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ABSTRACT 

A modification of Scherer's Self-Consistent model and a new model, the 

Interlocking Cell model, have been developed to characterize the sintering 

behavior of mixtures of two glass powders. The theoretical sintering curves 

predicted by both these models are compared to each other and to experimental 

densification behaviors. Viscosities extrapolated from homogeneous sintering 

curves of sol-gel derived powders are transient and cannot be predicted based on 

composition alone. These transient viscosities have a significant effect on the 

sintering kinetics. The Self-Consistent and Interlocking Cell models assume very 

different microstructural changes during sintering. However, differences between 

the two models can just be distinguished using experimental densification curves 

of sol-gel cordierite based glass mixtures. 
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CHAPTER 1 

INTRODUCTION 

Sintering is defined as the coalescence of multiple particles into a single mass. 

The primary driving force for sintering is the overall reduction in surface area. 

Industrial applications of powders with high surface areas are fairly wide-spread and 

include all types of materials: ceramics, glasses, metals, and composites. Sintering 

is part of the manufacturing process when the initial materials are in powder form 

and the final product is a dense sample. 

One application where powder processing is very useful is in the formation of 

complex shapes. By placing a powder and some binder in a mold and sintering it, 

samples can be made with geometries very similar to the final product, reducing the 

amount of machining required. Electronic packages often utilize a screening 

technique in which a powder is deposited in the desired pattern and then heated 

until it is fully dense. 

Glass or ceramic pieces often are produced via powder processing techniques 

because other methods require higher processing temperatures. Metals with low 

melting points are often cast by pouring the molten metal into a plastic or metal 
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mold. However, most finished glass products are not made by this method. Ceramic 

and glass castings are generally made by placing some powder and binder in the 

mold and heating the mixture until it sinters. The sintering temperature is much 

lower than the melting point; therefore, it is also often considered more energy 

efficient. 

Powder processing also lends itself to the manufacturing of composites. It is 

possible to cast one component around the another (such as steel reinforced 

concretes). However, when the alignment of the embedded material is not critical, 

it is much easier to cast and sinter both components at the same time. When the 

alignment of fibers in a matrix is important, it is sometimes possible to align one 

component with an electric or magnetic field allowing both components to be cast 

simultaneously. 

Some applications require very careful monitoring of the sintering behavior 

during manufacturing. For example, the core and cladding of some optical 

waveguides can be made simultaneously by varying the radial composition as the 

glass is deposited. Sometimes problems develop when trying to sinter the fiber, 

because the core and cladding materials sinter at different rates.1,2 Other 

applications which use powder processing to end up with a product with specific 

dimensions require very tight tolerance on the amount of shrinkage due to heating. 

Some applications require a final product which is fully dense or it will "fail" in use, 
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i.e.: pores within optical waveguides scatter light, cracks in printed electrical paths 

cause opens, and voids in composites decrease their strength. 

Sawhill3 mentions using mixtures of two glass powders in order to produce 

dielectric substrates. Often sintering mixtures of two glasses and allowing one to 

crystallize produces fairly dense samples. However, the samples must reach full or 

near full density before crystallization halts densification. In order to produce high 

quality substrates, the compositions of the glasses can be tailored to promote 

sintering before the desired phases begin crystallizing. 

All of these applications involve inhomogeneous or heterogeneous sintering, 

which for this document is defined as the densification of a sample containing two 

or more components with different properties. Chemical variations within the 

sample, whether intentional or not, affect the densification behavior. It is not 

possible to accurately determine the sintering behavior of samples with more than 

one component by simply averaging the sintering times of each of the components. 

Models which predict the sintering behavior of heterogeneous samples should be 

developed. By using heterogeneous sintering models, it can be determined how 

changes in the properties of the individual components or the heat treatment 

procedures will impact the properties of the final product. 
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1.1 Objectives 

The objective of this work was to characterize and model heterogeneous 

sintering. Several models exist for predicting the sintering behavior of heterogeneous 

crystalline samples,4,5 but only one that this author is aware of describes the behavior 

of inhomogeneous viscous glasses.6 Even Scherer's Self-Consistent model6 has only 

been explored for rigid inclusions in a glassy matrix7 and bimodal pore size 

distributions 6 Very little experimental work has been published on the sintering of 

either heterogeneous glass or ceramic powders. 

Results of sintering studies on homogeneous glass powders in the 

Mg0-Al203-Si02 system near the cordierite composition will be presented. These 

glass powders were produced via a sol-gel route described by Aruchamy et al. which 

produces homogeneous powders.8 The sintering behavior of three different 

compositions will be characterized and compared. 

The effect of heterogeneities on experimental sintering behavior will also be 

studied. A heterogeneous sample with the same bulk composition as stoichiometric 

cordierite was produced by mixing two different powders. The sintering behavior of 

this mixed sample will be compared to the sintering behavior of a homogeneous 

powder with the same composition. 

Two heterogeneous sintering models will be presented and compared to the 

experimental densification behavior of the mixed sample. One of these models, the 
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Interlocking Cell model, has been developed for this study and is an extension of 

Scherer's model for homogeneous sintering.9 A modification of Scherer's 

Self-Consistent model which can be applied to mixtures of powders with different 

viscosities6 will also be presented. These two models assume different 

microstructures develop due to sintering, suggesting that only one of these models 

can correctly model the sintering behavior of a heterogeneous sample at any given 

time. It is hoped that the experimental sintering results will allow a determination 

of which model is more suitable for this system of glass powders. 
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CHAPTER 2 

LITERATURE REVIEW 

In this chapter the pertinent models which have been developed to describe 

sintering behavior under a variety of conditions will be presented. The first section 

will describe the basic Frenkel10 and Mackenzie-Shuttleworth11 models for 

homogeneous sintering. A more detailed description of the Scherer homogeneous 

sintering model9 will be presented because several of the models in this chapter and 

in the rest of this document are based on the Scherer unit cell geometry. The 

following section of this chapter will contain a brief description of the approaches 

used to model pore size distributions, including the Self-Consistent model.6 Several 

different heterogeneous sintering models which can be applied to rigid inclusions will 

be presented and compared. Since the experimental work for this study has been 

conducted using powders in the Mg0-Al203-Si02 system, some background 

information on similar compositions is given in the last section. 



Figure 2.1: Center-to-center approach of two spherical particles. Geometry 
assumed by Frenkel.10 
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2.1 Homogeneous Sintering 

A variety of models have been developed for describing the sintering behavior 

of homogeneous glass powders. The major differences between the models are the 

assumed microstructures of the powder compacts. The assumed geometries affect 

the range of relative densities over which the models should apply. 

Frenkel developed the first model which described the sintering behavior of 

powders.10 In the initial stages of sintering, the densification rate is related to the 

center-to-center approach of two spherical particles as shown in Figure 2.1. Frenkel 

was the first to assume that the rate of energy dissipation through viscous flow into 

the neck region between the particles is balanced by the rate of energy gained due 

to a reduction in surface area. The relative change in length of a sintering sample, 

AL/L0, can be expressed as12 

- *<-, (2.1) 
i„ 8.IO 

where y is the surface energy, r? is the viscosity, a is the particle size, and t is time. 

This equation has been found to satisfactorily fit experimental data during the initial 

4 to 10% of sintering.12 

At the other extreme, Mackenzie and Shuttleworth developed a viscous 

sintering model for the final stages of sintering.11 The energy rate balance developed 
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by Frenkel was applied to an isolated pore surrounded by a shell of material. The 

rate at which a single pore closes is 

f = -tL- (22) 
dt 2r\ pr 

where pr is the relative density of the bulk sample. The relative density can be 

calculated as a function of time, t, by 

K'(t-tJ = -(—)^/"Pr (2.3) 
J 3 4* J o  ( 1 . p j » p U >  

where 

K' . (2.4) 
n 

and n is the number of pores per unit volume. 

Scherer9 used the same energy balance as Frenkel10 and Mackenzie and 

Shuttleworth11 to develop a model for the intermediate stages of sintering. The 

geometries assumed by Frenkel and Mackenzie and Shuttleworth do not adequately 

describe a glass powder compact with a network of open pores. Scherer's model was 
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Figure 2.2: Cubic array of right circular cylinders. Geometry assumed by 
Scherer.9 
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designed to describe the sintering behavior of glasses produced by flame hydrolysis 

or gelation. 

The geometry assumed by Scherer9 is depicted in Figure 2.2. The Scherer unit 

cell consists of a cubic array of right circular cylinders. The cylinders have a length, 

1, and a radius, a, and represent a row of individual particles with the same radius. 

By using this geometry, the sample geometiy and microstructure can be 

represented by the unit cell dimensions. The relative density of a sample can be 

calculated as the ratio of the volume of the cylinders to the volume of the unit cell, 

or 

p = 3na2/ - S\f2a3 
(2.5) 

/3  

where the second term in the numerator represents the material in the corners of the 

unit cell. The hole in the side of the unit cell is 

do = -y C"2*) (2,6) 

which represents the pore size measured by a technique such as mercury porosimetry. 

Therefore, the bulk properties of relative density and average pore size can define 

all of the unit cell dimensions. 
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The relative density of the unit cell can be re-expressed in terms of x as 

pr = 3itx2 - 8^/2x3 (2.7) 

where x is a unitless parameter and x=a/l. The length of the unit cell, 1, can also be 

expressed in terms of x, 

where 1D is the initial length of the unit cell, and pro is the initial relative density. 

Since the flow fields of the array of intersecting cylinders is fairly complex, a 

simpler system of three cylinders was used for the energy balance. The total volume 

of these three equivalent cylinders is the same as the volume of the cylinders in the 

unit cell. The rate of energy dissipated by one of these equivalent cylinders by 

viscous flow is 

I = (2.8) 
(3TIJE2-8V/2X3)I/3 

3ttti a2.dh.2 

h dt 
(2.9) 
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where h is the height of the equivalent cylinder, h = l-&/Za/3jr. This rate of energy 

dissipation must be equal to the rate of energy change due to a reduction in surface 

area, 

JE * y— = (2.10) 
dt ' dt 3 it 

After combining Equations 2.9 and 2.10 and doing some manipulation, 

changes in the sample due to sintering can be represented by 

^ = JLl (2.11) 
dt 2r] I 

and 

^ = (6nx-24s/2x2)— 
dt dt 

(2.12) 
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Figure 2.3: Predicted densification behavior for a cubic array of right 
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However, it is not possible to explicitly solve for the relative density as a function of 

time, which is shown graphically in Figure 2.3 as a function of normalized time, 

K(t-t„). Therefore, the solution to the Scherer sintering model is often expressed as 

and t0 is the fictitious time where the relative density, and therefore x, are 0. 

The derivation presented here has assumed a cubic array of right circular 

cylinders, but as shown in Figure 2.4 the same set of equations can be applied to 

several different geometries with similar results.13 In fact, the results of different 

sintering models9,10,11 are remarkably similar considering the very different assumed 

geometries. Comparisons between these three sintering models can be found in 

Figures 2.5 and 2.6. 

Numerical simulations of the sintering of homogeneous powders correlates 

well with the three models presented in Figures 2.5 and 2.6. Jagota and Dawson14 

have conducted finite element analyses of two sintering particles which produced 

results very similar to Frenkel's model,10 as shown in Figure 2.5. 

(2.13) 

where 

K = —*— (2.14) 
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All of these models have also been shown to accurately represent 

experimental sintering data.12,15,16 Several groups have extrapolated viscosities from 

sintering curves and obtained values close to those measured by other 

techniques.6'12'17,18 Some of the arguments presented to describe the observed 

differences between the experimental behavior and sintering models are 

rearrangement of the particles,19 or anisotropic distributions of pores20 or particles.21 

Since the experimental data from the literature appears to fit most of the models 

equally well, the Scherer geometry will be used in this document. This model was 

selected because the assumed geometry represents the microstructure of sol-gel glass 

powder compacts the best. 

However, not all sintering compacts obey the assumptions on which all four 

of these models are based. The models assume that the unit cell or areas being 

examined are typical of the entire body. This implies that all the particles and pores 

must be the same size or at least have a fairly narrow distribution. Also, the 

materials properties are assumed to be the same everywhere; therefore, the sintering 

samples must have a uniform composition in order to apply these homogeneous 

sintering models. Since these two experimental conditions are not always met, in the 

next section several models will be presented which have been developed to describe 

heterogeneous sintering. 
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Figure 2.7: Effect of pore size distribution on sintering behavior.22 
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Figure 2.8: Two possible arrangements resulting in bimodal pore size 
distributions.6 



33 

22 Heterogeneous Sintering 

22.1 Pore Size Distributions 

In the last of the set of three original papers by Scherer9,15'22 concerning the 

right circular cylinder model, he described the effect of assuming a distribution of 

pores on homogeneous sintering. Except when the distribution is fairly broad, only 

small differences are observed in the time to reach full density, as shown in 

Figure 2.7. Some of the difficulties encountered when attempting to remove large 

pores have been published,23 and Scherer indicates that the pore size distribution 

approach22 can be applied to hierarchical pore structures, such as the packing of 

agglomerates.6 

The unit cells of Scherer's distribution model22 have different dimensions, due 

to the distribution of pores, but sinter independently. This may be an acceptable 

approximation for fairly narrow or bimodal distributions of pores, as depicted in 

Figure 2.8A. However, as the small particles within agglomerates sinter and the 

agglomerates become smaller, in order to retain contact between the agglomerates 

the large pore in the center must also shrink. Therefore, even in an hierarchical 

structure, the sintering behaviors of the regions with different pore sizes are not 

independent. 

A model which describes the shrinkage rate of one pore or region in terms of 

the rest of the sample should be used to describe powders with either of the 
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geometries shown in Figure 2.8. Scherer's Self-Consistent model6 characterizes the 

sintering behavior of one region or pore in terms of the stresses applied by the 

surrounding matrix. For example, the smaller pores in a sample with a bimodal 

distribution sinter faster than the bulk sample or surrounding matrix. A resulting 

tensile stress on the material near the small pore slows its sintering rate. Similarly, 

a compressive stress around the large pore regions increases their sintering rate. By 

incorporating these stresses into a model, the densification rate of the matrix can be 

computed. 

Seising24 calculated the hydrostatic stress in an inclusion, due to differences 

in thermal expansion between the rigid inclusion and its matrix, to be 

o, = €/- " €/' (2.15) 

The use of a constitutive equation such as2 

k* = kf + 4)[o*-v(v°*)] (2.16) 
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for viscous sintering was first postulated by Skorokhod.25,26 The densification rate of 

each region can be calculated by applying the viscous analogy for a porous compact,2 

€. = €/ + 4)[ ox-N(oy+o2\ (2.17) 

where F(pr)-»3rj and N(pr)-*v2 as the relative density approaches one. By using this 

analogy and Equation 2.15, the stresses in the different regions of a sample with a 

bimodal pore size distribution are 

€/- " €/' (2.18) 
°* [(1 -2Ay/jy+1/2[(1 +Nm)/Fm] 

and 

6/- " €f> (2.19) 
[(1 -2/z^/fj+1/2[(1 +ntl)/fm\ 

where the variables with the subscripts m, s, and 1 refer to the properties of the 

matrix, small pore regions, and large pore regions. Scherer used the average of the 
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Figure 2.9: Densification behavior of samples with 0, 0.3, 0.7, and 1.0 
volume fraction of large pore size material, with the remainder 
of sample containing smaller pores.6 
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upper and lower bounds of the Hashin-Shtrikman model27 to compute the matrix 

properties. Since the strain rates are related to the densification rates by 

the densification rates of the regions of the composite sample can be calculated using 

Equations 2.17, 2.18, 2.19, and 2.20. The densification rate of the matrix, as 

computed by Scherer,6 is 

and is shown in Figure 2.9 for several different distributions of pores. 

222 Chemical Distributions 

The heterogeneities which exist in a sintering compact can be spatial, as 

described in the previous section for particle and pore size distributions, or chemical. 

The variations in materials properties due to chemical differences cause some regions 

in the sample to sinter faster than others. The incorporation of rigid particles in a 

(220) 

= P" *'• + *9'-

Pr. «Pr.+Pr, Pr, «Pr,+Pr< Pr, 
(2.21) 



38 

09 

m • 

04 

02 

00 
00 

0* 

•v» 
04 

02 

050 Kb) 
029 

000 

-0.15 Mo) 

-LOO 
OB ao 

Figure 2.10: Calculated a) shear viscosity, b) bulk viscosity, and c) poisson's 
ratio for models proposed by 1) Raj and Bordia,5 2) Hsueh 
et al.,4 3) Scherer,9 4) Skorokhod,25 5) Rahaman et al.,32 and 
6) Venkatachari and Raj.29 (From Bordia and Scherer31). 



39 

sintering matrix significantly slows the overall sintering rate. Samples of this type are 

often studied because they represent composites. 

Several authors have proposed models for the sintering response of a material 

to an applied stress, caused either externally28'29 or by heterogeneities in the 

sample.2,4 Bordia and Scherer30'31 compared several heterogeneous sintering models 

based on the computed values of bulk (Kp) and shear viscosities (Gp) and the values 

for poisson's ratio as a function of relative density (vp). All of the models discussed 

by Bordia and Scherer predicted acceptable values for the viscosities, but some 

resulted in negative values for poisson's ratio. The results of sinter-forging 

experiments suggest that when a large load is applied uniaxially on a sintering 

cylindrical pellet, the radius should shrink slower than without a load, implying 

positive values of poisson's ratio for all values of relative density.29,32,33 In addition, 

the calculated values for poisson's ratio should approach V2 as the sample approaches 

full density. 

Computed values of the shear viscosity, bulk viscosity, and poisson's ratio for 

several models are shown in Figure 2.10. Several of these models31 were obtained 

by fitting experimental data to a function. Hsueh et al.4 and Venkatachari and Raj29 

used experimental data for A1203 but obtained different relationships for the shear 

viscosity in terms of relative density. The expressions found by Hsueh et al.4 have 

several problems due to the way in which the data, obtained by Coble and Kingery,34 

was interpreted; but both of these empirical relationships4,29 result in negative values 
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for poisson's ratio at low relative densities.31 The other empirical model described 

by Bordia and Scherer31 and developed by Rahaman et al.32 used sinter-forging data 

from several different compositions. The resulting values for the calculated poisson's 

ratios are positive for all values of relative density, but do not approach Vi as the 

sample reaches a relative density of 1. 

Raj and Bordia5 used a spring-dashpot approach to develop expressions for 

the shear and bulk viscosities for a sample sintering under shear. The developed 

equations depend on the dimensionless parameter, /?, which represents the ratio of 

deformation rate constants in shear and in the bulk. If p is too small, the effective 

poisson's ratio is negative for low relative densities, but still approaches Vi as pr-"l. 

The only model reviewed by Bordia and Scherer31 which exhibits a 

relationship for poisson's ratio similar to what is observed experimentally29'32,33 was 

the model developed by Scherer.1 In this model the shear, Gp, and inverse bulk 

viscosities, (Kp)"1, are computed geometrically 
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and 

. 3-2p,-(3p,-2p̂ '" 

v 2p, 
(2J23) 

using a unit cell composed of right circular cylinders. This model predicts values for 

poisson's ratio between 0 and V2 for relative densities between 0 and 1. This is the 

only model analyzed by Bordia and Scherer31 which gives the appropriate limits for 

poisson's ratio. This was also the only model presented which was developed for the 

sintering behavior of viscous instead of crystalline samples. 

Lange35 has also developed a model for the sintering of a heterogeneous 

sample with rigid inclusions. The inclusions are pinned to specific sites in a network, 

so the strain of the composite sample, 

- ± ( f A  ( 2 2 4 )  = em(l--(^)3) 
as 

depends on the free strain of the matrix, em, the volume fraction of inclusions, f, the 

maximum volume fraction of inclusions, s, and a parameter which depends on the 

distribution of the inclusions, a. This model fits the sintering data of DeJonghe 

et al.36 very well, but an effective poisson's ratio cannot be calculated and compared 

to some of the other models. One flaw in Lange's approach is that a simple 
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geometric model, such as this one, cannot explain the differences between crystalline 

and viscous sintering which is observed experimentally,37 however, the effect of the 

sintering mechanism may be included in the free strain term, em. 

The current work has been limited to mixtures of glass powders. It has been 

shown experimentally38 that Scherer's Self-Consistent model6 can be applied to glass 

composites with a relatively low volume fraction of inclusions. If the matrix 

properties are measured instead of calculated using the Hashin-Shtrikman lower 

bound,27 experimental data match the modelled behavior even though the percolation 

threshold of inclusions has been exceeded.39 Chapter 3 of this document will 

describe how Scherer's Self-Consistent model has been modified to allow both glassy 

regions in a sample to sinter. 

23 Background Information about Cordierite Composition 

Several groups have studied the sintering behavior of glass powders of the 

cordierite composition.8,12,40 Zelinski12 and Aruchamy et al.8 used cordierite glass 

powders to study the effect of processing on sintering and crystallization behaviors. 

Hardy and Rhine40 monitored the densification behavior of composites using 

cordierite glass powders as the matrix material. This study will use glass powders 

having compositions near cordierite from which the effect of heterogeneities can be 
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studied. The effect of composition on the materials properties which affect sintering 

will be characterized. 

Since cordierite glass powders density by viscous sintering,12,40 the porosity, 

initial relative density, theoretical density, viscosity, and surface energy must be 

characterized for each of the powders investigated. The porosity and initial relative 

density depend only on the processing conditions of the powder and the pressing 

conditions of the pellets. However, the other three are materials properties and vary 

with processing and composition. 

The method for determining the theoretical densities of the glasses in this 

study is described in Chapter 4. However, it is worth noting here that by increasing 

the relative amount of spinel with respect to silica, the bulk density of the glass is 

expected to increase.41 Cordierite glass, which has a composition along the 

silica/spinel tie-line, has a theoretical density of approximately 2.6 g/cc.12,41 

The surface energy is not expected to vary significantly with composition. 

Ermolaeva42 measured the surface tensions of a variety of glasses in this system, and 

found values between 240 and 364 ergs/cm2. However, these measurements were 

made for melt glasses. Measurements of the surface energy of the solid compositions 

of interest have not been made. Therefore, for this document, a value of 300 

ergs/cm2 will be used for all of the powders. 

The viscosity varies significantly with both composition and temperature. For 

most glasses along the Si02-MgAl204 tie line, as the amount of silica is increased so 
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does the viscosity.43 This is supported by the data compiled by Mazurin et al.41 

However, the viscosity also depends on the processing conditions. Sintering studies 

have shown that the viscosities of sol-gel powders can be time-dependent.12,28 

Therefore, the viscosities for these powders will be measured and presented in 

Chapter 4. 
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CHAPTER 3 

INHOMOGENEOUS SINTERING MODELS 

Heterogeneities in sintering compacts may be caused by compositional 

variations resulting in differences in viscosity or surface energy, or may be due to 

particle/pore size distributions. Inhomogeneous sintering models should be able to 

predict the densification behavior for mixtures of powders. Chapter 2 reviewed 

several models which were developed to describe heterogeneous sintering. Most of 

these models apply if only one of the components is allowed to sinter, also called 

sintering with rigid inclusions.7'37 A few models allow both of the components to 

sinter but have been explored primarily for inhomogeneities due to pore size 

distributions.6 Only a few published models describe the sintering behavior of both 

components in a powder compact with compositional variations.2 

In this chapter two different heterogeneous sintering models will be presented 

which can be applied to sintering compacts with either pore size or chemical 

distributions. One approach, the Self-Consistent Model, is an extension of Scherer's 

method for modelling powders with a bimodal pore size distribution.6 The 

Interlocking Cell Model was developed for this work using interlocking Scherer unit 
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Figure 3.1: Two possible arrangements resulting in bimodal pore size 
distributions.6 Figure A represents an hierarchical structure, 
while Figure B represents an anarchical structure. 
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cells9 of various sizes which restrict the sintering of neighboring cells and of the 

overall sample. After the two models have been described, they will be compared 

and a description of the limitations of each model will be presented. 

3.1 Self-Consistent Model 

Scherer's version of the Self-Consistent model, referred to here as the 

SC model, was applied to bimodal distributions of pores.6 When the pores are 

arranged in an anarchical manner as in Figure 3.IB, some regions of slowly sintering 

large pores are completely surrounded by faster sintering small pores, resulting in 

stresses in the sample. The same approach has been used to expand the SC model 

to describe the sintering of random distributions of particles with different viscosities. 

In a heterogeneous sample with two different viscosities, a tensile stress inhibiting 

sintering is applied to the low viscosity, faster sintering regions due to the sample's 

overall higher viscosity. Similarly, compressive stresses on the high viscosity regions 

result in faster sintering than if the same region were unconstrained. 

In order to calculate the stresses due to heterogeneities in the sintering body, 

an analogy to thermal expansion models was made. Heating a mixture of two 

materials with different coefficients of thermal expansion results in internal stresses, 
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which affect the overall strain of the sample. Seising calculated the stress, af, due to 

the differences in thermal expansion in a sample with rigid inclusions to be: 

where £f is the free strain, v is poisson's ratio, E is the elastic modulus, and the 

subscripts i and M refer to the inclusion and matrix respectively.24 

By using the viscous analogy and replacing the strains in Equation 3.1 with 

strain rates, expressions for the stress in an inhomogeneous sample which is sintering 

can be computed. Since the SC model allows both of the components (A and B) to 

sinter, the stresses surrounding both regions must be considered. The stresses, aA 

and CTb, in a sintering compact due to the variations in sintering rates are: 

o, (3.1) 

(3.2) 

and 

(3.3) 
[(1-2 NB)/FB] + 1/2[(1 +NU)/FU] 

where the subscripts A and B refer to the properties for each of the regions, and the 

subscript M refers to the overall matrix properties.6 The variable ef represents the 
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free strain rate, which is the rate at which a given region would normally sinter 

without an externally applied stress. 

The variables F and N in Equations 3.2 and 3.3 represent the viscous 

analogies to the elastic modulus and poisson's ratio. In a sintering sample these 

properties are not constant and depend on materials parameters and the relative 

density. For a porous compact 

where p, is the theoretical density and k = 3-l/2(4/7r)3 « 1.968. As the density 

approaches the theoretical density (p-*pt), then the variables F and N approach their 

steady-state values, F(p)-»3rj and N(p)->1/2.1 

Scherer6 showed how the matrix properties, FM and NM, of a sintering material 

could be calculated from the bulk and shear viscosities using the Hashin-Shtrikman 

elastic limits.27 Hashin and Shtrikman developed a set of equations to predict the 

upper and lower bounds of the viscosities for a mixture of materials.27 This study 

follows Scherer's approach6 and uses the average of the upper and lower limits to 

F = 3T»P 
3p, - 2p 

(3.4) 

and 

(3.5) 
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predict the bulk and shear viscosities, from which the sintering properties, Fm and 

Nm, of the matrix can be calculated. 

The matrix properties, Fm and Nm, can be used in Equations 3.2 and 3.3 to 

calculate the stresses in the different regions in the sample. By again applying the 

viscous analogy the strain rate of each region can be expressed as: 

This assumes, however, that the stresses given in Equations 3.2 and 3.3 are applied 

hydrostatically. 

The free strain rates, ef, for Equations 3.2, 3.3, 3.6, and 3.7 can be calculated 

from several different models. For this work the free strain rates of samples with 

relative densities less than 0.94 were found using Scherer's right circular cylinder 

model:9 

^ ^ + (1-2Na)oJFA (3.6) 

and 

e, = KP + (1-2NB)OJFB (3.7) 

. _ (37i)1/3 Y ( P<xl/3r 2 - 3 cx , 

6 T,Z„V XW(L-CX)W 
(3.8) 



Once the sample has reached closed pore stage, p>0.94pt, the Mackenzie' 

Shuttleworth model was used to calculate the free strain rates:11 

« = -J.(i2L)V3jL(-£i)l/3(h _ 1)2/3 (3.9) 
1 2 3 i)l0 p0 p 

Conservation of mass requires 

, o ' (3.io) 
"Pa * P« 

where a is the weight ratio of component A to component B.6 Therefore, the 

densification rate of the matrix depends on the densification rates of and the relative 

quantities of each of the regions: 

hi = 1 + gp" p* (3.11) 
Pit °Pi4 + Pfl Pa aPi4 + P/i Pjb 

Since the strain rate is related to the densification rate by Equation 3.12, 

e = -i£ (3.12) 
3 P 

Equations 3.6, 3.7, and 3.11 can be used to predict the densification rate of the 

matrix sample in terms of the materials properties of each region. A more detailed 
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mathematical derivation can be found in Scherer's paper describing the sintering 

behavior of samples with bimodal pore distribution.6 The computer program used 

to do this modelling is given in Appendix A. 

32 Interlocking Cell Model 

The Interlocking Cell model was developed for this work as an alternative to 

the Self-Consistent model developed by Scherer.6 Instead of calculating the stresses 

due to regions sintering at different rates, as in the Self-Consistent Model, the 

Interlocking Cell Model requires the entire sample to sinter at the same relative rate. 

This requirement occurs due to the geometry assumed by the model, hence the name 

Interlocking Cells, abbreviated as the IC model. 

The assumed geometry for the IC model is depicted in Figure 3.2. A large 

Scherer unit cell9 is constructed of smaller unit cells of Powder A. The pore in the 

center of the large Scherer cell is filled with small unit cells of Powder B. If 

Powder A normally sinters faster than Powder B, then as the large Scherer cell of 

Powder A tries to sinter, Powder B restricts the densification of the matrix. 

Therefore, if the entire sample is allowed to sinter without void formation, both the 

A and B Powders must sinter at a rate to maintain contact. 
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The mathematical equivalent of these geometrical restrictions can be derived 

in part by assuming that the length of the large Scherer cell, L, is composed of Nw 

small unit cells of A: 

L = NulA (3.13) 

as shown in Figure 3.2. The radius of the cylinders of the large Scherer unit cell 

accommodates NrA small cells. If the diameter of the pore at the edge of the cell is 

NrB small cells wide, then the length of the large Scherer cell can also be expressed 

as: 

L - 2NJa • NJ, (3.14) 

By setting Equations 3.13 and 3.14 equal to each other, the ratio of the dimensions 

for each type of small unit cell can be expressed in terms of the relative numbers of 

each type of cell: 
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If the number and arrangement of the small cells of each powder does not change, 

then the total derivative of Equation 3.15 with respect to time is: 

fh 
dt dt (3.16) 

which implies that the relative changes in the unit cell dimensions are the same for 

each of the regions in the sample and the overall matrix. 

Since the IC model doesn't require any additional stress analysis, Frenkel's 

basic assumption10 that the rate of energy change due to the reduction in surface area 

(£s) must be equal to the rate energy is dissipated by viscous flow (£v) can be used. 

Flow of one component in the sample can result in a change in surface area of the 

other component and vice versa. This can be mathematically expressed as: 

"A. * "a. = * "A, <3-17> 

where NA and NB are the total numbers of small unit cells of each component in the 

sample. 
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The rate of energy loss of a cylinder through viscous flow is: 

_ 3nr\a2
fdh.2 

h dt 
(3.18) 

where h is the height of the cylinder, a is the radius, and tj is the viscosity of the 

material. The cylinders in the Scherer unit cell intersect at the corners, therefore the 

flow analysis is conducted on a simpler geometry - three cylinders with the same total 

volume as the Scherer unit cell. The height of this equivalent cylinder, with the same 

radius, a, as the cylinders in the Scherer unit cell, is: 

Therefore, the rate of energy loss through viscous flow in terms of the unit cell 

parameters is: 

h = I - (m)  ̂
3u 

(3.19) 

4it2i\x2l3 ̂ dxyz 
P, dt 

(320) 

where x=a/l and pr= 3m?-8,/Zx3. 



57 

The rate of energy change in a cylinder due to a reduction in surface area is: 

Es - •,& »21) 
at 

where the surface area of the equivalent cylinder is Sc = 2»ral-8y2a2. This change 

in energy can be re-expressed as: 

* 2tc2y*2/2 dx a. — - - <"2) 

Appendix B shows the complete derivation of Equations 3.20 and 3.22 and of 

the predicted densification rate using the IC model. After some manipulation the 

rate at which xA changes, dxA/dt, is found to be a function of a, rjA, rjB, pA, pB, yA, 

YB> XA> XB> IA> and 1B- The rate at which the other component deforms, dxB/dt, is a 

function of only xA, xB, and dxA/dt. Since the relative densities of each region 

depend only on x, the relative densification rates of the two regions can be found 

through: 

= (6k*, - Ufixt)— <3J3> 
dt 1 v ' dt 

The computer program used to model IC densification is in Appendix C. 
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Table 3.1 - Input Constants 

Variable Parameter Name Value 

ri Viscosity Varied (see 
Table 3.2) 

y Surface Energy 300 ergs/cm2 

do Initial Pore Size 50 A 

Po Initial Relative Density 0.4 

p. Theoretical Density 2.5 g/cc 

a Weight Ratio 1 

(X) (Mole Fraction - Important for 
calculating the homogeneous viscosity) 

1 

33 Parameterization 

Both the Interlocking Cell (IC) and Self-Consistent (SC) models have been 

explored by varying the viscosities of each component in a heterogeneous sample. 

In order to study only the effects due to differences in viscosity, other important 

sintering parameters were kept constant. The values for these constants are listed 

in Table 3.1. 
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All of the modelled heterogenous sintering curves will be plotted against a 

normalized time, which includes the homogeneous viscosity. Therefore, it is 

necessary to calculate an effective homogeneous viscosity for the each modelled 

compositions, by assuming that two components in the sample are well mixed. 

Bottinga and Weill found that the logarithm of the viscosity of silicate melts depends 

linearly on composition over a relatively large range.43 For this parameterization 

study the homogeneous viscosity was calculated using: 

inn a = + xfilnil* (3,24) 

where XA and XB are the mole fractions of each component. Since both the SC and 

IC models require the weight ratio of the two components, instead of the mole 

fractions, it was assumed that the two components in the heterogeneous sample had 

Table 3.2 - Viscosity Ratios 

Viscosity 
Ratio 

Homogeneous 
Viscosity (Poise) 

Viscosity of A 
(Poise) 

Viscosity of B 
(Poise) 

1 1013 1013 1013 

2 1013 7.07* 1012 1.41*1013 

3 1013 5.77" 1012 1.73* 1013 

5 1013 4.47* 1012 2.24* 1013 

10 1013 3.16* 1012 3.16* 1013 

100 1013 1012 1014 
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Figure 3.3: Densification behavior predicted by the Interlocking Cell Model 
for viscosity ratios of 1, 2, 3, 5, 10, and 100. 
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Figure 3.4: Densification behavior predicted by the Self-Consistent Model 
for viscosity ratios of 1, 2, 3, 5, 10, and 100. 
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similar densities and molecular weights. For equal amounts of the two components 

by weight (a=l), Equation 3.24 reduces to: 

*1* = fish (3j5) 

Table 3.2 contains the viscosities for each of the components used to explore both 

the IC and SC modelled sintering behaviors. 

The IC and SC modelled behaviors depicted in Figures 3.3 and 3.4 and 

described below are plotted as relative density versus the homogeneous normalized 

time, K(t-tc). The normalized time parameter as defined by Scherer9 is: 

« < - < • >  =  — ( 3 ^ 6 )  

where t0 is the fictitious time when the relative density is zero. The homogeneous 

viscosity can be calculated using Equation 3.25. All of the parameters except the 

viscosity are the same in all the samples and are listed in Table 3.1. 

33.1 Interlocking Cell Model 

Figure 3.3 depicts the sintering behavior predicted by the IC model for 

viscosity ratios of 1, 2, 3, 5, 10, and 100, where a viscosity ratio of 1 represents a 
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homogeneous sample. The Scherer model9 was used for the free strain rate over the 

entire range. Therefore, the sintering curves stop at a relative density of 0.94 beyond 

which the Scherer model is no longer valid. 

For a given normalized time, K(t-t0), the homogeneous relative density is 

larger than for the heterogeneous sample. Heterogeneous samples with viscosity 

ratios significantly greater than 1 are predicted to sinter much slower than 

homogeneous powder compacts. A heterogeneous sample with a viscosity ratio of 

10, will actually take 1.8 times longer to reach a relative density of 94% when 

compared to the corresponding homogeneous sample. Samples with larger viscosity 

ratios, possibly due to large differences in composition, require longer times to sinter. 

While the heterogeneous samples are predicted to sinter slower than the 

corresponding homogeneous samples, the IC model predicts very similarly shaped 

curves. The initial sintering rate appears almost linear until relative densities 

of ~0.85. After that the densification rate slows and the relative density slowly 

approaches a value of one (if the Mackenzie-Shuttleworth model11 were used to 

extend the range of the model). 

Since the shapes of all the IC modelled curves are so similar, it may be 

possible to use a homogeneous sintering model to predict the heterogeneous 

densification behavior. However, in order to accomplish this, it is necessary to 

calculate an effective viscosity for these heterogeneous samples. Since the 

heterogeneous and homogeneous sintering curves do not lie on top of each other, the 
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Bottinga and Weill model43 for computing viscosities of homogeneous glass melts 

does not appear to apply to mixtures of powders. However, some other model for 

extrapolating viscosity values based on composition may be useful. 

In fact, Equation 3.17 may assist in finding that relationship. Deriving a 

generalized formula for the effective matrix viscosity is difficult. However, it is 

possible to look at the specialized case of two powders mixed together with the same 

dimensions for the small unit cells. Under these conditions Equation 3.17 reduces 

to: 

(3-27) 

or 

" NaVa 
+ Nbhb (3.28) 

Therefore the matrix viscosity is simply a weighted average of the viscosities of the 

two components based on the number of each type of unit cell. 

332 Self-Consistent Model 

The heterogeneous sintering curves predicted by the SC model for viscosity 

ratios of 1, 2, 3, 5, 10, and 100 are shown in Figure 3.4. The x-axis corresponds to 



65 

Densification of Regions in SC Model 
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Figure 3.5: Densification behavior of the regions within a heterogeneous 
sample as predicted by the Self-Consistent model for a viscosity 
ratio of 5. 
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the normalized time for a homogeneous sample with a viscosity calculated using 

Bottinga and Weill's approach43 and Equation 3.25. Just as was observed for the IC 

model, increasing the viscosity ratio from one to one hundred dramatically increases 

the time to reach full density. 

However, unlike the IC model, the shapes of the SC modelled heterogeneous 

sintering curves are significantly different from the homogeneous sample. Figure 3.5 

shows the densification behavior for each of the regions in a heterogeneous sample 

with a viscosity ratio of five. The low viscosity regions sinter much faster than the 

high viscosity regions, with the homogeneous and heterogeneous (matrix) sintering 

behaviors lying in between. The matrix and homogeneous sintering curves are very 

similar until the normalized time is approximately 2.1. The faster sintering low 

viscosity regions of the SC modelled sample initially help the bulk sample sinter. But 

once those regions are close to their full density, they act as inclusions and slow the 

densification of the bulk sample. This transition is observed in Figure 3.5 at a 

normalized time of approximately 2.2. As the faster sintering region approaches full 

density, the overall sintering slows considerably and the microstructural development 

of this heterogeneous sample is similar to one of a sintering compact with rigid 

inclusions. However, for most of the viscosity ratios explored, the sintering rate is 

initially fairly close to the homogeneous behavior, but then decreases significantly. 
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Model Comparisons 
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Figure 3.6: Densification behavior of a heterogeneous sample with a 
viscosity ratio of 5 as predicted by both the Self-Consistent and 
Interlocking Cell models. 



68 

3.4 Discussion 

Figures 3.3 and 3.4 show the effect of the viscosity ratio on the sintering 

behavior of heterogeneous samples characterized using both the IC and SC models. 

Both of these models predict that by increasing the viscosity ratio of the two 

components in the heterogeneous sample, the time needed to sinter to a given 

density increases. 

However, the overall sintering behavior predicted by each of these two models 

is very different, as shown in Figure 3.6 for a viscosity ratio of 5. The IC model has 

the same general shape as the homogeneous sample, but appears to have a higher 

effective viscosity. On the other hand, the SC model predicts initial sintering 

behaviors very similar to the homogeneous curve, but then deviates once the faster 

sintering regions approach full density. 

Not only are the sintering curves for these two models different, but the 

assumptions about the developing microstructures are not the same. The basic 

geometrical assumptions of the IC model require all the Scherer cells, and therefore 

all the regions in a heterogeneous sample, to sinter at the same relative rate. The 

SC model allows each of the regions to sinter at a different rate, and then predicts 

the heterogeneous sintering behavior from the stresses that develop. 

These two models assume very different microstructures during sintering. The 

IC model assumes that the two regions sinter at the same rate as the bulk, and the 
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SC model predicts different densification rates for each of the regions in the mixed 

sample. Therefore, only one of these models can accurately describe the changes in 

microstructure in a heterogeneous sample during sintering. Chapter 5 will explore 

which of these models fits the experimental sintering curves better. 

While in this chapter both models were analyzed only for equal amounts of 

the two components, they do not mathematically fail for any amount of the faster 

sintering material from 0% to 100%. However, the IC model geometry does require 

a continuous network of both phases in order to generate the large interlocking unit 

cells as depicted in Figure 3.2. Therefore, the percolation threshold of 20% must be 

maintained for both regions.44 

The SC model does not require a continuous network, but does impose a 

uniform hydrostatic stress on each of the regions. Therefore, the matrix around a 

given region should be compositionally uniform. This actually only occurs if 

neighboring regions do not interact, requiring a relatively low volume fraction of one 

of the components for the SC model to apply. 

While sintering curves based on either the IC or SC model can be computed 

for any heterogeneous compact, geometrical assumptions suggest that the IC model 

should only be valid for approximately equal amounts of the two components and the 

SC model should apply when there is significantly more of one component than the 

other. 
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Both of these models have several other assumptions implicitly built in. One 

of these is that voids cannot form in the heterogeneous sample. In both the IC and 

SC models, the regions must maintain contact in order to transfer energy. However, 

if the stresses developing in the material due to differences in the free strain rates 

of the different compositions are extremely large, voids can form at the interface 

between the two regions. 

Another factor which is not included in either of these models is bulk flow. 

The SC model implicitly assumes that flow occurs in order to maintain contact at the 

interface between the regions sintering at different rates. However, this term is not 

included in the energy rate equations. Bulk flow in the IC model implies that at the 

surface of the sample the lower viscosity composition would wick into the bulk 

through capillary flow. If this were to occur, the geometry requirements of the 

IC model would no longer apply at the surface since one of the regions would be 

absent. 

However, as long as the viscosity ratio is not significant these two factors 

should not affect the applicability of these models to experimental data. In the next 

chapter a set of experiments will be described which were developed to test the 

validity of the IC and SC models. In Chapter 5, these two models will be compared 

to experimental heterogeneous sintering curves. 
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CHAPTER 4 

PERIMENTAL PROCEDURE AND ANALYSIS 

Densification curves can be used to characterize sintering behavior or test 

sintering models of either homogeneous or heterogeneous samples. In this chapter 

the experimental procedure and results will be outlined for the sintering studies of 

several different powders. Other characterization results, including porosimetry and 

X-ray diffraction analysis, will also be presented. The data analysis section, 

section 4.4, describes how the results from experimental sintering curves can be used 

to compare experimental and modelled sintering behaviors. Experimental viscosity 

and densification data will be obtained to test the two heterogeneous sintering 

models presented in Chapter 3. 

4.1 Compositions 

The compositions used for this study are shown in the Mg0-Al203-Si02 phase 

diagram in Figure 4.1.45 The exact compositions of the stoichiometric cordierite 
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Figure 4.1: Phase Diagram of the Mg0-Al203-Si02 system.45 
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powder (St) and the other homogeneous powders used in this study (Si and Sp) are 

listed in Table 4.1. Since these three compositions all lie along the silica-spinel tie 

line and vary by 10 mol% silica, they will be called stoichiometric, silica-rich, and 

spinel-rich, or abbreviated as St, Si, and Sp respectively. 

Table 4.1 • Powder Compositions 

Composition Si (mol%) St (mol%) Sp (mol%) M (mol%) 

Si02 81.43 71.43 61.43 71.43 

MgAl204 18.57 28.57 38.57 28.57 

The three homogeneous powders listed in Table 4.1 were synthesized using 

an all alkoxide wet-chemical route as described by Aruchamy et al.8 The only 

deviation from the procedure described8 was that these powders were not spray-dried. 

The solvents were allowed to evaporate at room temperature producing a filter cake 

which was easily broken up into a powder in a mortar and pestle. The air-dried 

powder was then calcined at 700°C for two hours. This particular sol-gel route was 

selected because it can produce powders which are more homogeneous than other 

wet-chemical routes, and were found to have crystallization behaviors similar to very 

high purity melt glass powders.8'12 Milled, melt-derived powders were not used 

because small particle sizes were preferred for the sintering studies. Smaller particle 



Figure 4.2: Experimental Sintering Apparatus - Dilatometer. 
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sizes allow powder compacts to sinter at lower temperatures and obtain higher 

densities before crystallization begins. 

The heterogeneous sample, called mixed (M), was made by dry mixing the Sp 

and Si calcined powders in an alumina mortar and pestle for ten minutes. The 

resultant powder had the same overall composition as the homogeneous cordierite 

powder (St). 

The approximate compositions of the Sp and Si powders were selected to 

provide a large enough difference in viscosity to distinguish between the Interlocking 

Cell and Self-Consistent models presented in Chapter 3. Viscosities for the Si and 

Sp compositions were computed according to the formalism developed by Bottinga 

and Weill.43 As Appendix D shows, the ratio of the viscosity of the Si powder to the 

viscosity of the Sp powder is predicted to be approximately 52. This difference in 

viscosities should be large enough to distinguish between the two heterogenous 

sintering models. 

4.2 Experimental Procedure 

The dilatometer shown in Figure 4.2 and used for the experimental sintering 

studies requires the use of samples which are approximately 1 cm high. Therefore, 

cylindrical pellets were pressed using the air-dried powders described in section 4.1. 
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Figure 4.3: Heating Profile for Sintering Experiments. 
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In order to maintain some green strength, 20 drops of a saturated stearic 

acid/ethanol solution was added as a binder to approximately 0.20 g of powder 

before being pressed uniaxially to 1500 lbs in a 1/4" diameter cylindrical die. All 

samples were isostatically pressed at the same time to approximately 40,000 psi in 

order to ensure identical final pressing pressures. 

Since the drying and pressing conditions significantly affect the green density 

and porosity, measurements of the initial pore size distribution were made. Mercury 

porosimetry was used to measure the pore size distribution for one sample of each 

composition before it had been sintered. 

Densification curves for the three homogeneous compositions and the mixed 

powder were obtained using a dilatometer shown schematically in Figure 4.2. 

Dimensional changes in the pellets were measured with a displacement transducer 

positioned on top of a quartz rod which rested on the sample. The pellets were 

placed between two alumina plates in the sample chamber when the furnace was 

lowered. A motor was used to raise the preheated furnace to enclose the sample 

holder. The two thermocouples next to the powder compact were used to control the 

furnace and record the temperature. 

The heating profile in Figure 4.3 was designed to provide reproducible heat 

treatments. Samples were inserted into the preheated 700°C furnace to allow the 

pellets and sample chamber to reach thermal equilibrium and the furnace control 

thermocouple was switched to one which is next to the sample. The 10°C/min ramp 
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up to the sintering temperature, 840°C, was rapid enough for only a small amount 

of densification to occur before reaching thermal stability. If a faster ramp rate had 

been selected the furnace would have overshot the desired temperature considerably. 

Dimensional changes in the sample pellets were detected by the transducer 

and output to a chart recorder. The charts were digitized and mathematically 

converted into actual changes in length by a linear extrapolation of the initial and 

final voltages output by the transducer and the measured lengths before and after 

heating. The lengths and radii of the pellets were measured with a micrometer to 

±0.001 mm before and after sintering. 

In order to convert from dimensional changes in length to densification curves, 

the length, radius, and mass of the pellets as a function of time must be known. The 

ratio of the relative change in length to the relative change in radius was between 

1.02 and 1.07. Since none of the experimental samples slumped significantly (aspect 

ratios near 1.0), it was assumed that the changes in radius were linear with the 

changes in length. Since glasses of these compositions do not experience significant 

weight loss at these temperatures,12 the mass lost during firing is due to the 

volatilization of the binder and residual organics from the processing. The mass after 

firing was used as a constant to calculate the glass density. The density, p, of a 
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Figure 4.4: Experimental Sintering Curves for Stoichiometric Cordierite 
composition (St). 
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Figure 4.5. Experimental Sintering Curves for Spinel-Rich composition 
(Sp). 
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Figure 4.6: Experimental Sintering Curves for Silica-Rich composition (Si). 
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Figure 4.7: Experimental Sintering Curves for Mixed composition (M). 
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(4.1) 

where m is the mass of the pellet, d is the diameter, and 1 is the length. From chart 

recordings length as a function of time is obtained, therefore by using Equation 4.1 

sintering curves can be plotted for each pellet. 

43 Experimental Results 

4.3.1 Densification Studies 

The initial and final densities of all four of the powders studied are shown in 

Table 4.2, and their densification behaviors are depicted in Figures 4.4 through 4.7. 

Since t = 0 corresponds to when the sample was inserted into the furnace, the density 

values for times less than 70 minutes have been omitted from these graphs because 

during this period the sample is not yet at the isothermal sintering temperature. The 

three curves on each graph represent individual sintering experiments conducted on 

the same composition to investigate the reproducibility of the densification behavior. 
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Table 42 - Initial and Final Densities 

Composition 
Initial Density (g/cc) Final Density (g/cc) 

Composition 
Measured Average Measured Average 

0.987 2.359 
St 0.992 0.992 2.404 2.393 

0.997 2.415 

1.073 2.465 
Sp 1.069 1.068 2.456 2.460 

1.063 2.460 

1.036 2.149 
Si 1.042 1.035 2.166 2.138 

1.025 2.098 

1.048 2.229 
M 1.063 1.055 2.246 2.230 

1.054 2.216 

The densification behavior of the homogeneous stoichiometric powder (St) is 

shown in Figure 4.4. The three samples initially had densities of 0.987, 0.992, and 

0.997, as shown in Table 4.2, and maintained their relative positions throughout the 

entire densification region, i.e. the sample starting out with a density of 0.997 always 

had the highest density. However, the differences in density between the curves vary 

with time. The magnitude of these differences fluctuates some, but the final 

densities, as shown in Table 4.2, differ by only 0.022 g/cc, which is less than 1%. 

Table 4.2 also shows that the initial and final densities of the different 

Spinel-Rich (Sp) samples are closer to each other than for the St pellets. However, 

Figure 4.5 indicates that all the Sp pellets do not sinter identically. From 70 to 
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1000 minutes the differences in density are between 0.037 and 0.161 g/cc peaking at 

365 minutes and with the density of one sample significantly lower than the other 

two. Then at about 930 minutes the densification rate of the same sample suddenly 

increases and its curve lies close to the others. 

Table 4.2 shows that all three Silica-Rich (Si) samples have initial densities 

within 0.001 g/cc of the average. While two of the curves in Figure 4.6 are very 

similar throughout the sintering region, the third appears to sinter much slower than 

the other two and has a significantly lower density over the time range of 500 to 

1000 minutes. 

Figure 4.7 shows that the mixed samples (M) generally have very smooth 

densification curves; except, there appears to be an apparent deviation from a 

smooth curve for one sample around 1200 minutes. The variations in sintering 

behavior between the three curves is fairly constant over the entire experiment, 

unlike the Si and Sp compositions where there seems to be two curves that are the 

same and one that is significantly different. 

One factor which all the compositions have in common is the appearance of 

discontinuities in the densification rate (Figure 4.5 and Figure 4.6) or even decreases 

in density (Figure 4.4). These apparent changes in density are due to power 

fluctuations in the transducer output and do not represent real changes in the 

sample. Experiments with no sample in the dilatometer revealed that discrepancies 

on the order of 0.08 g/cc may be attributed to the experimental apparatus alone. 
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These power instabilities may account for a large portion of the differences observed 

between the individual sintering curves of a given composition. 

However, these power fluctuations do not account for the different initial and 

final densities of the various compositions shown in Table 4.2, since the initial and 

final dimensions were measured using a micrometer. The initial densities of the St 

powders are significantly lower than the others. This may be due the stoichiometric 

composition being produced at a different time which may have resulted in different 

drying conditions than the others. The initial densities of all the other compositions 

(Sp, Si, and M) are within 0.04 g/cc of each other. 

The final densities of these four compositions are significantly different and 

these variations may be due to composition. As will be discussed later in this 

chapter, other authors have found that glasses along the silica-spinel tie line 

containing higher concentrations of silica have lower densities than those 

compositions with higher amounts of spinel.41 Therefore, of the compositions studied 

the Sp pellets should have the highest final densities, as is observed in Table 4.2. 

This compositional argument may also explain the small variations between the initial 

densities of the Sp, M, and Si samples. 

Since the St and M powder compacts have the same overall composition, they 

should reach the same final density, but instead varied by 0.16 g/cc. Crystallization 

has been known to arrest the further densification of glass powders, but X-ray 

diffraction analysis of these powders indicates that all four of these compositions 
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Figure 4.8A: Porosimetry Data for Stoichiometric Cordierite powder (St) 
pressed to 40 ksi. 
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Figure 4.8B: Porosimetry Data for Spinel-Rich powder (Sp) pressed 
40 ksi. 
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Figure 4.8C: Porosimetry Data for Silica-Rich powder (Si) pressed to 40 ksi. 
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Figure 4.8D: Porosimetry Data for Mixed powder (M) pressed to 40 ksi. 
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were still amorphous after the sintering experiment was complete. Thus the 

differences between the final densities of the St and M compositions cannot be 

attributed to crystallization alone. 

432 Porosity Results 

Characterization of the initial porosities of the four compositions investigated 

revealed some significant differences. The data obtained from mercury porosimetry 

is depicted in Figures 4.8A through 4.8D and summarized in Table 4.3. The peak 

of the differential intrusion volume versus pore diameter indicates the maximum 

number of pores of the same size, which will be denoted as the pore size. 

Table 4.3 • Porosimetry Data 

Composition Pore Size (A) 

St 95 

Sp 70 

Si 63 

M 69 

As can be observed in Figure 4.8 or in Table 4.3, the St composition has 

significantly larger pores than the other three compositions. The smaller pores may 

be due to different drying conditions of the powder and may also be the reason the 
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initial densities of the St pellets are significantly lower than for the other 

compositions (Table 4.2). Both the initial pore size and the initial density affect the 

densification rate, and therefore, will affect the resulting sintering curves. 

Special care was taken for this study to ensure that all of the powders were 

pressed and heated under similar conditions. Even though precautions were taken, 

the initial sintering parameters, dQ and p0, were different for the four compositions 

investigated. Therefore, in order to compare the sintering behavior of these powders 

under identical processing conditions, it is necessary to normalize the curves using 

sintering models. 

4.4 Data Analysis 

In order to model the sintering of homogeneous or heterogeneous samples, 

the viscosities and porosities of each of the components must be characterized. This 

section will describe how representative viscosity data was obtained from the three 

individual experimental densification curves of each composition. In the next chapter 

these extrapolated viscosities will be used to predict the sintering behaviors of 

homogeneous powders with identical initial conditions and to produce modelled 

sintering curves for heterogeneous powders. 
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4.4.1 Obtaining Average Sintering Behavior 

The first step in modelling the viscosity is to characterize the sintering 

behavior of each composition. In order to use experimental data and discuss 

expected results from a given composition, the average or typical behavior must be 

determined. For this study the average behavior was determined by fitting all three 

experimental sintering curves of one composition to a function. The sintering 

behavior of each powder can therefore be represented by a time-dependent equation 

having a set of coefficients. 

Equations of the form: 

p = - exp(At+B) - exp(Ct+D) + Et+F (^«2) 

were manually found to match the experimental sintering curves well. The program 

in Appendix E was written to fit experimental data to Equation 4.2 using non-linear 

least squares regression. The least squares approach attempts to minimize x2, which 

is the sum of the squares of the differences between a fitted curve and the 

experimental data points. The regression algorithm developed by Marquardt and 

Levenburg46 was selected due to the relatively rapid rate with which %2 converges to 

a minimum. 

The digitized experimental data files did not have the same number of points. 

Since the least squares routine applies equal importance to every input data point, 



Table 4.4 - Experimental Fitting Coefficients 

Fitted 
Parameters 

St Sp Si M Fitted 
Parameters 

Value Error Value Error Value Error Value Error 

A 4.022e-4 0.010e-4 -3.062e-3 0.038e-3 -2.436e-3 0.01 le-3 -2.947e-3 0.001e-3 

B -2.066 0.002 -1.022 0.011 2.747e-3 3.726e-3 -0.1086 0.0026 

C -6.363e-3 0.023e-3 -1.623e-2 0.01 le-2 -0.1149 0.0782 -3.439e-2 0.071e-2 

D 0.4811 0.0039 0.6760 0.0110 4.649 0.568 0.3463 0.0557 

E 1.498e-4 0.004 2.320e-5 0.040e-5 6.708e-6 0.44 le-6 9.830e-6 0.245e-6 

F 2.352 0.001 2.385 0.001 2.111 0.001 2.198 0.0004 

°p exp 2.993e-2 3.335e-2 3.734e-2 2.026e-2 

1.881 2.335 2.931 0.8623 
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it was necessary to "weight" each of the experimental curves in order to avoid the 

average sintering curve being skewed towards the curve with the most digitized 

points. Each digitized curve was converted using an interpolation program into 700 

equally spaced data points between 70 and 3000 minutes. A single data file which 

contained the interpolated outputs from all three sintering curves was input into the 

least squares program given in Appendix E. The program outputs a set of 

coefficients for Equation 4.2 (A through F), the coefficients' associated errors, the 

experimental error, and %2-

Since non-linear regression routines, including the Marquardt/Levenburg 

algorithm,46 can converge to local minima as well as global minima, a grid of initial 

coefficients was constructed as input for the least squares program. Each grid 

contained four to seven values for at least four of the six coefficients. After 

executing the least squares program for each set of coefficients, another grid was 

constructed. The new set of coefficients would span a smaller range and be centered 

around the least squares output values which produced the smallest x2- New grids 

would be constructed until the least squares program output the same set of best 

fitting coefficients for several of the input sets. The best fitting coefficients and their 

errors are listed in Table 4.4 for the St, Sp, Si, and M powders. Sintering curves 

plotted using Equation 4.2 and Table 4.4 will be called fitted sintering curves and 

represent the average sintering behavior of the three experimental sintering curves 

for each composition. 
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Figure 4.9: Experimental and Fitted Sintering Curves for Stoichiometric 
Cordierite powder (St). 
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Figure 4.10: Experimental and Fitted Sintering Curves for Spinel-Rich 
powder (Sp). 
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Figure 4.11: Experimental and Fitted Sintering Curves for Silica-Rich 
powder (Si). 
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Figure 4.12: Experimental and Fitted Sintering Curves for Mixed powder 
(M). 
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Figures 4.9, 4.10, 4.11, and 4.12 show the fitted sintering curves, the three 

experimental sintering curves, and the experimental errors for each of the 

compositions (Sp, Si, St, and M). As can be seen in these figures, the fitted curve 

appears to be a fairly accurate representation of the average sintering behavior. The 

value ap exp listed in Table 4.2 represents how well the experimental data points 

correlate with the fitted curve, and will be called the experimental error. Assuming 

the three experimental sintering curves are in a Gaussian distribution centered 

around the fitted curve, then another new experimental sintering curve will with 68% 

confidence lie within the experimental error bars, Pf„±crpexp. 

However, the use of a series of grids as inputs for the least squares routine 

does not ensure that the absolute global minimum for %2 has been found, or that 

Equation 4.2 provides the best fit to the data. Using the error associated with each 

of the coefficients, it is possible to determine the reliability of Equation 4.2 and 

whether the best fit coefficients are representative of the average sintering behavior. 

A measure of the accuracy to which the fitted curve is known can be expressed as: 

% = \| <4'3) 
dA A dB dC c dD D dE dF F 

which is the uncertainty in the average behavior. 
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Figure 4.13: Comparison of Experimental and Fitted Errors. 
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The experimental error, op exp, is a measure of how close the individual 

sintering curves lie. As can be seen in Figure 4.13 for the St powder, the error in the 

experimental data is significantly larger than the uncertainty in the fitted curve, a p flt. 

Therefore, even though the equation and coefficients may not give the absolute best 

fit, the uncertainty in determining the true average sintering behavior is significantly 

less them the experimental deviations from it. 

4.4.2 Applying Scherer's Model9 to Homogeneous Powders 

The fitted sintering curves, as calculated from Equation 4.2 and Table 4.4, will 

be used to model the viscosity of the homogeneous powders. The curves depicted 

in Figures 4.9 through 4.11 are plots of the density as a function of time and the 

experimental error for each of the three homogeneous compositions investigated. 

However, most sintering models use relative density as the modelling parameter,9'11 

which is the density at any given time divided by the density after the sample has 

been fully sintered (the theoretical density). 

Since the theoretical densities of the compositions in this study were not 

experimentally determined, values were extrapolated from densities published in the 

literature. The densities for a variety of compositions along the silica-spinel tie line 
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are shown in Figure 4.14 and Table 4.5.41 As the amount of spinel increases, so does 

the density. The theoretical densities of the compositions studied in this document 

have been calculated by linear extrapolation of the densities in Table 4.5 as a 

function of mol% Si02. These extrapolated values are listed in Table 4.6. 

Table 4.5 - Literature Values for Glass Densities41 

Composition (mol%) 
Density (g/cc) 

Si02 MgAl204 
Density (g/cc) 

66.7 33.3 2.6128 

71.3 28.7 2.678 

71.4 28.6 2.635 

80.0 20.0 2.60 

82.0 18.0 2.488 

Table 4.6 - Extrapolated Theoretical Densities 

Name Composition (mol%) 
Density (g/cc) 

Name 

Si02 MgAl204 
Density (g/cc) 

Sp 61.43 38.57 2.725 

St 71.43 28.57 2.630 

Si 81.43 18.57 2.535 
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Figure 4.15 shows the average relative densification behavior of all three 

homogeneous compositions investigated in this study. One reason the three 

compositions sinter differently is because they do not have the same materials 

properties, i.e. viscosities. Comparisons of the sintering behaviors of these powders 

are complicated by the fact that the initial conditions are different. By extrapolating 

the viscosity from the relative density plots using Scherer's model for homogeneous 

sintering,9 densification curves with the same initial conditions can be generated and 

compared. While Scherer's homogeneous sintering model was originally tested for 

soot preforms and aerogels, it has since been used to model a variety of other 

powders, including sol-gel.47 Scherer's model9 will be used in this document to 

normalize the homogeneous sintering curves and to extrapolate the viscosities of 

these cordierite-based sol-gel powders. 

Chapter 2 describes Scherer's homogeneous sintering model and the 

normalized time parameter, K(t-t0).9 Since the relative density is a function of time, 

Equation 4.5 listed below cannot be solved explicitly for viscosity. Therefore, the 

viscosity as a function of time has been calculated by numerical integration for small 

time intervals. 
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Since the viscosity is inversely proportional to the densification rate, as the 

sample stops sintering the error in the viscosity increases. Once the sintering stops, 

the effective viscosity is infinite. Experimentally it is not possible to detect the very 

small changes in density at long times, therefore the data will be cutoff once the 

slowest sintering sample reaches a relative densification rate of less than 2*10"7/min. 

According to this criteria, the Sp densification rates for times greater than 

approximately 1500 minutes should not be used. 

The extrapolated viscosities for the St, Sp, and Si compositions are shown in 

Figure 4.16, where it is apparent that all the compositions have effective viscosities 

with transient behaviors. Basic assumptions about the relative values of the viscosity, 

based on composition, do not appear to apply to these sintering samples. While the 

Sp powder initially has the lowest viscosity, as would be expected based on 

composition, it crosses the St viscosity curve after 90 minutes and has a viscosity even 

higher than the Si composition after 250 minutes. This will have a significant impact 

on the modelled sintering curves which will be discussed in Chapter 5. 

The fact that extrapolated viscosities are time-dependent raises the question 

of the applicability of Scherer's model9 to these powders. However, other authors46 

have extrapolated transient viscosities from sintering curves using Scherer's model 

and believed the data to be valid. By experimentally determining the effective 

sintering viscosities, normalized sintering curves can be generated. Therefore, 
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Scherer's sintering model9 will be used to predict the homogeneous sintering behavior 

of these compositions. 

Modelled behavior of the St, Si, and Sp compositions can be constructed and 

compared using identical initial conditions and the effective viscosities shown in 

Figure 4.16. It is also possible to use the effective viscosities of the Si and Sp 

compositions to model the behavior of different regions in a heterogeneous sample, 

such as the mixed powder. Modelling of the sintering behavior of both homogeneous 

and heterogeneous powders with these compositions will be explored in Chapter 5. 
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CHAPTERS 

INTERPRETATION OF SINTERING MODELS 

In Chapter 2, several models which have been published in the literature were 

outlined for both homogeneous and heterogeneous sintering of powder compacts. 

To describe the sintering of heterogeneous glasses, the Interlocking Cell model was 

developed and the Self-Consistent model was presented in Chapter 3. These two 

models were also compared for a variety of input conditions. The sintering behavior 

of several homogeneous (St, Sp, and Si) and heterogeneous (M) compositions were 

investigated, and the results were presented in Chapter 4. However, since the 

investigated powders had a variety of initial densities and porosities, comparisons of 

the sintering behaviors which have not been normalized are difficult. Therefore, the 

last half of Chapter 4 was devoted to extrapolating useful data from the sintering 

curves so that the three homogeneous compositions, the heterogeneous composition, 

and the sintering models can be compared. 

In this chapter, the viscosities extrapolated from the sintering curves of the St, 

Sp, and Si powders in Chapter 4 will be used to generate modelled sintering curves. 

The term "modelled" sintering curve only applies to those sintering plots generated 
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using extrapolated viscosities and either Scherer's homogeneous sintering model9 or 

the IC or SC heterogeneous sintering models. All of the modelled curves were 

normalized to have the same initial porosities and relative densities. 

By using identical initial conditions, the normalized sintering behavior of these 

three homogeneous powders can be compared. The effect of heterogeneities can 

also be studied by comparing the normalized St and the fitted M sintering curves. 

The densification behaviors modelled using the SC and IC algorithms will also be 

compared to the M powder. 

5.1 Using Extrapolated Viscosities 

In Chapter 4, viscosities for the homogeneous powders were extrapolated from 

the densification curves using Scherer's homogeneous sintering model. As Figure 5.1 

shows, the obtained viscosities exhibit time-dependent behavior during much of the 

sintering. These transient viscosities can change by up to two orders of magnitude 

during the two days of sintering. Therefore, constant viscosity values can not be used 

for these powders to model sintering behavior. 

The extrapolated viscosities shown in Figure 5.1 do not seem to obey normal 

composition correlations. Generally samples rich in spinel have relatively low 

viscosities.43 But the Sp composition has the lowest viscosity of the compositions 
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studied for only the first 90 minutes, after which the St composition has a lower 

viscosity. 

The fact that these powders were produced using a wet-chemical route may 

contribute to the observed transient viscosity behavior in Figure 5.1 and to other 

observed differences between the powders. Wet-chemically derived powders retain 

some water and residual organics from the processing, which may evaporate during 

sintering. The incorporation of hydroxyls or carbonaceous species in the glass forms 

non-bridging oxygens and a more open glass network. The glass viscosity increases 

as water evaporates forming more bridging oxygens. 

The formation of necks between the particles has been proposed44 to describe 

the factor of 100 increase in viscosity observed by Rahaman et al.16,38 However, the 

viscosity values from this work vary continuously throughout the sintering range, well 

past the point where necks would form. Rearrangement of the particles into a more 

dense structure has also been postulated as the cause of observed increases in 

viscosity for liquid phase sintering. However, once necks form in a glass sample, 

particle rearrangement must be accompanied by bulk flow which occurs on the same 

or longer time scales as viscous sintering. Therefore, the rearrangement of particles 

does not explain the transient behavior observed in this study. 

All of the powders exhibited transient behavior; however, the St composition 

sintered faster than even the Sp powder, as shown in Figure 4.15. This indicates that 

more than just composition affects the viscosity. The St also had a larger pore size 
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than the other powders investigated. Both of these facts suggest that either the St 

powder was processed in a different manner or reacted differently to the same 

processing procedure. 

The stoichiometric composition, when made homogeneously is a grey powder; 

but powders with a slightly different composition appear white. Varying the calcining 

procedure does not appear to change the powder's appearance.48 It is possible that 

under the same processing conditions the stoichiometric cordierite composition, St, 

retains more carbon which cannot be removed. Also the final products of the 

condensation reaction may be different for the St, Sp, and Si powders, causing 

various amounts of water to remain incorporated in each of the glasses. By heating 

the powders and removing the residual water or carbon, the viscosity will increase. 

These reactions may not have been complete in the St powder, since a viscosity 

increase of a factor almost 100 is observed during sintering. The incomplete reaction 

may have been caused by different processing conditions or different chemical 

kinetics of this composition. 

Since the effective sintering viscosities do not appear to depend only on 

composition, but also on other factors such as processing, it is difficult to model or 

predict viscosities for these powders. Therefore, the extrapolated viscosities depicted 

in Figure 5.1 will be used for all of the modelled sintering curves in this chapter. 

Applying these values is appropriate so long as the effective materials properties, i.e. 
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the viscosities, are not affected by changes in initial density or porosity and Scherer's 

homogeneous sintering model9 can be applied to these sol-gel powders. 

5.2 Homogeneous Sintering - Effect of Composition 

Scherer's homogeneous sintering model9 can be used to plot a modelled 

homogeneous sintering curve, given an effective sintering viscosity and the initial 

microstructure. The relative densification rate as outlined in Chapter 2 is: 

— = (fitix - 24sj2x2)— = (6nx - 24v/2x2)( Y Pr ) (5.1) 
dt dt 2t\l p ip ro 

The modelled sintering curves for the homogeneous compositions in this study can 

be generated using the extrapolated viscosities in Figure 5.1, Equation 5.1, and by 

applying a constant relative densification rate over a small time interval, At. 
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Since this algorithm applies a constant value for the transient viscosity over the time 

interval, small time steps should be used. The normalized, modelled sintering curves 

for the St, Sp, and Si compositions are shown in Figures 5.2A and 5.2B. 

One of the factors which limited comparisons of the original fitted 

homogeneous sintering curves was different initial relative densities. All of the 

graphs in this chapter have been normalized as described at the beginning of this 

chapter. The initial conditions for all the samples are the same as was found in 

Chapter 4 for the mixed samples. Therefore, the values for the constants for 

Equation 1 are: y = 300 ergs/cm2, pro = 0.51, and 10 = 144 A (dD = 69 A). Curves 

generated using Scherer's homogeneous sintering model or the heterogeneous 

Interlocking Cell or Self-Consistent models will be called modelled curves, while the 

densification behavior represented by Equation 5.3 will still be indicated as fitted 

behavior. 

p = -exp(i4f+fl) - exp(Cf+D) + Et + F (5*3) 

The modelled sintering curves of all three homogeneous compositions 

depicted in Figure 5.2 have initial relative densities of 0.51. The Sp powder has a 

higher modelled relative density than the Si powder over the entire sintering range. 

Based on composition, samples richer in spinel are expected to sinter faster than 

those with more silica, as is observed when the Si and Sp modelled behaviors are 
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compared. However, over almost the entire sintering range the St powder has a 

higher modelled relative density than either the Sp or Si compositions. 

The behavior observed in Figures 5.2A and 5.2B can be explained using the 

time-dependent viscosities for each of these powders found in Figure 5.1. The Sp 

powder has the lowest viscosity of the three compositions until about 90 minutes, 

which is why it has the highest modelled relative density for times less than 

113 minutes. However, for times between 90 and 550 minutes the St powder has the 

lowest viscosity and therefore sinters the fastest in this range. 

By 550 minutes where the Si composition becomes the powder with the lowest 

viscosity, the St powder has already reached a relative density of 0.954. By 

approximately 1000 minutes the transient viscosities of all the compositions have 

reached a value, of approximately 2*1015 Poise, which makes sintering on the time 

scale of days extremely difficult. While on a time scale of years the Sp and Si 

samples may continue to sinter, the high viscosities have essentially halted 

densification. 

The Sp powder sinters faster than the Si powder as expected but not faster 

than the St composition. As described in Section 5.1, the different processing 

conditions probably enable the St powder to reach a higher final relative density. 

Composition alone can not be used to predict the relative sintering rates observed 

for these powders. The relationships between the modelled densification curves of 
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the various compositions are a direct consequence of the extrapolated viscosities used 

to generate them. 

S3 Homogeneous versus Heterogeneous Sintering 

One of the purposes of this study was to investigate the effect of heterogeneity 

on sintering. The St and M powders have the same bulk compositions; however, the 

M powder is composed of a mixture of the Si and Sp powders and is not a 

homogeneous compound like the St powder. Therefore, the primary difference 

between the St and M powders is the extent of homogeneity. 

The mixed composition cannot be normalized to account for differences in 

initial relative density and porosity because the appropriate heterogeneous sintering 

model has not yet been determined. In order to compare the St and M powders, the 

St sintering curve in Figure 5.3 was normalized to the initial conditions of the 

M powder using Scherer's model9 and the extrapolated viscosity shown in Figure 5.1. 

The fitted curve of the M sample can be used for comparison since it represents the 

observed average heterogeneous sintering behavior. Since the St composition has 

been normalized to agree with the initial conditions of the M sample, the modelled 

St and fitted M curves can be plotted and compared. 
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Figure 5.3 shows that the sintering behavior of the St powder lies well outside 

the experimental error bars of the mixed sintering curve. Even though both of these 

curves have the same initial conditions, the St powder initially sinters much faster 

and reaches a higher final modelled relative density. When sintering curves are 

plotted as a function of normalized time with effective viscosities computed according 

to Bottinga and Weill,43 both the IC and SC models predict faster densification rates 

when both regions have the same viscosity instead of different viscosities. 

However, some of the differences between the St and M sintering behaviors 

may be attributed to more than simply the presence or absence of heterogeneities. 

As described in the previous section and depicted in Figure 5.2A, the St sample 

sinters faster than even the Sp powder. Since the St normalized composition sinters 

faster than each of the components of the mixed sample, the St powder would be 

expected to sinter faster than the heterogeneous mixture. 

However, the St composition may not be expected to have a sintering behavior 

between the Si and Sp powders. As discussed in Section 5.1, the St powder may have 

reacted or been processed differently. Another possibility is that the viscosity of the 

St composition should not be an average of the Si and Sp powders. This would be 

the case if a peak in the viscosity versus composition plot occurred around the 

stoichiometric cordierite composition. It may not be reasonable to assume that the 

sintering behavior of the St powder should be between the Si and Sp behaviors. 
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So even though the sintering curves have been normalized to account for small 

initial microstructural differences, such as porosity and relative density, broad 

statements based on composition or homogeneity cannot be made about effective 

sintering viscosities or densification behavior. The large observed differences 

between the St and M powders are probably due to variations in water or carbon 

content. Even if these factors could be eliminated, perhaps by producing the 

powders through a melt process, it is possible that the St powder would still have a 

lower viscosity, and therefore sinter faster than either the Si or Sp powders. 

Even though this experimental study of the St and M powders may not have 

revealed significant differences due to heterogeneities, it did prove the importance 

of powder processing on the viscosity and sintering behaviors. This experimental 

densification study has also revealed the importance of transient viscosities and their 

effect on sintering behavior. Just because the St composition lies between the Sp 

and Si compositions on the phase diagram, does not mean the sintering behavior of 

the St composition will have an intermediate behavior. However, the question 

remains whether or not the mixed sintering behavior is expected to lie between its 

two components. Therefore, the experimentally determined sintering curves for the 

mixed sample will be compared to two different heterogeneous sintering models. 
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One of the tasks of this study was to determine whether the Interlocking Cell 

or Self-Consistent model corresponds better with the observed heterogeneous 

sintering behavior. These two models were outlined in Chapter 3. The modelled 

heterogeneous sintering curves for the mixed composition were generated using both 

the IC and SC models and are presented in Sections 5.4.1 and 5.4.2. The viscosities 

for this modelling study were extrapolated from the homogeneous sintering curves 

of the Sp and Si compositions and are depicted in Figure 5.1. The initial conditions 

for each of the regions were the same as for the overall mixed sample. Therefore, 

it has been assumed that pores, which are 69 A in diameter, have been distributed 

evenly in both the high and low viscosity regions, and the initial relative density 

everywhere is 0.51. The normalized sintering curves for the Sp, Si, and M powders 

are depicted in Figure 5.4. 

Throughout this document it has been assumed that the Sp and Si powders 

have been processed in the same manner. However, similar processing conditions 

were not a requirement of the two powders used to test the IC and SC models. The 

only assumption was that the powder properties of the components remain the same 

in both the homogeneous and mixed samples. Homogenization, chemical reactions, 

and some types of physical mixing may alter the viscosity of the regions and were 

assumed not to occur in the investigated mixed sample. This document maintains the 
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Figure 5.5: Comparison of the experimental Mixed powder and the 
modelled Interlocking Cell sintering curves. 
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assumption that the effective sintering viscosities do not change due to the sintering 

behavior of the neighboring regions. 

5.4.1 Interlocking Cell Model 

The IC model geometry assumes that a cell of right circular cylinders of one 

of the components in the mixture is intertwined with another unit cell of the other 

component. Figure 5.5 shows the IC modelled and fitted sintering behaviors of the 

mixed composition investigated in this study. This figure shows that the IC modelled 

sintering curve lies well within the experimental error for times less than 

400 minutes. 

For sintering times longer than about 500 minutes the IC modelled curve is 

significantly lower than the experimental sintering data, and eventually differs from 

the fitted curve by over three times the expected experimental error. The effective 

sintering viscosity predicted by the IC model is significantly higher than is observed 

experimentally. This implies that either the IC model does not apply to this system 

or the effective viscosities of the regions are different in the heterogeneous mixture 

than in the homogeneous Sp and Si sintering compacts. 
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5.42 Self-Consistent Model 

The SC modelled sintering curve for the M powder is shown in Figure 5.6. 

The SC model assumes that the matrix constrains the sintering of both the high and 

low viscosity regions, but allows each to sinter at a different rate. The SC modelled 

curve appears to fit the experimental data better than the IC model, and applies 

exceptionally well for long times. The final density predicted by the SC model differs 

from the fitted value by less than 0.1%. 

The time interval over which the SC model lies outside one experimental 

standard deviation is between 90 and 510 minutes (coincidentally, the same region 

over which the IC model fits the experimental data best). Over this region the 

SC modelled curve predicts faster densification rates and higher relative densities 

than is experimentally observed. The largest deviation between the fitted and 

SC modelled curves is 3.6 times one standard deviation, but occurs over a very short 

time interval. 

The SC model may at short times predict a relative density different from that 

which is experimentally observed because the extrapolated viscosity from the 

homogeneous Sp and Si curves was different than what was experienced in the mixed 

sample. This would be true if a) the powder properties changed when mixed, or 

b) not enough experimental data was obtained to extrapolate a viscosity which is 

representative of the homogeneous powders. One interesting observation is that two 

of the Sp sintering curves shown in Figure 4.10 are significantly higher than the third. 
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Since all three curves were weighted equally when computing the fitted sintering 

behavior, the resulting fitted sintering curves for both the St and Si powders may 

have been artificially shifted towards the two faster sintering curves. This would 

effectively shift the viscosities to lower than average values. Since these effective 

viscosities are used in the SC model, the modelled curve may be higher than the true 

average sintering behavior. This problem could be resolved by using a larger number 

of homogeneous experimental sintering curves resulting in higher confidences in the 

extrapolated viscosities. 

5.5 General Discussion 

For constant viscosity ratios, the SC model predicts faster initial sintering rates 

than the IC model. Figure 5.7 shows this also to be the case for the mixed 

composition, which was modelled based on the effective sintering viscosities of the 

Sp and Si powders. However, for compositions with a time-independent viscosity, the 

IC modelled sintering curve eventually reaches a higher modelled relative density 

than is predicted by the SC model. In this study, the IC modelled sintering curve 

using experimentally determined viscosities is lower than the SC modelled behavior 

over the entire densification range. Near 1000 minutes the time-dependent viscosity 

reaches a large enough value to significantly inhibit sintering. The IC modelled 
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powder has effectively stopped sintering due to these large viscosities, before it had 

a chance to cross the SC predicted curves as is observed for constant viscosity 

powders. 

While the observed differences in sintering behavior between the IC and 

SC models can be explained for either constant or time-dependent viscosities, only 

one of these models can appropriately characterize the microstructure of any 

particular sintering powder compact. The SC model appears to fit the experimental 

data of this study better, even though it was postulated in Chapter 3 that the 

IC model was more likely to apply to samples with approximately equal volume 

fractions of the two components. Except over the time range of 90 to 510 minutes 

the SC modelled sintering curve lies within the 68% confidence limits of the mixed 

sample, while the final density predicted by the IC model was underestimated by over 

3%. However, due to the relatively large errors associated with the sintering data, 

the differences between these two models can just be distinguished experimentally. 

With our experimental set-up, individual sintering curves can vary significantly, 

therefore a method for finding the average densification behavior was developed. 

Some of the difficulties in defining the typical behavior were due to power 

fluctuations in the recording transducer, which caused sudden changes in the 

apparent densification rate or even decreases in density. Without this source of 

error, more representative experimental sintering curves could be plotted without 

artifacts of the experimental apparatus superimposed. 
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Eliminating the power fluctuations will reduce the experimental error by up 

to a factor of 2. However, some experimental errors will still exist and the variations 

between individual samples can not be eliminated. Table 4.2 shows that the initial 

and final densities vary from sample to sample, which will result in slightly different 

sintering curves. Therefore, in addition to eliminating the power fluctuations, a 

larger number of experiments should be conducted on each composition to ensure 

that the extrapolated viscosity is representative of the powder. 

While it appears that the SC model fits the experimental sintering behavior 

of the mixed sample better than the IC model, both models lie within the 95% 

confidence limit. Therefore, more experimental work should be conducted to verify 

the applicability of the SC model to heterogeneous sintering samples. One of the 

things that should be attempted is reducing the magnitude of the experimental error 

so that the differences between the models can be distinguished. For the powders 

in this study, the size of the 95% error bars should be less than 0.1 in the relative 

density. Other experiments which can be conducted to verify which model applies 

to sintering glass compacts with heterogeneities will be discussed in the next chapter. 
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CHAPTER 6 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

This document has explored the sintering of homogeneous and heterogeneous 

samples. Two new heterogeneous sintering models have been presented and 

explored theoretically. In order to investigate the utility of these two models, 

experimental sintering curves of both homogeneous and heterogeneous samples near 

the cordierite composition were studied. Data from the experimental sintering curves 

and porosimeter were reduced mathematically so that comparisons between the 

typical behavior of a given composition and other compositions or sintering models 

could be made. 

6.1 Summary 

6.1.1 Models 

Both the Interlocking Cell (IC) and the Self-Consistent (SC) models, 

presented in Chapter 3, predicted slower sintering behavior of the heterogeneous 

sample when compared to a homogeneous sample of the same composition. For this 
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study, the homogeneous viscosity was calculated using Bottinga and Weill's 

formalism43 for silicate melts. The differences in relative density between the 

heterogeneous and homogeneous sintering curves depend primarily on how large of 

a difference in viscosity exists between the two components in the heterogeneous 

sample. Different shapes for the sintering curves are predicted by each of the 

models. The SC model predicts faster initial sintering than the IC model, but then 

suddenly the densification rate slows once the faster sintering regions reach full 

density. The time to reach 95% of the theoretical density is predicted to be 1.4 times 

longer for the SC model than for the IC model for a sample with a constant viscosity 

ratio of 5. 

Both of the heterogeneous sintering models presented in Chapter 3 of this 

document can not apply to sintering powder compacts at the same time. The 

IC model assumes that each of the components forms a continuous network, which 

intertwine with each other. The assumed geometry of two interlocking Scherer unit 

cells requires that all of the regions densify at the same rate. The SC model, 

developed originally by Scherer for bimodal pore distributions,6 allows the two 

regions to sinter at different rates and then computes the stresses in the matrix which 

develop. On a microscopic level, the homogeneous regions within a heterogeneous 

sample can not sinter at the same rate as the IC model predicts, and at the same 

time at different rates as the SC model assumes. 
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6.12 Viscosity 

To examine which model better explains heterogeneous sintering behavior, 

homogeneous sintering curves for several glass compositions in the Mg0-Al203-Si02 

system were obtained. After mathematically computing the average sintering 

behavior for each powder, viscosities were extrapolated and used to describe the 

behavior of the regions within the mixed sample. All of the computed viscosities 

were time-dependent and changed by up to three orders of magnitude. 

Since the experimental homogeneous sintering curves were obtained 

isothermally at 840°C, the transient viscosity had the effect of halting further 

densification. Increases in viscosity are known to occur when water or residual 

organics are removed from powders produced using wet-chemical techniques.47 

Independent of the source of the increased viscosity, sintering on the order of days 

essentially stops after an effective viscosity of 2*101S Poise is reached. 

The time-dependent viscosity depends on the processing conditions of the 

powder. Typically powders richer in spinel would have lower viscosities,43 but for this 

study the Spinel-rich powder had the lowest viscosity for only the first 90 minutes of 

sintering. The transient behavior allowed the viscosity of this powder to increase 

significantly, even exceeding the value for the Silica-rich composition. 



6.1.3 Sintering 

Since all of the sintering conditions, including the heat treatment, were 

identical for all of the samples, it is possible to use the homogeneous extrapolated 

viscosities to model sintering behaviors. However, the initial conditions (i.e. 

porosities and initial relative densities) were not the same, so the sintering curves 

were normalized using Scherer's homogeneous sintering model9 to the initial 

conditions of the mixed sample. The observed normalized sintering behavior 

correlated well with the experimentally determined viscosity relationships. 

The stoichiometric composition sintered significantly faster than any of the 

other powders, and was the only powder modelled to reach a relative density greater 

than 0.95. The Stoichiometric cordierite composition also had the lowest viscosity 

over a large portion of the sintering region. Since this powder had a significantly 

larger initial porosity and lower initial density under the same pressing conditions as 

the other powders, it is believed that the St composition may have hydrolyzed or 

dried differently. This may also explain why the St powder has more of a transient 

effect initially, and why the densification curve does not lie between the Spinel-rich 

and Silica-rich compositions, even though all three were produced under similar 

conditions. 

The homogeneous stoichiometric cordierite sinters faster than the 

heterogeneous sample, as both the Interlocking Cell and Self-Consistent models 

predict; but it also sinters faster than either one of the components in the mixed 
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powder. Comparisons between the experimental mixed sintering behavior and the 

heterogeneous sintering models can be made even if the Spinel-rich and Silica-rich 

powders have retained different amounts of residual water and/or organics. The only 

assumption about the behavior of the individual components is that homogenization 

and chemical reactions between the regions do not occur in the mixed sample. 

The modelled and experimental sintering curves seem to indicate that the 

Self-Consistent model can be used to describe the densification behavior of the 

mixed powder. The Self-Consistent model predicts a density after 3000 minutes of 

sintering to within 0.1% of the experimental value. However, both the 

Self-Consistent and Interlocking Cell models appear to fit the data at short times as 

well as any given experimental curve. Comparisons of the two models at long times 

are difficult to make since the high transient viscosities halt densification. Therefore, 

further studies should be conducted to verify the conclusion that the Self-Consistent 

model can be used to describe the densification behavior of heterogeneous samples 

over the entire sintering range. 

6.2 Conclusions 

This study of the three homogeneous compositions revealed some very 

important facts about effective transient viscosities. If the transient viscosity 
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increases quickly to large values, obtaining fully dense samples on the desired time 

scale may be impossible. Therefore, manufacturers must pay particular attention to 

the processing conditions of glass powders. Even relative viscosity relationships 

between powders processed under the same or similar conditions, such as the 

Spinel-rich and Silica-rich compositions, vary with time and cannot be predicted 

based on composition. However, experimental viscosity curves can be useful in 

predicting sintering behavior. 

The transient viscosities in this study limited comparisons of the 

Self-Consistent and Interlocking Cell models because sintering stopped before the 

samples reached full density. Therefore, for studies with experimental errors of 

± 0.03 in the relative density, a ratio of the high to low viscosities must be at least 5 

over the entire sintering range in order to distinguish between the two heterogeneous 

sintering models presented in this document. Powders with transient viscosities can 

be used for this type of study; however, changes in viscosity of more than two orders 

of magnitude require extended experimental sintering times to allow the powders to 

fully sinter. Therefore, for this type of study it is desirable to produce homogeneous 

powders with small particle sizes which do not have a large transient component to 

their viscosity. 

While the transient viscosity behaviors prohibited the exploration of the two 

heterogeneous models at high relative densities, some preliminary conclusions from 

this study can be drawn. The Self-Consistent model fits the experimental sintering 
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behavior of the heterogeneous sample better and over a larger time interval than the 

Interlocking Cell model. Therefore, the Self-Consistent model can be used to 

describe the microstructural developments within a heterogeneous sample during 

densification. 

63 Future Work 

This study has uncovered some very interesting results, which only emphasizes 

the amount of work yet to be done to explain heterogeneous sintering behavior. 

Specific areas which deserve more research include correlations between existing 

heterogeneous sintering models and experimental data, the effect of initial 

microstructure on sintering, and basic studies on transient viscosity behavior. 

It may be useful to correlate the effective sintering viscosities with values 

obtained from other measurement techniques, such as a viscometer. If the values 

agree, it may be possible to use viscosity functions found using these other techniques 

to model sintering behavior, since they often have smaller associated errors. At low 

temperatures, sintering experiments may be a useful technique for obtaining viscosity 

data on powders which could not be measured by other techniques. 

However, the source of the transient viscosity has not been fully explained. 

Several authors have postulated that the transient viscosity in sol-gel powders is due 
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to chemical changes, either the loss of water or oxidation of residual carbon.47 

Sintering experiments involving different firing atmospheres or calcining heat 

treatments should result in different observed transient behavior, if chemical changes 

in the sample are the cause. Thermogravimetric Analysis or Mass Spectroscopy may 

also assist in characterizing the source of the transient viscosity behavior. Other 

authors have suggested that rearrangement and structural relaxation will result in 

time-dependent viscosities. Existing relaxation models may be applied to sintering 

data, such as that which is presented in this document, to study transient behaviors. 

These types of experiments may also help explain the effect of processing on 

the sintering and extrapolated viscosities of glass powders. Even though the 

homogeneous samples in this study were processed under very similar conditions, 

they appeared to have differences due to the manner in which they were produced. 

Thermogravimetric Analysis combined with sintering experiments may indicate the 

critical steps of the processing. Also, by studying powders with intentionally different 

processing conditions such as the work conducted by Aruchamy et al.,8 the level of 

heterogeneities which can be tolerated for a given application ran be explored. 

While transient viscosities may effectively halt the densification of samples 

heated isothermally, constant heating rate experiments could be used to investigate 

the sintering behavior of samples near their theoretical densities. By using heating 

rate studies the entire range of relative densities can be investigated. However, the 

compositions must still be carefully selected so that the effective sintering viscosities 
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of the components do not cross in the region of interest. In order to distinguish 

between different heterogeneous sintering models - in particular between the 

Interlocking Cell and Self-Consistent models - a viscosity ratio of at least 5 must be 

maintained throughout the sintering experiment. 

Both the Interlocking Cell and Self-Consistent models should also be explored 

using pore size distributions as the source of heterogeneities instead of chemical 

variations. Scherer has already published theoretical work on the expected behavior 

of a powder with a bimodal pore size distribution; however, very little experimental 

work on this type of powder has been conducted. Particle size distributions, and 

therefore pore size distributions, can be generated by spray-drying sol-gel powders 

at different temperatures. By using one homogeneous composition with different 

pore sizes, the difficulties associated with calculating the ratio of two time-dependent 

viscosities is eliminated. 

The effect of the distribution of the heterogeneities on sintering should also 

be researched. This type of experiment could involve simply mixing two powders of 

different compositions either chemically or physically to obtain different spatial 

distributions of the heterogeneities. At one extreme the powder could be 

homogeneous on an atomic scale, while at the other extreme the experiment would 

involve two pellets of different compositions resting on top of each other. This study 

should also include the effect of the relative amounts of each component by varying 

the volume percent from 0% to 50%. 
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This study has not discussed the impact of the sintering models or sintering 

behavior on other properties or on manufacturing products. One of the main 

problems with powder processing is obtaining a fully dense sample with the desired 

dimensions and mechanical properties. Improper selection of the heat treatment or 

compositions of the heterogeneous compact can cause voids to form either from 

chemical reactions between the two components or simply residual stresses. The 

developing stresses in a sintering sample can be predicted using sintering models. 

Further work should be conducted on the magnitude of the stresses which develop 

as a function of the scale of heterogeneities and how they affect mechanical 

properties. 



144 

APPENDIX A 

PROGRAM FOR THE SELF-CONSISTENT MODEL 

A.1 Analytical Approach for the Self-Consistent Model 

The following pages containing the code used to generate theoretical sintering 

curves using the Self-Consistent Model developed by Scherer.6 The algorithm used 

is very similar to Scherer's, however, viscosity or porosity can be the source of the 

heterogeneities in the mixed sample. The original pore size and relative density for 

a homogeneous sample, each of the components, and for the heterogeneous sample 

must initially be entered. From these parameters, the initial dimensions for the 

Scherer unit cells9 can be computed. The viscosity as a function of time is also read 

from a file. 

Once the initial unit cell parameters have been computed, the free strain rates 

for both of the regions in the mixed sample are computed along with their sintering 

properties, F and N, using the input viscosities. Using the Hashin-Shtrikman 

approach, the matrix values of F and N can be calculated and used to compute the 

densification rates of each of the regions in the matrix, as described by Scherer.6 The 

matrix densification rate is then simply a weighted average of the densification rates 
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of the two regions. By multiplying the densification rate by the time interval, the new 

relative density at a given time can be computed and the cycle repeated with a new 

set of viscosity values. 

A.2 Self-Consistent Model Program 

c scdata - This program calculates the time in units of K(t-to) 
c (where K is for the homogeneous sample) for inhomogeneous samples 
c to sinter. 

character finput*14, foutput*14 
real lmo, lso, llo, lho 
write(V(a/)') ' Enter input filename, with apostrophies' 
read(V) finput 
write(V(a/)')' Enter output filename, with apostrophies' 
read(*,*) foutput 

open(l,file=finput, status = 'old') 
open(2,file = foutput,status = 'new') 

read( 1, *) time,rrhohi,rrhosi,rrholi,rrhomi 
read(l,*) time,doh,dos,dol,dom 
gammah=300. 
gammas=300. 
gammal=300. 
gammam=300. 
write(*,'(a/)')' Enter alpha, wt. ratio of large viscosity to 
Ismail viscosity cells' 
read(V) alpha 

c Calculate K(t-to) for homogeneous for where we want to start 
read(l,*) time, rrhoh, rrhos, rrhol, rrhom 
errpi = 0. 
call fx(rrhohi,errpi,xho,errxo) 
errp = 0.0 
call fx(rrhoh,errp,xh,errx) 
call fkt(xh,errx,calh,ecalh) 

c Initialize the relative densities and K(t-to) 
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sumhint = calh 
c calculate the lo for all 

call fx(rrhosi,errpi,xso,errxso) 
lso = dos*0.88623/(l.-2.*xso) 
call £x(rrholi,errpi,xlo,errxlo) 
llo = dol *0.88623/(1.-2. *xlo) 
lho = doh*0.88623/(l.-2.*xho) 

c The coefficient ( gamma/(lo*rrho**(l/3))) is given below 
coeffh = gammah/(lho*rrhohi**(l./3.))*10.**8. 
vl = l./((alpha*rrhos/rrhol)**(-l.)+l.) 
sigl = (alpha*rrhos/(rrhol + alpha*rrhos)**2.)**2.*errpl**2. 
sig2 = (alpha*rrhol/(rrhol + alpha*rrhos)**2.)**2.*errps**2. 
sigvl = sigl + sig2 
vs = l.-vl 
sigvs = sigvl 
rrhom = vl * rrhol+vs* rrhos 
sigpm = rrhol**2.*sigvl+vl**2.*sigpl + rrhos**2.*sigvs+vs**2.*sigps 
read(l,*) time, etah, etas, etal 

etaho = etah 
etaso = etas 
etalo = etal 
evisho = evish 
evislo = evisl 
evisso = eviss 

write(2,130) time, rrhoh, rrhom, rrhos, rrhol 
130 format(fl0.2, 4(f7.4)) 
150 timeold=time 

sigps = eps**2. 
sigpl = epl**2. 
sigpm = epm**2. 
etash = etaso/etaho 
etalh = etalo/etaho 
sigsh = l/etaho**2.*evisso* *2. +(etaso/etaho* *2.)* *2.*evisho* *2. 
siglh = l/etaho**2.*evislo**2. + (etalo/etaho**2.)**2.*evisho**2. 
vl = l./((alpha*rrhos/rrhol)**(-l.) + l.) 
sigl = (alpha*rrhos/(rrhol + alpha*rrhos)**2.)**2.*sigpl 
sig2 = (alpha*rrhol/(rrhol + alpha*rrhos)**2.)**2.*sigps 
sigvl = sigl + sig2 
call frstrr(rrhos,eps,etash,sigsh,lho,lso,rrhohi,rrhosi,fsrs, 
lsigfsrs) 
call frstrr(rrhol,epl,etalh,siglh,lho,llo,rrhohi,rrholi,fsrl, 



lsigfsrl) 
fs = f(rrhos,etash) 
£1 = f(rrhol,etalh) 

sigfs = (3.*rrhos/(3.-2.*rrhos))**2.*sigsh 
1 + (9. *etash/(3.-2. *rrhos) * *2.) * *2. *sigps 

sigfl = (3.*rrhol/(3.-2.*rrhol))**2.*siglh 
1 + (9.*etalh/(3.-2.*rrhol)**2.)**2.*sigpl 
sns = sn(rrhos,etash) 
snl = sn(rrhol.etalh) 

tl = 0.5*.507949* (rrhos/(3.-1.968*rrhos))* *(-.5) 
a = 3./(3.-1.968*rrhos)**2. 
signs = (tl*t2)**2.*sigps 
tl = 0.5 *.507949*(rrhol/(3.-1.968 *rrhol))* * (-.5) 
t2 = 3./(3.-1.968*rrhoI)**2. 
signl = (tl*t2)**2.*sigpl 

call fnm(sns,snl,signs,signl,fs,fl,sigfs,sigfl)vl,sigvl,rrhom, 
lsigpm,etamh,sigmh,fm,sigfm,snm,signm) 
a = l./(l. + .5*(fs/(l.-2.*sns))*((l. + snm)/fm)) 

siga = ferr(a,fs,sns, sigfs, signs.fm,snm,sigfm,signm) 
b = l./(l. + .5*(fl/(l.-2.*snl))*((l. + snm)/fm)) 

sigb = ferr(b,fl,snl,sigfl,signl,fm,snm,sigfm,signm) 
terml = 3.*(l.-a)*((l.-b)*alpha*rrhos + rrhol)*fsrs 

ta = (-3.*((l.-b)*alpha*rrhos + rrhol)*fsrs)**2.*siga 
tb = (3.*(l.-a)*fsrs*(-alpha*rrhos))**2.*sigb 
ts = (3.*(l.-a)*fsrs*(l.-b)*alpha)**2.*sigps 
tl = (3.*(l.-a)*fsrs)**2.*sigpl 
tf = (3.*(l.-a)*((l.-b)*alpha*rrhos +rrhol))* *2.*sigfsrs 
sigtl = ta+tb+ts+tl+tf 

term2 = 3.*(l.-b)*a*alpha*rrhos*fsrl 
ta = (3.*(l.-b)*alpha*rrhos*fsrl)**2.*siga 
tb = (-3.*a*alpha*rrhos*fsrl)**2.*sigb 
ts = (3.*(l.-b)*a*alpha*fsrl)**2.*sigps 
tf = (3.*(l.-b)*a*alpha*rrhos)**2.*sigfsrl 
sigt2 = ta+tb+ts+tf 

term3 = (b-l.)*alpha*rrhos + (a-l.)*rrhol 
ta = rrhol**2.*siga 
tb = (alpha*rrhos)**2.*sigb 
ts = ((b-l.)*alpha)**2.*sigps 
tl = (a-l.)**2.*sigpl 
sigt3 = ta+tb+ts+tl 

drrhosdt and drrholdt are from eq. 24 and 25 but are divided 
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c by K homogeneous as is drrhomdt 
drrhosdt = (terml+term2)/term3 

sigds = (l./term3)**2.*(sigtl+sigt2) 
sigds = sigds+(drrhosdt/term3)**2.*sigt3 

terml = 3.*(l.-b)*(alpha*rrhos+(l.-a)*rrhol)*fsrl 
ta = (3.*(l.-b)*(-rrhol)*fsrl)**2.*siga 
tb = (-3.*(alpha*rrhos + (l.-a)*rrhol)*fsrl)**2.*sigb 
ts = (3.*(l.-b)*fsrl*alpha)**2.*sigps 
tl = (3.*(l.-b)*fsrl*(l.-a))**2.*sigpl 
tf = (3.*(l.-b)*(alpha*rrhos + (l.-a)*rrhol))**2.*sigfsrl 
sigtl = ta+tb + ts + tl + tf 

term2 = 3.*(l.-a)*b*rrhol*fsrs 
ta = (-3.*b*rrhol*fsrs)**2.*siga 
tb = (3.*(l.-a)*rrhol*fsrs)**2.*sigb 
tl = (3.*(l.-a)*b*fsrs)**2.*sigpl 
tf = (3.*(l.-a)*b*rrhol)**2.*sigfsrs 
sigt2 = ta+tb+tl+tf 

tenn3 = (b-l.)*alpha*rrhos+(a-l.)*rrhol 
ta = rrhol* *2.*siga 
tb = (alpha*rrhos)**2.*sigb 
ts = ((b-l.)*alpha)**2.*sigps 
tl = (a-l.)**2.*sigpl 
sigt3 = ta+tb+ts+tl 

drrholdt = (terml+ term2)/term3 
sigdl = l/term3**2.*(sigtl + sigt2) + (drrholdt/term3)**2.*sigt3 

terms = (rrhol/(alpha*rrhos + rrhol))*drrhosdt 
denom = alpha* rrhos+rrhol 
tl = (alpha*rrhos*drrhosdt/denom**2.)**2.*sigpl 
ts = (alpha*rrhol*drrhosdt/denom**2.)**2.*sigps 
td = (rrhol/denom)**2.*sigds 
sigts = tl + ts + td 

terml = (alpha*rrhos/(alpha*rrhos + rrhol))*drrholdt 
tl = (alpha*rrhos*drrholdt/denom**2.)**2.*sigpl 
ts = (alpha*rrhol*drrholdt/denom**2.)**2.*sigps 
td = (alpha*rrhos/denom)**2.*sigdl 
sigtl = tl + ts+td 

drrhomdt = terms+terml 
sigdm = sigts+sigtl 

etaho=etah 
etaso=etas 
etalo=etal 



evisho = evish 
evisso = eviss 
evislo = evisl 

read(l,*) time, etah, etas, etal 
dt = (time-timeold)*60. 
delktto = coeffh'dt/etaho 

sigkt = (delktto/etaho) * *2.'evisho* *2. 
calh = calh + delktto 

sigcalh = sigcalh+sigkt 
step change all of the individual densities 
call rdense(rrhoh,sigph,calh,sigcalh) 

call £x(rrhoh, eph, xh, errx) 
dxh = delktto*rrhoh**(l./3.)/2. 
dph = (6.*3.14159*xh-24.*2.**.5*xh**2.) 
rrhoh = rrhoh + dph 

rrhomo = rrhom 
rrhom = rrhom*(1.0+delktto*drrhomdt) 

tl = (1.0+delktto*drrhomdt)**2.*sigpm 
t2 = (rrhomo*drrhomdt)**2.*sigkt 
t3 = (rrhomo*delktto)**2.*sigdm 
sigpm = tl + t2 + t3 

if(rrhom.gt.l.) rrhom =1.0 
rrhoso = rrhos 

rrhos = rrhos*(1.0 + delktto*drrhosdt) 
tl = (1.0+delktto*drrhosdt)**2.*sigps 
t2 = (rrhoso*drrhosdt)**2.*sigkt 
t3 = (rrhoso*delktto)**2.*sigds 
sigps = tl+t2+t3 

if(rrhos.gt.l.) rrhos = 1. 
rrholo = rrhol 

rrhol = rrhol*(1.0+delktto*drrholdt) 
tl = (1.0+delktto*drrholdt)**2.*sigpl 
t2 = (rrholo*drrholdt)**2.*sigkt 
t3 = (rrholo*delktto)**2.*sigds 
sigpl = tl + t2 + t3 

if(rrhol.gt.l.) rrhol = 1. 
eph = sigph**.5 
epm = sigpm* *.5 
eps = sigps* *.5 
epl = sigpl* *.5 

write(2,200) time,rrhoh,rrhom,rrhos,rrhol 
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200 format(fl0.2,4(f7.4),f8.4) 
if(rrhol.eq.l.O) go to 550 
go to 150 

500 continue 
550 continue 

end 

c This calculates the values of G/etah,N,F/etah, and eta for the 
c matrix 

subroutine fnm(sns,snl,signs,signl,fs,fl,sigfs,sigfl,vl,sigvl, 
lrrhom,sigpm,etamh,sigmh)fm,sigfm,snm,signm) 

gs = fs/(2.*(l. + sns)) 
gl = fl/(2.*(l. + snl)) 

siggs = (gs/fs)**2.*sigfs + (gs/(l. + sns))**2.*signs 
siggl = (gl/fl)**2.*sigfl + (gl/(l. + snl))**2.*signl 

bs = fs/(3.*(l.-2.*sns)) 
bl = fl/(3.*(l.-2.*snl)) 

sigbs = (bs/fs)**2.*sigfs+(2.*bs/(l.-2.*sns))**2.*signs 
sigbl = (bl/fl)**2.*sigfl + (2.*bl/(l.-2.*snl))**2.*signl 

terml = (gl-gs)*vl 
sigtl = vl**2.*(siggl + siggs) + (gl-gs)**2.*sigvl 

term2 = 6.*(bs+2.*gs)*(l.-vl)*(gl-gs) 
tl = ((l.-vl)*(gl-gs))**2.*sigbs 
t2 = (2.*(l.-vl)*(gl-gs)-(bs + 2.*gs)*(l.-vl))**2.*siggs 
t3 = ((bs + 2.*gs)*(gl-gs))**2.*sigvl 
t4 = ((bs + 2.*gs)*(l.-vl))**2.*siggl 
sigt2 = 36.*(tl + t2 + t3 + t4) 

term3 = 5.*gs*(3.*bs+4.*gs) 
sigt3 = (15.*bs + 40.*gs)**2.*siggs + (15.*gs)**2.*sigbs 

glow = gs + terml/(l. + term2/term3) 
tl = siggs 
t2 = l./(l. + term2/term3)**2.*sigtl 
t3 = (terml/(term3*(l. + term2/term3)**2.))**2.*sigt2 
t4 = (-terml*term2/(term3 + term2)**2.)**2.*sigt3 
siglow = tl + t2 + t3 + t4 

terml = (gs-gl)*(l.-vl) 
sigtl = (l.-vl)**2.*(siggs + siggl) + (gs-gl)**2.*sigvl 

term2 = 6.*(bl + 2.*gl)*vl*(gs-gl) 
tl = (vl*(gs-gl))**2.*sigbl 
t2 = (2.*vl*(gs-gl)-(bl + 2.*gl)*vl)**2.*siggl 
t3 = ((bl+2.*gl)*(gs-gl))**2.*sigvl 
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t4 = ((bl+2.*gl)*vl)**2.*siggs 
sigt2 = 36.*(tl + t2+t3+t4) 

term3 = 5.»gl*(3.*bl+4.*gl) 
sigt3 = (15. *bl+40. *gl) * *2. *siggl+(15. *gl) * *2. *sigbl 

ghigh = gl + terml/(l. + term2/term3) 
tl = siggl 
t2 = l./(l. + term2/term3)**2.*sigtl 
t3 = (terml/(term3*(l. + term2/term3)**2.))**2.*sigt2 
t4 = (-terml*term2/(term3 + term2)**2.)**2.*sigt3 
sighigh = tl + t2 + t3 + t4 

gm = .5* (ghigh + glow) 
siggm = 0.5*(sighigh + siglow) 

snm = .507949*(rrhom/(3.-1.968*rrhom))**.5 
tl = 0.5*0.507949*(rrhom/(3.-1.968*rrhom))**(-.5) 
t2 = 3./(3.-1.968*rrhom)**2. 
signm = (tl*t2)**2.*sigpm 

ftn = gm*2.*(l. + snm) 
sigfm = 4.*(l. + snm)**2.*siggm + 4.*gm**2.*signm 

etamh = fm*(3.-2.*rrhom)/(3.*rrhom) 
sigmh = (etamh/fm)**2.*sigfm + (-fm/rrhom**2.)**2.*sigpm 

return 
end 

g a**************************************************************** 

c This function calculates the F divided by eta homogeneous values 
function f(rrho,etar) 
f = 3.*etar*rrho/(3.-2.*rrho) 
end 

c 
c  ***•**««*«*********»**«*«»*********»***»«***«** . , ****««**««««*•«« 

c This calculates the N values 
function sn(rrho,etar) 
sn = .507949*(rrho/(3.-1.968*rrho))**.5 
end 

c This function calculates the free strain rate divided by Kh for 
c the small and large viscosities 

subroutine frstrr(rrho,ep,etar,sigvis,lho,lo,rrhohi,rrhoi,fsr, 
lsigfsr) 

real lho, lo 
if(rrho.lt..942)then 

c = 1.20042 
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call fx(rrho,ep,x,errx) 
c write(m,10) rrho, etar, lho, lo, rrhoi, x 
c 10 format( 6(f8.4)) 

terml = (2.-3.*c*x)/(l.-c*x)**(2./3.)/x"(l./3.) 
sigtl = 2./3.*(9.*c**2.*x**2.-l.) 
sigtl = sigtl/(x**(4./3.)*(l.-c*x)**(5./3.)) 
sigtl = (sigtl)**2.*errx**2. 

const = -0.352051*(l./etar)*(lho/lo)*(rrhohi/rrhoi)**(l./3.) 
fsr = const*terml 

sigfsr = const* *2.*sigtl 
else 

x = 100 
sigfsr = 100. 

fsr = -0.805996*(l.-rrho)**(2./3.)*rrho**(l./3.) 
fsr = fsr*(l./etar)*(lho/lo)*(rrhohi/rrhoi)**(l./3.) 

endif 
return 
end 

c * 
c This function calculates the value of x = ratio of cylinder radius 
c to length associated with a given value of the relative density 
c for a unit cell consisting of intersecting right cylinders 
c (Scherer model). 
c 

subroutine fx(rrho,ep,x,ex) 
hnumer = 2.**.5*(3.14159**3.-64.*rrho) 

sighn = (64.*2.**.5*ep)**2. 
hdenom = 16.*(rrho*(3.14159**3.-32.*rrho))**.5 

ta = 8.*(rrho*(3.14159**3.-32*rrho))**(-.5) 
tb = 3.14159* *3.-64.*rrho 
sighd = (ta*tb)**2.*ep**2. 

terml = atan(hnumer/hdenom) 
ta = l./(l. + (hnumer/hdenom)**2.) 
tb = ta/hdenom 
sigtc = tb**2.*sighn 
td = -hnumer/(hnumer**2. + hdenom**2.) 
sigte = (td)**2.*sighd 
sigtl = sigtc + sigte 

term2 = 3.14159*2.**.5*sin(terml/3.)/8. 
sigt2 = (3.14159*2.**.5/24*cos(terml/3.))**2.*sigtl 

term3 = 3.14159*2.**.5/16. 
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x = term3-term2 
sigx = sigt2 
ex = sigx* *.5 

return 
end 

c  ••»***»*««**«,. 

c This function calculates K(t-to) for a given value of x. 
c It essentially calculates the definite integral (so it does not 
c substract the portion for x=0). 

subroutine fkt(x,ex,calint,ecal) 
y = (3.*3.14159/x-8.*2.**.5)**(l./3.) 

sigy = 3.14159/x**2.*(3.*3.14159/x-8*2.**.5)**(-2./3.) 
sigy = sigy**2.*ex**2. 

beta = (8.*2.**.5)**(l./3.) 
terml = beta**2.-beta*y+y**2. 

sigtl = (-beta+2.*y)**2.*sigy 
term2 = (beta+y)**2. 

sigt2 = (2.*(beta+y))**2.*sigy 
term3 = (2.*y-beta)/(beta*3.**.5) 

sigt3 = (2./(beta*3.**.5))**2.*sigy 
term4 = .5*alog(terml/term2) 

sigt4 = (.5/terml)**2.*sigtl + (.5/term2)**2.*sigt2 
term5 = 3.**.5*atan(term3) 

sigt5 = (3.**.5/(l + term3**2.))**2.*sigt3 
calint = -2.*(term4 + term5)/beta 

sigcal = 4./beta*(sigt4 + sigt5) 
ecal = sigcal* *.5 

return 
end 

c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

c This subroutine determines the relative density for a given value 
c of K(t-to). It uses Scherer's model at low densities and the MS 
c model at higher densities. The rrho switchover point is 0.942. 

subroutine rdense(rrho,sigp,sumhint,sigint) 
if(sumhint.lt.2.407) then 

c THIS FUNCTION CALCULATES THE VALUE OF X = RATIO OF 
CYLINDER RADIUS 
C LENGTH WHICH CORRESPONDS TO INPUTTED VALUE OF K(t-to) 
USING THE 
C SCHERER SINTERING MODEL. 
c 



ytest = 1.9674 
50 gamma = 2.244924 + ytest 

beta = (11.31371 + ytest* *3.)/gamma 
delta = .51436*(gamma - 3.36739) 
hnum = -sumhint + .44545*alog(gamma**2./beta) -

11.54308*atan(delta) 
hdenom = -(1.33635/beta/gamma**2.)*(beta-(gamma - 2.244924)**2.)+ 

1.7937/(1. + delta* *2.) 
hn = hnum/hdenom 

sighn = sigint/hdenom**2. 
ytest = ytest + hn 

sigy = sighn 
if(hn.le..0001.and.hn.ge.-.0001) go to 60 
go to 50 

60 oldy = ytest 
caly = ytest 
subx = 9.42478/(caly**3. + 11.31371) 

sigx = (9.42478/(caly**3.+ 11.31371)**2.*3.*caly**2.)**2.*sigy 
rrho = 9.42478*subx**2. - 11.31371*subx**3. 

sigp = (6.*3.14159*subx-24.*2.**.5*subx**2.)**2.*sigx 
else 
If(rrho.ge.l.O) go to 62 
Here the reduced time must be adjusted by a constant determined 
by the changeover density for the MS and Scherer models. At rrho 
of .942, Kt for Scherer is 2.407 and that of MS is 1.0176. Note 
we still retain sumhint to keep track of absolute time. 
rdtims = sumhint - 2.407 + 1.0176 

sigp = 100. 
rrho = densms(rdtims) 

62 continue 
endif 
return 
end 
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function ferr(const,f,sn,sigf,signi,fm,snm,sigfm,signm) 
tl = ((l+snm)/(2.*(l.-2.*sns)*fm))**2.*sigfs 
t2 = (fs*(l. + snm)/((l.-2*sns)**2.*fm))**2.*signs 
t3 = (fs/(2.*(l.-2.*sns)*fm))**2.*signm 
t4 = (-fs*(l. + snm)/(2.*(l.-2.*sns)*fm**2.))**2.*sigfm 
ferr = l/a»*2.*(tl + t2+t3+t4) 

end 

c 

c THIS FUNCTION CALCULATES THE RELATIVE DENSITY OF A UNIT 
CELL WITH 
C K(t-to) VALUE OF PKMS USING THE MACKENZIE-SHUTTLEWORTH 
MODEL. IT 
C USES BOTH BISECTION AND NEWTON-RAPHSON TECHNIQUES FOR 
FINDING THE 
C ROOT. THE ALGORITHM IS BASED ON PROGRAM RTSAFE IN 
"NUMERICAL 
C RECIPES". NOTE THAT THE PROGRAM FINDS THE ROOT X WHERE 

C X = ((l-RD)/RD)**(l/3). 
C 

FUNCTION densms(pkms) 
data MAXIT/100/ 
xl = 2.5 
x2 = 0.0 
xacc = 0.0001 
calL FUNCD(Xl,pkms,FL,DF) 
CALL FUNCD(X2,pkms,FH,DF) 
IF(FL*FH.GE.0.) PAUSE 'root must be bracketed' 
IF(FL.LT.0.)THEN 

XL=X1 
XH = X2 

ELSE 
XH = X1 
XL=X2 
SWAP=FL 
FL=FH 



FH=SWAP 
ENDIF 
yden=.5*(Xl+X2) 
DXOLD=ABS(X2-X1) 
DX=DXOLD 
CALL FUNCD(yden,pkms,F,DF) 
DO 11 J= 1,MAXIT 

EF(((yden-XH)*DF-F)*((yden-XL)*DF-F).GE.O. 
* .OR. ABS(2.*F).GT.ABS(DXOLD*DF) ) THEN 

DXOLD=DX 
DX = 0.5 * (XH-XL) 
yden=XL+DX 
IF(XL.EQ.yden)goto 50 

ELSE 
DXOLD=DX 
DX = F/DF 
TEMP=yden 
yden=yden-DX 
IF(TEMP.EQ.yden)goto 50 

ENDIF 
IF(ABS(DX).LT.XACC) goto 50 
CALL FUNCD(yden,pkms,F,DF) 
IF(F.LT.O.) THEN 

XL=yden 
FL=F 

ELSE 
XH=yden 
FH = F 

ENDIF 
11 CONTINUE 

PAUSE 'yden exceeding maximum iterations' 
50 continue 

densms = l/(l+yden**3) 
RETURN 
END 

subroutine funcd(y,pkms,fn,df) 
alpha = 1 + y**3 
beta = (1 + y)**3 
delta = (2*y-l)/1.73205 
fn=0.413567* (0.5 * alog(alpha/beta)-1.73205* atan(delta)+2.720699) 
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fa = fn - pkms 
df=0.413567*(1.5*(y-l)/alpha - 2/(1 +delta**2)) 
return 
end 

C 
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APPENDIX B 

DERIVATION OF THE EQUATIONS FOR THE 

INTERLOCKING CELL MODEL 

Starting with Equations 3.17, 3.18, and 3.21 an expression for the densification 

rate for each of the regions will be presented. 

The rate of energy dissipated through viscous flow can be re-expressed in 

terms of x. The length of the equivalent flowing cylinders, h, is 

i 

h=l-(*&)a=l( 1 -M*)= ^ —(37tx
2-8v/2x3) f®-1) 

3IR 3K 13NX2  

(3ltx -Sy/2x )3 

therefore, 

h = l°?L(3nx2-S fix3)* ^ 
3itx2 
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or 

h—l—o (BJ) 
3it*2 

Then dh/dt can be calculated as 

I J 2 .i (B.4) 

-3(3TCX2-8V/2*3) 3 +-* "2(3TCJC2-8V/2X3)" 3(6U*-24V/2X:2)]— 
at 3n 3 dt 

dh l0Po 
dt 3* 

x3(3«JC2-8 V/2*3)3 

j-[-2(37t*2-8v^*3)+|*(67t*-24v^*2)]^ (B-5> 

A 
'„P0 -2tt*2 

3ic i A 
x\3izx2-&j2x3)3 

(B.6) 

dh__2 IQPQ dx _2 I dx 
dt 3 1 dt 3 xdt 

xp 3  

(B.7) 



Since the change in energy due to flow depends on dh/dt and h, it can now be 

expressed as 

E - 3nno2
rdh\2- 3rci)S2/2/. 2 I dxs2 

v~ h dt lp 3 xdt (B-8) 

3nx2 

E = (B.9) 
P 9x2 dt 

and finally 

Ev = ^Vl3
(dx)2 (B#10) 

o dt 

Similarly, the rate of energy reduction due to a change in surface area can be 

expressed in terms of x: 

2 

S=2nal-&j2a2=l2(2itx-%j2x2)= l° Po (27t*~8v^ ) (B.ll) 
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Therefore, dS/dt is 

2 
2 3 

 ̂ lsh r-2it2*2]— (B.12) 
s dt 

Onx2-^3)1 

or 

^ = 2K2X2/2 

A p dt 
(B.13) 

and the change in surface energy is 

E = 27t2Y * 2 Pdx  (B.14) 
p dt 

The ratio of the number of small unit cells of each component is 

!h.=â AlA (B.1S) 
"a P M i l  
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The energy rate balance can be used to obtain 

e£ t>jl 

a pA 4ff2fl , 4lt\43
(^)2.g pA 2h2ygxlll dxB 2ic2yAx*l* dxA 

PA ?B * PA dt p/B PB dt PA * 

(B.17) 

tt 
2ti**&pA(<frfl)2. 2viyx)2_C[ p>« dxB ^ (B18) 

From geometric constraints 



tP JltZhK-'*** *d tp 
vxp ̂  k*u9 a*P 

si auiij qjiM x ui aiusqD aqx 

JP vd V1 f VP ffd ffr c 
(zra) T^^^-Vx^)^jr^e^vz-axu9)—j~. 

IP , d £ rp 
(ira) 

(ora) jp<txSfa-**9) vv r=< ^ Vp 
C £ 

naip 

soufs 

£91 
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based strictly on geometry. This also means that the relative densification rates of 

the two regions must be the same, 

1 dP a 1 d?A 

PB * PA * 
(BJ4) 

Using Equation B.23 for the change in x, and Equation B.18 as the rate equation 

, 2r^aXXi
d xa )2_A Pa vA (6^-24^^^ yrf dxA 

f>\ 6nx,-24V5*l  ̂ P* Pj» 6nxB-2Aj2x2
t & Pa * 

(B.25) 

Finally, 

dx 

„ P<4 , Y^2 
a ;—( —-)+-

•A. 

dt 

PB L 6nxB-24\j2xg L 

6nxA-24fix2 

6itxB-24j2x2 

(B 26) 

A>^a 
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Therefore, 

dxA 
— =/(«,tiB,ri/4,YiPY^^V/.Pfl.P^ (B,27) 

and using Equation B.23 

Since the densification rate of each region is related to x 

& = (67tjc-24\/2x2) — (B 29) 
at dt 

the densification rates may also be calculated. 
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APPENDIX C 

PROGRAM FOR THE 

INTERLOCKING CELL MODEL 

C.1 Analytical Approach for the Interlocking Cell Model 

Section C.2 contains the program used to calculate theoretical sintering curves 

based on the Interlocking Cell Model. The input file is the same as that for the 

Self-Consistent Model and contains the initial pore sizes and relative densities for the 

homogeneous powder, each of the components in the mixed sample, and the mixed 

sample itself, as well as the time dependent viscosities of the three homogeneous 

powders. After the initial cell dimensions are calculated, the change in x with respect 

to time for one of the components is computed using Equation B.26. From there the 

change in the cell dimensions of the other component and of the matrix can be 

computed. From the changes in x, the changes in relative density, and therefore the 

new relative densities, for each of the components and the matrix can be computed. 

This process is then repeated with next set of viscosities for each of the matrix 

components in the data file. 
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C.2 Interlocking Cell Model Program 

c 
c iccor.FOR 
c This program will calculate the rrho for homogeneous and 
c inhomogeneous samples with a time dependent viscosity. The 
c program steps time. The viscosities are combined using the 
c interlocking cell model. 
c This is a revision of previous ic programs because the 
c assumptions starts at the beginning instead of working things 
c through for equal volume fractions of two different viscosities 
c While the program will be run for either bimodal pore size or 
c viscosity, the equations are such that it is valid for either. 
c So to change it we just need to change the input parameters. 
c We will be using the Scherer model since the MS analog to IC 
c is not clear. 

character foutput* 14,finput* 14 
real lom, loh, loha, loma, lohcm, lomcm,numer 
real lol, los, 11, Is 
real nh, ns, nl, nt 
write(V(a/)') ' Enter input filename, with apostrophies' 
read(V) finput 
write(V(a/)') ' Enter output filename, with apostrophies' 
read(V) foutput 
open(l,file = finput,status = 'old') 
open(2,file=foutput,status = 'new') 
read(l,*) time, rrhohi, rrhosi, rrholi, rrhomi 
read(l,*) time, doh, dos, dol, dom 
gammah = 300. 
gammam = 300. 
gammas = 300. 
gammal = 300. 
write( *,'(a/)')' Enter the weight ratio of large to small' 
read(V) alpha 
write(V(a/)') ' Enter the small theoretical density ' 
read(V) rhost 
write(V(a/)') ' Enter the large theoretical density ' 
read(V) rholt 

c Calculate the initial lengths of the cells and x 
eph = 0. 

epm = 0. 



eps = 0. 
epl = 0. 

epm = 0. 
sigph = eph**2. 
sigpm = epm* *2. 
sigps = eps* *2. 
sigpl = epl **2. 
call fx(rrhohi,eph,xh,exh) 
call fx(rrhomi,epmvxm,exm) 
call fx(rrhosi,eps,xs,exs) 
call fx(rrholi,epl,xl,els) 
loh = 3.14159**0.5*doh/(2.*(l.-2.*xh)) 
lorn = 3.14159* *0.5*dom/(2.*(l.-2.*xm)) 
los = 3.14159**0.5*dos/(2.*(l.-2.*xs)) 
lol = 3.14159* *0.5*dol/(2.*(l.-2.*xl)) 
read(l,*) time, rrhoh, rrhos, rrhol, rrhom 
call fx(rrhoh,eph,xh,exh) 
call fkt(xh,exh,calint,sigcalh) 
Initialize the relative densities and K(t-to) 
sumhint = calint 
calh = calint 

Since we are no longer stepping Ktto, we only want to keep 
track of it for the homogeneous. The coefficient portion is 
coeff = gamma/(lo*rrhoi"(l/3)*eta) but eta varies 

coeffh = gammah/(loh*rrhohi**(l./3.))*10.**8. 
vl = l./((alpha*rrhos/rrhol)**(-l.)+1.) 
vs = l.-vl 
rrhom = vl * rrhol+ vs* rrhos 

read(l,*) time, etah, etas, etal 
write(2,130) time,rrhoh,rrhom,rrhos,rrhol 

130 format(flO.O,4(f7.4),4(f7.4)) 
150 timeold = time 

I need to do this in three steps. First what happens to 
the homogeneous. Then what happens to the small and large 
cells. Then lastly, how these combine to affect the matrix. 
What I mean by what happens is what do the length, x and 
the density do. 

etaho = etah 
etaso = etas 
etalo = etal 
evisho = evish 



evisso = eviss 
evislo = evisl 
read(l,*) time, etah, etas, etal 
dt = (time-timeold)*60. 

This part calculates the step in density for the homogeneous 
delktto = coeffh * dt / etaho 
sigkt = (coeffh*dt/etaho**2.)**2.*evisho**2. 

sigcalho = sigcalh 
calh = calh + delktto 

sigcalh = sigcalho+sigkt 
call rdense(rrhoh,sigph,calh,sigcalh) 
call fx(rrhoh,eph, xh, exh) 
dxhdt = gammah/(2.* etaho)* (rrhoh) **(l./3.) 
dxhdt = dxhdt/(loh*rrhohi**(l./3.))*10.**8. 
dphdt = (6.*3.14159*xh-24.*2.**.5*xh**2.)*dxhdt 
rrhoh = rrhoh + dphdt *dt 
This part calculates the new parameters for the large and small 

call £x(rrhos,eps,xs,exs) 
call fx(rrhol,epl,xl,exl) 
Is = los*rrhosi**(l./3.)/(rrhos**(l./3.)) 

sigls = (ls/(3.*rrhos))**2.*eps**2. 
11 = lol*rrholi**(l./3.)/(rrhoI**(l./3.)) 

sigll = (ll/(3.*rrhol))**2.*epl**2. 
rhos = rrhos'rhost 

sigdns = eps**2./rhost**2. 
rhol = rrhol'rholt 

sigdnl = epl**2./rholt**2. 
ratsa = (6.*3.14159*xs-24.»2.**0.5*xs"2.)/(6.*3.14159'xl-24.* 

12.**0.5*xl**2.) 
sigs = ((6.*3.14159-48. *2.**.5*xs)/(6.*3.14159*xl-24. *2.* *.5 

1 *xl**2.))**2.*exs**2. 
sigl = (ratsa*(6.*3.14159-48.*2.**.5*xl)/(6.*3.14159*xl-24* 

1 2.**.5*xl**2.))**2.*exl**2. 
sigratsa = sigs + sigl 

terml = gammas/(2.*etaso*ls)*10.**8. 
sigtl = (terml/etaso)**2.*evisso**2. + (terml/ls)**2.*sigls 

term2 = alpha*rhos/rhol*xl/xs*ls/ll*gammal/gammas*ratsa+l. 
tds = ((term2-l.)/rhos)**2.*sigdns 
tdl = ((term2-l.)/rhol)**2.*sigdnl 
txl = ((term2-l.)/xl)**2.*exl**2. 
txs = ((term2-l.)/xs)**2.*exs**2. 
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tls = ((term2-l.)/ls)**2.*sigls 
til = ((tenn2- 1 .)/ll) * * 2. * sigll 
tr = ((term2-l.)/ratsa)**2.*sigratsa 
sigt2 = tds+tdl+txl+txs+tls+tll+tr 

term3 = alpha*rhost/rholt*etalo/etaso*ratsa**2.+ l. 
tvl = ((term3-l.)/etalo)**2.*evislo**2. 
tvs = ((term3-l.)/etaso)**2.*evisso**2. 
tr = (2.*(term3-l.)/ratsa)**2.*sigratsa 
sigt3 = tvl + tvs+tr 

dxsdt = terml*term2/term3 
sigdxs = (term2/term3)**2.*sigtl + (terml/term3)**2.*sigt2 
sigdxs = sigdxs + (dxsdt/term3)**2.*sigt3 

dpsdt = (6.*3.14159*xs-24.*2.**0.5*xs**2.)*dxsdt 
tx = ((6.*3.14159-48.*2.**.5*xs)*dxsdt)**2.*exs**2. 
tdx = (6.*3.14159*xs-24.*2.**.5*xs**2.)**2.*sigdxs 
sigdps = tx+tdx 

dpldt = rrhol/rrhos'dpsdt 
sigdpl = (dpldt/rrhol)**2.*epl**2. + (dpldt/rrhos)**2.*eps**2. 
sigdpl = sigdpl + (dpldt/dpsdt)**2.*sigdps 

dpmdt = rrhom/rrhos* dpsdt 
sigdpm = (dpmdt/rrhom)**2.*epm**2. + (dpmdt/rrhos)**2.*eps**2. 
sigdpm = sigdpm + (dpmdt/dpsdt)**2.*sigdps 

rrhos = rrhos + dpsdt'dt 
sigps = sigps + dt**2.*sigdps 

rrhol = rrhol + dpldt'dt 
sigpl = sigpl + dt**2.*sigdpl 

rrhom = rrhom + dpmdfdt 
sigpm = sigpm + dt**2."tsigdpm 

c And because the whole body must sinter at the same relative 
c rate the matrix portion is: 

if(rrhoh.gt.l.) rrhoh = 1.0 
if(rrhom.gt.l.) rrhom = 1.0 

if(rrhos.gt.l.) rrhos = 1.0 
if(rrhol.gt.l.) rrhol = 1.0 

eph = sigph*\5 
epm = sigpm* *.5 
eps = sigps* *.5 
epl = sigpl* *.5 
write(2,200) time, rrhoh, rrhom, rrhos, rrhol 

200 format(el2.5,8(f9.4)) 
if (rrhom.eq.1.0) go to 550 
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go to 150 
500 continue 
550 continue 

end 
c  ****.** .«*»*»****« *  , .»******« ***«**,*»*« 
c • .**,««,***,*„,  
c This function calculates the value of x = ratio of cylinder radius 
c to length associated with a given value of the relative density 
c for a unit cell consisting of intersecting right cylinders 
c (Scherer model). 
c 

subroutine fx(rrho,ep,x,ex) 
hnumer = 2.**.5*(3.14159**3.-64.*rrho) 
sighn = (64.*2.**.5*ep)**2. 

hdenom = 16.*(rrho*(3.14159**3.-32.*rrho))**.5 
ta = 8.*(rrho*(3.14159**3.-32*rrho))**(-.5) 
tb = 3.14159* *3.-64.*rrho 
sighd = (ta*tb)**2.*ep**2. 

terml = atan(hnumer/hdenom) 
ta = l./(l. + (hnumer/hdenom)**2.) 
tb = ta/hdenom 
sigtc = tb**2.*sighn 
td = -hnumer/(hnumer**2. + hdenom**2.) 
sigte = (td)**2.*sighd 
sigtl = sigtc+sigte 

term2 = 3.14159*2.**.5*sin(terml/3.)/8. 
sigt2 = (3.14159*2.**.5/24*cos(terml/3.))**2.*sigtl 

term3 = 3.14159*2.**.5/16. 
x = term3-term2 

sigx = sigt2 
ex = sigx*\5 

return 
end 

c 

c This function calculates K(t-to) for a given value of x. 
c It essentially calculates the definite integral (so it does not 
c substract the portion for x = 0). 

subroutine fkt(x,ex,calint,ecal) 
y = (3.*3.14159/x-8.*2.**.5)**(l./3.) 
sigy = 3.14159/x**2.*(3.*3.14159/x-8*2.**.5)**(-2./3.) 

sigy = sigy**2.*ex**2. 
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beta = (8.*2.**.5)**(l./3.) 
terml = beta* *2.-beta*y+y* *2. 

sigtl = (-beta+2.*y)**2.*sigy 
term2 = (beta+y)**2. 

sigt2 = (2.*(beta+y))**2.*sigy 
term3 = (2.*y-beta)/(beta*3.**.5) 

sigt3 = (2./(beta*3.**.5))**2.*sigy 
term4 = .5*alog(terml/term2) 

sigt4 = (.5/terml)**2.*sigtl + (.5/term2)**2.*sigt2 
term5 = 3.**.5*atan(term3) 

sigt5 = (3.**.5/(l + term3**2.))**2.*sigt3 
calint = -2.*(term4 + term5)/beta 

sigcal = 4./beta*(sigt4 + sigt5) 
ecal = sigcal* *.5 

return 
end 

e * ******** ***** * 
c This subroutine determines the relative density for a given value 
c of K(t-to). It uses Scherer's model at low densities and the MS 
c model at higher densities. The rrho switchover point is 0.942. 

subroutine rdense(rrho,sigp,sumhint,sigint) 
if(sumhint.lt.2.407) then 

c THIS FUNCTION CALCULATES THE VALUE OF X = RATIO OF 
CYLINDER RADIUS 
C LENGTH WHICH CORRESPONDS TO INPUTTED VALUE OF K(t-to) 
USING THE 
C SCHERER SINTERING MODEL. 
c 

ytest = 1.9674 
50 gamma = 2.244924 + ytest 

beta = (11.31371 + ytest**3.)/gamma 
delta = .51436*(gamma - 3.36739) 
hnum = -sumhint + .44545*alog(gamma**2./beta) -

11.54308*atan(delta) 
hdenom = -(1.33635/beta/gamma**2.)*(beta-(gamma - 2.244924)* *2.) + 

1.7937/(1. + delta* *2.) 
hn = hnum/hdenom 

sighn = sigint/hdenom**2. 
ytest = ytest + hn 

sigy = sighn 
if(hn.le..0001.and.hn.ge.-.0001) go to 60 
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go to 50 
60 oldy = ytest 

caly = ytest 
subx = 9.42478/(caly"3. + 11.31371) 

sigx = (9.42478/(caly**3.+11.31371)* *2.*3.*caly**2.)**2.*sigy 
rrho = 9.42478*subx**2. - 11.31371*subx**3. 

sigp = (6.*3.14159*subx-24.*2.**.5*subx**2.)**2.*sigx 
else 
If(rrho.ge.l.O) go to 62 

c Here the reduced time must be adjusted by a constant determined 
c by the changeover density for the MS and Scherer models. At rrho 
c of .942, Kt for Scherer is 2.407 and that of MS is 1.0176. Note 
c we still retain sumhint to keep track of absolute time. 

rdtims = sumhint - 2.407 + 1.0176 
sigp = 100. 

rrho = densms(rdtims) 
62 continue 

endif 
return 
end 

c * 
c THIS FUNCTION CALCULATES THE RELATIVE DENSITY OF A UNIT 
CELL WITH 
C K(t-to) VALUE OF PKMS USING THE MACKENZIE-SHUTTLEWORTH 
MODEL. IT 
C USES BOTH BISECTION AND NEWTON-RAPHSON TECHNIQUES FOR 
FINDING THE 
C ROOT. THE ALGORITHM IS BASED ON PROGRAM RTSAFE IN 
"NUMERICAL 
C RECIPES". NOTE THAT THE PROGRAM FINDS THE ROOT X WHERE 

C X = ((l-RD)/RD)**(l/3). 
C 

FUNCTION densms(pkms) 
data MAXIT/100/ 
xl = 2.5 
x2 = 0.0 
xacc = 0.0001 
calL FUNCD(Xl,pkms,FL,DF) 



CALL FUNCD(X2,pkms,FH,DF) 
IF(FL*FH.GE.O.) PAUSE 'root must be bracketed' 
IF(FL.LT.O.)THEN 

XL=X1 
XH=X2 

ELSE 
XH=X1 
XL=X2 
SWAP=FL 
FL=FH 
FH = SWAP 

ENDIF 
yden=.5*(Xl + X2) 
DXOLD=ABS(X2-Xl) 
DX=DXOLD 
CALL FUNCD(yden,pkms,F,DF) 
DO 11 J = 1,MAXIT 

IF(((yden-XH)*DF-F)*((yden-XL)*DF-F).GE.O. 
.OR. ABS(2. * F).GT.ABS(DXOLD* DF) ) THEN 

DXOLD=DX 
DX = 0.5 * (XH-XL) 
yden=XL+DX 
IF(XL.EQ.yden)goto 50 

ELSE 
DXOLD=DX 
DX = F/DF 
TEMP=yden 
yden=yden-DX 
IF(TEMP.EQ.yden)goto 50 

ENDIF 
IF(ABS(DX).LT.XACC) goto 50 
CALL FUNCD(yden,pkms,F,DF) 
IF(F.LT.O.) THEN 

XL=yden 
FL=F 

ELSE 
XH=yden 
FH = F 

ENDIF 
11 CONTINUE 

PAUSE 'yden exceeding maximum iterations' 



50 continue 
densms = l/(l+yden**3) 
RETURN 
END 

subroutine funcd(y,pkms,fn,df) 
alpha = 1 + y**3 
beta = (1 + y)**3 
delta = (2*y-l)/1.73205 
fn=0.413567* (0.5 * alog(alpha/beta)-1.73205 * atan(delta)+2.720699) 
fn = fn - pkms 
df=0.413567*(1.5*(y-1 )/alpha - 2/(l + delta**2)) 
return 
end 
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APPENDIX D 

PREDICTING VISCOSITIES 

USING BOTTINGA AND WEILL'S METHOD 

Bottinga and Weill43 devised an expression for predicting the viscosity for a 

variety of silicate melt glasses. By using the expression 

lnri = £ XiDi (D.1) 

the viscosity of a homogeneous glass can be computed in terms of the mole fractions 

of several of its components, Xi( and the associated parameters, Dj. The values for 

D; depend on the type of oxide being added to silica, how much, and at what 

temperature. These values have been fitted to experimental data for a variety of 

compositions and temperatures. 

In this appendix, the viscosities will be computed for the three homogeneous 

compositions analyzed in this study and listed in Table 4.1 and Table D.l. 
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Table D.l • Composition and Viscosity Coefficients 

Composition mol% Si02 mol% MgAl204 D (Si02) D (MgAl204) 

Si 81.43 18.57 13.62 1.5 

St 71.43 28.57 13.22 3.6 

Sp 61.43 38.57 12.32 * o
 

The values given by Bottinga and Weill are for melt glasses. The values listed 

in Table D.l are for 1200°C because that is the lowest temperature listed. If the 

activation constants for these glasses are approximately the same, then using the ratio 

of the viscosities at sintering temperatures should be acceptable. 

The viscosities for the compositions listed in Table D.l were computed using 

Bottinga and Weill's model, Equation D.l, and are listed in Table D.2. 

Table D.2 - Predicted Viscosities 

Composition log r? r) (Poise) 

Si 11.37 86623 

St 10.47 35297 

Sp 7.41 1659 

The ratio of the computed viscosities of the Silica-Rich and Spinel-Rich 

compositions is 52. The ratio of the Silica-Rich to Stoichiometric composition is only 

2.4. 
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One of the limitations of this technique is that the coefficients for the 

viscosities are computed according to within what range the glass composition lies 

with respect to the amount of SiOz. The Si composition lies just outside the highest 

range listed (0.81), so it may at least partially be in error. The other problem is 

whether or not these relationships can be extrapolated down to sintering 

temperatures. 



APPENDIX E 

PROGRAM FOR COMPUTING 

THE FITTED CURVE USING LEAST SQUARES 

Least Squares 

This program will calculate all of the coefficients for a set of 
data which fits the sum of two exponentials and a line. The 
input is a file containing time (in minutes) and relative density 
from the experimental curve. This program will then calculate 
the six coefficients needed to reproduce that curve. It will 
also ask for an initial set of coefficients which fit the 
equation: y=-exp(At + B)-exp(Ct+D) + Et+F. 

****************************************************************** 

character foutput* 14,finput* 14 
real f,fn 
exp=2.7182818 

read(V) finput 
read(V) foutput 
open(l,file=finput,status = 'old') 
open(2,file=foutput,status = 'new') 

read(V) a 
a = 0.0 
read(V) b 
b = 0.0 
read(V) c 
c = 0.0 
read(V) d 
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c d = 0.0 
read(V) e 

c e = 0.01 
read(V) f 

c f = 3.0 
c 
c write(V(a/)')' Enter an initial value for lambda' 
c read(V) y 

y = 0.001 
c 

m=1 

c Calculating values for chi2, beta, and alpha 

100 read(l,*) time, rrho 
if(time.lt.O.) go to 210 
rrhoc = -exp**(a*time + b)-exp**(c*time + d) + e*time + f 
diff = rrho-rrhoc 
chi2 = diff* *2 
bl = diff*(-time*exp**(a*time + b)) 
b2 = diff*(-exp**(a*time + b)) 
b3 = diff*(-time*exp**(c*time + d)) 
b4 = diff*(-exp**(c*time + d)) 
b5 = diff* time 
b6 = diff 
all = (-time*exp**(a*time+b))*(-time*exp**(a*time+b)) 
al2 = (-time*exp**(a*time + b))*(-exp**(a*time + b)) 
al3 = (-time*exp**(a*time + b))*(-time*exp**(c*time+d)) 
al4 = (-time*exp**(a*time + b))*(-exp**(c*time + d)) 
al5 = (-time*exp**(a*time + b))*(time) 
al6 = (-time*exp**(a*time + b))*l 
a21 = al2 
a22 = (-exp**(a*time + b))*(-exp**(a*time + b)) 
a23 = (-exp**(a*time + b))*(-time*exp**(c*time + d)) 
a24 = (-exp**(a*time + b))*(-exp**(c*time + d)) 
a25 = (-exp**(a*time + b))*(time) 
a26 = (-exp**(a*time + b))*l 
a31 = al3 
a32 = a23 
a33 = (-time*exp**(c*time+d))*(-time*exp**(c*time + d)) 
a34 = (-time*exp**(c*time+d))*(-exp**(c*time+d)) 



a35 = (-time*exp**(c*time+d))*(time) 
a36 = (-time*exp**(c*time+d))*l 
a41 = al4 
a42 = a24 
a43 = a34 
a44 = (-exp**(c*time+d))*(-exp**(c*time+d)) 
a45 = (-exp**(c*time+d))*(time) 
a46 = (-exp**(c*time+d))*l 
a51 = al5 
a52 = a25 
a53 = a35 
a54 = a45 
a55 = time'time 
a56 = time'l 
a61 = al6 
a62 = a26 
a63 = a36 
a64 = a46 
a65 = a56 
a66 = 1*1 
Now to sum all of them to get a running total 
schi2 = schi2 + chi2 
sbl = sbl + bl 
sb2 = sb2 + b2 
sb3 = sb3 + b3 
sb4 = sb4 + b4 
sb5 = sb5 + b5 
sb6 = sb6 + b6 
sail = sail + all 
sal2 = sal2 + al2 
sal3 = sal3 + al3 
sal4 = sal4 + al4 
sal5 = sal5 + al5 
sal6 = sal6 + al6 
sa21 = sal2 
sa22 = sa22 + a22 
sa23 = sa23 + a23 
sa24 = sa24 + a24 
sa25 = sa25 + a25 
sa26 = sa26 + a26 
sa31 = sal3 
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sa32 = sa23 
sa33 = sa33 + a33 
sa34 = sa34 + a34 
sa35 = sa35 + a35 
sa36 - sa36 + a36 
sa41 = sal4 
sa42 = sa24 
sa43 = sa34 
sa44 = sa44 + a44 
sa45 = sa45 + a45 
sa46 = sa46 + a46 
sa51 = sal5 
sa52 = sa25 
sa53 = sa35 
sa54 = sa45 
sa55 = sa55 + a55 
sa56 = sa56 + a56 
sa61 = sal6 
sa62 = sa26 
sa63 = sa36 
sa64 = sa46 
sa65 = sa56 
sa66 = sa66 + a66 
si = si + 1 
go to 100 

200 continue 
210 continue 

c 
c Modifying sums of alpha with lambda (y) 
c 
300 samll = sall*(l+y) 

sam22 = sa22*(l+y) 
sam33 = sa33*(l+y) 
sam44 = sa44*(l+y) 
sam55 = sa55*(l+y) 
sam66 = sa66*(l+y) 



Solving a system of six linear equations 

Here are all the replacement coefficients 
cl = (sam33*samll-sal3*sa31)/(sa32*samll-sal2*sa31)-

1 (sa23*samll-sal3*sa21)/(sam22*samll-sal2*sa21) 
c2 = (sa34*samll-sal4*sa31)/(sa32*samll-sal2*sa31)-

1 (sa24*samll-sal4*sa21)/(sam22*samll-sal2*sa21) 
c3 = (sa35*samll-sal5*sa31)/(sa32*samll-sal2*sa31)-

1 (sa25*samll-sal5*sa21)/(sam22*samll-sal2*sa21) 
c4 = (sa36*samll-sal6*sa31)/(sa32*samll-sal2*sa31)-

1 (sa26*samll-sal6*sa21)/(sam22*samll-sal2*sa21) 
c5 = (sa43*samll-sal3*sa41)/(sa42*samll-sal2*sa41)-

1 (sa23*samll-sal3*sa21)/(sam22*samll-sal2*sa21) 
c6 = (sam44*samll-sal4*sa41)/(sa42*samll-sal2*sa41)-

1 (sa24*samll-sal4*sa21)/(sanl22*samll-sal2*sa21) 
c7 = (sa45*samll-sal5*sa41)/(sa42*samll-sal2*sa41)-

1 (sa25*samll-sal5*sa21)/(sam22*samll-sal2*sa21) 
c8 = (sa46*samll-sal6*sa41)/(sa42*samll-sal2*sa41)-

1 (sa26*samll-sal6*sa21)/(sam22*samll-sal2*sa21) 
c9 = (sa53*samll-sal3*sa51)/(sa52*samll-sal2*sa51)-

1 (sa23 *sam 1 l-sal3 * sa21)/(sam22 * sam 11 -sa 12 * sa21) 
clO = (sa54*samll-sal4*sa51)/(sa52*samll-sal2*sa51)-

1 (sa24*samll-sal4*sa21)/(sam22*samll-sal2*sa21) 
ell = (sam55*samll-sal5*sa51)/(sa52*samll-sal2*sa51)-

1 (sa25*samll-sal5*sa21)/(sam22*samll-sal2*sa21) 
cl2 = (sa56*samll-sal6*sa51)/(sa52*samll-sal2*sa51)-

1 (sa26*samll-sal6*sa21)/(sam22*samll-sal2*sa21) 
cl3 = (sa63*samll-sal3*sa61)/(sa62*samll-sal2*sa61)-

1 (sa23*samll-sal3*sa21)/(sam22*samll-sal2*sa21) 
cl4 = (sa64*samll-sal4*sa61)/(sa62*samll-sal2*sa61)-

1 (sa24*samll-sal4*sa21)/(sam22*samll-sal2*sa21) 
cl5 = (sa65*samll-sal5*sa61)/(sa62*samll-sal2*sa61)-

1 (sa25*samll-sal5*sa21)/(sam22*samll-sal2*sa21) 
cl6 = (sam66*samll-sal6*sa61)/(sa62*samll-sal2*sa61)-

1 (sa26*samll-sal6*sa21)/(sam22*samll-sal2*sa21) 

cl7 = (cll*cl-c3*c9)/(cl0*cl-c2*c9)-(c7*cl-c3*c5)/(c6*cl-c2*c5) 
cl8 = (cl2*cl-c4*c9)/(cl0*cl-c2*c9)-(c8*cl-c4*c5)/(c6*cl-c2*c5) 
cl9 = (cl5*cl-c3*cl3)/(cl4*cl-c2*cl3)-(c7*cl-c3*c5)/(c6*cl-c2*c5) 



c20 = (cl6*cl-c4*cl3)/(cl4*cl-c2*cl3)-(c8*cl-c4*c5)/(c6*cl-c2*c5) 

Including the error calculation (finding the inverse matrix) 

dl = -sa31/(sa32*samll-sal2*sa31)+sa21/(sam22*samll-sal2*sa21) 
d2 = -samll/(sam22*samll-sal2*sa21) 
d3 = samll/(sa32*samll-sal2*sa31) 
d4 = -sa41/(sa42*samll-sal2*sa41) + sa21/(sam22*samll-sal2*sa21) 
d5 = samll/(sa42*samll-sal2*sa41) 
d6 = -sa51/(sa52*samll-sal2*sa51) + sa21/(sam22*samll-sal2*sa21) 
d7 = samll/(sa52*samll-sal2*sa51) 
d8 = -sa61/(sa62*samll-sal2*sa61) + sa21/(sam22*samll-sal2*sa21) 
d9 = samll/(sa62*samll-sal2*sa61) 

dlO = (d6*cl-dl*c9)/(cl0*cl-c2*c9)-(d4*cl-dl*c5)/(c6*cl-c2*c5) 
dll = (d2*cl-d2*c9)/(cl0*cl-c2*c9)-(d2*cl-d2*c5)/(c6*cl-c2*c5) 
dl2 = -d3*c9/(cl0*cl-c2*c9) + d3*c5/(c6*cl-c2*c5) 
dl3 = -d5*cl/(c6*cl-c2*c5) 
dl4 = d7*cl/(cl0*cl-c2*c9) 
dl5 = (d8*cl-dl*cl3)/(cl4*cl-c2*cl3)-(d4*cl-dl*c5)/(c6*cl-c2*c5) 
dl6 = (d2*cl-d2*cl3)/(cl4*cl-c2*cl3)-(d2*cl-d2*c5)/(c6*cl-c2*c5) 
dl7 = -d3*cl3/(cl4*cl-c2*cl3) + d3*c5/(c6*cl-c2*c5) 
dl8 = d9*cl/(cl4*cl-c2*cl3) 

Now to solve for the matrix components 

In Gaussian form 
The "x" components refer to the left portion of the matrix 
while the "y" components are the right portion. 
xl2 = sal2/samll 
xl3 = sal3/samll 
xl4 = sal4/samll 
xl5 = sal5/samll 
xl6 = sal6/samll 
x23 = (sa23*samll-sal3*sa21)/(sam22*samll-sal2*sa21) 
x24 = (sa24*samll-sal4*sa21)/(sam22*samll-sal2*sa21) 
x25 = (sa25*samll-sal5*sa21)/(sam22*samll-sal2*sa21) 
x26 = (sa26*samll-sal6*sa21)/(sam22*samll-sal2*sa21) 
x34 = c2/cl 
x35 = c3/cl 



x36 = c4/cl 
x45 = (c7*cl-c3*c5)/(c6*cl-c2*c5) 
x46 = (c8*cl-c4*c5)/(c6*cl-c2*c5) 
x56 = cl8/cl7 

yll = 1/samll 
y21 = -sa21/(sam22*samll-sal2*sa21) 
y22 = samll/(sam22*samll-sal2*sa21) 
y31 = dl/cl 
y32 = d2/cl 
y33 = d3/cl 
y41 = (d4*cl-dl*c5)/(c6*cl-c2*c5) 
y42 = (d2*cl-d2*c5)/(c6*cl-c2*c5) 
y43 = -d3*c5/(c6*cl-c2*c5) 
y44 = d5*cl/(c6*cl-c2*c5) 
y51 = dl0/cl7 
y52 = dll/cl7 
y53 = dl2/cl7 
y54 = dl3/cl7 
y55 = dl4/cl7 
y61 = (dl5*cl7-dl0*cl9)/(c20*cl7-cl8*cl9) 
y62 = (dl6*cl7-dll*cl9)/(c20*cl7-cl8*cl9) 
y63 = (dl7*cl7-dl2*cl9)/(c20*cl7-cl8*cl9) 
y64 = (dl3*cl7-dl3*cl9)/(c20*cl7-cl8*cl9) 
y65 = -dl4*cl9/(c20*cl7-cl8*cl9) 
y66 = dlS'cn/^O'cn-clS^c^) 

z61 = y61 
z62 = y62 
z63 = y63 
z64 = y64 
z65 = y65 
z66 = y66 
z51 = y51-x56*z61 
z52 = y52-x56*z62 
z53 = y53-x56*z63 
z54 = y54-x56*z64 
z55 = y55-x56*z65 
z56 = -x56*z66 
z41 = y41-x46*z61-x45*z51 
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z42 = y42-x46*z62-x45*z52 
z43 = y43-x46*z63-x45*z53 
z44 = y44-x46* z64-x45* z54 
z45 = -x46*z65-x45*z55 
z46 = -x46*z66-x45*z56 
z31 = y31-x36*z61-x35*z51-x34*z41 
z32 = y32-x36*z62-x35 *z52-x34*z42 
z33 = y33-x36*z63-x35*z53-x34*z43 
z34 = -x36*z64-x35*z54-x34*z44 
z35 = -x36*z65-x35*z55-x34*z45 
z36 = -x36*z66-x35*z56-x34*z46 
z21 = y21-x26*z61-x25*z51-x24*z41-x23*z31 
z22 = y3 l-x26 *z62-x25 *z52-x24*z42-x23 *z32 
z23 = -x26*z63-x25*z53-x24*z43-x23*z33 
z24 = -x26*z64-x25*z54-x24*z44-x23*z34 
z25 = -x26*z65-x25*z55-x24*z45-x23*z35 
z26 = -x26*z66-x25*z56-x24*z46-x23*z36 
zll = yll-xl6*z61-xl5*z51-xl4*z41-xl3*z31-xl2*z21 
zl2 = -xl6*z62-xl5*z52-xl4*z42-xl3*z32-xl2*z22 
zl3 = -xl6*z63-xl5*z53-xl4*z43-xl3*z33-xl2*z23 
zl4 = -xl6*z64-xl5*z54-xl4*z44-xl3*z34-xl2*z24 
zl5 = -xl6*z65-xl5*z55-xl4*z45-xl3*z35-xl2*z25 
zl6 = -xl6*z66-xl5*z56-xl4*z46-xl3*z36-xl2*z26 

c 
c Calculating the change in the coefficients (delta) 
c 

dell = sbl*zll + sb2*zl2 + sb3*zl3 + sb4*zl4 + sb5*zl5 + sb6*zl6 
del2 = sbl *z21 + sb2*z22 + sb3 *z23 + sb4*z24 + sb5 *z25 + sb6*z26 
del3 = sbl*z31 + sb2*z32 + sb3*z33 + sb4*z34 + sb5*z35 + sb6*z36 
del4 = sbl*z41 + sb2*z42 + sb3*z43 + sb4*z44 + sb5*z45 + sb6*z46 
del5 = sbl*z51 + sb2*z52+sb3*z53 + sb4*z54 + sb5*z55 + sb6*z56 
del6 = sbl*z61 + sb2*z62 + sb3*z63 + sb4*z64 + sb5*z65 + sb6*z66 

c 
if(y.eq.0.0) go to 910 

c 
c 
c  *««*»*»»***«»********»***********»*»*•*********»********»**»»«*«**  

c Calculating the new coefficients and chi2 
c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

c 
an = a + dell 
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bn = b + del2 
cn = c + del3 
dn = d + del4 
en = e + del5 
fh = f + del6 
close (1) 
open(l,file=finput, status = 'old') 

500 read(l,*) time, rrho 
if(time.lt.O.) go to 600 
tl = an*time+bn 
t2 = cn*time + dn 
if(t 1 .gt. 100.0) go to 550 
if(t2.gt. 100.0) go to 550 
rrhoc = -exp * * (an* time+bn)-exp* * (cn* time+dn)+en'time+fn 
if(rrhoc.gt. 100.0) go to 550 
if(rrhoc.lt.-100.0) go to 550 
diff = rrho-rrhoc 
chi2n = diff* *2 
snchi2 = snchi2 + chi2n 
go to 500 

550 snchi2 = schi2*100 
600 close (1) 

open(l, file=finput, status = 'old') 
c »***«««*«»****»«**»««****»*«***«****««*»*«*««««*«**•»«**« 

c Comparing chi2 and new chi2 
c *»««*«»***««*********«****«»*****» ****««•«** 

c 
stop = (((snchi2-schi2)/schi2)**2)**0.5 
if(stop.lt.0.0001) go to 900 

c if new chi2 larger, increase y, recalc sums, redo system of eq. 
if(snchi2.ge.schi2) then 

y = y*10. 
snchi2 = 0.0 
go to 300 

else 
c if new chi2 smaller, replace coeff, recalc all sums 

y = y/io 
a = an 
b = bn 
c = cn 
d = dn 



f = fn 
c reset all sums 

schi2 = 0.0 
sbl = 0.0 
sb2 = 0.0 
sb3 = 0.0 

sb4 = 0.0 

sb5 = 0.0 
sb6 = 0.0 
sail = 0.0 
sal2 = 0.0 
sal3 = 0.0 

sal4 = 0.0 

sal5 = 0.0 

sal6 = 0.0 
sa22 = 0.0 
sa23 = 0.0 

sa24 = 0.0 

sa25 = 0.0 

sa26 = 0.0 
sa33 = 0.0 

sa34 = 0.0 

sa35 = 0.0 

sa36 = 0.0 

sa44 = 0.0 

sa45 = 0.0 

sa46 = 0.0 

sa55 = 0.0 

sa56 = 0.0 

sa66 = 0.0 
snchi2 = 0.0 
m=m+l 

go to 100 
endif 

900 continue 
y = 0.0 
go to 300 



910 continue 
c Calculating the error in the coefficients 
c 

close (1) 
open(l,file=finput,status = 'old') 

920 read(l,*) time, rrho 
if(time.lt.0.0) go to 930 
if(time.eq.0.0) go to 920 

rrhoc = -exp**(a*time+b)-exp**(c*time+d)+e*time+f 
diff = rrho-rrhoc 
derla = -time*exp**(a*time+b) 
der2a = -time**2*exp**(a*time+b) 
derlb = -exp**(a*time+b) 
der2b = -exp**(a*time+b) 
derlc = -time*exp**(c*time + d) 
der2c = -time**2*exp**(c*time + d) 
derld = -exp**(c*time+d) 
der2d = -exp**(c*time+d) 
derle = time 
der2e = 1 
derlf = 1 
der2f = 0 

c 
var = diff**2+var 
vara = (derla* *2-diff*der2a) +vara 
varb = (derlb* *2-diff*der2b)+varb 
varc = (derlc**2-diff*der2c)+varc 
vard = (derld**2-diff*der2d)+vard 
vare = (derle**2-diff*der2e)+vare 
varf = (derlf* *2-diff*der2f)+varf 
sn = sn+1 

go to 920 
930 continue 

stdp = (l/sn*var)**0.5 
stda = stdp/vara**0.5 
stdb = stdp/varb**0.5 
stdc = stdp/varc**0.5 
stdd = stdp/vard**0.5 
stde = stdp/vare**0.5 
stdf = stdp/varf**0.5 
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c 
c We're done so now we need to output the results 
c ********************* *********** * 

write(2,*) schi2, snchi2, stdp, a, b, c, d, e, f, stda, stdb, 
lstdc, stdd, stde, stdf 
end 
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