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ABSTRACT

A modification of Scherer’s Self-Consistent model and a new model, the
Interlocking Cell model, have been developed to characterize the sintering
behavior of mixtures of two glass powders. The theoretical sintering curves
predicted by both these models are compared to each other and to experimental
densification behaviors. Viscosities extrapolated from homogeneous sintering
curves of sol-gel derived powders are transient and cannot be predicted based on
composition alone. These transient viscosities have a significant effect on the
sintering kinetics. The Self-Consistent and Interlocking Cell models assume very
different microstructural changes during sintering. However, differences between
the two models can just be distinguished using experimental densification curves

of sol-gel cordierite based glass mixtures.
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CHAPTER 1

INTRODUCTION

Sintering is defined as the coalescence of multiple particles into a single mass.
The primary driving force for sintering is the overall reduction in surface area.
Industrial applications of powders with high surface areas are fairly wide-spread and
include all types of materials: ceramics, glasses, metals, and composites. Sintering
is part of the manufacturing process when the initial materials are in powder form
and the final product is a dense sample.

One application where powder processing is very useful is in the formation of
complex shapes. By placing a powder and some binder in a mold and sintering it,
samples can be made with geometries very similar to the final product, reducing the
amount of machining required. Electronic packages often utilize a screening
technique in which a powder is deposited in the desired pattern and then heated
until it is fully dense.

Glass or ceramic pieces often are produced via powder processing techniques
because other methods require higher processing temperatures. Metals with low

melting points are often cast by pouring the molten metal into a plastic or metal
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mold. However, most finished glass products are not made by this method. Ceramic
and glass castings are generally made by placing some powder and binder in the
mold and heating the mixture until it sinters. The sintering temperature is much
lower than the melting point; therefore, it is also often considered more energy
efficient.

Powder processing also lends itself to the manufacturing of composites. It is
possible to cast one component around the another (such as steel reinforced
concretes). However, when the alignment of the embedded material is not critical,
it is much easier to cast and sinter both components at the same time. When the
alignment of fibers in a matrix is important, it is sometimes possible to align one
component with an electric or magnetic field allowing both components to be cast
simultaneously.

Some applications require very careful monitoring of the sintering behavior
during manufacturing. For example, the core and cladding of some optical
waveguides can be made simultaneously by varying the radial composition as the
glass is deposited. Sometimes problems develop when trying to sinter the fiber,
because the core and cladding materials sinter at different rates.?? Other
applications which use powder processing to end up with a product with specific
dimensions require very tight tolerance on the amount of shrinkage due to heating.

Some applications require a final product which is fully dense or it will "fail" in use,
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i.e.: pores within optical waveguides scatter light, cracks in printed electrical paths
cause opens, and voids in composites decrease their strength.

Sawhill® mentions using mixtures of two glass powders in order to produce
dielectric substrates. Often sintering mixtures of two glasses and allowing one to
crystallize produces fairly dense samples. However, the samples must reach full or
near full density before crystallization halts densification. In order to produce high
quality substrates, the compositions of the glasses can be tailored to promote
sintering before the desired phases begin crystallizing.

All of these applications involve inhomogeneous or heterogeneous sintering,
which for this document is defined as the densification of a sample containing two
or more components with different properties. Chemical variations within the
sample, whether intentional or not, affect the densification behavior. It is not
possible to accurately determine the sintering behavior of samples with more than
one component by simply averaging the sintering times of each of the components.
Models which predict the sintering behavior of heterogeneous samples should be
developed. By using heterogeneous sintering models, it can be determined how
changes in the properties of the individual components or the heat treatment

procedures will impact the properties of the final product.
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1.1 Objectives

The objective of this work was to characterize and model heterogeneous
sintering. Several models exist for predicting the sintering behavior of heterogeneous
crystalline samples,*” but only one that this author is aware of describes the behavior
of inhomogeneous viscous glasses.5 Even Scherer’s Self-Consistent model® has only
been explored for rigid inclusions in a glassy matrix’ and bimodal pore size
distributions.® Very little experimental work has been published on the sintering of
either heterogeneous glass or ceramic powders.

Results of sintering studies on homogeneous glass powders in the
MgO-Al,0,-SiO, system near the cordierite composition will be presented. These
glass powders were produced via a sol-gel route described by Aruchamy et al. which
produces homogeneous powders® The sintering behavior of three different
compositions will be characterized and compared.

The effect of heterogeneities on experimental sintering behavior will also be
studied. A heterogeneous sample with the same bulk composition as stoichiometric
cordierite was produced by mixing two different powders. The sintering behavior of
this mixed sample will be compared to the sintering behavior of a homogeneous
powder with the same composition.

Two heterogeneous sintering models will be presented and compared to the

experimental densification behavior of the mixed sample. One of these models, the
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Interlocking Cell model, has been developed for this study and is an extension of
Scherer’s model for homogeneous sintering® A modification of Scherer’s
Self-Consistent model which can be applied to mixtures of powders with different
viscosities’ will also be presented. These two models assume different
microstructures develop due to sintering, suggesting that only one of these models
can correctly model the sintering behavior of a heterogeneous sample at any given
time. It is hoped that the experimental sintering results will allow a determination

of which model is more suitable for this system of glass powders.
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CHAPTER 2
LITERATURE REVIEW

In this chapter the pertinent models which have been developed to describe
sintering behavior under a variety of conditions will be presented. The first section
will describe the basic Frenkel and Mackenzie-Shuttleworth!! models for
homogeneous sintering. A more detailed description of the Scherer homogeneous
sintering model® will be presented because several of the models in this chapter and
in the rest of this document are based on the Scherer unit cell geometry. The
following section of this chapter will contain a brief description of the approaches
used to model pore size distributions, including the Self-Consistent model.’ Several
different heterogeneous sintering models which can be applied to rigid inclusions will
be presented and compared. Since the experimental work for this study has been
conducted using powders in the MgO-Al,O,-SiO, system, some background

information on similar compositions is given in the last section.



Figure 2.1:

18

Center-to-center approach of two spherical particles. Geometry
assumed by Frenkel.)?
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2.1 Homogeneous Sintering

A variety of models have been developed for describing the sintering behavior
of homogeneous glass powders. The major differences between the models are the
assumed microstructures of the powder compacts. The assumed geometries affect
the range of relative densities over which the models should apply.

Frenkel developed the first model which described the sintering behavior of
powders.)? In the initial stages of sintering, the densification rate is related to the
center-to-center approach of two spherical particles as shown in Figure 2.1. Frenkel
was the first to assume that the rate of energy dissipation through viscous flow into
the neck region between the particles is balanced by the rate of energy gained due
to a reduction in surface area. The relative change in length of a sintering sample,

AL/L,, can be expressed as'

AL _ 3y @.1)

where y is the surface energy, n is the viscosity, a is the particle size, and t is time.

This equation has been found to satisfactorily fit experimental data during the initial

4 to 10% of sintering.?

At the other extreme, Mackenzie and Shuttleworth developed a viscous

sintering model for the final stages of sintering,'' The energy rate balance developed
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by Frenkel was applied to an isolated pore surrounded by a shell of material. The

rate at which a single pore closes is

a __x1 (22)

ad  2np,

where p, is the relative density of the bulk sample. The relative density can be
calculated as a function of time, t, by

(- = z _3. 13 p'_—dp_’___
K1) = 2() fo oy 23)

where

PO L ks 2.4)

and n is the number of pores per unit volume.

Scherer® used the same energy balance as Frenkel® and Mackenzie and
Shuttleworth! to develop a model for the intermediate stages of sintering. The
geometries assumed by Frenkel and Mackenzie and Shuttleworth do not adequately

describe a glass powder compact with a network of open pores. Scherer’s model was
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Cubic array of right circular cylinders. Geometry assumed by
Scherer.’
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designed to describe the sintering behavior of glasses produced by flame hydrolysis
or gelation.

The geometry assumed by Scherer® is depicted in Figure 2.2. The Scherer unit
cell consists of a cubic array of right circular cylinders. The cylinders have a length,
], and a radius, a, and represent a row of individual particles with the same radius.

By using this geometry, the sample geometry and microstructure can be
represented by the unit cell dimensions. The relative density of a sample can be
calculated as the ratio of the volume of the cylinders to the volume of the unit cell,
or

b, = 3na®l - 824° (2.5)

13
where the second term in the numerator represents the material in the corners of the

unit cell. The hole in the side of the unit cell is

d, = g (I-2a) 2.6)

which represents the pore size measured by a technique such as mercury porosimetry.
Therefore, the bulk properties of relative density and average pore size can define

all of the unit cell dimensions.
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The relative density of the unit cell can be re-expressed in terms of x as
p, = 3mx? - 8/2x? @7
where x is a unitless parameter and x=a/l. The length of the unit cell, ], can also be

expressed in terms of x,

- Lopr, 2.8)
(3rx2-82x 313

where 1, is the initial length of the unit cell, and p,, is the initial relative density.
Since the flow fields of the array of intersecting cylinders is fairly complex, a
simpler system of three cylinders was used for the energy balance. The total volume
of these three equivalent cylinders is the same as the volume of the cylinders in the
unit cell. The rate of energy dissipated by one of these equivalent cylinders by

viscous flow is

v

2
g, = 3mna’ dhy 29)
h ~dt
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where h is the height of the equivalent cylinder, h = 1-8/Za/3n. This rate of energy
dissipation must be equal to the rate of energy change due to a reduction in surface
area,

E ds d

‘=Y—-=

8y2 3 2.10
—((2nah- (2.10)
y—(2ra a”)

After combining Equations 2.9 and 2.10 and doing some manipulation,

changes in the sample due to sintering can be represented by

=X

27

&8

(2.11)

—f

and

dp dx
—l = -24\2x) = (2.12)
(6nx 2x%)
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Figure 2.3: Predicted densification behavior for a cubic array of right
circular cylinders.®
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However, it is not possible to explicitly solve for the relative density as a function of
time, which is shown graphically in Figure 2.3 as a function of normalized time,

K(t-t,). Therefore, the solution to the Scherer sintering model is often expressed as

)= [*— 24
K(-1) = [ Y (2.13)

where

k-2 (2.14)
nlp,w»

and t, is the fictitious time where the relative density, and therefore x, are 0.

The derivation presented here has assumed a cubic array of right circular
cylinders, but as shown in Figure 2.4 the same set of equations can be applied to
several different geometries with similar results.”® In fact, the results of different
sintering models®'*!! are remarkably similar considering the very different assumed
geometries. Comparisons between these three sintering models can be found in
Figures 2.5 and 2.6.

Numerical simulations of the sintering of homogeneous powders correlates
well with the three models presented in Figures 2.5 and 2.6. Jagota and Dawson*
have conducted finite element analyses of two sintering particlés which produced

results very similar to Frenkel’s model,'® as shown in Figure 2.5.
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All of these models have also been shown to accurately represent
experimental sintering data.!*1>1% Several groups have extrapolated viscosities from
sintering curves and obtained values close to those measured by other
techniques.*'>!7® Some of the arguments presented to describe the observed
differences between the experimental behavior and sintering models are
rearrangement of the particles,” or anisotropic distributions of pores? or particles.?!
Since the experimental data from the literature appears to fit most of the models
equally well, the Scherer geometry will be used in this document. This model was
selected because the assumed geometry represents the microstructure of sol-gel glass
powder compacts the best.

However, not all sintering compacts obey the assumptions on which all four
of these models are based. The models assume that the unit cell or areas being
examined are typical of the entire body. This implies that all the particles and pores
must be the same size or at least have a fairly narrow distribution. Also, the
materials properties are assumed to be the same everywhere; therefore, the sintering
samples must have a uniform composition in order to apply these homogeneous
sintering models. Since these two experimental conditions are not always met, in the
next section several models will be presented which have been developed to describe

heterogeneous sintering.
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Figure 2.8: Two possible arrangements resulting in bimodal pore size
distributions.®




33

2.2 Heterogeneous Sintering

22.1 Pore Size Distributions

In the last of the set of three original papers by Scherer®>% concerning the
right circular cylinder model, he described the effect of assuming a distribution of
pores on homogeneous sintering. Except when the distribution is fairly broad, only
small differences are observed in the time to reach full density, as shown in
Figure 2.7. Some of the difficulties encountered when attempting to remove large
pores have been published,” and Scherer indicates that the pore size distribution
approach? can be applied to hierarchical pore structures, such as the packing of
agglomerates.®

The unit cells of Scherer’s distribution model? have different dimensions, due
to the distribution of pores, but sinter independently. This may be an acceptable
approximation for fairly narrow or bimodal distributions of pores, as depicted in
Figure 2.8A. However, as the small particles within agglomerates sinter and the
agglomerates become smaller, in order to retain contact between the agglomerates
the large pore in the center must also shrink. Therefore, even in an hierarchical
structure, the sintering behaviors of the regions with different pore sizes are not
independent.

A model which describes the shrinkage rate of one pore or region in terms of

the rest of the sample should be used to describe powders with either of the
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geometries shown in Figure 2.8. Scherer’s Self-Consistent model® characterizes the
sintering behavior of one region or pore in terms of the stresses applied by the
surrounding matrix. For example, the smaller pores in a sample with a bimodal
distribution sinter faster than the bulk sample or surrounding matrix. A resulting
tensile stress on the material near the small pore slows its sintering rate. Similarly,
a compressive stress around the large pore regions increases their sintering rate. By
incorporating these stresses into a model, the densification rate of the matrix can be
computed.

Selsing® calculated the hydrostatic stress in an inclusion, due to differences

in thermal expansion between the rigid inclusion and its matrix, to be

o = A/ 2.15)
L [-2v)/E)+112[(1+v )IE,]

The use of a constitutive equation such as?

& = ¢+ (-;E)[ox-v(oy+az)] (2.16)
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for viscous sintering was first postulated by Skorokhod.®? The densification rate of

each region can be calculated by applying the viscous analogy for a porous compact,’

& = ¢+ (%‘)[ax—N(oy+oz)] @.17)

4

where F(p,)»3n and N(p,)-Y2 as the relative density approaches one. By using this
analogy and Equation 2.15, the stresses in the different regions of a sample with a
bimodal pore size distribution are

. - % "% 2.18)
* [(1-2N)/F )+12[(1+N,)/F,]

and

o, =  ~ (2.19)
L [(1-2N)IF)+1)2[(1+N )IF,]

where the variables with the subscripts m, s, and 1 refer to the properties of the

matrix, small pore regions, and large pore regions. Scherer used the average of the
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Figure 2.9: Densification behavior of samples with 0, 0.3, 0.7, and 1.0

volume fraction of large pore size material, with the remainder
of sample containing smaller pores.$
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upper and lower bounds of the Hashin-Shtrikman model”’ to compute the matrix
properties. Since the strain rates are related to the densification rates by

e= 1P (2.20)
3p,

the densification rates of the regions of the composite sample can be calculated using
Equations 2.17, 2.18, 2.19, and 2.20. The densification rate of the matrix, as

computed by Scherer, is

p'l p'n ap’: ﬁ'[
— P e——n —

L @.21)
p'- “p'1+p’l p'l ap'l+p'l p’l

and is shown in Figure 2.9 for several different distributions of pores.

222 Chemical Distributions

The heterogeneities which exist in a sintering compact can be spatial, as
described in the previous section for particle and pore size distributions, or chemical.
The variations in materials properties due to chemical differences cause some regions

in the sample to sinter faster than others. The incorporation of rigid particles in a
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Figure 2.10: Calculated a) shear viscosity, b) bulk viscosity, and c) poisson’s

ratio for models proposed by 1) Raj and Bordia,”> 2) Hsueh
et al.* 3) Scherer,” 4) Skorokhod,”” 5) Rahaman et al.,” and
6) Venkatachari and Raj.” (From Bordia and Scherer™).
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sintering matrix significantly slows the overall sintering rate. Samples of this type are
often studied because they represent composites.

Several authors have proposed models for the sintering response of a material
to an applied stress, caused either externally?®® or by heterogeneities in the
sample.>* Bordia and Scherer®*! compared several heterogeneous sintering models
based on the computed values of bulk (K) and shear viscosities (G,) and the values
for poisson’s ratio as a function of relative density (v,). All of the models discussed
by Bordia and Scherer predicted acceptable values for the viscosities, but some
resulted in negative values for poisson’s ratio. The results of sinter-forging
experiments suggest that when a large load is applied uniaxially on a sintering
cylindrical pellet, the radius should shrink slower than without a load, implying
positive values of poisson’s ratio for all values of relative density.??*3 In addition,
the calculated values for poisson’s ratio should approach ¥ as the sample approaches
full density.

Computed values of the shear viscosity, bulk viscosity, and poisson’s ratio for
several models are shown in Figure 2.10. Several of these models®! were obtained
by fitting experimental data to a function. Hsueh et al.* and Venkatachari and Raj?®
used experimental data for Al,O, but obtained different relationships for the shear
viscosity in terms of relative density. The expressions found by Hsueh et al.* have
7

several problems due to the way in which the data, obtained by Coble and Kingery,

was interpreted; but both of these empirical relationships*? result in negative values
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for poisson’s ratio at low relative densities.> The other empirical model described
by Bordia and Scherer” and developed by Rahaman et al. used sinter-forging data
from several different compositions. The resulting values for the calculated poisson’s
ratios are positive for all values of relative density, but do not approach ¥: as the
sample reaches a relative density of 1.

Raj and Bordia® used a spring-dashpot approach to develop expressions for
the shear and bulk viscosities for a sample sintering under shear. The developed
equations depend on the dimensionless parameter, 8, which represents the ratio of
deformation rate constants in shear and in the bulk. If g is too small, the effective
poisson’s ratio is negative for low relative densities, but still approaches ¥z as p~1.

The only model reviewed by Bordia and Scherer’ which exhibits a
relationship for poisson’s ratio similar to what is observed experimentally?®*** was
the model developed by Scherer.! In this model the shear, Gp, and inverse bulk

viscosities, (K,)”, are computed geometrically

3
G - P (2.22)

' 6-4p,+(3p,~2pH""
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and

3-2p,-(3p,-2p)'? 223)

&) = 2

T

using a unit cell composed of right circular cylinders. This model predicts values for
poisson’s ratio between 0 and ¥: for relative densities between 0 and 1. This is the
only model analyzed by Bordia and Scherer® which gives the appropriate limits for
poisson’s ratio. This was also the only model presented which was developed for the
sintering behavior of viscous instead of crystalline samples.

Lange® has also developed a model for the sintering of a heterogeneous
sample with rigid inclusions. The inclusions are pinned to specific sites in a network,

so the strain of the composite sample,

1
€ = em(l_l(.f)i*) 224)
«'s

depends on the free strain of the matrix, €, the volume fraction of inclusions, f, the
maximum volume fraction of inclusions, s, and a parameter which depends on the
distribution of the inclusions, a. This model fits the sintering data of DeJonghe
et al.® very well, but an effective poisson’s ratio cannot be calculated and compared

to some of the other models. One flaw in Lange’s a