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ABSTRACT 

An approximate method is developed for including effects of a 

finite range neutron-proton potential Vnp in calculations for the Weakly 

Bound Projectile (WBP) model for stripping reactions. The method is 

similar to the approximate finite range calculations for the distorted 

wave Born approximation in its use of an expansion method involving the 

short range of V. However the method avoids the difficulties associ-

ated with these previous applications. For an appropriate choice of V 

the expansion in the WBP amplitude is shown to converge, so that the 

accuracy of the method is determined by the accuracy of the numerical 

procedures used. 

The application of the method requires a simple modification of 

/ 

previous zero range calculations and does not significantly increase the 

time required for computation. 

Several central potential forms (square well, Gaussian and 

Yukawa) consistent with low energy two-nucleon scattering are considered 

for the neutron-proton interaction. Approximate finite range WBP model 

calculations are reported for the square well and Gaussian forms and the 

results are shown to be independent of the potential shape. Calcula­

tions are also reported which check the effect of truncating the finite 

range expansion. 

Qualitative and quantitative effects were observed by comparing 

zero range and finite range calculations for (d,p) reactions on the 

target nuclei *̂ 0, ̂ ®Ca and ®̂Zr for values of ranging from 0 to 3. 

viii 
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Qualitative changes of the polarization and vector analyzing power were 

small and no regular trends were apparent. The differential cross 

section tended to be reduced slightly at the stripping peak and at back 

angles. The most important quantitative effect shown is on the spectro­

scopic factor which is extracted from the calculated differential cross 

section. Spectroscopic factors extracted with zero range and finite 

range codes are compared. Corrections to the spectroscopic factors for 

light nuclei can be as large as +25%. 



CHAPTER 1 

INTRODUCTION 

For more than twenty years measurements on the outgoing particle 

in deuteron stripping reactions have been used to obtain information 

1-7 
concerning the structure of the residual nucleus ). From the early 

measurements using unpolarized deuteron beams, it was found that the 

angular distribution for the outgoing particle often can be used to de­

termine the parity of the residual nucleus. The angular dependence of 

the polarization P can also be used to determine the total angular 

momentum j for this nucleus® ̂ ). In addition, careful measurement of 

the magnitude of the differential cross section do/df2 can be used to ex­

tract the spectroscopic factor S associated with the single particle 

15-24 
structure of the residual nucleus ). 

25-31 
The development of polarized ion sources ) has increased the 

potential of deuteron stripping and pickup reactions for providing in­

formation concerning nuclear structure. Measurements of vector analyz­

ing power P̂  can reveal the value of j for certain states in an 

32 33 
unambiguous way ' ). Such measurements can also help refine models 

used for interpreting the data and hence lead to more precise spectro­

scopic factors. 

Improved calculations concerning the microscopic structure of 

34-40 
low-lying states have recently been reported for many nuclei ). 

These advances in nuclear structure calculations have been accompanied by 

1 
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experiments in which detailed angular distributions including absolute 

magnitudes have been measured for (d,p) reactions which lead to an ex-

41-43 
tended sequence of final states in the residual nucleus ). To take 

full advantage of the polarized sources and to extract from the (d,p) 

reaction measurements information which is accurate and reliable enough 

to test the nuclear structure calculations, some effort must be spent on 

improving the models of the reaction mechanism. 

Since the discovery of stripping reactions and their initial 

interpretation by Butler"'") there has been considerable development of 

the reaction models. The initial Butler model was a three-body model in 

which the neutron and proton wave functions are represented by plane 

waves with a spherical hole in the vicinity of the nucleus. Because the 

distortion of the neutron and proton wave functions by the interaction 

with the target nucleus was represented so crudely with no spin depen­

dence, the Butler model consistently overestimated the cross section by 

one or two orders of magnitude and predicted the outgoing nucleon to be 

unpolarized. 

The emergence of the zero range distorted wave Born approxima­

tion (DWBA) accompanied development of fast digital computers in the 

. 44-49 
late 1950's and early 1960 s ). By taking more realistic account of 

the interactions with the target nucleus, this model was able to predict 

better agreement with the shape and magnitude of measured differential 

cross sections. However, in order to make use of realistic interactions 

with the target nucleus, the DWBA abandons the three-body mechanism in 

which the neutron and proton have semi-independent motion, treating the 

deuteron as one would a tightly bound particle - the internal motion of 



which is left undisturbed by its passage through the nucleus. Thus 

stretching and orientation of the deuteron by the nuclear field were 

ignored. (Some efforts have been made to correct this recentlŷ '̂ ).) 

Because of the weak binding and large size of the deuteron, in 

the situation shown in Fig. 1, the potential energy difference between 

neutron and proton is much greater than the deuteron binding energy. 

One might therefore expect effects neglected in the DWBA to be signifi­

cant. 

target 
nucleus 

np 

Fig. 1. Two-body Potentials Used in the WBP Model 

The Weakly Bound Projectile (WBP) model was developed to take 

52-55 
proper account of the weak binding of the deuteron ). This model 

revived the three-body description of the original Butler model. The 

interactions which are involved in the stripping mechanism being the 

neutron-proton interaction Vn, and the separate interactions and 

of the neutron and proton with the target nucleus. The initial calcula­

tions with a zero range form of the WBP model showed good agreement with 
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the angle dependence of measured differential cross sections, polariza-

56—59 
tion and vector analyzing power ). 

Various refinements have been made to the original WBP model 

calculations. The contributions from the D-state component of the 

deuteron internal wave function*'®), corrections arising from non-

locality of the nucleon-nucleus optical potentialŝ ) and a realistic 

62 
(Hamada-Johnston) deuteron wave function ) have been taken into 

account. 

In the DWBA calculations the effects of the deuteron 

D-statê '̂ ) and non-localitŷ  ̂̂ ) have also been considered. However 

in addition, various attempts have been made to include in the DWBA cal­

culations the corrections which arise from the finite range of the 

neutron-proton interaction V  ̂®̂ ). While these attempts have met 
np 

79 80 
some difficulties - the "exact" calculations proving cumbersome ' ), 

81 82 
and the "approximate" calculations proving inaccurate * ) - they have 

shown that finite range corrections can make significant changes to the 

magnitude of the predicted cross sections and hence to the spectroscopic 

factors extracted therefrom. No corresponding calculations of polariza­

tion and vector analyzing power using the DWBA have been reported. 

The nature of the finite range corrections to the DWBA calcula­

tions has made it necessary to examine the corresponding effects in the 

WBP model calculations. Not only must the influence of these correc­

tions on the magnitude of spectroscopic factors be determined, but also 

their influence on the qualitative behavior of the calculated polariza­

tion and vector analyzing power from which the j values are found. 
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In this dissertation a convenient method for including finite 

range corrections in WBP model calculations is developed. The method 

is not as cumbersome and time-consuming to calculate as "exact" finite 

range calculations in the DWBA. It is similar to the approximate 

finite range calculations for the DWBA (see approximations referred to 

7Q QO OO OA 
as "LEA" ' ) and "EMA" ) in Appendix B) in its use of an expansion 

involving the short range of V . However, the method is more accurate 

than the LEA and EMA. For appropriate potentials V the method can be 

shown to converge within the accuracy of the numerical procedures used. 

The application of the method requires a simple modification of the 

zero range computer code and does not significantly increase the time 

for computation. 

In Chapter 2 we review the basic assumptions of the WBP model 

to put the finite range and zero range approximations in perspective. 

In Chapter 3 we describe the code for calculating the zero range 

amplitude which must be subsequently modified for the finite range 

calculation. 

In Chapter A we discuss the various possible methods for finite 

range calculation and derive the method most suitable for including the 

finite range corrections in the WBP model. We review the problems met 

in similar calculations including the calculation of non-local effects 

and finite range corrections to the DWBA. 

In Chapter 5 the results of example calculations are presented 

for a variety of low-lying states on target nuclei ranging from oxygen 

to zirconium. The qualitative nature of the finite range corrections 

is discussed, including trends dependent on the atomic number and the 



6 

orbital angular momentum of the captured neutron. Changes in the 

spectroscopic factor, the most important effect, are listed. The 

nature of the finite range effects are shown to be similar to those 

of non-locality. 



CHAPTER 2 

THE BASIC ASSUMPTIONS OF THE WBP MODEL 

In this chapter the physical assumptions which lead to the WBP 

model are discussed and a method for deriving the expression for the 

*$* 
transition amplitude is outlined.1 

An exact solution for a (d,p) reaction on a target nucleus of A 

nucleons depends upon 3A + 6 position coordinates plus spin and isospin 

coordinates. Stripping reactions which lead to low-lying states of the 

residual nucleus are thought to proceed mainly via a direct process in 

which the internal degrees of freedom of the target nucleus are left 

unexcited. Thus optical potentials are introduced to represent the 

effective interactions of the neutron and proton with the target nucleus 

and the many-body problem is reduced to a three-body problem. 

While this reduction of the many-body problem leads to a simple 

concept of the reaction mechanism, it has the disadvantage that the 

parameters which characterize the optical potentials are not unique so 

that for each reaction a range of predictions can result. Since the 

three-body problem itself is difficult to solve, and since the parameter 

ambiguities for the optical potentials increase the need for computa­

tional simplicity, the WBP model introduces further approximations the 

The derivation outlined here does not make use of the wave 
function 0* which has non-physical boundary conditions ). 

7 
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validity of which depends upon the weak binding of the deuteron and the 

small momentum transferred in the stripping reaction. 

For simplicity, consider a (d,p) reaction in which the final 

state can be represented by a neutron in a single particle state bound 

to a spherical target nucleus core. For further simplicity, also 

neglect dependence on particle spins. Let H be the total Hamiltonian, 

fc, be the total energy, and be the total wave function for the 

system. Let be a complete set of eigenfunctions for the target 

nucleus corresponding to the Hamiltonian , and 

represent the neutron-target nucleus and proton-nucleus interactions, 

respectively. 

The initial state 

= <pd Ĉ -v̂ p) expCc • R) A0(f) (1) 

describes a free deuteron with momentum incident on the target 

nucleus in its ground state A# . The final state 

= exp(;iP-vJ) B(ynj)) (2) 

describes a free proton with momentum jTA. an(* a neutron bound to the 

target nucleus core. The transition amplitude from the initial to final 

85 
state can be written in the form ) 

Tf£ = < gf I v.p |\pw> 
(3) 

where V|̂  satisfies the equation 

CH-V.p-E)^ o • «> 



(5) 

(6)  

Because of the weak binding and extended nature of the deuteron, it is 

expected that the neutron will play a minor role in the scattering of 

the proton when they are both close to the target nucleus. With this 

in mind, we introduce a complete set of proton-target nucleus scattering 

states W) and expand the wave functions 
* 

< = r M- €{/V) y r p 

r* = 5 J4~ «;<,.< o j) 

where the superscripts (-) and (+) refer to incoming and outgoing 

boundary conditions, respectively. 

The substitution of expressions (5) and (6) into the amplitude 

(3) leads to an exact expression for the transition amplitude. At this 

86 
point we make the "optical" assumption ) 

with 

which is necessary to reduce the many-body problem to a three-body 

problem. With the "optical" approximation (7) the exact expression for 

the transition amplitude reduces to 

<kP\ V„P| (9) 

which becomes with the substitution (8) 

Tfl S (Ur) < (10) 
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where S(U)=«1K> is the usual £ matrix for proton 

scattering as described by the optical model. 

The equations satisfied by the coefficients H and 

are obtained by substituting the expansions (5) and (6) respectively 

together with the "optical" assumptions (7) into the Schroedinger 

equations for and . The coupled equations which result have 

the form 

U-®-H)]H£)+£<a.(?ki^)>H'*)=0 <u) 

and 

[T„ -(E - <12) 

+pV <X^> I v„r I = ° • 

The equations (11) and (12) are identical in form except for the last 

term on the left of Eq. (12) which takes account of the interaction 

between the neutron and proton. The set of equations (11) for the 

various functions "it, can be projected onto the subspace of the 

by means of the projectorŝ ) and Q 5 1~P 

The single equation which results 

t T„ - (E -E0Jjr) + < A. I Vj A.y] ̂  d3) 

+ < A. I Vh£}[c-E.<r-Q(T.t<)Oj'QV. IA .)<nr'0 

refers to a neutron in an "effective interaction." 
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In keeping with our "optical" assumption, we replace this ef­

fective interaction by an optical potential. Since one can show that 

E-=• Eg , the binding energy of the captured neutron, Eq. (13) 

reduces to 

t T« * V«oau» " <*, = ° <I4> 

where all the terms involved are independent of . 

Up to this point only "optical" assumptions have been made and 

the equations are essentially the exact ''three-body" equations. The 

basic WBP model approximations center on the last term on the left of 

Eq. (12). The neutron capture factor in the transition amplitude (10), 

namely 

--<^rf4-A I '•<V?)lr(7">) (I5> 

is the overlap of this term with the bound state wave function 

In the system of equations (12) the second term on the left involves 

coupling between different excited states of the target nucleus. The 

last term involves coupling to states with different proton momentum 

To understand the nature of this coupling, introduce the 

Fourier transform of the deuteron wave function 

tf)*  < l 6 >  

In terms of this Fourier transform the initial state (1) can be written 

G C K )  A 0 t J )  ( i 7 )  
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and 

where 14. s Ki and 4.1 Comparing the expressions (17) 
1 r q 2 

and (6) and using the optical assumption (7), we see that for l̂ rh— 

w«i, u n - ) / l G C H ) •  (is) 

With the substitutions (18). the last term on the left of Eq. (12) 

becomes 

R*;) = r exK"G(K")e*p(Hr'• rr)**p(iAh«\) (19) 

where j\' — — Ĵ p« . Transforming to the coordinates R , jP 

this becomes 

r(7j = Jd?pe,p(-a,-̂ e«P(l?J-R)V.p(fj[jK"6(r)̂ CÛ )_ (2#) 

Since the last integral on the right of the expression (20) is the 

deuteron wave function <&tp) we can make use of the Schroedinger 

equation 

r - *' (21) 
u m f »n J 

where % Y is the deuteron binding energy and replace Eq. (20) with 
m 



Changing the order of differentiation and integration, this 

becomes 

f(«V) = t*f(i i G (K') ("I,*)'+1(t)e*rL<-K'"c«) 

= - £  . <»> 

The result (24) shows that in the asymptotic incident beam the function 

in Eq. (12) is not coupled to states with different proton 

momentum $ . The coupling term in Eq. (12) acts only in the 

vicinity of the target nucleus. 

The basic WBP model approximation removed the coupling to 

states of different everywhere. The last term in Eq. (12) is 

replaced by a term which is equal to the right hand side of Eq. (24) 

in the asymptotic region and which is diagonal in , i.e., 

where 

Kf) = -W £ (iv;rlc?t̂ f(v?y/j?rv.r(?̂  (25) 

Numerical calculations which justify the approximation (25) have been 

88 
made ). The justification depends on the weak binding of the deuteron 

and on the small momentum transfers in the reaction. 

To complete the discussion concerning the generation of the 

coefficients <*Cim we rewrite the WBP approximation to Eq. (12) in 
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the form 

[T„-(E-eo4f-t̂  <K%r))J fa <26> 

- z cA.cB» *1 -C^wf-y-0 

where 3 

$  ( *  % )  =  X ) •  & ( k x +  r " >  
'sHollT *> * , ' *•> ?' w» 

is a short-ranged potential being non-zero only in the vicinity of the 

target nucleus. Since 

r m 2_ m 

is the energy of the free neutron, Eq. (26) becomes 

[ T „  - + Kl V»>WV7»> (27) 

3 

Except for the last term on the left, the equations (27) have the same 

form as equations (11) for the • Since typically has a 

depth of - 2 MeV, we neglect it and as in equations (11) introduce an 

optical potential to take account of coupling to the excited states of 

the target nucleus. Thus, Eq. (27) becomes 

i~, - Et«tt • <28> 

In the vicinity of the target nucleus - 60 MeV so that the neglect 

of ̂ SH,0#T in Eq. (27) represents less than 5% of̂ PT . Two WBP model 

calculations in which is varied by 2 MeV give results which are 

essentially identical so that neglect appears 

justified. 
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With the result (25) the expression (10) for the transition 

amplitude becomes 

Tf;=Jdlr. . (29) 

It is convenient to extract the asymptotic dependence of W0ĵ (yon 

by defining 

< f^)-  «H^/G(K) <3°> 

so that 

V UTr)Vtexp(̂ K
,y"«) . 

The function *-s also a solution of Eq. (28). With 

the substitution (30), the expression (29) for the transition amplitude 

becomes 

This expression involves a nine-dimensional integration over the 

neutron coordinates , the proton coordinates Yj, (in calculating 

MJ,) through expression (25)), and the momenta . Because the 

interaction of the neutron on the proton is expected to be negligible 

compared to the interaction of the proton with the target nucleus, the 

WBP model includes only energy-conserving proton scattering in the 

amplitude (31). The amplitude (31) thus involves an eight-dimensional 

integration. 



CHAPTER 3 

WBP MODEL CALCULATIONS WITH THE ZERO RANGE APPROXIMATION 

Since the method for dealing with the finite range problem 

which we describe in Chapter 4 leads to a relatively simple modifi­

cation of the previous calculations made with the zero range 

approximation for Vnp, we outline here some details of the method 

used for the zero range calculations and include a brief flow diagram 

for the computer program which performs the calculation. This helps 

in explaining how the finite range calculations are made. It also 

makes clear the advantage of a method for introducing finite range which 

does not alter the structure of the zero range calculations. 

The eight-dimensional integral (29) is greatly simplified by 

means of the zero range approximation for VRp. With this approximation 

The computation of Eq. (34) requires the calculation of the proton 

(32) 

the interaction in Eq. (25) can be evaluated 

(33) 

and the integral in the amplitude (29) becomes five-dimensional. 

scattering matrix bound state neutron wave function 

16 
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•» l /,4i i* 
the incoming neutron wave function and the density lr-̂ | 

associated with the proton wave function. The calculation of each of 

these functions involves the solution of an equation such as (28) which 

is essentially a second order differential equation in three dimensions. 

The solution of the differential equations and the integrations 

in Eq. (34) is simplified by using the method of partial waves. By ex­

panding the wave functions in terms of spherical harmonics, the 

differential equations are reduced to one dimension. By expanding the 

proton density also in spherical harmonics, it becomes possible to 

analytically perform all but the radial integral over and the 

integral over COS in Eq. (34). The remaining integrals reduce to 

restricted sums of vector coupling coefficients. The details are given 

below. 

Transition Amplitude for Particles with Spin 

The previous discussion has not referred explicitly to the spin 

of the particles involved. For the simple case discussed in Chapter 2, 

we require the transition amplitude from the initial state in which the 

deuteron spin projection along the i axis is Mj to the final state for 

which the proton and neutron spin projections are /y and , 

respectively. 

The modifications necessary to take account of the particle spin 

can be seen as follows. They can be justified in a rigorous manner by 

going through a derivation similar to that in Chapter 2 in detail. 

The expression (34) for the transition amplitude can be inter­

preted as follows: The incident deuteron is expressed through the 
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integral over A. as a packet of neutron-proton pairs, the proton with 

momentum $ and the neutron with momentum The proton is 

scattered via the matrix from jfj,« to and the neutron is cap­

tured via the capture factor. 

To take account of the particle spin we follow this interpre­

tation and first express the deuteron spin function with total angular 

momentum projection in terms of neutron-proton pairs, the proton 

with spin projection and the neutron with spin projection̂ . such 

that > the deuteron spin projection. The proton with spin 

projection yUp« is then scattered via the matrix ̂  to the 

state with spin projection and the neutron is captured with spin 

projection . 

The deuteron wave function in momentum space includes both an 

S-state and a D-state component 

G \ K )  = Y'.7 if) (35) 

- S3 (10/ 2" <1"ilI Mi 2.M> Yz (K) I î >] 
with 

.oo 

and 

U(K)=4Trf Ul Y ) j ^ ( K r ) r d r  

"o 

C(K) = *«[ «lv) j,(«v)1rdir 
-4 (36) 

where U(v)/y and uJ (y)/r are the radial components of the 

deuteron S and D-state, respectively, and are normalized such that 

4 u»l) <iv = 1 . 
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Defining 

g?(k) = tt(k) |  w 

and 

( k )  =-S(toiiA»> (37) 

in terms of these functions, the transition amplitude can be written as 

a sum of S-state and D-state terms. 

nr - *t zt 

where 

Lx 

*f<11 s^*>< y"U*)-

X)> • 
K (38) 

62 
As indicated in ref. ) it is possible to use a deuteron wave 

function derived from a "realistic" potential - one that fits two 

nucleon scattering data up to 300 MeV. The wave function presently 

89 
used in WBP calculations is an analytic parameterization due to McGee ') 

90 
of the wave function corresponding to the Hamada-Johnston ) potential. 
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The McGee parameterization for the momentum space wave function is 

1 Cd 
(•' <39> 

= ^ i r / ^ S  (4 0 )  

i t 
where the parameters ej, £j, Cj, cj, y» P» are listed in Table 1. 

Cross Section, Polarization and Analyzing Power 

The differential cross section da/dJi and polarization P̂  

52 
calculated for an unpolarized beam can be expressed ) in terms of 

the transition amplitudes (38) by 

i s .  - 1 f - 4 ^ e x . f  (41) 

*jMfl 

and 

P - - ̂ I"** ̂ 1̂ CTjiVd j -fc M>, 

* v it r 
(42) 

The analyzing power P̂  calculated for a vector polarized deuteron 

beam is given bŷ ®) 

°" Z IT f i |* M 
The quantities mp* and m̂ * are the reduced masses of the proton and 

deuteron. 



Table 1. Deuteron Wave Function Parameters from McGee 

S State D State 

j £j CJ 
f 

Gj 

0 l.OOOy 1.000 l.OOOy 1.00 

1 5.733y -0.63608 4.833y -20.34 

2 12.844y -6.6150 10.447y -36.60 

3 17.331y 15.2162 14.506y -123.02 

4 19.643y -8.9651 16.868y 305.11 

5 21.154y -126.16 

y=0.2338fm_1, NM=0.8896fm~Js, p=0.0269 
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The Partial Wave Expansions 

The computation of the amplitudes (38) is simplified by using 

partial wave expansions. In the zero range expression for the neutron 

capture 

we write the final state 

kK^M>r A1d* 6^-V.)K.) (45) 

•̂ H 

where li./4*) is the neutron spin function corresponding to the spin 

projection /<H and  ̂(_v̂  represents the radial bound state wave 

function. The neutron scattering state which behaves as a 

plane wave in the asymptotic region may be written 

Hi '  J7 £ i^-kA'K we) 

' <a ̂  iy. at, *Aj-K IX''•/•> '(A')» 

v^'*/<* '*>, x i i 

The proton density in the interaction (33) may also be expanded 

in terms of spherical harmonics. Neglecting the small effects of the 

spin-orbit force on this density we express the proton wave function 

Y -a, ?<"»»> W7) 
f ^ (iff) * 

where we have chosen a coordinate system with 1 axis parallel to Kj» . 



23 

The corresponding to a particular angular momentum X are the 

usual distorted wave functions describing elastic scattering of the 

proton from the target nucleus. Taking the modulus squared of Eq. (47) 

91 
and making use of the identity ) 

L,M 

we obtain 

= E •ir, y* '̂)YJ^vo 

where 

0.̂ 0=4̂ 57,̂  Y./O Jt,-W . (so 

With this expansion the capturing interaction (33) becomes 

M v>=-£ Q-^ r >^ y"tfr) (5D 
r V*v Lfl| 2.L+I L H I. f/ * 

Although the expression (51) in principle contains an infinite sum over 

the orbital angular momentum \_ » in practice this summation is 

strongly restricted. From a study of the dependence of PD» Py and 

da/dQ on the maximum value Lmav it has been found that the summation 

can be truncated̂ ) at L = 6. Larger values of L have little max 

influence on the neutron capture partly because the coefficients 

decrease in magnitude with increasing L , and partly because of the 

angular momentum coupling which is implied in the factor (44). The 

smallest allowed value for JlHi in the expansion (46) for the incoming 

neutron wave function is related to L and to the bound state angular 
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momentum J?H in the expression (45) by the triangle condition 

Jn' £ IL- Jk Hence for L = 7 and = 1 we have -it,' >y 6. The 

partial waves with such a large value of jit,' are small in the region 

where the bound state wave function is non-negligible. 

Substitution of the expansions (45), (46), and (51) in the 

expression (44) for the neutron capture factor gives 

(£•) «p[-' <52> 

where 

K Ur) - A. i, »VA I 1. «.><>.• !.• Mi, <53) 

LM 

M„.+A,< -A I +A->Cl L +») * 

X U4.- + 0*<i..o L° L-M1 ̂n.Mn1 -#Ay * 

* A- U K *LCO (O y• . <A- o * 
K Jn' 

* 0* ("s Sjp " (£* eK-) 

and ̂  (c©4 0) is defined by 

YjJ" (0 (P) = (coiG) e*pCî <P) 

®^Ccos0)= o KM 



As a result of the partial wave expansions (45), (46), and (51), the 

three-dimensional integral in the capture factor (44) has been reduced 

to the one-dimensional radial overlap integral 

K jd v. V. aLCr.) f: 4 , U„. 0 

and the summations involving the vector coupling coefficients in the 

expression (53). 

To treat the scattering matrix ̂  in a similar way, we first 

write it as a sum of two terms 

,5 LJkp' y  Af) ~ 

• <54) 

The second term on the right of the expression (54) can be expressed 

as a finite sum over partial waves. The term S(*, cannot. We 

52 
follow previous nomenclature ) in calling the first term on the right 

of Eq. (54) the "unscattered" amplitude and the remainder the 

"scattered" amplitude. Strictly speaking, the effects of proton 

scattering also appear in the "unscattered" amplitude through the 

neutron capturing amplitude (52). 

Combining the first term of Eq. (54) with the expressions (38) 

and (52) we have for the unscattered term of the transition amplitude 

I- unycattcred 
X 

(55) 

M'"59r) ©LW(«s8^ 
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To obtain the complete WBP amplitude we use the partial wave 

expansion for the proton scattering matrix 

Z  « W > R  ( 5 6 )  

r ̂  nr*iJrp ̂  

* < i w Vy y*? \ 6 ** +A'>  ̂

where the quantities are related to the complex phase shifts 

for the total angular momentum j = by 

For the usual energies considered,  ̂20 MeV and for 1̂5 the 

coefficients tend to zero so that the summations over 

are severely restricted. Combining the second term of Eq. (54) with 

the expressions (38), (52), and (56), the scattered term of the tran­

sition amplitude is 

L SCflitt«Ve<\ , , a\ 

= ̂ r- 1M ̂  H >v i a.) 
(57) 

"4M. 

(̂tosflp<) ©L (ccsfiK\ (cos &f'V 

n  ̂

« ©Jj (cos 0p.) 0^m ̂  '"W 0p) X (*« M - M* w) 

The complete WBP amplitude is then 

. v y, /- L unscattereJ sca.itev«cO 
(58) 
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Outline of Numerical Procedure 

The global outline of the numerical procedure in calculating the 

amplitude may now be given. Shown in Fig. 2 is a schematic block 

diagram of the Fortran IV coding naming the key subroutines and the 

functions they compute. 

1. Subroutine CGCS forms and stores the Clebsch-Gordan coefficients 

2. Subroutine LGNDR computes the associated Legendre polynomials 

©£ (Cos needed in equations (53), (55), and (57). 

3. Subroutine SCATFN reads the proton optical potentials and uses 

92 93 
the Fox-Goodwin method ' ) to generate the proton wave func­

tions (rr\) In the expression (50). 

A. Subroutine BS generates the bound state wave function 

by an iterative procedure that guarantees the bound neutron 

have the correct binding energy. 

5. Subroutine FASHFT calculates the phase shiftŝ - of the proton 

scattering matrix (56) and the coefficients of the proton 

density in expressions (49) and (50). 

6. Subroutine OVRLAP reads the neutron optical potentials, 

generates the free neutron wave functions X̂  ̂  )̂ and 

computes the overlap integrals 

^ (5,) 

for each angle 0p' 



Subroutine CGCS 

<4^ A«tl 

1 
Subrout 

' 

tne LGNDR 

\ 

Subrouti 
r 
tie SCATFN 

X/(0 

Subrou tine BS 

1 
Subrouti 

f 
ne FASHFT 

la aL («.) 

o 

Subroutine OVRLAP 

Subroutine CAPFAC 

increment 

Subroutine TRNSIT 

J<T/ja % £ 

Fig. 2. Flow Chart for 
Zero Range WBP Model Computations 
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7. Subroutine CAPFAC combines the vector coupling in Eq. (53) with 

the integral (59) to assemble the neutron capture factors 

f°r each angle dp' . 

8. Subroutine TRNSIT folds together the factors required to cal­

culate the transition amplitudes given by the expressions (57) 

and (58). Since the amplitude (57) is a simple function of the 

outgoing angle 0p , it is computed simultaneously for all 

values of 0p . 

A sizeable fraction of the time is spent executing subroutines 

OVRLAP and CAPFAC because they must be called for each value of 0̂ , . 

A typical computation time for an  ̂• 1 case on an IBM 370/155 

computer is 90 seconds CPU. The program size is 200,000 bytes of core. 



CHAPTER 4 

FINITE RANGE CORRECTIONS 

Use of WBP model calculations to extract spectroscopic factors, 

to determine the total spin and to determine the parity of the final 

state in deuteron stripping reactions involves many calculations for 

different final states, target nuclei and bombarding energies. Since 

the optical model parameters with which the calculations are made are 

not determined unambiguously by elastic scattering, several calculations 

must be made for each case to understand the effects of the parameter 

ambiguities. Thus to provide a suitable tool for the analysis of strip­

ping reactions the calculation of the WBP model amplitude must be 

reasonably economical. The zero range calculation described in Chapter 

3 requires between one and two minutes on a medium-to-high speed fourth 

generation computer (IBM 370/155) and it is desirable that the finite 

range calculation should not substantially increase this time. This is 

especially so because finite range is expected to provide an important 

but small correction to the zero range amplitude. The success of the 

zero range calculations in fitting large bodies of angular distribution 

data suggests that the finite range corrections should not be of over­

whelming importance except possibly in the extraction of accurate 

spectroscopic factors. 

30 
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Need to Abandon the Integral ("Exact") Method 

Because of the considerations given above the straightforward 

approach of integrating over the dimensions which were eliminated in the 

zero range treatment is not feasible. As indicated in Chapter 2 the WBP 

model amplitude 

\ =/j^ A (*,) $ (60) 

with 

involves an 8-dimensional integral. The integral over in the ex­

pression (60) involves the proton density throughout a 
*P' 

volume of radius (where is the value of -S for which 

Vhp(s) is non-zero) centered on the neutron coordinate . By 

making use of the spherical symmetry of V*) it is possible to reduce 

this integral to a single radial integral and some summations involving 

vector coupling coefficients. The zero range computation described in 

Chapter 3 already involves a two-dimensional numerical integration and 

vector coupling. Compared to the zero range calculation the 

straightforward finite range calculation would require a 

three-dimensional integration and more complicated vector coupling. We 

estimate that this would increase the time required for computation by 

at least an order of magnitude. A similar problem has been found with 

this approach to finite range calculations in the DWBA by Austern 

incr< 

mately two orders of magnitude . 

et al. ). In this case the increase in time required was approxi-
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Expansion Methods 

As an alternative to the integral method referred to above one 

can try to separate the integrand in the amplitude (60) into a part 

which varies slowly with respect to one of the variables of integration 

and a part which varies rapidly. If this is possible one can expand the 

slowly varying part in a Taylor's series over the range of the rapidly 

varying part. 

We consider two forms of the basic expansion method, one we call 

the configuration space method and the other the momentum space method. 

Configuration Space Method 

In the configuration space method one begins with the integral 

in expression (60) which has the symbolic form 

I = J"d?D(s)T(i^s) ( 6 1 )  

where D(s) is an isotropic function of ? which approaches zero rap­

idly for values of 5 greater than some range . The function 

T<.?> which varies slowly for values of SK/f is then expanded in 

a Taylor's series. 

Using the translation operator exp the function 

can be written in the form 

+ = e*Ks '3.) J(n,) (62) 

and the expression (61) as 

I =J"d?w[Jj? DU)CKf>(t^)Jct)} . (63) 
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St 

The integration in braces can be performed as if the operator were 

an algebraic quantity. This formal integration is justified using. 

Fourier transforms in Appendix A. When D is a function of scalar S 

only one obtains 

r° 

iVds (d/ly DCs) exp( s - - 4ir[sxc}s D(s) si»k (s 1VJ) (64) 
J -J Jo S\%\ 

which with the series expansion 

•o im + l 

S I N K F X ) - ^  —  C 6 5 )  

y y \ - o  ( t m n ) !  
becomes 

- q t r f  S x d . s D ( s ) *|yA(.s 1 VJ)_ £ y 3 Z m  ( V ) m  

• S Vn °«n=o 

where 

and 

5  =  d . j j 5 s  d c s )  

(66) 

D0  5 Jd 5 DCs) (67) 

(68) 

are the 2m-th moments of the short ranged function 

In terms of the expressions (66), (67), and (68) the integral 

(63) becomes 

oo -im f . .am 
X-- D.I j u f<»* IvJ l(t) 

M=O + J 

= af/j? j(0• (69) 
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The convergence of the expansion (69) depends on the short range nature 

of the function Dfs) through its even moments and on the smoothness 

of the function 3~(through its even radial derivatives. 

Momentum Space Method 

In the momentum space method one expresses IE in the form 

I =J"d? (70) 

where 

D(tfa) - D(s) . (71) 

and 

are 

J (?,*) = (72) 

the Fourier transforms of DCS) and » respectively. The 

function D / depends only on the magnitude of K since D ( O 

d e p e n d s  o n l y  o n  t h e  m a g n i t u d e  o f  S  

In the momentum space method the roles of the functions D 

and J" are reversed. When D($) is a peaked function of S over 

the range of which varies slowly, the Fourier transform 

uaj) is often a peaked function of K over the range for 

which DC* ) varies slowly. In this case D CH ) can be 

expanded̂ ®) in a Taylor's series about some value o( which is chosen 
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to optimize the convergence of the expression (70). The result is 

0(O =£>(<*')+ Of1-*') 3'( «*) + •• • (73) 

where 

d'C«<v) = (74) 

When D(s) is expressed as the inverse Fourier transform of DU*) 

DCs) = D(̂ l)exp(-c?-t) (75) 

and the expansion (73) is substituted for DCO one finds 

D C s )  = D(̂ )̂ (s)-6vxv;+̂ )ja)+... (76) 

where the property of the delta function 

- jVd? = % jdtf e.Kf> (-il.1) (77) 

has been used. The expansion (76) can be used to evaluate the confi­

guration space expression (61). One finds 

=J *1 ( D <*°) [ V\ *\) . (78) 



36 

Correspondence Between Methods. The momentum and configuration 

methods are equivalent̂ ) when D(s) is expanded about S • 0 and 

J(IT, K ) is expanded about • 0. The first term of the expan­

sion (78) can be evaluated by putting K'* «* = 0 in the transform 

(71) to obtain 

D Co) = Jdt 0(0 . (79) 

After some manipulation of the derivative of the transform (71) one 

obtains 

ilcjo =-x rds ŝ ocs) 

* L. 6 J 
»*• ljf%o 6 ' (80) 

When the expressions (79) and (80) are inserted into the expansion (78) 

the result is 

i = j(5) + ihj?.tfji?>--] (so 

which is identical to the expression (69). 

The momentum space method gives a different expansion when 

t) CK11) is expanded about some non-zero value K . However in this 

case it is essential that the value of K* = «£ which corresponds to 

the peak of can readily be determined. An example of ex­

panding about a non-zero value of results from choosing o(x 

so that the second term of the expression (78) vanishes. One obtains 

o = 5'(«o[v„v • «(l] J(-Z) . (82) 
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In general the value of o( satisfying Eq. (82) will depend upon the 

coordinate . If one assumes the third and higher order terms of 

the expansion (78) are negligiblê ®»®̂ ) for this value of C(̂  , the 

integral X has the approximate value 

I * J"^)D(*1) . (83) 

Previous Experience With Expansion Methods 

An integral of the form (61) occurs in the non-local form of the 

Schroedinger equation and in the DWBA stripping amplitude. The diffi­

culties previously met in evaluating these integrals using expansion 

methods are briefly reviewed because they throw some light on the choice 

of the best method for evaluating the WBP model amplitude. A more de­

tailed review is included in Appendix B. These difficulties previously 

met fall into two basic categories. We refer to them as the cross 

product difficulty and the evaluation of of1 problem. 

The cross product difficulty arises because the function j is 

usually a product of functions of the form 

G. (84) 

The translation operator ex̂ S *v) then depends on the gradient 

operator -v 

where  ̂ acts only on G and  ̂only on p - In the power 

series expansion of the translation operator, terms with the form 
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("v̂ , + of higher order than first contain cross products 

(9, which are extremely difficult to evaluate. This difficulty 

prevents the use of the configuration space method for solutions of the 

hon-local Schroedinger equation, and for including finite range correc-

82 
tions to the DWBA transition amplitude beyond second order ). The 

second order corrections do not accurately estimate the finite range 

results ). 

The problem of evaluating of occurs only with the momentum 

X \% 
space method, for which 4 should represent the value of X at the 

peak of the function sTCy'*, )0 . In the application of the method to 

solution of the non-local Schroedinger equation the value of oi is 

given the semi-classical value associated with a local potential. The 

cross product difficulty is avoided by ignoring derivatives of the 

function which in this case corresponds to the symmetric 

non-local potential Ujj ( ** * . Because of these two special cir­

cumstances the application of the momentum space method to non-local 

calculations has been quite successful • 

In the application of the momentum space method to finite range 

DWBA calculations neither the cross product difficulty nor the evalu­

ation of problem has been overcome. The function is the 

product of two wave functions 

j( v; • ?) — l|/p( Vj (?. * t?) . (85) 
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The derivative of neither \Ĵ  nor can be neglected so the cross 

product difficulty is not avoided. In addition, accurate estimates of 

x , „ 82. o( cannot be made ). 

Application of Expansion Methods to Finite Range WBP Model Calculations 

The WBP model transition amplitude (60) contains the integral 

I - (86) 

which has the same form as the integral (61) where 

DCS) s Vhf Cs) (87) 

and 

J~( **  ̂ • (88) 

Application of the Momentum Space Method 

Because in the expression (88) is the square of a 

wave function the calculation of expression (86) using the momentum 

space expansion method immediately encounters the difficulty of K . 

The problems are analogous to those previously encountered in evaluating 

82 
the DWBA amplitude with this method ). It is not possible to avoid 

them as in the case of non-locality by using the semiclassical approxi­

mation which can be made only when J" obeys the Schroedinger equation 

(see Appendix B). To see this we substitute the momentum space expan­

sion (78) into expression (86) with the definitions (87) and (88) to 
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obtain 

r = p-? . (89) 

Setting the second term of the expansion (89) equal to zero and solving 

for oc () yields 

x. 
Thus 0C is a complicated function of which cannot be readily 

expanded in spherical harmonics as required if the expression (89) is to 

reduce to a one-dimensional integral. 

The use of Green's theorem to transform the integral (89) does 

not result in a simple choice of 0( . Using the result 

^  I J * c \ i ;  I t p U O  V " [ i r C 7 ) u ( o V  V ) ]  ( 9 1 )  

one obtains the prescription 

«-(?-) = - (92) 

Not only is o( a complicated function of , but one encounters 

the cross product difficulty in evaluating it. 

Application of the Configuration Space Method 

The configuration space expansion of the integral (86) avoids 

both the difficulty associated with cross products and the evaluation of 

eC~ . Substituting the expansion (69) with the definitions (87) and 

(88) yields 
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I -- V„ fa tr(%) *IZ) t ̂  , lO" )7^rrc^> 
*' fr\—o CiWt+O! 

(93) 
'O 1 - »/ z-j K v*\ ' I ff\ V'»,y 
' M\=» (z**)+0! 

where 

and 

v. =j"4tvhf(^ 

IT1" = 

To evaluate the derivatives in expression (93) we write the Laplacian 

in spherical polar coordinates 

v' = [ 1 £ r + V ] 
L V- IR1 "IV-J 

(94) 

ir' 
where 

L* = - [ Sin0 L (s'l^LA + jL "1 (95) 
L lb J )QX J 

and introduce the expansion (49) of IfJCft in terms of spherical 

harmonics. The integral (93) becomes 

(jvlirivjwfi^y a.(y.) y"t) <96> 
J 2L*I 'u i" i-

where the coefficients are given in terms of the zero range 

coefficients expression (50) by 

kW =  ̂  £•£»1 K - tr-VO] <"> 

and contain only radial derivatives. The term with M = 0 in this ex­

pansion is the coefficient which when substituted into the 

integral (96) gives the zero range approximation for the integral 
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I Y>) (98) 
J m UL+I) 

The coefficients j2r̂ (Vn̂  in expression (97) are regular at the 

origin. The zero range functions from which they are derived 

are defined by expression (50) in terms of the wave functions 

which are the solutions of the radial Schroedinger equation in a central 

potential. For small values of p=V» the power series expansion for 

the has the form (see Appendix C) 

~ r»* 2 «i <W 
-© 

where the summation contains only even powers of V" . The vector cou-

pling coefficient in expression (50) requires that {Jf+JP'-Q be even 

and non-negative, so that the power series expansion for the coeffi­

cients Qj-O âs t̂ ie f°rm 

o 00 

VO ~ •; I, <„»;« i . 
*\-s© J 

Inserting the series (99) into the expression (97) gives after some 

manipulation (see Appendix C) 

x -|4 £2, a 
X  f  ( r  a  ( r n ^ > • < H  ( r » - 4 + i x ( * V  

L J msiJr 

* (x»n + XU + l- w+xL+l - * 

, . _ i. vn L ~ 
x...x If . (101) 
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The lowest power of in the series (100) is associated with =Jfr 

and is proportional to VjJ" so that -̂ 0̂  is regular at the origin. 

The coefficients (97) are expressed in terms of the even moments 

s™= ̂Trv/jds (io2) 

of the potential . For the common short range central potential 

forms such as Yukawa, Gaussian and square well, these even moments (102) 

are finite for all values of *** (see Table 2) and can be obtained in 

analytic form. 

To compute the coefficients the differentiation in the 

expression (97) is carried out numerically. This is simple to incor­

porate into the zero range WBP code since the coefficients are 

already stored for evaluating the overlap integrals (59) in the factor 

(55). Since the integral (96) has the same form as the zero range 

result (98) where the coefficients have been replaced by the 

, one simply constructs the and inserts them in 

place of the Q-u 

The modifications are made by entering the subroutine FASHFT 

where the proton density coefficients ®-u(rn̂  are constructed as indi­

cated in the global outline in Fig. 2. This subroutine is passed 

through only once for each reaction - it is not reentered for each angle 

for the outgoing particle or each of the integration angles in the ex­

pression (60). 

The coefficients are typically computed for seven 

values of V. and 100 values of spaced in steps of 0.2 fm. When 



Table 2. Comparison of Even Moments for Some 
Explicit Forms of ̂ np with Parameters Adjusted to Give a Triplet 

Effective Range re>t • 1.7fm and a Triplet Scattering Length at • 5.4fm 

Potential Yukawa Gaussian Square Well 

Form Vnp = Vyexp(-yr)/yr vnp = Vgexp(-n2r2) 
»„p - VS. 'i?-1 

Vnp - 0, r>v-l 

Range Parameter Y-1 = 1.5fm rf"* = 1.5fm B 
M-

l C
M
 n 
H
 

I •> 

s 2m/(2mfl): Y~2m (m! )-1 (2ri)~2m 3(2mf3)~1{ (2mf 1)! }"V2m 

S2®*2/(2m+3)! 

¥2®/(2mfl)! 

y~2 = 2.4fm2 
•C 4r|2 (m+-1) >~1 

a 0.55fm2/(nri-1) 

V-2/ (4m2+14mfl0) 

= 2. Ofm2 / ( 2m2+7nri-5 ) 



the summation in (97) is truncated at the eighth derivative the numer­

ical differentiation involved in (97) must be carried out 100x7x4 = 

2800 times. This involves an insignificant increase in the computing 

time, typically less than 5%. 



CHAPTER 5 

NUMERICAL EXAMPLES 

To carry out the finite range calculations some form must be 

chosen for the central potential • Since the neutron-proton 

relative momentum involved in the amplitude (60) corresponds to 

62 
an energy which is typically 10 Mev ) the potential Vy,j» should be 

chosen to fit the low energy nucleon-nucleon scattering data. It is 

known that one can fit low energy scattering data by a variety of po-

94 
tentials specified by two parameters ) which are adjusted to reproduce 

the experimental values of the triplet effective range re>t and the 

95 scattering length afc ). Thus the choice of potential is ambiguous. In 

order that the finite range predictions do not reflect this ambiguity it 

is necessary to use several forms of and show that they give the 

same result in the WBP model calculations. 

The number of terms which can be included in the expansion (97) 

for is limited by the accuracy with which the successive numerical 

differentiations can be performed. In practice up to the eighth deri­

vative can be retained. For a detailed discussion of the numerical 

methods used and the tests employed to check the accuracy see Appendix 

D. It is necessary to show that the WBP model amplitude evaluated with 

the expansion (97) has converged with this limited number of terms for 

each potential used. 

46 
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The magnitude of the finite range corrections and the conver-

gence of the expansion (97) is determined by the even moments 5 

which depend on the form and the range parameter for each potential V 

If the WBP model amplitude can be shown to converge to a result which is 

independent of the shape of the potential used, then it will be conve­

nient to choose the form of V*p for which the convergence is most 

rapid. 

Several simple potential forms with two parameters adjusted to 

fit the triplet scattering length at and the effective range have 

been used to test the dependence of the finite range corrections on the 

potential shape and to check the convergence. In Table 2 the range pa-

95 
rameters which are consistent with experimental values ) for afc and 

r_ are shown for the Yukawa, Gaussian and square well potentials. The B y t 

values of the moments for these potentials are also listed to­

gether with the ratio V̂ Q̂/Ls 'n/(lm+-0!j of successive 

coefficients in the expansion (97). 

In comparing the relative rates of convergence of (97) for the 

three forms it can be seen from Table 2 that the ratio of successive 

coefficients [j? /(*•"«+t)J J is smallest for the square well, 

Gaussian and Yukawa in that order for all values of w . The expansion 

(97) therefore converges most rapidly (if it does converge) for the 

three potentials in the same order. Thus if shape independence of 

finite range corrections can be demonstrated the square well would be 

the most convenient form to use. 
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Testing for Convergence and Shape Independence 

Typical corrections to the coefficients from the suc­

cessive terms in the expansion (97) are shown in Fig. 3 as functions of 

Yyt for the case corresponding to a square well potential with range 

=2.0 fm. The corrections are smallest for VT  ̂5 fm. This is the n 

region which contributes most to the stripping amplitude. For almost 

all values of the contributions to each JrL can be seen to de­

crease rapidly with increasing fh . 

The coefficients are folded into the amplitude (60) 

from which the values for Pp, Py and do/dQ are obtained. Calculating 

the corrections to the values for Pp, Py and da/dfl from the various 

terms with different values of in the expansion (97) involves a sum­

mation over L in the expression (96) and an integration over in 

the amplitude (60). In this procedure the contributions from those 

regions of space where the expansion (97) does not converge rapidly 

are averaged with contributions from those regions where the convergence 

is rapid. 

The corrections to the values for P̂ , Py and da/dQ corresponding 

to the second, fourth, sixth and eighth moments  ̂ in the expan­

sion (97) have been calculated for a variety of stripping reactions. 

Using a square well potential with range V-* • 2.0 fm it was found that 

vt -yl 
corrections corresponding to S , » , 5 and S decreased 

successively by an order of magnitude for each increase of 2 in the 

order of the moments. Figure 4 shows typical effects on P̂  and dcr/dft 

of truncating the expansion (97) for successively higher values of W . 

The curves for cross section and analyzing power coincide with solid 



Fig. 3. Typical Finite Range Corrections 
to the Coefficients b̂ (r) as a Function of r 

The case corresponds to the reaction 40Ca(d,p)̂ l.Ca (i.95MeV p3/2) 
at Ê j * llMeV calculated with the parameters indicated in Table 5 
for a square well potential Vnp of range v~l = 2fm. The upper 
curves on the left show the terms with m = 1 and m = 2 in the ex­
pansion (97) for bQ as fractions of the zero range coefficient aQ. 
The remaining curves result from truncating the expansion (97) for 
each L at m = 0 (broken dotted curve corresponding to the zero 
range approximation), at m = 1 (solid curve) and at m = 2 (broken 
curve). All curves coincide with solid curves except where shown. 
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curves where not shown. The correction to the zero range result from 

the term with hi = 1 is significant. However the contributions from 

terms with higher values of Vrv decrease rapidly with increasing *** 

It has been observed that corrections to Pp, Py and da/dfi due to succes-

ive powers of alternate in sign. For example the corrections to 

the cross section in Fig. 4 near 135 degrees for M = 1, 2 and 3 are 

negative, positive and negative, respectively. Truncating the expansion 

(97) at = 1 overemphasizes the finite range correction. 

For the Gaussian potential with range T|-* = 1.5 fm the sequence 

of corrections to (97) corresponding to ? , S and 5 (see 

Table 3) decreased less rapidly than for the square well. While the 

calculated values for P̂ , Py and da/dft for the square well potential 

appear to have converged for M = 3, calculations with the Gaussian 

potential require the addition of the term with n\ = 4. 

Table 3. Comparison of the Second 
Through Eighth Moments s"̂ m/(2nri-l)as Given in Table 2 

m moment Yukawa Gaussian square well 

1 2nd(fm2) 2.4 0.56 0.4 

2 4th(fm̂ ) 5.6 0.156 0.057 

3 6th(fm6) 13.3 0.029 0.004 

4 8th(fm8) 31.4 0.004 0.0002 
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With these truncations the values for P̂ , Py and dcr/dfl calcu­

lated with the Gaussian and square well potentials are virtually 

identical. A comparison for a typical case is shown in Fig. 5. Since 

the finite range corrections do not depend on the shape of we have 

chosen to use for the remainder of our calculations the square well po­

tential which gives the most rapid convergence. 

The square well and Gaussian potentials have short tails so that 

with parameters chosen to fit low energy two-nucleon scattering the 

weighted moments as shown in Table 3 form a rapidly decreasing sequence. 

For potentials such as the Yukawa potential which has an extended tail, 

the weighted moments may form an increasing sequence as shown in Table 

3, and the expansion (97) may not converge. For such potentials our 

expansion method is not feasible. 

Choice of Parameters 

To study the nature of the finite range corrections it is neces­

sary to choose carefully the parameters which specify the optical 

potentials which represent the interactions in Fig. 1. The details of 

the finite range corrections depend somewhat on these parameters. The 

optical potential parameters are found by fitting nucleon-nucleus scat­

tering and bound state data. We use the values found for previous 

calculations with the zero range form of the WBP model. 

To determine the bound state radial wave function we 

have used the potential 

VBM = V. 
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where F(v) has the Woods-Saxon form 

I*1 
F ( 0  -  L l  + •  e x P  . (104) 

W3 
In all cases we have used o£ = 32, = 1.25A and A-= 0.65 fm. The 

depth parameter v0 is varied to reproduce the experimental binding 

energy. 

The optical potentials for the scattered wave functions have the 

form 

v ( _  r )  -  -  v  f  ( r  a ,  - t  w ^ ( v )  - c  w y  f  ( y ;  i r  

-V + Vc (r) (105) 

with 

-1 

F(v;a 0  = [ l*e*r( r- i^]  i  (106) 

and 

q(r )  =  -Ah  i_  ( f=u (  (107)  

and 

•Aw = -y' J_F(rcC) K'V.a"' . (108) 

The proton potential was truncated as in ref."*̂ ). The Hamada-Johnston 

62 
form of the deuteron wave function is used as in ref. ). Non-local 

corrections to the neutron and proton wave functions are made by di­

viding each wave function by the factor (see Gq. (B15) in Appendix B) 

f ( r )  = I  i - (109) 
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where fi is the non-locality parameter and UJr) is the appropriate 

neutron or proton local optical potential. Note that ;f —*1 for large 

V while in the nuclear interior. This damping of the 

nuclear interior increases with increasing y? . For the standard case 

we choose ft =0.85. 

The calculations reported here are based on the average 

Qg 
optical-model parameters of either Rosen et al. ) or Becchetti and 

97 Greenlees ) (referred to as "BG") with small modifications for each 

target nucleus. The Rosen and BG parameters are listed in Table 4 and 

the parameter sets used for each reaction are listed in Table 5. 

Qualitative Nature of the Finite Range Corrections 

Typical finite range corrections to the values calculated for 

PD, Py and do/dfi are shown in Figs. 6-12 for reactions with &n • 0, 1, 

2 and 3 on target nuclei ̂ 0, ̂Ca and ®®Zr. The data shown for these 

98—105 reactions were taken from refs. ) as indicated in Table 6. These 

reactions were previously used to test WBP model calculations with the 

zero range approximation̂ '̂̂ ) which reproduced the main features of the 

measurements for P̂ , Py and da/dfi over a range of deuteron energy. It 

is of some interest to see whether the finite range corrections improve 

the fits to the data especially in any systematic way. It is also in­

teresting to compare the finite range effects in the WBP model with 

corresponding effects in DWBA calculations and in non-locality. 1 

In the two previous cases where an integral of the form (60) was 

evaluated by expansion methods, namely for the evaluation of wave 

functions in a non-local potential and for calculating the DWBA 



Table 4. Optical Model Parameters of Rosen and Becchetti-Greenlees 

Rosen Becchetti-Greenlees (BG) 

Neutron Proton Neutron Proton 

V (MeV) 49.3-0.33E 53.8-0.33E 56.3-0.32E 54.0-0.32E + 0.4ZA~1/3 

W (MeV) 5.75 7.5 13.0-0.25E 
or zero 

11.8-0.25E or zero 

Wy(MeV) 0. 0. 0.22E-1.56 
or zero 

0.22E-2.7 or zero 

a(fm) 0.65 0.65 0.75 0.75 

b(fm) 0.70 0.70 0.58 0.51 

c(fm) 0.65 0.65 0.75 0.75 

ra(fm) 1.25 1.25 1.17 1.17 

rb (f m) 1.25 1.25 1.26 1.32 

rc(fm) 1.25 1.25 1.01 1.01 

Vg(MeV) 5.5 5.5 6.2 6.2 

Ut os 



Table 5. Parameters Used for the Reactions Shown in Figs. 6-12 

Reaction Neutron Proton 

90Zr(d,p)91Zr Rosen parameters Rosen parameters 

g.s. d5/2 and 1.2MeV sl/2 W = 7.5MeV W = 4.5MeV 

40Ca(d,p)41Ca 

g.s. f7/2 
Rosen parameters 

BG parameters 

W = 3.OMeV, ra=rb=rc=1.3fm 

40Ca(d,p)41Ca 

1.95MeV p3/2 and 3.95MeV pl/2 

Rosen parameters 

r • rv » r = 1.3fm 
a D c 

Rosen parameters 
ra " rb = rc • l'3fxa 

W = 4.OMeV 

g.s. d5/2 

Rosen parameters 
a=b=c=0.55fm 

ra = r = r = 1.5fm 
W=3.0MeV 

Rosen parameters 

ra = rb " rc = x-3 fm 
a=b=c=0.55fm 
W = 3.OMeV 

160(d,p)170 

0.87MeV sl/2 

Rosen parameters 
a=b=c=0.55fm 

ra " rb " rc = 1' 5fm 
W=3.OMeV 

Rosen parameters 

ra " rb = rc " l' 5fm 
a=b=c=0.55fm 
W = 3.OMeV 
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Table 6. Data for Reactions Shown in Figs. 6-12 

Reaction Fig. da/dfl PD py 

160(d,p)170 

0.87MeV sl/2 
6 ref.100) ref.99) 

16o(d,p)1 70 

g.s. d5/2 
7 ref.104) ref.99) 

40ca(d,p)4*Ca 

3.95MeV pi/2 
8 ref.101) 

, 102. ref. ) ref.103) 

40Ca(d,p)41Ca 

1.95MeV p3/2 
9 ref.101) ref.102) ref103) 

40Ca(d,p)41Ca 

g.s. f7/2 
10 ref.105) ref.102) 

103 
squares ref. ) 

circles ref.105) 

90Zr(d,p)91Zr 

1.2MeV sl/2 
11 ref98) ref.99) ref.98) 

90Zr(d,p)91Zr 

g.s. d5/2 
12 ref.98) ref."; ref.'8) 
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amplitude, the main effect on the integral was to modify the integrand 

inside the region corresponding to the nuclear interior. In the case of 

non-locality the local wave function is divided by the factor (109) (see 

Appendix B for details) which differs most from unity in the nuclear in­

terior. A similar effect is found in the DWBA amplitude. In the 

83 
approximate method of ref. the main finite range corrections origi­

nate from the region of configuration space where the neutron is inside 

the target nucleus. For example the integrand of the reduced transition 

83 
amplitude (in ref. ) see expression 2.20) is multiplied by a 

radius-dependent complex factor. Just as for non-locality this factor 

tends to damp contributions from the nuclear interior. 

To see whether the finite range corrections to the WBP model 

calculations produce a similar damping of the contributions from the 

nuclear interior the finite range and corresponding zero range calcu­

lations were compared with zero range calculations with an increased 

non-locality - 1.0 in the factor (109). Some of these comparisons 

are shown in Figs. 6-12. 

The effect of finite range is remarkably similar to that of in­

creased non-locality for the reactions 9̂ Zr(d,p)9*Zr (1.2 MeV, sl/2), 

90Zr(d,p)91Zr (g.s. d5/2), 4°Ca(d,p)41Ca (1.95 MeV, p3/2) and 

®̂Ca(d,p)̂ *Ca (3.95 MeV, pl/2). Both tend to reduce the differential 

cross section at large angles. Both alter Pq and Py in the same way 

(e.g. in Fig. 9 note the changes to PD and P̂  near 60 degrees for the 

reaction leading to the 1.95 MeV state in ̂ *Ca). In these cases where 
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the finite range effects can be simulated by Increasing non-locality the 

overall finite range corrections are small. 

However in certain cases which occur predominantly for target 

nuclei with A ̂ 40 the finite range effects cannot be simulated by 

increasing the non-locality. Examples are the reactions *̂ 0(d,p)̂ 0 

(0.87 MeV sl/2) shown in Fig. 6 and ̂ ®Ca(d,p)̂ *Ca (g.s. f7/2) shown in 

Fig. 10. Here the corrections to the differential cross section are es­

pecially pronounced, the effect increasing with increasing &n. Both the 

shape and the magnitude of the cross sections are altered. 

In these cases the finite range corrections appear to come from 

outside as well as inside the target nucleus, with the interior region 

predominating. Calculations have been made with the finite range cor­

rections only in the region of the neutron configuration space outside a 

sphere of radius Vh . The results of one such calculation are shown in 

Fig. 13. The largest effect is shown on the right hand side of Fig. 13 

and comes from the nuclear interior Y" < 4.5 fm. Smaller finite range 
*1 

contributions come from the exterior region as seen from the comparison 

on the left hand side of Fig. 13. 

No systematic improvements have been observed in the fits to P jj 

and Py from the finite range corrections, even in the cases when the 

changes are large. In particular the finite range corrections do not 

remove the discrepancies noted in refs.̂ '̂ ). For example the calcu­

lated polarization near 30 degrees in Fig. 10 remains positive over a 

range of deuteron energies near 11 MeV while the measured values are 

negative. 



Fig. 13. Finite Range Corrections from Various Regions 
of Neutron Configuration Space 

The solid curves represent WBP model calculations for 
zero range approximation on the left and finite range 
been calculated with the zero range approximation for 
larger values of r̂ . 

the reaction Ca(d,p) Ca (g.s. f7/2) with the 
corrections on the right. The broken curves have 
r < 4.5fm and the finite range corrections for 
n 
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On the other hand the finite range corrections do systematically 

change the shape of the calculated differential cross sections by re­

ducing values at large angles relative to the cross section at the 

stripping peak. In most cases this improves the fits to the experi­

mental data. An example is the reaction ̂ ®Ca(d,p)̂ Ca (g.s. f7/2) for 

which the zero range calculations in ref.*̂ ) were consistently too large 

over a wide range of energy for angles greater than 90 degrees. 

Quantitative Nature of the Finite Range Corrections 

Probably the most important of the finite range effects are the 

corrections to the magnitude of the differential cross sections and to 

the spectroscopic factors derived therefrom. There is a systematic 

trend for the finite range calculations to reduce the magnitude of the 

cross section at the stripping peak and at large angles. 

The reduction in magnitude of da/dJ2 (with the subscripts ZR and 

FR referring to zero range and finite range) at the stripping peak is 

summarized in Table 7. Two trends are apparent. The effect depends 

both on the orbital angular momentum transfer &n and on the size of the 

target nucleus. For reactions with the same value of % the reduction 
n 

is stronger for small nuclei. For reactions on the same target nucleus 

(see ̂ ®Ca(d,p)̂ *Ca and *̂ 0(d,p)̂ 0) the reduction increases with 

This effect is independent of the values for Q and j for the reaction. 

Although the peak value of the calculated cross section is very 

important, the entire angular distribution is actually used to extract 

the spectroscopic factor. The back-angle distributions usually carry 

less weight due to uncertainty from the small magnitudes involved and 



70 

Table 7. Depression of Cross Section at the Stripping Peak 

Reaction R = (da/dfi)FR/(da/dn)2R 100(1 - R) 

160(d,p)170 

0.87MeV sl/2* 
0.83 17% 

16o(d,p)170 

g.s. d5/2 
0.76 24% 

®̂Ca(d,p)̂ Ĉa 

3.95MeV pi/2 
0.95 5% 

40Ca(d,p)̂ lCa 

1.95MeV p3/2 
0.89 11% 

40Ca(d,p)41Ca 

g.s. f7/2 
0.72 28% 

90Zr(d,p)91Zr 

1.2MeV sl/2* 
0.97 3% 

'̂ Zr(d,p)9*Zr 

g.s. d5/2 
1.02 -2% 

Measured at the second maximum for reactions with i • 0 n 
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possible compound nucleus contributions (usually small and isotropic). 

For the examples discussed, however, these problems are not expected to 

be serious. Spectroscopic factors with and without finite range correc­

tions have been extracted by comparing data and calculations visually on 

logarithmic plots. This method has proven consistent with automatic 

search routines based upon a chi-squared minimization'"̂ ). Table 8 shows 

the extracted spectroscopic factors along with the percentage increase 

over the spectroscopic factors extracted using the zero range 

calculation. 

Summary and Discussion 

Ve have shown that it is possible to make accurate finite range 

WBP model calculations using the configuration space expansion of the 

integral (60). For an appropriate choice of the form of the potential 

the expansion has been shown to converge to a value which 

depends very weakly on the shape of . This can be contrasted to 

similar attempts to include finite range effects in DWBA calculations, 

where the corresponding expansion has not converged, and shape indepen­

dence has not been demonstrated. 

The finite range corrections shown in Figs. 6-12 do not change 

the major qualitative nature of the predicted values for Pjj, Py and 

dff/dfl. However they are comparable in magnitude to the contributions 

from the deuteron D-state and to the uncertainties which arise in the 

WBP model calculations from ambiguity in the optical potential param­

eters. For quantitative comparison of the WBP model with experiment it 

is necessary to include them. 
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Table 8. Comparison of Spectroscopic Factors 

Reaction Zero Range Finite Range % increase 

160(d,p)170 

0.87MeV sl/2 
0.65 0.80 23% 

160(d,p)170 

g.s. d5/2 
0.52 0.63 21% 

Ôca(d,p)41Ca 

3.95MeV pl/2 
0.71 0.77 8% 

®̂Ca (d,p)̂ -̂Ca 

1.95MeV p3/2 
0.73 0.82 12% 

Ôca (d,p)̂ -̂Ca 

g.s. f7/2 
0.57 0.71 25% 

90Zr(d,p)91zr 

1.2MeV sl/2 
0.97 0.93 -4% 

90zr(d,p)9lZr 

g.s. d5/2 
0.90 0.91 1% 



APPENDIX A 

INTEGRATION OF EQUATION (64) BY FOURIER TRANSFORMS 

The integral 

•£ = jV <Js f d-Oj DCs) eSJC?.) (Al) 

poses a difficulty in the interpretation of the operator • It will 

be shown in this appendix that may be treated as if it were an al­

gebraic quantity so that the integration over -ft* in Eq. (Al) can be 

carried out. The result is 

1 =4irJsNsm (a2) 

* 
The interpretation of the operator is made clear by in­

troducing the Fourier transform of the function The term 

in Eq. (Al) will be seen to operate only on a simple expo­

nential term so the desired integration over can easily be 

completed. The operator and the inverse Fourier transform are 

then reintroduced to achieve the result (A2). Details are given below. 

Inserting the Fourier transform 

jC?) = (A3) 

in Eq. (Al) and reversing the order of integration yields 

X = ("J? D(s)jd$,e*p (2-^J e*p (C• (a4) 

73 
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The operator now acts only on the term • 
-+ 

Since 5 is not operated on by , the relation 

(s • v„) ex? exf ( i !„•"?•„) (A5) 

follows. Taken "j times, the operation in (A5) gives the expression 

(s • VH)J exp(ii„• = (i.̂  sfe*Ki?vrn) (A6) 

from which follows the result 

XI 

exp(s • exp(tX,"0 

= [» * ̂  •"? + o1n*T)V. 1 e *f (.< •?*) 

«4  ̂  ̂

K .̂xp({*H,rhV (A7) 

The angular integration over can now be easily per­

formed. Inserting the expression (A7) into the integral (A4) yields 

l=f4j(l^6'f(i^) (AS) 

where the expression 

^ = j"sMs D(s) e *? (;2,-"s) (A9) 

contains the desired angular integral. Since S is a dummy variable 

and D(S) is isotropic, the £ axis is taken parallel to § . The •I 

result of the integration over Jflj is 

 ̂; 4tr f s*ds D(s) . (A10) 

As 
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The operator ̂  can be reintroduced by using the expansion 

stu s) _ e*p(t^s) - e^p(-^hS) 

is " " 
Z L « * S  

. i • ciA_^ * . (All) 
3! 5-1 

Since  ̂is independent of ̂  and  ̂ , the relation 

(A12) 

follows, which applied j times gives the result 

(.s |7Kiy Qxp(<?h'T;) • (A13) 

Combining expressions (All) and (A13) gives the relation 

s) ̂r(t?„.<)= [i * cnyj)i-7 e*fo2, 

4„s " " " 

_ Siwkcsl'j) 

SiVj (A14) 

Finally, combining the expressions (A8), (AlO), and (A14), and inter­

changing the order of integration yields the integral 

X = -wrJsMs Qh) ^lx)7(A) • (ai5> 
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The last Integration on the right hand side of Gq. (A15) is the Fourier 

transform of so Eq. (A15) reduces to the integral 

T> hit fs\Js DCs) (*1̂ 0 T(£\ <ai6> 
J jIVh! ° *} 

which is identical with Eq. (A2), the desired result. 



APPENDIX B 

PREVIOUS APPLICATION OF EXPANSION METHODS 

In this appendix the use of expansion methods in calculating 

non-local wave functions and finite range effects in the DWBA is 

discussed. 

Approximate Solution of the Non-Local Schroedinger Equation 

The Schroedinger equation with a non-local potential may be 

written76) 

-L vV C?)+1 = Evf (v?) 
2.W *1 " 

(Bl) 

where 

X = (B2) 

and is usually taken to be of Gaussian form 

L (s) = (irvy')~1exr(-s t/^) (B3) 
Ofi 

The integral (B2) is of the form (61) where we identify D(S) with 

^(s) and 3" with the remaining product 

J = . <«*) 

It is most convenient to use the momentum space method to. eval­

uate the integral since the configuration space method leads immediately 

77 
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to the cross product difficulty discussed in Chapter 4. If the deriv­

atives of the potential Û (f) are neglected, the momentum space 

expansion (78) applied to the integral (B2) gives 

1= <B5) 

where 

G(̂ ) = Jdt £,CS) ex|>(c5.t) . (B6) 

The second term in Eq. (B5) vanishes when 

(B7) 

A convenient approximation to this value of 0( is given by the 

semiclassical value associated with the kinetic energy in a local po­

tential (hence the name Local Energy Approximation or "LEA") 

^ t E - uv am 

where the local potential ULĈ r) is related to U,g(Y") by 

UL(f) « G(̂ ) UN(?) . (B9) 

It should be noted that this prescription for 0( which is 

responsible for the success of the momentum space expansion in this case 

requires that the function <J" in the integral (B4) have the form 

where is an approximate solution of a local Schroedinger equation. 
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-X. 
With this value of oi the solution to the non-local 

Schroedinger equation (Bl) can be written in terms of the solution of a 

local Schroedinger equation 

% l?> - C r) (BIO) 

where the form of the function can be determined. The equation 

(Bl) becomes76) with f -

* * $ i 

= L( , + y #uu) . (bid 
f 

The right hand side of Eq. (Bll) will vanish if -f is chosen to 

satisfy 

. (B12) 

For this choice of ~S~ Eq. (Bll) becomes a local Schroedinger equation 

•  < B 1 3 >  

Since is independent of except in the surface region, one 

can set the term  ̂= constant to integrate Eq. (B12) with the result 

-f(f) = L 1 + fl'Uwl * (B14) 

which for the Gaussian form (B3) becomes 

£(?) = [,\ - ̂  U, Iv*)] * (B15) 
-LJC ^ J ' 
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In calculating the WBP model amplitude the non-local 

nucleon-nucleus wave functions are calculated by solving the local 

Schroedinger equation (B13) and dividing by the factor (B15). 

Expansion Methods for Finite Range DWBA Calculations 

82. 
The DWBA transition amplitude contains the integral ) 

I <B16) 

which has the same form as expression (61) with Ofs) - where 

(fij is the internal deuteron wave function, and 

J  =  %  V r  ( £  * < B 1 7 >  

where % and Ujj are the distorted waves for the proton and 

deuteron. The configuration space expansion for evaluating X (which 

is usually referred to*'-') as the "effective mass approximation" (EMA)) 

leads immediately to the cross product difficulty. With the expansion 

(69) the integral (B16) becomes 

I (B18) 

where ^ acts only on Vj/j and ^ acts only on . For the 

first order term in expression (B18) the cross product difficulty can be 
~-V 

overcome. By defining an operator V acting on both and VjJj 

one can write 

(V&, . (B19) 
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The Schroedinger equations for and can be used to eval­

uate v, and typ • The effect of v on the first 

order tern in the expansion (B18) can be evaluated by applying Green's 

theorem 

(B20) 

and using the Schroedinger equation for the neutron wave function 

pi 

to evaluate v . The second and higher order terms in the expan­

sion (B18) are much more difficult to evaluate because they contain 

terms 03 • vj" of order Yn > 1 . No attempt has been made in the 

literature to carry the EMA expansion for this application beyond 

second order. 

The momentum space expansion which is referred tô ®) as the 

"local energy approximation" (LEA) has both the cross product difficulty 

and the evaluation of problem. Because the function 3" is a 

product of two wave functions and is not a solution of a Schroedinger 

equation as in the non-locality problem, the evaluation of c(l problem 

cannot be overcome. The momentum space expansion (78) applied to the 

integral (B16) gives 

v(*WriyD%fa)-(B2D 

After some manipulations and use of the Schroedinger equation, one can 

show that the second term of the expansion (B21) vanishes for 

(B22) 



where &Mf/zry t £• are the proton and deuteron energies. Thus o(L 

is a complicated function of . Since o< should be the value of 

1̂  corresponding to the peak of the Fourier transform of Vpj , 

and since is a complicated function it is not surprising that 

x 
oc is difficult to find. For this reason all efforts to apply this 

81 method to finite range DWBA calculations have proven unsuccessful04-). 



APPENDIX C 

BEHAVIOR OF THE EXPANSION COEFFICIENTS bL(rn) NEAR THE ORIGIN 

The coefficients bL(rn) in expression (97) of Chapter 4 are 

derived from the zero range coefficients 

2  L  ° > f .  < « >  

ir 
The partial waves are 8enerate<* from a complex optical poten­

tial which approaches a constant complex value as |£ —> 0 . Near 

the origin the radial function Ujj defined by obeys 

df L p* •> * ' t£ _ , (C2) 

2A " 

If p) is expanded in a power series 

U.J, ( f) = />'*' [ \ Cj.fV ...J (C3) 

and inserted in Eq. (C2) one has after setting the coefficients of each 

P 
power of equal to zero separately 

Cj - O j : od<A 

C. • - — (I * ̂  C. • i / ^ 
J ~ jU(n,j) eVeM • «*> 

83 
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Thus for small the partial wave Vr0 contains only even 

powers of VJ, 

Vr») * r»'r (c5) 

mso 

where the coefficients are related to the coefficients Cxm in 

Eq. (C3) by <5̂  = clwik . 

The behavior of the coefficients aL near the origin can now be 

determined. Combining the expressions (Cl) and (C5) gives 

aL(r»)*Z °-*i' \ L°>l\i+id«.cll' rh1(w+M). <c6> 

Cw-m' 
The vector coupling coefficient 0 fL' 0\ LÔ  requires {Jl *• Jt'-\-) 

i+i' L 
to be even and non-negative so the lowest power of  ̂ is £ 

Rearranging terms in the one can write 

rL£ < <f, C(m+* 1 = r^\i.W (<U, + d,<CK + 

= r*L ̂ 141* +[\<U*+ • * J 

vn̂ o (C7) 

Note the are real as required since the aT(rn) are expansion 

*L 

'h» n L n' 

coefficients of and that the expansion (C7) for the aT has 

exactly the same form as the expression (C5) for the • 
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One can now determine the behavior of the coefficients b̂ (rn) 

near the origin by inserting the result (C7) for rnaL(rn) into the gene­

rating equation (97) for the coefficients b (r ). Applying the operator 

tic - L(L+Oj p times to rnaL(rn) as given by the expansion (C7) 

yields the result where Dh -

P 

7 [D* - L(Lv>^] [X = S • •(«)* 

* (lw+lL+1 -2.p+i-)( 2.«l + 2L + 1 -Zf+4)* 

<fzw+2L+l-ip+6)**-(i»»»+t-L<- i)* 

iw+L - if 
* r . (c8> 

The summation (C8) begins at m = p due to differentiation of 

constant terms so that the lowest power of rR in the summation (C8) is 

rjj. Hence near the origin the coefficients 

D :  - ] \v* vo] 
U  P=O (zp+-l)L  « \ 

are regular for all L. 



APPENDIX D 

NUMERICAL DIFFERENTIATION METHODS 

Accurate finite range corrections in the WBP model rely upon 

the generation of accurate coefficients l 

requires a numerical differentiation routine capable of computing ac­

curate even-order derivatives. Typically the functions are 

computed for eighty equally spaced values of from 0 to 16 fm, 

giving a step length h = 0.2 fm. Since the accuracy of many differen­

tiation algorithms is sensitive to the step length and since it would 

be very costly to decrease the step length, an algorithm was sought 

which would give satisfactory accuracy for the step length used in the 

existing zero range code. 

methods is not very revealing it was thought necessary to test various 

methods by using them to compute even derivatives of an analytical 

function with known derivatives. Since the functions Vy,ClL(V̂ ) are 

oscillatory functions it was decided to test the methods with sine 

curves of variable frequency. For this situation one can not only study 

roundoff error by increasing the "word" size (double precision arith­

metic) used in the computer but also study directly the accuracy as a 

function of step length. 

of Chapter 4. Evaluation of the term 

Because the analytical study of errors inherent in numerical 

86 
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Among the methods tested were a seven point central difference 

formula based on Stirling's interpolating polynomial and a Lagrangian 

interpolation formula written for either three or five points. 

The central difference formula is given by twice differen­

tiating Stirling's interpolating polynomial107). Denoting the seven 

equally spaced functional values by yj_3» yj.-2» •••» yi+3 t*ie second 

derivative at the point x̂  is 

Si l>o o>i) 

Since the formula (Dl) is not applicable for the first three and last 

three points, Newton's forward formula107) which, including six terms, 

twice differentiated reads for the first three points 

(If there are n points, one puts ŷ -*- -yn_i in Eq. (D2) for the last 

three points). 

The other methods take the first derivative of Lagrange's 

interpolating polynomial of degree 2 relevant to either three or five 

108 
successive points ). For three points the first derivative at the 

center (x̂ ) of the three points is 

y *  "  t A  ( ( d 3 )  

except for the first and last points ŷ  and yn where the derivative is 

evaluated at the first and last points 
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i = : h H ^ n - y 3 )  

~ . <M> 

Likewise the five point Lagrange derivative reads for the third 

through third-from-last points 

& = ;rJ VrV'tu -*<-.)] ») 

with derivatives at the end points 

^ =  
+ «•% -3%] 

i  =  -h [ * .  l , + l 6 a ,-3+3u] <d6> 

and adjacent to the end points 

^ = ;h[-*5f.-,05»L+,,V6V!>J 

L, = ^ [ 3 9 ^ <>%.>-u]. <»> 

In contrast to the seven point Stirling formula which computes 

the second derivatives directly, the Lagrangian formulae build the 

second derivatives by using the array of first derivatives as input. 

In this way a certain amount of "smoothing" is achieved. 
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Single and double precision routines for the above methods were 

used to compute second, fourth, sixth and eighth derivatives of sine 

curves for step sizes ranging from h • 0.05 to h • 0.30. The eighty 

input values for the sine curve with h • 0.05 covered less than a cycle 

while those with h = 0.30 covered almost four cycles. 

Differences among the methods became quite apparent in the 

eighth derivatives with the five point double precision Lagrange method 

giving satisfactory accuracy (the sixth derivatives were usually accu­

rate to one part in 10̂ ) for all eight derivatives over the entire 

range of step size. Least satisfactory was the method based upon 

Stirling's interpolating polynomial. It lost accuracy in the small step 

length - high derivative region. Roundoff error became troublesome in 

all cases in this small step length - high derivative region. 

Despite these difficulties it was found that for the usual WBP 

model finite range corrections with a square well potential including 

second, fourth and sixth derivatives that all of these methods are of 

satisfactory accuracy. In this case computations of cross section, 

polarization and vector analyzing power with these different methods 

all agreed to within one percent. 
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