts produced by contact lenses. 

When applied to the cornea, where the small angle approximation no longer applies, axial 

power is related to (Schwiegerling, 2000) 

_ J— dz! dy Equation 6.6 
^ y ^\ + {dz/dy)^ 

In the Umit of small angles, the quantity yz is less than 1, which says {dzldyf is much 

less than 1. This allows the denominator of Eq. 6.6 to be expressed simply as >>, which 

gives Eq. 6.5. One difference between the above two equations for axial power is the 

surface that produces constant power. For the small-angle-approximation form used with 

contact lenses, a paraboloid gives constant power as this surface has a linear first 
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derivative in the radial direction. For the equations used when analyzing corneas, a 

spherical surface gives constant power. 

To apply Eq. 6.5 to a wavefront in polar coordinates of the form W{r,0), the equation 

would be 

The question now is how best to perform the radial derivative. There are a couple of 

issues in carrying out Eq. 6.8 on real data. The first issue is that real data is noisy. The 

derivative of noisy data is noisier than the original data, and is often too fluctuating to be 

useful. The second problem is that the data exists on a regular grid. While the array 

containing the wavefi-ont could be rotated in IDL, this leads to interpolation errors and 

jeopardizes the validity of the results. 

The solution to the first issue is simply to use the Zemike surface already formed for the 

wavefront. The Zemike surface is free of high-fi-equency spatial noise, and therefore the 

derivatives produced by the surface are also free of noise. In the case of bifocals, the 

modal-zonal polynomial fit is used in lieu of Zemikes. The answer to the second issue is 

to once again perform a least-squares polynomial fit over a small grouping of pixels, hi 

the past, this technique has been used to determine the necessary angular perturbation in 

1 l d f V ( r , 0 )  

R r dr 
Equation 6.7 

Along a radius, the dependence on ^is fixed, leaving 

1 _ 1 d W { r )  

R r dr 
Equation 6.8 
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converting rays from the reference wavefront to the test wavefront and in finding annular 

zones in bifocal lenses. Here the technique is used to provide coefficients for an analytic 

radial derivative. 

For a given pixel, the polynomial P{x,y) is fit over the pixel and its neighbors to form an 

estimate of W(x^). The fit is done in Cartesian coordinates using a least-squares 

technique. 

W (x,3;) =  P [ x , y ) -  A  +  B x  +  C y  +  D x ^  +  E x y  +  F y ^  Equation 6.9 

If a pixel is missing, or has been deemed a bad pixel by other criteria, then the pixel is not 

used in the fit. If too many pixels are missing from the neighborhood surrounding the 

central pixel, then the fit is not performed and no power is reported for the central pixel. 

Consequently, pixels at the wavefront's edge are usually missing from the resulting 

power map. The fit is done over x and y because this is the space over which the data 

exists. By using a second-order polynomial, the assumption is that the wavefront over 

such a small grouping of pixels is not more complex than a conic (Leithold, 1990). 

The next step is a coordinate transformation. The transformation takes the fit from P(x,y) 

into Pir,t) where the coordinates (r,t) are Cartesian coordinates that have been rotated an 

angle 0 so that the r-axis is aligned with the radius of the wavefront. This simplifies 

computing the radial derivative. The translation is nothing more than the standard 

transformation of coordinates for pure rotation (Spiegel, 1999). For a rotation of angle 0 

between the coordinates (jc,>') and {r,f), the formulas are 
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X = rcosQ -tsinO, 

y = rsinO + tcosd. 
Equation 6.10 

Performing the transformation gives 

P{r,t) = A 

+B (^r cos9 +1 sinO) 

+C[rsin6+ t cos 9) 

+D{r^ cos^ 9 -rt sin29 +sin^ 9^ 

+E( c o s 9?>m9+ rtcos29-t^ cos9s,m9^ 

+ F [ r ^  s m ^  9 +  r t s m 2 9 +  f  c o s ^  9 ^ .  

Equation 6.11 

Along the r-axis t equals 0, and so the analytic radial derivative simplifies to 

dP{r,t) 
= Bcos9 + Csm9 

+2 (d cos^ 9 + E cos 9&m9 + F sin^ 9^r. 

dr Equation 6.12 

Dividing by r leads to the final form for computing the power HR from the local fit to the 

wavefront Pir,i): 

The above expression gives the radial derivative of the wavefiront from a polynomial fit 

to the wavefront over Cartesian coordinates. One of the advantages to this algorithm is 

that the fit is done in the native coordinates, and an analytic expression is used to 

compute the radial derivative from the Cartesian coefficients. An important note is that 

the fit in Cartesian coordinates must be done in global, and not local, coordinates. That is 

1 _ 1 dP{r,t) 

R r dr 
1=0 

= 2{D COS^ 9+ E COS 9s\n9 + F sin^ 9j Equation 6.13 

5cos0 + Csin^ 
+ 

r 
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to say, the values used forx and must be the global values for x and>' describing the 

point about which the fit is being performed. Care must also be taken to ensure that the 

fit is done with jr, y, and P all in the same units. Also, the coefficients used have different 

units associated with them, as can be seen in Eq. 6.9. P(x,y} has units of W(x,y), which is 

the wavefront sag, in units of length, or m. Consequently, since x and >> are lengths, the 

units on B and C are unity while the units on D, E, and F are m'^ Note that these units 

agree with Eq. 6.13. 

This algorithm is but one of many possibiUties for computing the desired quantity \/R. 

All of the effort going into the polynomial fit and coordinate transformation is done to 

provide the best estimate possible for the radial derivative. The polynomial fit is not 

inherently necessary to computing radial axial power, but is simply the method chosen to 

provide the needed radial derivative. 

This method of computing radial axial power is similar to what is presented by Klein and 

Mandell ("Axial and Instantaneous...", 1995). Both algorithms start with an analytic 

expression for a general surface and use the analytic expression to compute the 

derivative. Klein and Mandell then determine the location where the normal to the 

surface at the point in question intersects the arbitrarily-placed vertex normal. Here, 

thanks to the small-angle approximation, the determined radial derivative leads directly to 

the desired power. 
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6.3 Representative Power Maps 

The following is a treatment on the radial axial power maps produced by the different 

types of lenses analyzed in prior chapters. Each class of lenses produces a distinctive 

power map. As this is an additional output to the testing, new features of these lenses 

appear that are hard, if not impossible, to ascertain from the wavefronts. 

6.3.1 Output from Synthetic Data 

To start, the algorithm for radial axial power is verified against synthetic data. The term 

'synthetic data' refers to data representing a wavefront that is made from the general sag 

equation, as shown in Eq. 6.14 (Focus Software, 2000; Shannon, 1997). 

Verification of the algorithm for radial axial power is done by forming a parabolic 

wavefront using the above sag equation {kx= ky = Rx = Ry = R). For a value of/? = 

1000 mm, the resulting power should be 1.000 D. Figure 6.3 shows the power map for 

such a wavefront. The diameter of the wavefront corresponds to a 5 mm test aperture. 

z = x' lR^ +  y^lR^ 
Equation 6.14 
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FIGURE 6.3 - Power map for a S3aitlietic parabolic wavefront (R = 1000 mm). 

Indeed, the reported power is a constant 1.000 D. The reported RMS for the map is 

0.000000 D. Perhaps the only unexpected feature of this map is the missing data point at 

the center. This is common for axial power maps, as the second term (slope/radius) in 

Eq. 6.13 approaches the unstable condition of 0/0 near the axis. This is handled in the 

software by eliminating all DDL values of NAN or INF (two possible outputs for the 

undefined ratio 0/0). Here the error is confined to a single pixel. For real wavefi-onts, 

this error is but one of two factors that cause pixels near the center to give erroneous 

results; more on this to come. 

The next wavefi"ont is a synthetic spherical wavefi-ont. Keeping R at 1000 mm gives the 

map shown in Fig. 6.4. 
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FIGURE 6.4 - Power map for a synthetic spherical wavefront (R = 1000 mm). 

The spherical wavefront is nearly constant, but does show an increase in power in the 

diagonal directions. The colorbar resolutions for this map and the power map for the 

parabolic wavefi"ont are the same. There are a couple of reasons for the difference 

between the two maps. First, a spherical wavefront is not supposed to give a constant; 

this is the consequence of the small angle approximation used to generate Eq. 6.5. Had 

Eq. 6.6 been used, the spherical wavefront would give a constant radial axial power. The 

reason this spherical wavefi-ont is so much like the parabolic is that the sag of the 

wavefront is much smaller than the diameter of the wavefront. Figure 6.5 shows the map 

for a 200 D (i? = 5 mm) spherical wavefront over the same 5 mm test aperture. 
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FIGURE 6.5 - Power map for a 200 D synthetic spherical wavefront (R = 5 mm). Note 
that the sage of this wavefront is outside the area of small angles, and thus the reported 

power for such a wavefront has no meaning. 

Now the deviation is quite noticeable. This is of little concern, however, for a wavefront 

with as much sag as this is clearly outside the range of small angles over which the radial 

axial power was defined. The output for such a wavefront has no physical meaning. 

The other point to make in comparing the parabolic and spherical maps is the parabolic 

wavefront can be fit exactly using a second-order polynomial. This is not true for a 

spherical wavefront, which would take a polynomial of infinite order to describe exactly. 
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6.3.2 Output from Spherical Lenses 

Moving on to real measured and modeled data, the power map for the Zemike fit to the 

wavefront produced by the calibration lens appears in Fig. 6.6 (see Fig. 4.11 for the 

associated wavefront). 

FIGURE 6.6 - Power map for measured wavefi-ont {Wj.) for calibration lens. 

Now the full effect of the instability near the vertex for axial power is seen. The 

instability is greater than the central pixel because with real data there will be an offset of 

some fraction of a pixel between the vertex of the wavefi-ont and the global origin used 

for the polynomial fit. This offset gives rise to a linear term, as was discussed in Chpt. 4. 

Consequently, the error near the vertex looks like tilt. The extent of the instability 

depends on the size of this offset. Also, the extent depends on the size of the 
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neighborhood of pixels used in performing the polynomial fit for the radial derivative. 

For this particular map, the PV is 2.701 D. Clearly this is artificially high due to the 

central pixels. Eliminating the central 2% of the map increases the colorbar resolution, 

giving a more informative map. The value of 2% is an arbitrary, but reasonable, choice. 

rjhJPTEP 

FIGURE 6.7 - Same map as Fig. 6.6, but with central 2% eliminated. 

With the central 2% removed, more reasonable numbers can be derived fi-om the power 

map. The average power over the map is 6.525 D. This is within 0.01 D of the power 

derived from the Zemike fit (6.515 D), as reported in Table 4.2. Since the two powers 

are fundamentally different, the two values are not expected to be in agreement. 

However, the fact that these two numbers are "in the same ballpark" does provide some 

validity to the radial axial power measurement as an accurate descriptor of the wavefront. 
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Given that the measured and modeled wavefronts have been shown to be in good 

agreement, their power maps should be similar as well. The power map for the modeled 

wavefront is in Fig. 6.8. Again the central 2% has been eliminated. 

FIGURE 6.8 - Power map for modeled wavefront (Wj.^) for calibration lens. 

The average power for this map is 6.569 D. The difference between the two average 

powers (measured minus modeled) is -0.044 D. The two maps can be subtracted directly, 

given a map of the deviation of the measured power from the modeled power. This is 

perhaps a better map to use to judge the quality of the output, in that any constant bias in 

the reported power is removed on a pixel-by-pixel basis. 
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FIGURE 6.9 - Difference between measured and modeled power maps. 

The average power for this map is -0.044 D, which matches the difference in average 

powers between the measured and modeled maps. 

Before moving on to contact lenses, a point to reemphasize is that these maps are made 

from the Zemike fits to the wavefronts and not the wavefronts themselves. Just as the 

Zemike wavefronts allow for a better view of the shape of the wavefront, using the 

Zemike surface in the radial power calculations enables small changes in power to be 

seen. The determination of the radial derivative is not made with noisy data, which 

wreaks havoc with derivatives and would render the power maps useless. Furthermore, 

computing radial axial power over smooth data permits the use of the smallest grouping 
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of pixels possible (3-by-3) for the polynomial fit. This minimizes the extent of the 

instability in the central portion of the map. 

For the -10 D contact lens, the power maps produced may not be what is expected, given 

that this is still a spherical lens. Figure 6.10 shows the power map associated with the 

measured wavefront. Once again, the central 2% is removed fi-om the map. 

FIGURE 6.10 - Power map for the measured wavefront (PTj.) for a -10 D contact lens. 

The explanation for the map is that, unlike the plano-convex calibration lens, this lens has 

a significant amount of spherical aberration. The average power of this map is 

-10.503 D, owing to the fact that the spherical aberration is radially increasing the 

curvature of the wavefront. The difference map between measured and modeled powers 
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is perhaps more useful for this lens than for the calibration lens in that the effects of 

spherical aberration are eliminated. The map in Fig. 6.11 has been increased in 

resolution; pixels lying outside the range of the colorbar appear black. 

DIOPTER'-

DIOF'TER 

FIGURE 6.11 - Difference power map for a -10 D contact lens. 

The average power of the full-resolution difference map is 0.024 D. This fact is 

supported by the dominance of green in the above map. Note that increase in resolution 

only eliminated pixels near the center, a result of the aforementioned instability near the 

center. 
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6.3.3 Output from Toric Lenses 

Following the order in which the classes of contact lenses were initially presented, the 

next class is toric lenses. With an intuitive feel for radial axial power, one might expect 

the power map for a toric lens to look like Fig. 6.12. 

JIOPTERS 

DIOPTERS 

FIGURE 6.12 - Power map for a synthetic toric wavefront. 

The map above was produced by using the general sag equation with different radii in 

each principal meridian. However, this is not what actual toric contact lenses produce. 

Once again, spherical aberration adds a significant conic to the wavefront. The maps 

produced by toric contact lenses look more like the map in Fig. 6.13, where conic 

constants have been added to the synthetic wavefront used in Fig. 6.12. 



FIGURE 6.13 - Power map for a synthetic toric wavefront with 
different conic constants in each principal meridian. 

The toric lens analyzed in Chpt. 5 produces the power map seen in Fig. 6.14. Here, the 

central 5% has been eliminated to better show the toric nature of the wavefront. 



207 

FIGURE 6.14 - Power map for the measured wavefront from a toric contact lens. 

Note that the orientation of the map agrees with the interferogram of the lens (see Fig. 

5.4). The power map for the modeled wavefront at the same resolution is shown in Fig. 

6.15. 
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FIGURE 6.15 - Power map for the modeled wavefront. 

The noticeable difference between the two power maps is in agreement with powers 

derived from the Zemike coefficients reported in Chpt. 5. For the measured wavefront, 

the prescription from the Zemikes is -5.373 / -1.233 x 177.8°. The modeled wavefront's 

prescription is -5.720 / -1.190 x 180°. From a qualitative point of view, these 

prescriptions are in agreement with the preceding power maps. 

6.3.4 Output from Bifocal Lenses 

Unlike torics, bifocal lenses do produce what one would think they should produce: a 

map with concentric rings dominated by the two colors corresponding to the near and 

distance powers. The power map for the bifocal lens measured in Chpt. 5 is in Fig. 6.16. 
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FIGURE 6.16 - Power map for the measured wavefront from a bifocal contact lens. 

The central 2% of the map has been removed again, allowing for greater resolution in the 

colorbar. For bifocals, the power map for each zone is made individually, and then the 

individual maps are combined. The black rings bordering each zone are missing pixels 

due to the algorithm not producing a power for pixels at the data boundaries. These 

pixels also correspond to the unknown blend between zones or the junctions between the 

different modal-zonal fits. The darker color for the fourth ring compared to the second 

ring is most Ukely caused by an increased amount of spherical aberration in the outer 

ring. 
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As an afterthought, what do the power maps look like for the noisy, raw wavefronts? 

Fig. 6.17 shows the power map for the raw measured wavefront (see Fig. 5.9) for the 

analyzed bifocal. 

FIGURE 6.17 - Power map for the raw wavefront from a bifocal contact lens. 

The fact that the output looks anything like the map shown in Fig. 6.16 is a welcome 

surprise. The success of this map should be credited to the method used to compute the 

radial derivative. This map has a number of interesting features to point out. First, the 

number of missing pixels is not so high as to obscure the power of each zone. Missing 

pixels are concentrated near the center and around areas where debris in the measurement 

path was located, but not at the junctions between zones. The most noticeable piece of 

debris is the long snake-like piece in the upper-right quadrant of the map. A close look at 

Fig. 5.8 shows the debris in the lower-left quadrant (remember that there is a 180° 
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rotation between the conjugate planes of the interferogram and measured wavefront). 

The pixels between zones are predominately green, indicating that the measured power in 

the boundaries is between the near and distant powers of the zones. This output is a 

strong indicator that the wavefront is continuous in slope and curvature across the zone 

boundaries. 

6.3.5 Output from Multifocal Lenses 

The power maps for the two measured multifocal lenses are surprisingly different given 

the similarity between the two measured wavefronts. Figure 6.18 contains the power 

map for the wavefront in Fig. 5.16. Once again, the central 2% of the map has been 

removed. 
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FIGURE 6.18 - Power map for a multifocal contact 
lens from the wavefront shown in Fig. 5.16. 

The unexpected aspect of this power map is the oscillation in power seen in the periphery 

of the lens. There is no apparent indication of this in the wavefront shown in Fig. 5.16. 

The other multifocal lens, shown in Fig. 5.17, produces the map seen in Fig. 6.19. 



213 

FIGURE 6.19 - Power map for a multifocal contact lens from 
the wavefront shown in Fig. 5.17. 

For this multifocal lens, of a different design, the central power spans over a much larger 

area. Also, the oscillations in power seen in the prior lens are not seen in this lens. More 

needs to be known about the designs for these lenses before further conclusions can be 

reached. 
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7 TRADEOFF BETWEEN DYNAMIC RANGE AND SENSITIVITY 

The last section of Chpt. 1 introduced the pros and cons of immersion testing. Basically, 

testing immersed optics should provide an increase in dynamic range and a decrease in 

sensitivity. Theoretically, the amount of the increase or decrease is dictated by the 

solution factor (SF), which is the ratio of the difference in indices between the test optic 

and its surrounding medium. 

The goal here is to lay the foundation for a quantitative understanding of the tradeoff 

between dynamic range and sensitivity. How should the dynamic range and sensitivity 

be defined? Is there a direct, one-to-one correlation between the gain in dynamic range 

and loss in sensitivity? How does the Nyquist limit factor in with immersion testing? 

What are the practical concerns with such a testing scheme? These are the questions that 

need exploring. 

7.1 Dynamic Range Ratio (DRR) 

The idea that dynamic range and sensitivity are Unked is intuitively obvious. For 

example, consider the task of measuring the distance between two points. If the two 

points are close together, say 100 nm apart, then the abiUty to measure the distance to 

something like 1 nm seems reasonable. But if the two points are far apart, say 100 km, 

making the measurement to same resolution of 1 nm now seems quite impossible. This 
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same situation holds in interferometry. The more wavefront sag, or OPD, that the 

interferometer is capable of measuring, the harder it is for the interferometer to provide a 

high degree of sensitivity. 

The comparison between the dynamic range and sensitivity can be quantified by taking 

the ratio between the dynamic range and sensitivity, forming a dimensionless quantity 

that is defined here as the dynamic range ratio (DRR). The DRR is much like the signal-

to-noise ratio (SNR) found throughout science and engineering. The common definition 

for SNR is the mean value for a parameter or signal divided by the standard deviation 

formed from measuring the parameter or signal several times (Frieden, 1991). With the 

DRR, the ratio is between the maximum possible departure for a wavefi*ont divided by 

the minimum resolvable feature of the wavefront. The next step is defining these 

quantities. 

Determining the maximum departure leads back to the discussions of Chpt. 2, where it 

was explained that the pixel fi-equency should be greater than twice the maximum fiinge 

frequency, a direct result of satisfying the Nyquist condition. In the limiting case of 

twice the maximum fringe fi*equency equaling the pixel fi-equency, Eq. 2.19 and Eq. 2.21 

(pertaining to spherical wavefronts) can be equated, giving: 

@ Detector .^ixel' 

1 Equation 7.1 

mXR PS 
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In the above equation, r is the radius of the test aperture, m is the magnification, X is the 

wavelength of the test, R is the radius of curvature for the wavefi-ont, and PS is the pixel 

spacing of the detector. Since the parameters of m, A and PS are independent of the test 

part, the above equation can be rearranged to give an Rlr ratio for the interferometer. For 

CLOVER, this value is 

- = ̂  = ^ = 25.2. Equation 7.2 
r mA 2.044-0.5435-10"' 

This ratio says that this interferometer, over a test aperture with radius r,  can measure 

wavefronts with a radius of curvature (R) greater than 25.2 times the radius of the test 

aperture. This ratio gives the upper bound on dynamic range, or the lower bound for the 

testable radius of curvature for a wavefront. Note that this can be used in conjunction 

with the parabolic approximation for OPD, giving the maximum testable OPD for a given 

test aperture radius: 

OPD -
2R' Equation 7.3 

50.4 OPDj^^x ~ f-

This relationship can be used to find the largest possible test aperture given a specific 

OPD, or the largest OPD that can be tested over a specific aperture. Remember that this 

discussion is assuming spherical wavefronts, but the general concepts can be applied to 

aspheric wavefi-onts as well. 

The second half of the DRR is the minimum resolvable change in wavefront. This tells 

us how well a specific feature of the wavefront can be measured. There are several 
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different definitions that could be used here. To make use of data already collected, and 

in following with the overall measurement scheme employed, the parameter chosen is the 

radius of curvature as derived from the Zemike polynomial fit to the wavefront. The 

standard deviation of the radius is then converted into a standard deviation for OPD using 

the parabolic approximation. By using the Zemike fit, the derived sensitivity is for the 

wavefront as a whole; the sensitivity depends equally on all regions of the wavefront. 

To study the effects of immersion on the DRR, the data collected for the calibration lens, 

both in air and immersed in saline, can be used. The data presented was collected over 

ten trials with a test aperture radius (r) of 2.5 mm. For the measurements made with the 

test optic immersed, the reported value for the radius of curvature has been scaled using 

the solution factor (2.8972) so that a direct comparison can be made. Table 7.1 lists the 

pertinent data from the repeatability study. 

Testing Condition R (mnn) a (mm) 

Lens in Air 154.264 0.0980 

Lens in Cuvette 153.109 0.2236 

TABLE 7.1 - Relevant data from the repeatability study on CLOVER 
using the calibration lens. Data was collected over ten trials. 

Right away, the data shows the expected result that sensitivity decreases with immersion. 

However, the maximum dynamic range is greater for the immersed optic. To determine 

the impact on the DRR, first the standard deviations for R are converted into deviations 

for OPD. This is done by differentiating the parabolic approximation, giving: 
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r' 
JOPD = —-  SR.  Equation 7.4 

2,R 

The other necessary formula is the second part of Eq. 7.3, relating the maximum OPD to 

the test aperture. For immersion testing, this equation becomes 

50.4 OPD, ^MAX _ r. Equation 7.5 
SF 

As SF grows, Eq. 7.5 says that the maximum testable OPD also grows for a constant r.  

Thus, the dynamic range for the measurement has been increased. This is really just the 

necessary scaling to compensate for the test optic's reduction in power via immersion. 

Fundamentally, nothing has changed with the interferometer when the claim is made that 

the dynamic range has been increased. The change is confined to the test optic. Finally, 

Eq. 7.6 states the DRR using the above notation. 

DRR = . Equation 7.6 
SO?D 

Applying the above analysis to the data in Table 7.1 gives the results shown in Table 7.2. 

Testing Condition OPDmax W ^OPD (A) DRR 
Lens in Air 91.266 0.02368 3854 

Lens in Cuvette 264.416 0.05484 4822 

TABLE 7.2 - Derived DRR statistics for calibration lens. 
The wavelength for the interferometer is 543.5 nm. 

The DRR increased by 25% for the immersion test. This was foreshadowed by the given 

standard deviations on radius of curvature. The ratio of the two standard deviations is 

2.28, which is less than the solution factor (2.8972) by about 25%. For this experiment. 
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the hypothesized one-to-one increase in dynamic range and decrease in sensitivity 

underestimates the actual system performance by 25%. 

7.2 Testing Over a Range of Solution Factors 

The goal of the next experiment is to see what affect changing the solution factor has on 

the output from a test optic. Wanting to branch out in terms of the types of optics tested, 

the next experiment is done on a cylindrical lens. Cylinder lenses are notoriously 

difficult to test. This stems from the difficulty in producing a high quahty cylindrical 

reference beam. Most shop interferometers have the capability of producing only 

different spherical reference beams given common reference optics. Testing in an 

absolute, or non-null, configuration eliminates the problem of matching the test and 

reference beams. In addition, the immersion technique, with its ability to provide a 

specific increase in the allowable wavefront sag, is well suited for testing cylindrical 

lenses. The selected cyhndrical lens is an f/2 lens with a diameter of 12.5 mm. This 

leads to nominal value for the wavefront's radius of curvature of 25 mm. Going back to 

the notion of the R/r ratio (25.2 for CLOVER), with a wavefront radius of about 25 mm, 

the maximum test aperture is about 1 mm when the lens is tested in air. When immersed, 

the wavefront's radius increases by the solution factor, and therefore so does the 

maximum possible test aperture. For this experiment, the solution factor is the variable 

between trials. Every other parameter is held constant, including the test aperture. The 

solution factor is determined by adjusting the measured Abbe refractometer values to the 

interferometer's wavelength. 



220 

The natural starting point for immersion testing is water. Water has the lowest index of 

all common liquids, and depending on glass type, can provide a solution factor between 2 

and 6. For the lens in question, immersion provides a solution factor of 2.8079. The 

selected analysis aperture is 2.8 mm in diameter, which corresponds to half the maximum 

test aperture for the f/2 lens. This is done to ensure fringes in the aperture have high 

modulation. The testing of fringes out to the Nyquist frequency is taken up in a later 

section. 

The full lens interferogram is shown in Fig. 7.1. The diameter of the lens is 12.5 mm and 

the field of view for the interferogram is just over 14 mm on a side. Immersion in water 

does not provide enough of a reduction in the power of the lens to keep the entire 

transmitted wavefront small enough to pass through the interferometer's optics. The dark 

regions inside the lens boundary in Fig. 7.1 are regions that have been vignetted by either 

the second beamsplitter or the imaging lens. The interferogram is not at full resolution, 

so the fiinges that appear aliased are due to the sampling of the display or printer. 

However, the loss of modulation near the vignetted regions is real; the fringe frequency is 

greater than the Nyquist frequency. 



FIGURE 7.1 - Interferogram for f/2 cylindrical lens immersed 
in water. The solution factor is 2.8079. 

Over the chosen analysis aperture, vignetting and low modulation are not an issue. With 

solution factor as the variable, the concern is how do the outputs, such as peak-to-valley 

(PV) and wavefront radius (R), change with solution factor? Figure 7.2 shows the 

interferogram over the chosen analysis aperture and Fig. 7.3 shows the Zemike fit to the 

measured wavefront (Wj.). 



FIGURE 12 - Interferogram over a 2.8 mm test aperture (SF = 2.8079). 
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FIGURE 7.3 - Zemike fit to measured wavefront (Wj-) 
for f/2 cylindrical lens (SF = 2.8079). 
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An interesting surface is the measured wavefront minus the best-fit cyhnder. This is 

accompUshed by removing the first two Zemike terms associated with astigmatism in 

addition to the terms for tilt and focus. The resulting surface is in Fig. 7.4. 

FIGURE 7.4 -Measured wavefront minus best-fit cylinder (SF = 2.8079). 

The oscillation in the direction of the cylindrical power is to be expected. This is the 

remaining spherical aberration. What is unusual is the presence of humps along the 

piano-meridian. This is an unusual feature, one that has not been seen with any other test 

optic. The likely answer is that this is an error in the lens, perhaps due to the 

manufacturing process. 

To proceed with the experiment on testing over a range of solution factors, the lens is 

now immersed in index-matching fluid with an index of 1.4018 at the interferometer's 
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wavelength, giving a solution factor of 4.4728. The lens is evaluated over the same 2.8 

mm test aperture. Figure 7.5 shows the interferogram over the test aperture; note that 

fewer fringes are present here than in Fig. 7.2. 

FIGURE 7.5 - hiterferogram over a 2.8 mm test aperture (SF = 4.4728). 

As expected, the bumps in the measured wavefront minus the best-fit cylinder have been 

reduced in amphtude. With contours at A,/1000, the three bumps are still distinguishable, 

although the spacing does not seem to be as regular. 
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FIGURE 7.6 -Measured wavefront minus best-fit cylinder (SF == 4.4728). 

The third fluid has an index at the interferometer's wavelength of 1.4614. This gives a 

solution factor of 9.2246, or a difference in index between the fluid and lens of only 

0.0561. This is enough of an index match to collect the full beam from the test optic, as 

can be seen in the full lens interferogram shown in Fig. 7.7. 
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FIGURE 7.7 - Full lens interferogram for ^2 cylindrical lens (SF = 9.2246). 

With so httle power, the surface formed by subtracting the best-fit cylinder from the 

measured wavefront no longer resembles the surface seen in Fig 7.4. The three bumps 

seen in the prior surfaces are gone; the bumps that are present are no longer orientated 

with the piano-meridian. 
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FIGURE 7.8 -Measured wavefront minus best-fit cylinder (SF = 9.2246). 

Clearly the index-matching fluid is removing enough power to significantly alter the 

transmitted wavefi-ont and the resulting best-fit cylinder. Increasing the solution factor 

has decreased the sensitivity to a point where the resolution needed to see the bumps has 

been lost. 

Now that data has been collected with three different solution factors, comparisons can be 

made in the derived outputs. Table 7.3 shows the pertinent outputs for the three trials. 

The output for the wavefront's radius of curvature is derived fi"om the ophthalmic 

prescription for the wavefront, as the analysis code is geared towards producing output 

measured in diopters. The prescriptions are reported in negative cylinder form and then 

converted to spherical and cylindrical powers (Schwiegerling, 2000). Finally, the powers 

are converted into air-equivalent (SF = 1) radii. Assuming a perfect lens and using 
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Gaussian formulas gives a radius of 25.043 mm for the wavefront at the interferometer's 

wavelength. The reported tolerance on focal length is ±3%. 

Solution Factor PV(;i) Spherical Radius (mm) Cylindrical Radius (mm) 

2.8079 22.835 -12821 27.246 

4.4728 15.042 -200000 25.894 

9.2246 7.321 25000 24.959 

TABLE 7.3 - Results for an C2 cylinder over a range of solution factors. The 
spherical radius is shown only as a means of verifying the validity of 

the conversion between ophthalmic power and radius. 

One interesting interpretation of the above results is to see how the ratio of given solution 

factors compares to the PV ratio for any two trials. These comparisons are shown in 

Table 7.4. 

Solution Factor Pair SF Ratio PV Ratio 

2.8079 / 4.4728 1.593 1.518 

4.4728 / 9.2246 2.062 2.055 

2.8079 / 9.2246 3.285 3.119 

TABLE 7.4 - Results for an f/2 cylinder over a range of solution factors. 

Overall, the agreement between the SF ratio and the PV ratio for the three trials is about 

4%. The second pair of indices, representing the two trials with the lowest measured sag 

(lowest PV), has the best agreement between the two ratios. This could be due to the 

smaller absolute difference in the amount of wavefront sag between the two trials. 
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Another interesting trend in the data is the decrease in the cyUndrical radius with an 

increase in solution factor. The reported radius is the best-fit sphere in the meridian of 

the measured cylindrical power. To first-order, this radius changes linearly with the 

solution factor. When third-order aberrations are considered, the cubic dependence of 

spherical aberration on power ruins the linear relationship between the solution factor and 

best-fit sphere (Welford, 1986). Of course, the other factor is that the hnear relationship 

between power and solution factor assumes a thin lens. More experimenting and 

modeling is needed to determine to what extent these effects are in play. 

7.3 Testing to the Nyquist Limit 

The final experiment is to see how close to the Nyquist limit the test lens can be 

accurately tested. The lens is immersed in water to provide more pixels across the 

testable radius. Going back to Eq. 7.2, the relationship between wavefront radius and the 

radius of the test aperture under the current testing conditions is 

D 
— = 25.2. Equation 7.7 
r 

Including the solution factor for the lens immersed in water and assuming the ideal value 

for R of 25.043 mm gives a maximum test aperture of: 

^ = 25.2, 

^ Equation 7.8 
25.043-2.8079 ^ r = = 2.790 mm. 

25.2 
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This is how the test aperture of 2.8 mm in diameter used in the last experiment was 

derived. Now the goal is to test out towards 100% of the maximum test aperture. Table 

7.5 shows the results of testing from 50% to 95% of the Nyquist radius of 2.790 mm. 

Nyquist Radius (%) P V W  Splierical Radius (mm) Cylindrical Radius (mm) 

50 25.465 -31250 24.686 

60 37.249 -25000 24.228 

70 51.975 -200000 24.119 

80 68.590 -333333 24.030 

90 88.239 -166667 23.838 

95 101.889 2155 20.675 

TABLE 7.5 - Results for an f/2 cylinder over an increasing test aperture. 

First, the data at 95% is clearly in error, as verified by the erroneously small spherical 

radius. This could be due to a number of factors, including the loss of data due to poor 

modulation, errors in the phase unwrapping, or the MTF associated with the detector. 

The other data points are self-consistent. The decrease in radius, or an increase in power, 

is probably due to the increased spherical aberration included in the wavefront as the 

radius is increased. This puts this experiment at odds with the last experiment, where an 

increase in the solution factor, giving a decrease in the sag of the wavefront measured, 

also produced a decrease in the cylindrical radius. Again, more experimentation is 

needed, especially testing over a range of solution factors, which seems to provide the 

most vinexpected results. 
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7.4 Discussion on Experiments Performed 

The question now is what to make of the various experiments and their results. Certainly 

more needs to be done to provide proof of the trends seen, but the limited data collected 

offers several insights. First, the testing of the calibration lens in air and immersed in 

saline solution validates the notion that the solution factor can be used as a linear quantity 

for lenses with relatively small amounts of power. In Chpt. 3 the statement was made 

that the thin lens approximation was good to imder a 1% error for lenses less than 10 D in 

power. The calibration lens, at 6.57 D, showed a difference of 0.75% between the power 

measured in-air and in the cuvette. The standard deviation was proportionally less 

compared to the maximum possible OPD when the lens was immersed, giving rise to the 

higher DRR. 

Perhaps the high power of the f/2 cylinder lens (40 D) is the source of the trend exhibited 

over the range of solution factors. At the lower solution factors, the lens is still powerful 

enough that the assumption of the solution factor providing a linear change in power is 

not valid. Preliminary modeling of the lens over a range of solution factors shows a 

slight increase in the wavefront radius {R) as the solution factor is increased, which 

would be consistent with the idea of spherical aberration contributing to the difference in 

R for different solution factors or different test aperture sizes. This particular experiment 

needs more attention. 
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For the third experiment, the trend is a decrease in R with an increase in the test 

aperture's diameter. This is consistent with the notion of spherical aberration being the 

culprit of the difference in the measured power. Since the lens is positive, positive 

spherical aberration is added with a fourth-order dependence on the size of the test 

aperture. The increase in positive spherical aberration therefore gives a shorter best-fit 

sphere radius for the wavefi^ont. 

Combined, the experiments reveal some of the capabilities and limitations of the 

instrument and the technique of immersion. The first experiment shows the repeatability 

in the fit to the wavefi-ont's curvature is 0.02368 X, or X/A2, when tested in air. The 

repeatability decreases when the lens is immersed, as it should since the wavefront's 

curvature is reduced with immersion. The second and third experiments show that a 

solution factor of at least 9 can be used and the test optic can be measured out to 90% of 

the Nyquist limit. Combined, these numbers give a new R/r ratio of 

— = =3.11. Equation 7.9 
r 9-0.9 

This is a factor of eight improvement over the prior ratio, which assumes testing out to 

the full Nyquist limit. Nevertheless, the gain of immersion testing is significant. Another 

way to think about the R/r ratio is to consider R a focal length and r as half the diameter 

of the wavefi"ont. In this case the R/r ratio equals twice the /number. The benefit of this 

is that the necessary solution factor can be determined given the /-number. For example, 

the cylindrical lens tested is i/2. Twice this number is only f/4. In air, this lens cannot be 



tested out to its full aperture; the Rlr ratio is 25.2. The necessary solution factor is 25.2/4, 

or 6.3. This is why in the experiment over solution factors only the third index-matching 

fluid (SF = 9.2246) provided enough of an index-match to capture the entire wavefront. 

This illustrates the usefulness of the Rlr ratio in determining the testability of a given 

optic. There are, however, two points of caution. One is that the test optic's diameter 

and interferometer's magnification must be considered to be sure that the entire diameter 

can be imaged. The other main caution is that the simplicity of comparing the Rlr ratio to 

the /-number assumes spherical optics. The testing of aspheric optics requires the use of 

comparing waves/radius between the test optic's wavefront and the interferometer's 

detector. 

If the lens can be tested in air, are there still benefits to immersing the optic? Probably 

not, for there are some important assimiptions and concerns with immersion testing. 

First, the optic has to be capable of withstanding immersion, which could be an issue for 

some plastics. Second, a suitable cell or cuvette is necessary. This will become part of 

the overall test optic, and must be of high quality. The ideal cell is one that just 

surrounds the test optic, for quality index-matching fluids are quite expensive. In 

addition, passing through less fluid is better for homogeneity and optical path 

considerations. Third, the index of both the test optic and surrounding fluid must be 

known. An Abbe refractometer works well with liquids and piano-surfaces, but is not a 

good candidate for convex or concave surfaces. Finally, the assumption that the solution 

factor will provide a linear change in power must either be accepted or dealt with. An 
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exact solution can be obtained for a lens if one surface, the index, and thickness are all 

known. This may be too many assumptions or factors to measure to make immersion 

worthwhile. 

Perhaps the biggest conclusion, aside from the need for more experimentation and 

modeling, is that immersion testing is a viable method for increasing the capabilities of 

transmitted wavefront testing. With contact lenses, there is no choice; the lenses must be 

tested immersed in saline. For other optics, the ability to immerse may be the difference 

between getting results and not getting results. The difficulties of immersion testing may 

be a small price to pay for meaningful data that can be obtained no other way. 
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8 TRANSMITTED WAVEFRONT TESTING OF OTHER COMPLEX OPTICS 

In the previous chapters a variety of optics have been tested: immersed spherical, toric, 

bifocal, and multifocal contact lenses as well as in-air and immersed spherical and 

cylindrical glass lenses. Presented here are the results from testing two other complex 

types of optics: liquid crystal diffractive optics and microlenses made in solgel, a polymer 

with some similarities to the hydrogel materials used to manufacture contact lenses (Lee, 

2003). Both of these complex optics are under development by researchers at the 

University of Arizona. The testing of these lenses was done primarily to see if they could 

be tested using interferometry and what prehminary results could be obtained. Given the 

exploratory nature of these tests, the wavefronts shown were not calibrated using the full 

calibration process including reverse raytracing. Any data analysis done with these 

lenses was done only in Intelliwave. 

8.1 Diffractive Lenses 

Research is ongoing at the University of Arizona in developing the technology of 

forming diffractive lenses via liquid crystals. This is a multi-faceted project; research 

includes studying the materials used, the systems engineering of the lenses and associated 

elecfronics, and the optical performance of the lenses. Optical performance is evaluated 

in a number of ways, including diffraction efficiency calculations and image resolution 
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measurements. The CLOVER interferometer was suggested as a means of measuring the 

quality of the wavefront produced by such lenses. 

Initial testing involved a Uquid crystal lens with a nominal focal length of 1000 mm. The 

lens is formed by applying different voltages to annular zones of the liquid crystal, 

thereby forming Fresnel zones. Figure 8.1 shows the lens in the interferometer with the 

reference arm blocked, which gives a bright field image of the test optic. One image is 

with the lens off (no voltage appUed to crystal) and the other is with the lens on. The 

black strips seen at the top, bottom, and sides of the images are electrodes connected to 

the different annular zones. 

(a) (b) 

FIGURE 8.1 - Bright field images of a diffractive lens formed via 
liquid crystal. The lens is off in (a) and on in (b). 
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Figure 8.1 (a) shows that until the lens is turned on, the presence of the lens or the zones 

is nearly impossible to tell. With the reference beam included, the resulting 

interferograms are those shown in Fig. 8.2. 

(a) (b) 

FIGURE 8.2 - Interferograms for diffractive lens with (a) lens off and (b) lens on. 

A couple of important featiires with this lens can only be seen in a close-up view of the 

interferogram, which is shown in Fig. 8.3. 



238 

FIGURE 8.3 - Close-up of the interferogram in Fig. 8.2 (b). 

First, the fact that each fourth zone has the same grayscale intensity says that this lens is a 

four-step binary optic, in that each wavelength of sag is broken into four different phases 

(Fischer, 2000). The second feature of this lens is that there are gaps, or regions of zero 

modulation, between each phase zone. This feature confused the sophisticated 

unwrapping algorithms in Intelliwave, but a simple algorithm where bad pixels are 

ignored was able to unwrap the phase. However, the presence of these gaps leads to 

other xmwanted artifacts in the performance of the lens, including poor diffraction 

efficiency. 

A second lens, one without gaps between the phase steps, was built and tested. Figure 

8.4 shows the full interferogram and a close-up at the center, revealing the absence of 
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gaps. This new lens has a nominal focal length of 500 mm and employs a different 

electrode structure, as can be seen in Fig. 8.4. 

(a) (b) 

FIGURE 8.4 - Interferogram (a) and close-up (b) for 
a new diffractive lens without gaps. 

The reported imagery and overall performance of this lens was better than that for the 

lens with gaps. The unwrapped wavefront and the wavefront with tilt and focus removed 

are shown in Fig. 8.5. 
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(a) (b) 

FIGURE 8.5 - Unwrapped wavefront (a) and wavefront minus tilt 
and focus (b) for the diffractive lens. 

The OPD over 10 mm leads to a focal length of 508.6 mm for the lens. At the design 

wavelength, the OPD leads to a focal length of 502.6 mm for a difference of only 0.5% 

from the design focal length of 500 mm. 

As mentioned earlier, image resolution is an important metric for these lenses. Figure 8.6 

shows two images using a lens assembly that contains the diffractive lens and a refractive 

element. The image on the left is with the diffractive lens off. On the right is the image 

with the lens on. 
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(a) (b) 

FIGURE 8.6 - Images from compound diffractive-refractive imaging system; 
(a) diffractive lens off and (b) diffractive lens on. 

Perhaps the most interesting output for this lens is the MTF plot produced in Intelliwave 

and shown in Fig. 8.7. In theory, the MTF plot is made by considering the wavefiront 

minus tilt and focus as the pupil function for the test optic and computing the necessary 

autocorrelation (Goodman, 1996). 
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FIGURE 8.7 - MTF plot for the diffractive lens. 

The important aspect of the MTF plot is the spike at zero spatial frequency. This is an 

artifact of the lens being a diffractive optic (Buralli, 1992). Being a diffractive optic, the 

point-spread function (PSF) for a given order has a central peak, or core, from the order 

under examination and a much broader, lower intensity base due to the other orders, 

which appear greatly out-of-focus. The idea of the PSF having two components leads to 

the MTF having two components as well, with the out-of-focus orders contributing only 

on-axis. This gives rise to the spike seen in the MTF on-axis. Buralli and Morris show 

that the MTF curve in fact approaches the diffraction efficiency for the given order. For 

the plot above, the diffraction efficiency appears to be 0.88. This does not agree with the 

measured diffraction efficiency of 0.69 using conventional techniques. One possible 

explanation for the diffraction efficiency computed with the interferometer being higher 



is that the out-of-focus orders are vignetted by the second beamsplitter and imaging lens. 

Consequently, less out-of-focus light is present at the detector than expected, thereby 

increasing the diffraction efficiency. More needs to be known about Intelliwave's 

algorithm for computing MTF and the errors associated with the conventional technique 

for measuring diffraction efficiency to say which method is in error. However, the main 

conclusion is that this output shows that an interferometer can be used to measure 

diffraction efficiency. The versatility of interferometry is amazing. 

8.2 Solgel Lenses 

The development of miniature optics, optics whose diameters are on the order of a 

millimeter, is especially challenging to the developmental fields of fabrication and 

testing. There are a number of ways to manufacture such optics. The studied lenses are 

manufactured using photolithography techniques combined with materials that can be 

selectivity polymerized, such as solgel. The basic technique is to pattern the desired lens 

on a mask, using grayscale values to control sag (Lee, 2003). The solgel material is then 

exposed to the UV-illuminated mask, causing the exposed solgel to polymerize. Finally, 

the material is developed and baked, producing the desired lens. 

Once the challenge of fabricating the lens is overcome, the next challenge is testing the 

lens. Not only are the lenses small, but the fabrication process allows for aspheric lenses 

to be made with the same ease as spherical lenses. This is a situation that seems perfect 

for CLOVER and the possibility of immersion. 
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The first lenses examined were trial lenses that were not expected to be of high quality. 

The lenses have a low enough power that testing could be done in air. Figure 8.8 shows 

the interferogram and unwrapped wavefiront map for one of the trial lenses. The poor 

quality of the lens can be seen as irregularities in the interferogram and the unwrapped 

wavefront. 

(a) (b) 

FIGURE 8.8 - hiitial solgel lenses examined over a diameter of 
0.85 mm: (a) interferogram and (b) unwrapped wavefront. 

The second set of lenses examined are of better quality then the trial lenses. However, 

these lenses have a higher power and therefore need to be tested while immersed in 

index-matching fluid. Therefore the index of the solgel and the surrounding fluid need to 

be known. For the solgel, data extrapolated from the IR to the interferometer's 

wavelength gives an index of 1.5175. This is in agreement with data taken on an Abbe 

refractometer. The index of the surrounding fluid is 1.4614 at the interferometer's 



wavelength. The tolerance on these values is about 0.0002, and these values lead to a 

solution factor of 9.2245. Figure 8.9 shows the interferogram across the solgel sample, 

which contains three lenses. The sample appears dirty; this is actually residual material 

not properly cleaned from the lens. This is not due to the index-matching fluid, as can be 

noted by the clear nature of the lower-left comer of the interferogram. 

FIGURE 8.9 - Solgel sample with three high quality lenses. 
From left-to-right are lenses R, C, and L. 

The lenses were designed to a diameter of 1.3 mm, and that is what they measure. 

Clearly data can be taken over the full diameter; the lenses are showing only about 4.5 'k 

of power. However, the WYKO profilometer is only able to take data over the central 

0.5 mm before the slope of the lens becomes too steep for testing. Thus, the 

interferometry data presented below is only over the central 0.5 mm for each lens. Figure 

8.10 shows the unwrapped wavefront for the lenses. Note that each lens has a slightly 

different PV, and therefore a different colorbar resolution. 



246 

(a) (b) (c) 

FIGURE 8.10 - Unwrapped wavefronts for solgel lenses: (a) lens R, (b) lens C, 
and (c) lens L. The PV niunbers are 0.9870, 0.9439, and 0.8978 X. 

Since these lenses are plano-convex, the curvature of the wavefront can be used to 

compute the radius of curvature (R of C) for the convex surface, which is a derivable 

output from the WYKO data. This allows for a direct comparison between the two 

techniques. Table 8.1 lists the output from the two tests. The WYKO data was collected 

and analyzed by Jeremy Rogers. 

Lens R of C-CLOVER (mm) R of C-WYKO (mm) Difference (mm) 
R -3.794 -4.40 -0.606 
C -3.861 -4.47 -0.609 
L -3.881 -4.51 -0.629 

TABLE 8.1 - Comparison in reported radius of curvature between CLOVER 
and WYKO profilometer for solgel lenses. 

Clearly there is a systematic error between the two measurements. The constant 

difference and the agreement between the increase in radius of curvature and decrease in 

sag or PV are too strong for random errors. Could the culprit of the bias be the use of 

index-matching fluid to knock down the power of the lenses? To prove if this is the 
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error, the needed error in index to give the approximately 16% error in radius must be 

determined. The relationship between the radius of curvature for the wavefront and 

the radius for the convex surface of the lens (Rl) is 

— = . - . Equation 8.1 
SF K-1) 

SF is the solution factor and hl the index of the lens. This equation comes from the 

notion that the in-air radius for the wavefront is the reciprocal of the power of the lens. 

This assumes that the test plane is coincident with the rear principal plane of the lens. 

Substituting in the definition for SF simplifies the above equation: 

Rfv  ^  Rl 
K-1) 

Equation 8.2 

• • (^L ~^s)Rfv  ~  RL ' 

where ns is the index of the matching fluid. Renaming the difference in indices An and 

computing the differential gives the familiar result; 

SAn SR^ SRj^ . 
+ —^ ^ Equation 8.3 

An Rjy  

Attributing all of the error in Rl to An says that to change Ri by 16%, the difference in 

index must be off by 16%. The reported indices are hl of 1.5175 and ns of 1.4614, for a 

difference of 0.0561. An error of 16% would mean that the difference is in error by 

0.009. Yet each index value is accurate to about 0.0002, which is well beyond an order 

of magnitude smaller than the necessary error. Consequently, the error is probably not 

due to inaccurate values for the two indices. The other CLOVER-related error would be 
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an error in magnification, or not being in focus on the lens. This seems unhkely given 

the in-focus appearance of the interferograms and agreement between the measured and 

designed lens diameters. In discussing these results with Jeremy Rogers, the validity of 

the WYKO data was questioned and doubted. Apparently, due to the relatively steep 

curvatures for these lenses, the reported radius of curvature can fluctuate with changes in 

the objective lens used or the field of view examined. The 16% difference between the 

two instruments could be due to the instability of the reported WYKO data. More 

experiments need to be done, both with the WYKO and with CLOVER, to determine and 

eliminate the measured variabihty. hi spite of the different output fi"om the two 

instruments, the results obtained clearly show that immersion testing is a valuable tool in 

evaluating these lenses. 
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9 CONCLUDING REMARKS 

Over the last eight chapters, the need for, development of, and results from transmitted 

wavefront testing of complex optics have been presented. The need comes from a desire 

to increase and improve the testing options available for contact lenses. The field of 

testing, one of three fields in the development of any optic, has been explored and 

enhanced by showing that an absolute, or non-null, transmitted wavefront test can be 

performed by using a modified Mach-Zehnder interferometer. The design of the 

interferometer is rooted in three principles. First, the Ught from the test optic must be 

collected by the imaging optics. Second, the resulting interference must be resolved by 

the detector, meaning that at least two pixels must cover each fringe. The third principle 

is that the wavefront must be calibrated to account for the induced aberrations of the 

imaging optics. With an interferometer operating in a non-null configuration, the 

reference and test wavefronts pickup different levels of aberrations when imaged. This 

difference is accounted for in the calibration process based on reverse raytracing. By 

using a model of the interferometer, a reverse raytrace yields an estimate for the test 

wavefront at the test plane. The results from testing spherical, toric, and bifocal contact 

lenses show that the developed instrumentation and analysis algorithms are capable of 

meeting the needs of the sponsor. Since the transmitted wavefront is interfered with a 

planar reference wavefront, the absolute power of the test lens can be determined. The 

ability to test against a planar reference wavefront is made possible by the necessary 
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immersion of the contact lenses in saline solution, thereby increasing the dynamic range 

of the interferometer. This permits a wide range of prescriptions to be tested without the 

use of null optics or other means of removing the bulk power of the lens. The same 

raytracing code used in the calibration process can provide modeled wavefronts as well. 

This enables measured-to-modeled comparisons which quantify the answer to the 

paramount questions in transmitted wavefront testing: does the test optic perform as 

modeled? 

Successful testing of soft contact lenses requires that the lenses be immersed in saline 

solution to prevent the lens material from drying out and thus changing its optical 

properties. The partial index match between the lens material and surrounding saline 

solution theoretically increases the dynamic range of the interferometer and, at the same 

time, reduces the sensitivity of the interferometer. The dynamic range and sensitivity can 

be linked through the dynamic range ratio (DRR). This single number provides a degree 

of difficulty metric for the instrument or test. Preliminary data shows that the DRR 

increases slightly for immersion in saline solution. 

The developed instrumentation and software are robust enough to test a wide variety of 

test optics. CLOVER is not limited to contact lenses. A variety of other lenses have 

been tested and analyzed, including cylindrical lenses, liquid crystal diffractive optics, 

and progressive spectacle lenses. In each case, data derived from the transmitted 

wavefront, such as power, radius of curvature, or diffraction efficiency, has provided a 
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useful comparison to other tests or theoretical values. In some cases, the provided data 

was simply not obtainable by other tests. 

9.1 Conclusions from Accomplished Tasks 

Listing everything that has been learned in the course of completing the work 

encompassed by this dissertation is impossible. On the other hand, there have been a 

number of lessons learned that are worthy of at least a brief mention. Some of these 

conclusions have been mentioned elsewhere, other conclusions have been reached only 

once the totaUty of the work performed was realized. 

The incorporation of raytracing code is vital to the success of advanced metrology. Only 

by having an accurate model of the instrumentation and the ability to trace rays through 

the model can sources of error and the necessary procedures to remove those errors be 

understood. Raytracing code is critical to CLOVER in that both measured and modeled 

wavefronts make use of the code. The tighter the integration between the codes used to 

collect data and raytrace, the better and faster the overall analysis package will be. 

Fortunately, Intelliwave is a robust application capable of talking directly with IDL. The 

IDL raytracing code developed in conjunction with others in the research group has been 

an indispensable asset to the project. 

The abihty to quantify the difference in measured and modeled wavefronts provides a 

number that can be used to answer the paramount question of transmitted wavefront 
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testing: does the optic perform as designed? The wavefront difference surface can be 

analyzed in a variety of ways (e.g. PV, RMS, power) to provide a quantifiable metric for 

pass/fail testing in a production environment. 

Immersion testing has shown itself to be a valuable tool. Immersion in an index-

matching fluid provides an easily adjustable increase in dynamic range, for all that needs 

to be adjusted is the index of the surrounding fluid. Combined with the technique of 

comparing measured and modeled wavefronts, the results from an immersion test are just 

as valuable as if the test were done in air. For some optics, such as contact lenses, 

immersion is the only possible method for getting meaningful data. 

The trend towards bigger, faster, and deeper (bit-depth wise) detectors is making possible 

the ability to test smaller and faster optics. In addition, the results from immersion 

testing can only be improved with deeper detectors. As this trend continues, experiments 

that were only theoretically possible in the past will be feasible, furthering the capabilities 

of all three fields of optical development. Increased computing power is also improving 

the possibilities of instrumentation. All of the least-squares algorithms used throughout 

the analysis package for CLOVER would not be practical without today's computing 

power and availability. 

Testing in a non-null configuration demands that some sort of calibration process be 

performed to remove the induced aberrations of imaging the test and reference 
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wavefronts. The induced aberrations are wavefront-dependent; no level of designing the 

perfect imaging lens will change this. The choice of calibration is debatable, but not the 

need for calibration. 

The transmitted wavefront provides a wealth of information. All sorts of outputs, 

including Zemike coefficients, ophthalmic prescriptions, two-dimensional radial axial 

power maps, and diffraction efficiencies have been derived from this single quantity. 

All of the information necessary to form an accurate prescription for a contact lens, 

whether the lens is a sphere, toric, or bifocal, is provided by the frill lens interferograms 

and transmitted wavefront. The interferograms over the entire lens determine the 

orientation of the lens with respect to the detector, critical for toric lenses. The 

transmitted wavefront, by itself, reveals the annular zones for bifocal lenses. While 

auxiliary hardware could be used to provide the zone locations, this is not necessary; the 

transmitted wavefront is all that is necessary. 

Simplicity is a valuable feature in any metrology system. Making the system: hardware, 

acquisition software, analysis software, and end-user controls, as simple as possible 

increases the likelihood of success. Perhaps this is just a restating of Occam's Razor or 

the inverse of Murphy's Law, but it is a point worth mentioning. 
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Power is a complicated parameter. Never mind the various distances that get inverted 

into powers in the ophthalmic community, just the difference between power derived 

from Gaussian parameters and power derived from wavefronts is important. The 

Gaussian power is really a way of combining all of the lens' physical parameters: 

curvature, thickness, and index, into a single number. The power measured from a 

wavefront, assuming the wavefront is of a consequential size, is of course subject to 

aberrations. The inclusion of aberrations is the fundamental difference between the two 

measures of power. This is analogous to the difference between paraxial focus and best 

focus, or focus at the minimum circle. 

9.2 Future Work 

This dissertation has taken an extensive look at several issues associated with transmitted 

wavefront testing via interferometry, with an emphasis on testing contact lenses 

immersed in saline solution. The core, fundamental issues have been examined in great 

detail. However, there are identified issues that have not been resolved. Some of these 

issues have been dealt with to some extent in the dissertation. All of these issues would 

serve as excellent starting points for future work in the field. 

9.2.1 Immersion Testing 

Clearly the experiments performed in Chpt. 7 leave a number of possibilities for future 

work. Perhaps the most pressing work is with testing over a range of solution factors to 
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see if the observed relationship between solution factor and power is real. This is also an 

excellent opportunity to compare measured and modeled outputs, something that was not 

done extensively with regards to the cylinder testing. Another interesting aspect to 

immersion testing would be in detennining the maximum possible solution factor. There 

are a couple of possible upper bounds for the solution factor. One is the ability to unwrap 

wavefronts whose sag is similar to the noise level of the interferometer. Going by the 

standard deviations used to compute the DRR values in Chpt. 7, an index-match leaving 

less than 1/40 in wavefront sag will be impossible to accurately test. Another issue is the 

homogeneity of the index-matching fluid. The remaining wavefront sag should be 

significantly greater than the phase errors introduced by index inhomogeneity. 

9.2.2 Reflection Testing 

The technique of immersing an optic, thereby decreasing its power and making the 

resulting wavefront testable, is a powerful tool. This is a necessity for contact lenses, 

given the nature of their makeup, and ultimately allows for the determination of the 

transmitted wavefront's absolute power. The question is if this technique will work for a 

reflection test. 

In short, the answer is the no. To understand why the technique does not work with 

reflection testing, a brief understanding of why it does work with testing in transmission 

is in order. In transmission testing, the slope of the wavefront, as was explained in Chpt. 

2, determines the testability of a fringe pattern. Wavefront slope is a direct result of 
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bending rays. The more the rays are bent, the higher the slope, and the lower the 

likelihood that the local fringe pattern will be testable. Index matching a refracting 

surface reduces the bending; a direct application of Snell's Law. With reflecting 

surfaces, the angle of reflection equals the angle of incidence; no change in bending 

occurs with immersion. 

An interesting note along the lines of opposite effects is that the ability to resolve a small 

bump or hole is decreased with immersion in transmission but increased with immersion 

in reflection. In transmission, the OPD due to the defect is proportional to the difference 

in index between the test optic and surrounding medium. With a reflection test, the 

induced OPD is twice the optical length of the defect, which is proportional to the index 

of the surrounding medium. 

The common technique for getting more dynamic range out of a reflection test is to go to 

a longer wavelength, either by using a different source or artificially creating the longer 

wavelength by using two wavelengths in close proximity (Creath, "Holographic and ...", 

1992). A couple of issues with longer wavelengths are the increase in detector noise for 

longer (IR) wavelength detectors and the need to achromatize all of the optics if two 

different wavelengths are used (Greivenkamp, 2003). The increase in dynamic range 

comes at the price of sensitivity, just as with immersion. So then the question is whether 

or not there are other ways to provide the convenient, tunable increase in dynamic range 

available with immersion testing that would work with testing in reflection. 
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9.2.3 Reverse Raytracing 

Reverse raytracing was shown to be a vital part of the overall testing of optics in a non-

null configuration. Wavefront calibration is one of the three principles of non-null 

testing. Also discussed was the apparent conflict between the calibration processes of 

reverse raj^racing and subtracting a baseline measurement. Under the current 

mathematical description of imaging and interfering wavefronts, both processes cannot 

be used at the same time. Yet the two processes speak to different sources of error. 

Reverse raytracing removes the induced aberrations in imaged wavefronts, but assumes a 

perfect reference wavefront. A baseline measurement reveals the difference between the 

nominal test and reference wavefronts, but does not provide enough information to 

uniquely determine either wavefront. The ideal situation would be one where the 

baseline measurement could be used to unambiguously determine the reference 

wavefront used to start the reverse raytrace. 

One method for incorporating both the baseline measurement and reverse raytracing has 

been developed: reverse optimization (Gappinger, "Non-null...", 2003; Gappinger, 

"Iterative reverse...", 2003; Gappinger, 2002). The problem, or at least an undesired 

feature, with reverse optimization is the complexity of the iterative process. Precise 

perturbations to the system are required, the model for the system is quite complex, and 

no fewer than three different merit functions must be optimized in a specific sequence. A 

simpler way to incorporate the information contained in the baseline measurement is 

desired. The success of this work thus far can be attributed to keeping the calibration 
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process as simple as possible. Simplicity should not be overlooked as a key component 

of any calibration process. 
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APPENDIX A: SAMPLE MODEL 

The following IDL code is a sample model of the interferometer used in conjunction with 

the algorithms for reverse raytracing and analysis. The test part for this model is the 

calibration lens analyzed in Chpt. 4. Each siu"face is listed twice; first the reference arm 

and then the test arm. Dummy values, such as 0 for curvature and 1 for index, are used in 

the reference arm to keep the number of surfaces and distance between surfaces 

consistent. Any surface only listed once is identical in both arms. 

TITLE New Clover System 

AUTHOR Greg Williby 

DATE 7 02 2003 

UNITS mm 

WAVELENGTH 0.5435e-3 

DETECTORSURFACE 12 

TESTSURFACE 6 

;CONFIGURATIONS 
; 0 = REFERENCE 
; 1 = TEST 

;EACH SURFACE IS LISTED TWICE - REFERENCE CONFIGURATION FIRST, 
THEN TEST. 

;ORDER OF DATA : CURVATURE THICKNESS INDEX DIAMETER 
(CurvThicklndDiam) 
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;DATA THAT IS SUPPLIED BY THE GUI (e.g. Index, Magnification (thickness)) 
;SHOULD BE SET AS FOLLOWS: 

; All Distances =-1 
; Index of Saline = -1 

;NOTE : DISTANCE BETWEEN 3RD WINDOW AND THE BOTTOM OF THE TOP 
;WINDOW OF CUVETTE IS 7.05 mm. 

9 
.>Klie*xcxc<IOIOI<H<********* Bottom Window of Dovetail Cuvette 
SURFACE 0 

SPHERE 
0 4.99 1 

SPHERE 
0 4.99 1.45820 

SURFACE 1 
SPHERE 
0 5.62 1 

SPHERE 
0 5.62-1 

5 

.****************** xhird window of Dovetail Cuvette 
SURFACE 2 

SPHERE 
0 6.51 1 

SPHERE 
0 6.51 1.51594 

Salilie (TESTSURF) 
SURFACE 3 

SPHERE 
0 0.01 1 

SPHERE 
0 0.01 -1 

.******************** Lens 2 (Piano/Convex) 



SURFACE 4 
SPHERE 
0.0 2.7504 1 

SPHERE 
0.0 2.7504 1.5128 

SURFACE 5 
SPHERE 
0.0 0.001 1 

SPHERE 
-0.012815135840 0.001 -1 

SURFACE 6 
SPHERE 
0.0 4.2886 1 ;4.2886 = (7.05-(0.001+2.7504+0.01)) 

SPHERE 
0.0 4.2886 -1 

jqP window of Dovetail Cuvette 
SURFACE 7 

SPHERE 
0 4.99 1 

SPHERE 
0 4.99 1.45820 

P j -Qpg^gg^-^g J f Y l L C H S  
SURFACE 8 

SPHERE 
0 - 1  1  

J 

;*****Imaging lens: NEWPORT PAC087 (Crown first!) 
SURFACE 9 

SPHERE 
0.008241169587 8 1.518855 ;BK7 

SURFACE 10 
SPHERE 
-0.01093553502 4 1.677988 ;SF5 

SURFACE 11 



SPHERE 
-0.00368240034-1 1 

9 ^ 

SURFACE 12 
SPHERE 
0 0  1  

END 
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