
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in

reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

Order Number 1348457

Complexity of optical computing paradigms: Computational
implications and a suggested improvement

Post, Arthur David, M.S.

The University of Arizona, 1992

U M I
300 N. ZeebRd.
Ann Arbor, MI 48106

COMPLEXITY OF OPTICAL COMPUTING
PARADIGMS:

COMPUTATIONAL IMPLICATIONS AND A
SUGGESTED IMPROVEMENT

by

Arthur David Post

A Thesis Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfilment of the Requirements

For the Degree of

MASTER OF SCIENCE

WITH A MAJOR IN ELECTRICAL ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

19 9 2

2

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfilment of requirements for an advanced
degree at The University of Arizona and is deposited in the University Library to be made
available to borrowers under rules of the library.

Brief quotations from this thesis are allowable without special permission, provided
that accurate acknowledgment of source is made. Requests for permission for extended
quotation from or reproduction of thesis manuscript in whole or in part may be granted
by the head of the major department or the Dean of the Graduate College when in his
or her judgment the proposed use of the material is in the interests of scholarship. In all
other instances, however, permission must be obtained from the author.

SIGNED:

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

Ahmed Louri
Assistant Professor of

Date

Electrical and Computer Engineering

3

ACKNOWLEDGMENTS

I would like to express my appreciation to Dr. Ahmed Louri of the Electrical and
Computer Engineering Department of the University of Arizona for suggesting this area
of study, guiding my research, and for introducing me to many of the leading areas of
research in Computer Architecture.

I would further like to extend my thanks to Udi Manber of the Computer Science
Department of the University of Arizona for many stimulating discussions. Thanks also
to Abjit Mahalanobis, formerly of the Electrical and Computer Engineering Department
of the University of Arizona for reviewing several of the arguments.

4

DEDICATION

I would like to dedicate this thesis to my parents for their support, my wife for her

understanding, and my children for their wonder.

5

TABLE OF CONTENTS

LIST OF FIGURES 7

LIST OF TABLES 8

ABSTRACT 9

1. Introduction 10
1.1. A brief history of optical computing 11
1.2. Present status of optical computing 12
1.3. Research Approach 13
1.4. Organization of the Thesis 14

2. Complexity Analysis of Several Optical Computing Paradigms 17
2.1. Symbolic Substitution Logic 18

2.1.1. Additive Logic 20
2.1.2. Spatial Filtering 23

2.2. Shadow-Casting Logic 28
2.2.1. General Description 29
2.2.2. Complexity Analysis 30
2.2.3. Other Drawbacks 32

2.3. The "Combinatorial Logic" of Guilfoyle et al 33
2.3.1. General Characteristics 33
2.3.2. The computational weakness of the spatially-invariant subsystem. 34

2.4. Programmable Logic 36
2.4.1. General Description 36
2.4.2. Complexity Analysis 37

2.5. Commonalities of the above implementations 40

3. A New Approach 42
3.1. Desirable features of an optical computing system 42

3.1.1. Use of non-linear optics directly as logic gates 43
3.1.2. Input and output 43
3.1.3. Implementation of large functions 44

3.1.4. Parallelism of implementation 45
3.2. Development of such a system 45

6

3.3. Implementing the basis functions 48
3.3.1. The NOR function 48
3.3.2. The NOT function 51
3.3.3. The OR function 52
3.3.4. The AND function 52
3.3.5. The Equivalence (X-NOR) and the XOR function 53

4. Construction of Larger Functions 58
4.1. Functions having only one output 59

4.1.1. An arbitrary 3-input function 60
4.1.2. An arbitrary 4-input function 61
4.1.3. An arbitrary 5-input function 64

4.2. Implementations of Some Selected Functions 68
4.2.1. The full adder 69
4.2.2. The carry look-ahead adder 70

5. Comparisons with Other Methods 77
5.1. The present method vis-a-vis Symbolic Substitution 78
5.2. The present method vis-a-vis Shadow Casting Logic 80
5.3. The present method vis-a-vis Programmable Logic 81
5.4. The present method vis-a-vis Combinatorial Logic 82

6. Conclusions 83

Appendix A. Notations and Conventions from Boolean Function Theory 86

Appendix B. Derivation of Theorems 89

REFERENCES 91

7

LIST OF FIGURES

2.1. Principle of operation of Symbolic Substitution Logic (SSL) 19
2.2. Rules for computing the NOR function 21
2.3. Application of the rules for the NOR function to a plane of 4 * 4 pixels. . 22
2.4. The optical system for SSL suggested by Casasent and Botha 24
2.5. Implementation of SSL in Brenner and Lohmann, and Weigelt's methods. 26
2.6. The general construction of a shadow-casting logic system 30
2.7. The encodings of 0 and 1 for up to four input planes for shadow casting,

and the result of their juxtaposition 31
2.8. The AND-OR structure of the optical subsystem of Guilfoyle and Wiley. 33

3.1. Implementation of the two input NOR function 50
3.2. Schematic of NOR implementation 50
3.3. Schematic of NOT implementation 51
3.4. Implementation of the OR 52
3.5. Implementation of the AND 53
3.6. Logic diagram of the X-NOR or equivalence function 54
3.7. Implementation of the X-NOR or equivalence function 55
3.8. Logic diagram of the XOR 55
3.9. Implementation of the XOR 56

4.1. Circuit realization of the three-input function using NOR gates as a basis. 60
4.2. Optical implementation of the three-input function 62
4.3. Circuit realization of the four-input function in terms of NOR gates. . . 64
4.4. Optical implementation of the four-input function 65
4.5. Circuit realization of the five-input function in terms of NOR gates. ... 66
4.6. Optical implementation of the five-input function 67
4.7. A minimized circuit graph for the full adder 70
4.8. A minimized NOR gate implementation of the full adder 70
4.9. Optical implementation of the full adder 71
4.10. A minimized circuit graph for the carry look-ahead adder 72
4.11. A minimized NOR gate implementation of the carry look-ahead adder. . 75
4.12. Optical implementation of the carry look-ahead adder 76

8

LIST OF TABLES

2.1. A comparison of the number of functions implementable in the spatially-
invariant subsystem of Guilfoyle's technique, and the total number of
non-degenerate functions versus the number of input variables. ... 35

4.1. Karnaugh map of a random three-input function and minimized formula. 60
4.2. Karnaugh map of the random four-input function, and the resultant min

imized formula 63
4.3. Karnaugh map and resultant minimized formula for the five-input function 68

5.1. Order analysis of an n-bit parallel adder using the methods in this paper.
Normalized Energy refers to the amount of energy required to com
pute the function in terms of the energy required to switch one gate
or detector 78

9

ABSTRACT

Optical computing has been suggested as a means of achieving a high degree of paral

lelism for both scientific and symbolic applications. While a number of implementations of

logic operations have been forwarded, all have some characteristic which prevents their di

rect extension to functions of a large number of input bits. This paper will analyze several

of these implementations and demonstrate that all these implementations require some

measure of the system (area, space-bandwidth product, or time) to grow exponentially

with the number of inputs. We will then suggest an implementation whose complexity is

not greater than the best theoretical realization of a boolean function. We will demon

strate the optimality of the realization, to within a constant multiple, for digital optical

computing systems realized by bulk space-variant elements.

10

CHAPTER 1

Introduction

The need for faster computers to increase computational performance is great, and

numerous research activities targeted at achieving increased performance are under way

in a wide variety of areas. From the device level to the architectural level to research

into new computing paradigms such as neural networks, much effort is being expended to

provide computing systems which are faster, highly parallel, or potentially more powerful

on certain classes of problems. Within this arena, optical computing has attained a status

of late, as one of the more promising areas of research. The apparent advantages of optics

have been summarized elsewhere, but bear repetition here.

The ability of optical systems to process large amounts of data simultaneously, the

non-interfering nature of photons which allows many signals to occupy the same region of

space simultaneously, the high switching speed of recently developed optical devices, all

hold out the promise of high speed massively parallel computation devices which could

augment, and potentially replace, electronic computers. Optical subsystems have found

niches in certain portions of the computing environment: laser printers are ubiquitous;

optical techniques have contributed to the field of radar signal processing; fiber-optic

networks provide high throughput inter-host communications. The central processing

11

unit of the computer, however, has yet to yield to optical techniques, despite the large

amount of research devoted to digital optical computing in the past decade. The causes

of this lack of digital optical circuitry in commercially available systems will be explored

in this paper, and some potential solutions will be advanced. We will begin with a short

history of the field to attempt to gain some perspective on the current state of the art.

1.1 A brief history of optical computing

Shortly following the invention of the laser, the use of optical elements for performing

computation was proposed. The potential for high speed computing with such devices

was recognized very early, and several researchers proposed systems to achieve digital

computation [1, 2]. These systems mostly relied on the use of one laser to quench a

second laser, and hence obtain inversion, and other functions. These early hopes were

mostly destroyed by the work of Keyes and Armstrong [3], who provided convincing

evidence of the infeasibility of such systems, given the technology extant at the time.

While these arguments were based on thermal considerations, and as such were technology

dependent, the field of digital optical computing became dormant, until the discovery of

devices possessing strongly non-linear behavior in the mid-1970's [4, 5, 6, 7, 8, 9, 10].

With the invention of these non-linear optical elements, the field of digital optical

computing again became one of the more highly visible research fields. The potential

for the fabrication of large arrays of these elements holds the promise of highly parallel

architectures which can implement systems hither to unachievable.

12

1.2 Present status of optical computing.

While a large number of systems have been proposed, and have been demonstrated to

achieve a variety of binary logic functions, there has been no demonstration of general-

purpose optical computers. In the electronic domain, the conversion from vacuum tubes

to discrete transistors to integrated circuits as the fundamental elements from which com

puters were constructed proceeded almost as quickly as each new technology developed.

Further, as the size of components shrank, new techniques such as systolic arrays were

developed to solve specialized problems. Within the optical domain, the reverse has been

true; optical computing systems initially were applied to specialized problems, and these

techniques extended toward performing general purpose computing. We now apparently

possess the materials to construct reasonably efficient non-linear devices, and our effort

is focused on finding efficient techniques for using them.

But the question of finding efficient ways of using these new optical non-linearities

begs the further question of what is efficient, and by what measure. There are many

possible ways to measure the efficiency of an optical system. One such measure might be

the ratio of power performing useful computing to the total power supplied by the optical

power supply. Another measure might be the ratio of the number of gates required to

compute a given function in an optimal graphical realization of the circuit to the number

of optical non-linearities a particular optical system requires in order to accomplish the

same function. This second method has a particular strength, in that the field of boolean

function theory is quite well established, and the optimal gate count required to implement

a number of specific functions has been established. The field of boolean function theory

13

continues to be an area of active research, and new results are constantly being established

for various classes of functions and for functions implemented with restrictions on the

structure of their circuit graphs [11, 12].

1.3 Research Approach.

The method used in this research has been to first explain the lack of commercial

applicability of seemingly well-established digital optical computing paradigms; to at

tempt to demonstrate the features of these paradigms which impose unacceptable costs

on systems so implemented; and, finally, to attempt to suggest ways in which the limi

tations of current paradigms can be overcome. In studying the feasibility of the various

digital optical computing paradigms, a consistent framework was obtained by analyzing

the costs incurred by each paradigm in terms of the complexity of implementing boolean

functions under that paradigm. While the choice of a suitable measure of complexity for

each paradigm is not difficult, the differences in the natures of the implementations under

consideration makes a common measure difficult, and in some cases renders comparisons

to the well-established methods of boolean complexity theory problematic. While some of

the paradigms under consideration make use of gate functions directly, and hence can be

compared to optimal theoretical implementations on the basis of gate count and depth,

others employing spatial filtering have no simple correlative in boolean complexity. The

costs of such spatial filtering systems can be quantified, however, and a functional corre

spondence obtained which can be compared to cost measures of other systems.

14

Having examined the principal digital optical computing paradigms, and described

the associated cost increase as a function of the number of binary inputs, commonalities

were discerned, and attributed to the common method of imaging which is used in these

methods. These paradigms all attempt to employ spatially invariant imaging rather than

spatially variant holographic imaging, apparently for the relative ease of implementing

lenses, beam-splitters, mirrors, and the like. The thesis of this paper is that while such

implementations avoid the costs of holographic imaging devices, they incur a high cost

when attempting to implement boolean functions given the restrictions imposed on inter-

gate routing by such spatially invariant devices.

To demonstrate this thesis, a fairly simple spatially variant imaging technique is pos

tulated, and it is shown that with this technique, boolean functions can be realized having

a cost both in number of gates and depth consistent with the best theoretical realization.

In contrast, it is shown that the various spatially invariant paradigms can not approach

these theoretical limitations, and yield implementations of several important functions

which are not practically implementable.

1.4 Organization of the Thesis.

This thesis will investigate the complexity of boolean functions implemented by space

invariant optical systems in order to compare the complexity of such systems to that of

theoreticly optimum systems. We will show that almost all functions are more expensive

to implement in space invariant optical systems, and that for many functions, space

invariant optical implementations are very much more expensive. We will then propose

15

a simple spatially variant system, and demonstrate that the complexity of this system is

on the order of that obtainable in an optimum implementation. That spatially invariant

optical systems are actually more expensive to implement than spatially variant systems

may seem paradoxical at first: holograms implementing arbitrary interconnections are

difficult to construct, and lenses, prisms, beam splitters, and masks are quite simple and

relatively inexpensive. We will show that the nature of these elements imposes constraints

on the circuit graphs which implement these functions, and that it is these constraints

which cause spatially invariant systems to possess a greater complexity than is required

in spatially variant systems.

The rest of the thesis is divided as follows: Chapter 2 will analyze a variety of proposed

optical implementations of binary logic in terms of the complexity in some measure of

each system, whether number of images, space bandwidth product, or gate count, and

will demonstrate that all these systems require an exponential complexity in some mea

sure of system cost, or that the number of functions which are implementable in the

system is small compared to the number of binary functions. Chapter 3 will derive a

method for constructing any of the two input functions using optical non-linearities as

the basis function NOR, and bulk spatially variant elements. We will demonstrate, how

ever that this system, when extended is actually spatially variant. Chapter 4 will extend

this development to more complex functions, and will argue that the complexity of this

implementation is no worse than that of a computation graph implementing the same

functions. Chapter 5 will present some circuits which, due to the complexity constraints

16

of earlier techniques, have not here to for been presented. Chapter 6 will summarize our

conclusions, and suggest some areas for further research.

17

CHAPTER 2

Complexity Analysis of Several Optical Computing

Paradigms

This section will analyze several of the proposed implementations of digital optical

computing systems from a system complexity viewpoint, and will show that most of

these systems are remarkably similar in system complexity. The systems we will detail

are Symbolic Substitution Logic, implemented by additive methods and by convolution or

correlation techniques, Shadow-Casting Logic, and the Programmable Logic of Murdocca,

et al. The Combinatorial Logic Based systems of Guilfoyle and Wiley are considered for

completeness. We will analyze these implementations in terms of their suitability for

general purpose computation, especially those functions which must compute a result for

a large number of inputs. This analysis will reveal that these systems share common

undesirable characteristics, which impose large lower bounds to the complexity of the

functions implemented.

While it might be argued that our choice of boolean function implementations is unsuit

able for the optical domain, we would note that some model of what it means to compute

is required, and that the two major bodies of study in computation center around Turing

18

Machines and boolean functions. Absent some other model of computation, we must for

mulate our theories of optical computation around these. Since the optical techniques we

wish to study implement boolean functions, we will restrict our discussion to this model.

2.1 Symbolic Substitution Logic

While some might argue a somewhat earlier or later date, we can take as a starting

point of the current interest in optical computing the publication of Alan Huang's paper

"Parallel Algorithms for Optical Digital Computers." [13] From this paper grew the field

of Symbolic Substitution Logic or SSL. In rapid succession came a number of papers

detailing a variety of implementations of SSL [14, 15, 16, 17, 18, 19, 20]. The basic idea

behind SSL is that one first detects the presence of one or more patterns in the input

plane, and then substitutes some appropriate pattern for each detected pattern. This

process is shown schematicly in figure 2.1.

Two primary methods for performing SSL have been advanced, both based on spatially

invariant optics. The first method, and the oldest, known as Additive Logic, involves

making copies of the data plane, shifting these copies, and superimposing the shifted

copies to determine where in the data plane certain patterns occur. This process is also

frequently referred to as a split-shift-recombine technique. The second implementation of

SSL involves filtering in the spatial frequency domain, and is commonly known as spatial

filtering logic. We will deal with these techniques separately.

19

Dateation

Phase

Rule 1

Detection

Planes

P
Saription

Phase

Reaooblnation

Rule 2

Input:

Plane o
o
o

o
o
o

o
o
o

Output
Plane

Rule n

Figure 2.1: Principle of operation of Symbolic Substitution Logic (SSL).

20

2.1.1 Additive Logic

Data is typically represented in additive logic based SSL in a dual-rail intensity-coded

format, wherein two pixels are used to encode each bit, although other codings are pos

sible. For example, the rules which would be used to implement the NOR function are

shown in figure 2.2. The application of these rules to a 4-by-4 pixel plane are shown in

figure 2.3. The locations of these patterns may be defined by masking, or by providing

detectors only at those locations to which the origin of the pattern is mapped. Thus in

the conventional split-shift-recombine technique, the origin of the pattern is that location

in the detector planes to which the dark pixels of each bit are mapped. When all the

pixels mapped to a given detector are dark, the output of the detector will be a high

intensity. If the combination of bits present in some pattern does not match the pattern

which is to be detected, at least one of the pixels superimposed on the origin will be light,

and the output of the detector will be low intensity or dark. In the ensuing substitution

phase, the output pixels are shifted in a manner which realizes the appropriate output for

the combination detected by a given plane of detectors. Those detectors upon which one

or more light pixels have been imaged, being dark, will contribute no light responses to

the substitution phase, so that when all resulting substitution patterns are merged, only

the substituted patterns from the light detectors will be present.

The disadvantage to this approach is that for a given number, n, of inputs coded in

any arbitrary manner, the total number of combinations of these inputs is 2n. In order to

implement completely specified digital logic, each of these 2n combinations (corresponding

to the 2n possible minterms) must be generated. That this is so, may be seen from

21

Figure 2.2: Rules for computing the NOR function.

the following argument. Suppose that less than the 2n combinations are generated in

space and imaged onto the corresponding detection planes. Then there will exist some

combinations of inputs which will not be detected by the system. For these combinations,

no determinate output will be generated, and some indeterminate value will result. But

in order to implement digital logic correctly, even input combinations which are "don't

care" combinations must be mapped to either the "1" or "0" value. In the typical dual-rail

coding scheme, the result of not detecting all input combinations is the substitution of two

dark pixels at that position in the output plane at which the function is to be computed.

But in the dual-rail binary logic encoding, two dark pixels are undefined. Hence in this

implementation, not specifying the output values for some combinations yields a mapping

to a value outside of the set 0,1. If the data is to be processed simultaneously, 2n image

planes must be formed at discrete locations in space. If, on the other hand the data is

to be processed in sequence (one combination at a time) the time required will increase

exponentially.

Recombln®

Output

mmmmrn

Figure 2.3: Application of the rules for the NOR function to a plane of 4 * 4 pixels.

23

This result is due to the nature of the paradigm, and not a function of the encod

ing scheme used to represent the data, since the paradigm requires the detection of all

possible input patterns. Thus an intensity encoded SSL implementation of a completely

specified boolean function of two inputs will need to detect each of the four patterns:

{ (dark,dark), (dark,light), (light,dark), (light,light) }, in order to be able to generate the

appropriate output for each of these combinations. This observation extends to functions

of larger numbers of inputs in the same manner as for the dual-rail encoding. While an

intensity encoding can achieve a two-fold reduction in the area of the input plane re

quired to represent the inputs, intensity encoding can not reduce the number of detection

operations required to implement completely specified boolean logic.

The actual number of rules required by an SSL implementation may be greater than

that shown above. The extra complexity comes from the necessity of providing extra rules

to allow for the separation of data vectors or regions of computation from one another.

2.1.2 Spatial Filtering

The second method for implementing SSL is based on convolution/correlation tech

niques, wherein the input plane is transformed to its Fourier domain representation, then

filtered, and the inverse Fourier transform taken of the filtered image. [20, 21, 22] The

principle is the same as that depicted in figure 2.1. A number of input codings may be

used: Casasent and Botha [21] suggest a dual rail coding similar to that discussed for the

additive logic implementation. Brenner, Lohmann, and Merklein [20], and Weigelt [23]

suggest several alternate codings which achieve a modulation of the spatial frequency to

24

S y m b o l S u b s t i t u t i o n
I n p u t F i l t e r T h r e s h o l d F i l t e r O u t p u t

f f f f f f f f

Figure 2.4: The optical system for SSL suggested by Casasent and Botha.

represent the data. The optical system employed by Casasent and Botha [21] is shown

in figure 2.4, while that of Brenner, Lohmann, and Weigelt is shown in figure 2.5. What

is common to these techniques is that in the implementations of the two-input functions

outlined in these papers, four filters are required to detect the input combinations and

substitute the appropriate response since there is one filter for every combination of in

puts. Should we extend these methods to functions of a higher number of inputs n, the

number of filters required in each of these schemes will have to be 2n. These methods are

not fundamentally different than additive logic, even though their outward appearance

suggests otherwise.

To see that this is so, we will first analyze the method employed by Weigelt [22].

Weigelt uses for the inputs to the function, a pair of planes having the same optical axis,

with each pixel in the first plane imaged onto a corresponding pixel in the second plane.

The data encoding in each of these pixels is such that pixels in the first plane affect a

shift in spatial frequency in the x direction, and pixels in the second plane affect a shift

in spatial frequency in the y direction. Thus the overall spatial frequency of the light

25

emerging from the second plane is a linear combination of the spatial frequency shifts

of the two planes. It is this overall response which is then transformed to the spatial

frequency domain. In order to facilitate the ensuing discussion, we reprint the following

equation from [23], which Weigelt derives as the response of the system in the Fourier

plane:

Ui{y, / /) = F[U2(x, j/)] = (a2sinc[(u - Vi)a]sinc[(/j — n i)a]

x X]£exp{-2irt[(i>- fi)«« + 0* -
n m

+ (a2sinc[(v - fi)a]sinc[(/x — //o)a]

X IZ5Zexp{-2jr»[(i/ - ui)xn + (f i-
n m

+ (a2sinc[(i> - uo)a]sinc[(iJ. - /fi)a]

x ~ uo)xn + (/* - Hi)ym]}WWvW)
n m

+ (a2sinc[(u — ^o)a]smc[(// — f io)a]

X J2J2 exp{-27Ti[(l/ - V o) X n + (H -

where:

• Uo, V\ , Hq, are the spatial frequency shifts in the x and y directions respectively,

corresponding to the encoding of 0 or 1 in either of the two planes.

• a is the dimension of an individual pixel in either plane.

• WnmtWnm,Vnm, Vnm, are multiplicative constants which are 0 if the particular pixel

was not encoding (0) or (1) in the first (W) or second (V) plane. The use of

26

Filter
Input 1 t Input 2 Plane Output

f f f f f f f f

Figure 2.5: Implementation of SSL in Brenner and Lohmann, and Weigelt's methods.

these factors merely reflects that for a particular pair of pixels encoding some pair

of input bits, the resulting response in the Fourier plane is contained within the

corresponding sine function, and is a mathematical convenience.

Now as can be seen, the resultant response in the Fourier plane is a set of four sine

functions which envelope a set of complex exponentials. The complex exponentials form

a fine structure or speckle pattern in the Fourier plane, which Weigelt omits from her

discussion, as being unresolvable in the output plane. But it is this fine structure which

contains the information about which pair of cells produced a particular response, encoded

in the frequency of the complex sinuoid in the Fourier plane. A given cell (x„,j/m) will

be represented in the Fourier plane as a complex sinusoid having frequency of xn in the

v direction, and frequency ym in the /i direction. It is exactly this information which is

required to construct an appropriate response at the appropriate point in the final output

plane.

27

Now in order to filter this information correctly, we will need to construct a filter

response for each of the sinusoids which might occur under each of the four sine envelopes.

Thus the filter must provide a correct response even in the worst case of all pixels in each

of the two input planes having the same coding (ie: Vn, m : xn = a, ym = b \ a, b G (0,1)).

Now we must sample in accordance with the Nyquist sampling theorem, and provide at

least two samples per period of the highest frequency sinusoid present. But the highest

frequency sinusoids in the Fourier plane are generated by the most extreme pixels in

the input plane, and this frequency is proportional to the number of pixels in the x or

y direction of the input plane. Thus we must have a number of samples in each filter

proportional to the number pixels in the input plane. But if the area of the Fourier

plane is to be the same as the area of either of the two input planes, then the area of

any sine must be on the order of 1/4 the area of the Fourier plane, and the entire filter

corresponding to that particular combination of inputs must fall entirely within this area.

Thus the space bandwidth of each filter must be on the order of four times that of either

of the two input planes.

The extension of this argument to a. greater number of input planes is direct. Ignoring

limitations on the maximum spatial frequency shift which is possible, we may see that

allowing a third input plane encoded so as to produce a shift in spatial frequency in the

(say) x direction, will result in a set of eight sine envelopes; a fourth plane encoded to

achieve frequency shift in the y direction results in sixteen sine envelopes, and so on.

Thus extending the technique to allow for n input planes results in the requirement to

provide 2n filters, each of which must be capable of providing a correct response for its

28

appropriate combination of inputs. Further, if these filters are to be fit within the same

area as the input planes, then the spatial bandwidth must increase as 2n as well.

Returning to the system of Brenner, Lohmann, and Merklein [20], we may see that their

method differs from that of Weigelt's only in small detail, but not in the fundamental

requirements imposed upon the filters, in terms of number or space bandwidth. The

method proposed by Casasent and Botha [21] does not encode the data in spatial frequency

but in a dual-rail intensity format. These authors further extend their system to allow

for the computation of any of the two-input boolean functions. But this method also falls

on the same difficulty evidenced in the other systems. That is, for any function which

they implement, they require four separate filters spatially multiplexed, yielding a total

space bandwidth for the composite filter of four times that of the input data plane. This

method further increases the space bandwidth product by spatially multiplexing sets of

filters for a number of different functions within the same overal filter.

In the technique proposed by Jeon et al. [24] the filters are separated in space, but one

is required for each pattern detected. Thus the spatial filtering techniques require that the

number of filters, and possibly the spatial bandwidth of the filters, increase exponentially

with the number of inputs to correctly implement boolean functions, just as the number

of detector planes increases exponentially in Additive Logic-based SSL.

2.2 Shadow-Casting Logic

A second implementation of digital optical computing, due to Tanida and Ichioka

[25, 26, 27, 28], is known as shadow-casting logic. While seemingly quite different than

29

SSL, the discussion that follows will show that the complexity of this implementation is

quite similar to that of SSL. Additionally, we will show that the system is incapable of

use as a stand-alone digital optical computing system.

2.2.1 General Description.

In this method, shown schematicly in figure 2.6, data is mapped to multiple parallel

spatial light modulators (SLM's). These SLM's are composed of liquid crystal light valves,

driven by an electronic adjunct which is responsible for mapping the data to the appropri

ate cells of each SLM. The planes of the SLM's are set physically close to each other and

parallel. The data encoding is by orthogonal dual-rail transparent/opaque regions within

overlapping cells of the parallel planes. The orthogonality of the parallel codings result s in

a portion of the resulting combined cell being transparent. Thus, when illuminated, by a

light source on the "front" side of the combined input planes, the particular combination

of inputs may be detected by the location of the light incident on a detection plane placed

behind the input planes.

By having multiple light sources combined with suitable locations for the detectors,

any of the n-input functions may be computed. The number of light sources and detec

tors is dependant on the manner in which the system is to be used. For applications

which compute only one function, it is possible to have as few as one light source; other

applications may require more sources.

30

Figure 2.6: The general construction of a shadow-casting logic system.

2.2.2 Complexity Analysis

While this method has the advantage of simplicity in implementation (the light is

provided by LED's or other inexpensive sources), the size of the transparent area in each

cell decreases exponentially with the number of inputs mapped to each cell. Thus the

available power at the detector is only 2~n times the power incident on the cell. That

this is so can be seen from figure 2.7, where the encodings required to achieve up to four

inputs are shown. From the figure, it should be clear that the transparent portion of the

input cell is one-fourth of the cell area for two inputs, one-eighth the area for three inputs,

one sixteenth for four inputs and so on.

The exponential complexity of this system extends to the number of light sources

also. The reason for this exponential increase is that there is only one detector for each

31

Plane #:

0

b) Coding of (0,0) c) Coding of (0,0,0) d) Coding of (0,0,0,0)

Figure 2.7: The encodings of 0 and 1 for up to four input planes for shadow casting, and
the result of their juxtaposition.

32

cell in the image plane, and the system must be capable of mapping each of the 0N-

set combinations to this detector. Thus for every function to be computed, there must

be a light source capable of illuminating the detector through the transparent region of

the input plane corresponding to the particular minterm represented by the light source.

Thus, if the system is to be used to compute all the different possible functions, light

sources for each of the 2n combinations of the n inputs must be provided. If, on the other

hand, one wished to compute a function such as the AND whose ON-set contains only

one of these combinations, then only one source would be required.

This exponential complexity was first described by Arrathoon and Kozaitis [29], who

then proposed the use of this technique to provide an associative look-up for multi-valued

logic. But while they were able to show some improvement in power and space bandwidth,

their system has many of the same drawbacks as the original method.

2.2.3 Other Drawbacks.

The method has the drawback that the output is incompatible with the input, being

intensity encoded rather than transparency encoded. Thus the system is not directly

extensible, and the outputs must be converted to an electronic signal before being mapped

to an additional input plane for further computation. But once the host has accomplished

this mapping of data, the computations provided by the optical system are quite simple.

Whether the additional complexity required of the host can be balanced by the parallel

computation provided by such a system is problematic.

33

AND

Figure 2.8: The AND-OR structure of the optical subsystem of Guilfoyle and Wiley.

2.3 The "Combinatorial Logic" of Guilfoyle et al.

Another computing paradigm, due to Guilfoyle and Wiley and called Combinatorial

Logic, divides the computing between the electronic and optical domains [30].

2.3.1 General Characteristics.

In this method, a pair of multichannel acoustooptic cells are telecentricly imaged, data

within the cells counterpropagating. The authors then demonstrate how this structure can

be used to achieve an AND-OR structure, and relate their structure to a programmable

logic array (PLA) implementation. The resulting AND-OR structure is shown in fig

ure 2.8.

34

2.3.2 The computational weakness of the spatially-invariant subsystem.

As noted, this model does not perform all computations in the optical domain, and

requires a certain amount of electronic logic to compute a number of terms prior to the

application of the optical logic. This technique has the advantage that a large number

of computations are performed in parallel by the optical devices. It has the disadvantage

that the optical logic performs only simple computations. While these authors claim that

this system is suitable for general purpose computations, the computational power of the

spatially invariant implementation of their system is very weak. The spatially invariant

implementation can be modeled as a set of n two input AND gates, whose outputs are

connected to the inputs of a 11-input OR gate. The inputs to the AND gates are two

distinguished sets of n bits each. That this system is inherently weak can be established

as follows:

• Since the structure of the AND/OR tree is fixed, the only way to compute a variety

of different functions is by making different assignments to the leaves of the tree

(the AND gate inputs).

• The number of different possible assignments of the variables in either set of n

variables is n!. Thus the total number of possible assignments of the 2n input

variables to the 2n inputs of the AND level is n\ * n! = (n!)2;

• The number of different possible boolean functions of 2n variables is given by:

KAJI = 2!*";

35

n 2n n! n!2 22*n~' 22""1

1 2 1 1 2 4
2 4 2 4 16 256
3 6 6 36 65,536 4,294,967,296
4 8 24 576 264 2128

Table 2.1: A comparison of the number of functions implementable in the spatially-
invariant subsystem of Guilfoyle's technique, and the total number of non-degenerate
functions versus the number of input variables.

• The number of degenerate functions of 2n variables (denoted fan) can easily shown

to be (see appendix A):

|{/2n}| <

I \
2 n

* 222" 1 = 2n * 222" 1

\ / 2n — 1

• Thus the number of non-degenerate functions of 2n inputs is given by:

|{/2n-/2„}| > 222" — 2n * 222n_1

> (22 2""1 - 2n) * 22 5

> 2 2
2n-l

• Taking the limit of the ratio of the number of functions computable by the AND/OR

tree to the number of non-degenerate functions proves the point:

(n!)2 n!
lim .2n_, = lim = 0.
n—>oo 22 n—*oo 22

That the fraction of the total functions implementable by this method is actually quite

small, even for small values of n, can be seen from table 2.1.

36

Now this AND/OR structure is only part of the system, the larger portion of the logic

being performed electronicly (appearantly in ECL). Thus the inputs to the AND/OR

structure are more complex functions of the true input variables. Further, the system is

capable of performing certain operations at very high speed. But the claims of general

suitability of this system are not valid within the spatially invariant optical domain.

We also acknowlege that the authors have implemented a spatially variant system which

they claim allows for "global broadcast." The essence of this system is that they are able

to allow a greater number of inputs to the gates in the AND level of their implementation.

This change to their spatially invariant system will allow for a greater number of functions

to be computed by their system, and given enough complexity in their electronic logic,

they might be able to implement boolean functions in general. Whether general boolean

functions can be implemented by this system depends upon the manner in which the

holographic system is used, and the level of complexity allowed in the electronic domain.

2.4 Programmable Logic

2.4.1 General Description

Murdocca, Huang, Jahns, and Streibl have proposed a method of digital optical com

puting which uses optical non-linearities directly as a form of logic gate [31, 32, 33, 34, 35].

In this method, planes of these logic gates are interconnected by a spatially invariant imag

ing system constructed from beam splitters and prism arrays, the resulting interconnection

pattern forming a crossover network.

37

2.4.2 Complexity Analysis

The essence of the design technique used in this system is that the n input variables are

mapped to the input array along with their complements. A series of n+1 interconnection

stages consisting of one cross-over network and one mask per stage are then used, along

with n+1 arrays of AND gates, to generate all the minterms of the function. Once the

minterms of the function have been generated, the appropriate minterms are combined

through a similar n+1 stage network where the AND gate functions have now been re

placed by OR functions, to generate the appropriate functional output. The total number

of gates required by this method is £l(n2n) where again, n is the number of inputs. That

this number of gates is the minimum required is asserted by the authors.

Several claims that are made for Programmable Logic must be discussed however.

The authors state that that the size of the circuits realized being ft(n * 2") in number

of inputs, and that the number of levels in the circuit being linear in the number of

inputs is "optimal." While it is true that Shannon's theorem demonstrates that almost

all boolean circuits have size fi(2n/n), and depth fi(n), Shannon noted that this is not

true for many fundamental circuits. But Programmable Logic has lower bounds that are

exponential in number of inputs, regardless of the function implemented. Thus, while a

given function might be computed by a circuit having size 0(n2) and depth O(log2 n) [36],

Programmable Logic will not allow minimization to this level. Even for random functions

whose size is fi(2n/n), Programmable Logic requires 0(n2) more gates than the optimal

circuit realization.

38

The inefficiency of this method is perhaps most graphic when one considers the manner

in which the normal two input functions would be constructed. Initially, the designer

would provide for a field of22+1 gates wide, and reserve 2(2+1) levels of gates to implement

the two input functions. The two inputs and their complements must be mapped to the

input level, and the minterms of these two inputs generated at the third level of the

network. These minterms would then be combined in the next three levels to achieve the

desired function. One desirable function would be the NOR. Now, a minimal realization

of the NOR, given that AND and OR gates were available, and that the input variables

and their complements were also available, would simply connect the complements of

the inputs to the AND; the output of this one gate would then be the NOR of the two

uncomplemented inputs. Thus Programmable Logic would require as many as 24 AND

gates and 24 OR. gates to accomplish what might otherwise be done with one AND gate.

Even if the method could be minimized, the resulting gate count would be eight AND

gates and eight OR. gates, where a single AND would suffice.

Another claim made for Programmable Logic is that the design methodology is similar

to that of PLA designs. Now a true PLA design has only two levels of logic regardless

of the number of inputs, and does not typically require that all minterms of a function

be generated. Rather, the PLA user develops one or more equations (depending on the

number of outputs required), which are in minimized sum-of-products form. It is the

product terms of these equations which are then mapped onto the PLA structure. While

some functions (the parity function for instance), do not admit to minimization of their

sum-of-products form, ring-sum expansion will frequently minimize these functions, and

39

allow an economical circuit realization in XOR logic. Now while a minimized circuit is

presented which does not generate all minterms and then select from them, the breadth

of the circuit is still exponential in the number of inputs.

A third claim is that the regular interconnection scheme proposed for Programmable

Logic does not increase the cost of the circuit much. As evidence for this claim, a circuit

is presented for the full adder which requires 78 AND gates, 11 OR gates, and six levels,

and termed a "minimized serial adder." This is compared to the 128 gates required of

Programmable Logic. But the adder shown generates all the monoms (not minterms) of

the function, resulting in a circuit which is not minimal. The minimal full adder circuit

requires only five gates (2 XOR, 2 AND, 1 OR), and has a depth of three. An alternate

realization of the full adder has a gate count of six (2 XOR, 3 AND, 1 OR) and a depth

of two. Even when restricted to the use of NOR gates alone, a minimized full adder

should require no more than 14 such gates (although the resulting depth is 7), whereas

the smallest circuit for the full adder under Programmable Logic requires 128 gates of

both AND and OR types. While it is possible this might have been reduced to 48 AND

and OR gates, the resultant realization would still not be minimal.

Another claim made for this system is that it is synchronous, and hence computations

can be pipelined through it. While this is true, any general circuit can be converted into

a synchronous circuit by equalizing all paths in the circuit through the insertion of delay

elements into any edge bypassing a level. This technique will not increase the depth of

the resulting circuit, and will increase the complexity modestly (again see [36]).

40

2.5 Commonalities of the above implementations

We have examined several implementations of digital optical computing, and have

found that all these systems require an exponential increase in the complexity of some

parameter of the system as the implementation is used to compute functions of increasing

numbers of inputs. This exponential increase impacts the feasibility of systems imple

mented by these means in a direct and profound way; the extensibility of the implemen

tations is not feasible beyond a small number of inputs. These systems also lack the

capability to interconnect even the small functions which have been implemented in the

arbitrary manner which is required in order to construct larger functions. This lack of

interconnect capability is both the root cause of the inherent exponential complexity of

these systems and the constraint which prohibits the economical construction of large

functions from the smaller basis functions. It is the rigid mapping of input to output

imposed by spatially invariant imaging systems, as presently used, which has limited the

application of these techniques.

In real computers we are confronted by functions which require the computation of a

large number of outputs as functions of a large number of inputs, especially in the central

control units. That the construction of such control functions is difficult is testified by the

use of microprogramming in many modern computers. Such microprogramming requires

the use of memory, however, and is consequently impractical for optical computing at

the present time, given the lack of optical random access memory. Thus the only option

for implementing the control functions required for complex computations in the optical

domain seems to be the use of boolean logic.

41

In order for optical computing to be incorporated in computer design techniques it

must provide a significant increase in functionality without too great a cost. If optical

techniques are used as an adjunct to electronic computing, then the cost of adding these

systems into the electronic computer must not be too extreme. An example of this

can be found in the sequential full adder. It has been hypothesized that an optical

implementation of the full adder could perform on the order of 100,000 adds in one step.

But what is the cost in the electronic domain? The electronics must be able to support a

pair of shift registers for all 100,000 pairs of data, must be able to synchronize the output

of data and the input of results, and must be able to route these values to the correct

locations within the physical space of the input and output electro-optic devices. Having

thus encurred these costs, an optical full adder would compute a function requiring no

more than 14 electronic NOR gates per data pair.

42

CHAPTER 3

A New Approach

In the previous section, we have seen that the complexity of the various optical comput

ing paradigms which have thus far been proposed prohibits them from being acceptable

for truly general-purpose computing. The inability of these systems .to compute boolean

functions with less than exponential complexity severely limits application of these sys

tems even in computing arithmetic functions in conjunction with electronic hosts. Thus

we must look for new ways to achieve digital optical computing which do not suffer the

shortcomings of the previous implementations, and still provide the advantages which

optical computing promises. To this end, we will first attempt to enumerate the features

which would be desirable in an optical computing system, and then try to find a way to

provide these features.

3.1 Desirable features of an optical computing system.

Whether optical computing remains an adjunct to electronic computing, or whether

general purpose optical computers eventually are eventually developed will depend pri

marily on whether optical random access memory is developed. Since memory is not

currently available, we will restrict our discussion to the use of optical computing as an

43

adjunct to the electronic domain. In this regard then, we will enumerate several features

which will be required of an optical subsystem of a computer. Our arguments will concern

only architectural and register transfer issues, and will not concern questions involving

device physics, compatibility of sources and detectors, power requirements and heat dis

sipation, or any of a number of other questions which still must be solved, but are outside

the scope of this paper. We will keep our discussion as general as possible in order to

allow for the possibility that new technology will not invalidate our conclusions.

3.1.1 Use of non-linear optics directly as logic gates.

In our discussion of symbolic substitution we noted that the implementation of the

NOR function would require four planes of detectors whose functionality was essentially

that of the NOR itself. Thus, we had the situation that four times as many gates were

used as was necessary. We would wish rather to directly use the optical elements as logic

gates, and without the large number of excess gates imposed by Programmable Logic.

Essentially, we would like to implement the functions required of an ALU in a manner

which does not impose a severe cost in unused gates.

3.1.2 Input and output.

Obviously, in order to access an optical computing subsystem, there will be a need for

electro-optic transducers; the manner in which data is passed through these transducers is

critical. We have previously argued that mapping data in a sequential manner through an

optical subsystem, as would be the case with an optical sequential adder, will complicate

44

the electronic subsystem more than the added speed and parallelism provided by the

optics could compensate. If for every register in an ALU there is only one optical source

then we must shift the data out of the register serially, whereas if we supply an optical

source for every bit in each register, then we can simultaneously output all registers.

Assuming that the optical subsystem is capable of a resolution of 1024*1024 pixels, and

that each pixel can be used to represent one bit, then parallel mapping of the registers to

the optical system would yield a potential of 1024 * 128 eight bit inputs to the system for

monadic operations or 1024 * 64 pairs of such inputs to the system for dyadic operations.

This would still provide a significant increase over the achievable parallelism in electronic

systems.

3.1.3 Implementation of large functions.

The kinds of functions which have previously demonstrated by optical systems, are

rather small, being generally limited to the binary functions and the full-adder. But once

we have gone to the trouble to modify the electronic subsystem of a computer to allow for

the use of an optical computing subsystem, we could include these functions to the logic of

the electronic subsystem with only a small constatnt increase in gate count per register.

For this reason, we would like to have an optical subsystem which performs a "large"

amount of computation in entirity, and returns the results to us once the computation is

done. Now the question of what is a "large" amount of computation is open to debate,

but certainly something on the order of a complete eight bit addition for each register pair

45

is near the lower end of this range. At the higher end of the range of computations which

might be desirable, would be computations involving floating point representations.

3.1.4 Parallelism of implementation.

While we would like to map entire registers simultaneously to the optical subsystem,

and perform operations such as addition and comparison on pairs of such registers, we

would also like to exploit parallelism in the computation of these functions. While we

might save some overhead in mapping registers in parallel rather than serially shifting

the registers into the system, we would not achieve much increase in speed if the optical

subsystem employed serial operations on these registers values. Thus, instead of a se

rial ripple-carry addition or a serial bit-by-bit comparison, we would desire the optical

subsystem to compute addition by means of the carry look-ahead adder, and parallel

comparison.

In summary, we wish the optical subsystem to require minimum overhead in the elec

tronic subsystem, to compute functions on large data items simultaneously, and to com

pute these functions using the greatest amount of parallelism possible within each func

tion.

3.2 Development of such a system.

In order to demonstrate our method we will model space invariant optical optical

devices in the following manner. First, we will assume that geometric optical approxi

mations hold. This assumption, while ignoring diffraction effects, provides a best-case

46

for our analysis of lower bounds. While lens systems may be created which rely on the

diffraction of light, the transformations so achieved are one-to-one (one pixel to one com

plex sinusoid), and from an information viewpoint, preserve all the information originally

present. Thus while a lensing system may provide for a complex transformation of the

input, all the information contained in the input is preserved, though the information

contained in a given pixel is spread over a large area. The spatially invariant systems we

present also possess this information preserving characteristic. We will be primarily con

cerned with prisms, and mirrors which possess the characteristic that the rays emanating

from the object plane emerge from the device in parallel. It is this parallel nature of the

light propagation which must be overcome in order to provide for the kinds of arbitrary

interconnection which are characteristic of binary circuits.

Mirrors and prisms are not, by themselves, adequate to allow arbitrary interconnection

patterns since their input-output mappings are one to one. This constraint imposes a

restriction on the fanout of information contained in their object plane. The fanout so

achieved is limited to one. While boolean formulas may be realized by circuits having

a fanout of one, the formulas require the variables and their complements appear at the

leaves of the resulting AND-OR tree many times, and hence require an arbitrary degree of

the input nodes. Thus, even restricting the active circuit to unity fanout from the gates,

will not overcome the problem of providing for arbitrary interconnection patterns. The

answer to this problem is the beam splitter, which has the capability, in our model, to

perform one-to-two mappings. Thus a beam-splitter can take as input an entire object

plane and make two replicas thereof. Of course, beam-splitters could then be cascaded

47

to produce a potentially unlimited number of copies of the input image. The obvious

problem here is that the intensity of the two output images is half (approximately) of that

of the input. We will shortly see that this halving of power level presents no fundamental

problems, although practical problems may exist.

We will require two more components for our model. First, since all elements thus

far discussed preserve all the information presented to them, we will need a means of

selecting only those portions of the information which are of interest at a given point in

computation. To this end, we will employ masks which pass only that portion of the

image plane which impinges on the mask's transparent regions, and blocks those portions

of the image plane which impinge on the mask's opaque regions. While masks are spatially

variant over all, they are invariant within the two domains which their transparent and

opaque regions define. The last element we require is a two dimensional array of optically

non-linear devices. We will use these arrays as our computing elements, and as amplifiers.

Such devices have been constructed, and are at the heart of many proposals for digital

optical computers. The salient feature of such devices, for purposes of this discussion,

are that they occupy one pixel position per device, and that they compute some suitable

functions (eg. NOR). The model we will draw of these devices as logic functions will

assume that the functions so formed are of a fanin and fanout of two. While the outputs

of a plane of these gates could be split many times, the nature of the devices is such that an

input can only be recognized as a logic value if its intensity is close to half the intensity

of the device's output intensity. This presents no inherent problem, as gates having a

48

greater fanout may be constructed from a constant number of gates having fanout of two

by amplifying each image before subsequent splitting.

We now have all the elements required of our model: imaging elements which preserve

information through a one-to-one mapping; elements capable of copying the information in

their input; elements capable of passing some of their input while blocking other portions;

and elements capable of implementing a basis function and amplification. We will now

begin to construct some useful circuits from these elements.

3.3 Implementing the basis functions.

3.3.1 The NOR function.

Given an object plane of N = 2n pixels to which data has been mapped, we will begin

by demonstrating the two input NOR function. We will compute n of these functions

simultaneously. These computations are not only logically parallel, but physically parallel

also. We will assume, for the moment, that the pairs of inputs to a given NOR gate are

adjacent, and will require that all pairs are distinct, and in the same spatial relation to

each other. This requirement is imposed by the spatially invariant nature of the imaging

systems we use. The realization of this function is shown in figure 3.1, with a schematic

representation of the realization shown in figure 3.2.

In figure 3.1, the input data are mapped into two pairs of rows with all four possible

combinations of the inputs encoded in each pair of rows. The values '0' and '1' are shown

numerically for clarity; in actuality, the inputs would be intensity encoded. The input

array is replicated by means of a beam splitter. The replicated images are then masked so

49

that alternate rows of pixels are blocked in either of the two images. A pair of prisms now

recombines the images in such a way that every pair of pixels which are to be NOR'ed

are incident on the nonlinear element which computes the NOR function. While the

operations performed here could have been more directly implemented by a lenslet array

since the data were mapped in adjacent pixels, our purpose is to demonstrate a more

general technique which may be used to construct significantly larger functions in which

computations may occur between inputs or intermediate results which are not physically

adjacent.

The schematic representation of figure 3.2 is derived from the implementation shown in

figure 3.1 by taking the "top" pair of rows from the implementation, dividing the rows into

columns, and "stacking" the columns to achieve one column of eight elements. We will rely

on schematic representations in all further discussions. The schematic representations will

show a decrease in active device density with increasing numbers of inputs. This density

decreases linearly with the number of inputs, and is not different in this respect than SSL.

This decrease is consistent with the mapping of n inputs to one output.

In this regard, we note that the density of the NOR elements is only one-half that of the

input plane. In contrast, the density of threshold elements in SSL (for two input functions)

is one-fourth the density of the input plane when dual-rail encodings are used. Further,

with SSL, one requires four planes of such devices, each essentially implementing the NOR

function, to perform the same computation we perform with one such plane. Also, since

we are using simple intensity coding, we achieve twice the number of computations with

the same size planes. While Programmable Logic fully populates the logic planes with

50

Recombination
Stage

Resultant
Planes

Input
Plane Masks

Figure 3.1: Implementation of the two input NOR function

0
Legend:

0 Data Value '1' 0 Data Value '0'
• Mask Element El Optical NOR Gate
b Transparent

Figure 3.2: Schematic of NOR implementation

51

A
B
C
D
E
F
G
H

Figure 3.3: Schematic of NOT implementation.

devices, implementation of the NOR function by this method will also require a minimum

of four planes of devices (operated in AND and OR modes). Programmable Logic also

requires that a field of four pixel positions be reserved for each two bit vector, and that

the complements of the inputs be provided in addition to the uncomplemented inputs.

3.3.2 The NOT function.

While not a two-input function, the NOT, or the ability to achieve the function by

other gates, is essential for computing any non-monotone function. The implementation

of this function by the NOR is direct, and is shown schematicly in figure 3.3 This imple

mentation is trivial, and requires little comment. The main feature of this implementation

to note is that if the intensity of the input plane is sufficient to allow splitting into two

separate images, then, with proper biasing, the intensity is sufficient to drive the NOR

into its low-transmission state. Conversely, a low intensity pixel in the input plane will

cause the NOR to remain in a high-transmission state.

52

Masks

NOR Planes

a + b
c + d
e + f
g + h

Figure 3.4: Implementation of the OR.

3.3.3 The OR function

The OR function may be obtained from the previous two by simply inverting the

output of the NOR. This implementation is shown in figure 3.4. The NOT function must

be implemented by planes of NOR functions with the same active device density as that

of the plane implementing the NOR.

3.3.4 The AND function.

The construction of the AND in NOR logic is based on the tautology: AB = A + B.

A schematic of the implementation of this function is shown in figure 3.5. As with the OR

and NOR functions, the input is densely mapped to the input plane, requiring no more

than one pixel position per bit, while the density of active elements in the NOR planes

is one-half that of the input. This construction achieves a savings of one plane of active

elements over that which is required by SSL or Murdocca's method.

53

NOR Planes

gh

ab

cd

ef

Figure 3.5: Implementation of the AND.

3.3.5 The Equivalence (X-NOR) and the XOR function.

In the previous sections, we have developed implementations for two complete basis

sets: the set {NOR}, and the set {AND, OR, NOT}. Either of these sets is sufficient to

compute all the boolean functions. Having the ability to compute the functions XOR,

and the Equivalence or X-NOR, provides flexibility in designing a variety of circuits. We

will first detail the design of the X-NOR.

The logic diagram of the X-NOR is shown in figure 3.8. As can be seen, construction

this function from the NOR requires five gates and three levels. It would seem that

this construction, when directly translated to an optical realization would require more

gate planes than SSL, which we have argued requires four gate planes to implement any

two-input function. The freedom allowed by spatially variant interconnections, however,

allows us to implement the inverting NOR gates at level one, and the NOR gates in level

two as a single fully populated NOR plane for each level. This realization is shown in

figure 3.7. A careful examination of this figure will reveal that we have provided the

54

A

B

A © B

Figure 3.6: Logic diagram of the X-NOR or equivalence function.

five gates which the logical design requires, but have "collapsed" the gates at levels one

and two into only two gate planes. Many designs may be able to take advantage of this

technique, if the designer is clever, and if mass production of several densities of gate

planes is possible.

We noted that the X-NOR and the XOR functions were merely complements of one

another, and so the simple inversion of the output of the X-NOR could be used to

implement the XOR. We have instead used an alternative implementation which requires

only the same number of NOR gates as the X-NOR. The resultant logic diagram shown

in figure 3.8. The implementation of this alternate realization of the XOR is shown in

figure 3.9. This implementation is also somewhat more expensive than that which would

result from simply inverting the X-NOR, since it requires an extra intensifier, and does

not collapse the second gate level into a single plane.

We have argued that economy in implementation of optical computers will require

that spatially variant interconnections be used to construct boolean functions. We have

also stated several characteristics which we feel will be required of optical adjuncts to

electronic computers. Further, we have demonstrated how a simple spatially variant

imaging technique can be used to construct two basis sets, and two other useful functions.

Masks

NOR Plane
Masks

NOR Plane

NOR Plane

Figure 3.7: Implementation of the X-NOR or equivalence function.

t>

B

o
o JO- A © B

Figure 3.8: Logic diagram of the XOR.

Masks

NOR Plane

NOR Plane

NOR Planes

Masks

Figure 3.9 Implementation of the XOR.

57

In the next section, we will expand this discussion to construct larger functions, which

are optimal in gate count and depth.

CHAPTER 4

Construction of Larger Functions.

In the previous chapter, we have demonstrated the implementation of the two input

boolean functions which comprise the basis of construction of larger functions which are

the real goal of the development in this paper. In this chapter, we will illustrate the

extension of this technique to functions of larger numbers of inputs. In this extension,

we will develop all functions from the basis gate NOR, as was done in the previous

chapter. This restriction on gate selection will increase the gate count we require to

implement any given function, and thus will tend to impose worst case gate counts on

these implementations. This is in keeping with the general desire to demonstrate that even

when such conditions are imposed on this method, the method still retains a significant

advantage over other methods which have been forwarded. This advantage is a reflection

of the underlying complexities involved in the functions we will demonstrate. As these

functions have implementations which require less complexity than that imposed by SSL

and other paradigms, and as the use of the two input NOR gate as the sole gate function

in these implementations can only affect the complexity of the systems we will implement

by at most a constant multiple, we will be able to demonstrate the superiority of the

proposed system.

59

4.1 Functions having only one output.

In this section we will be concerned with boolean functions which compute a single

output as a function of several inputs. We will not dwell on logic minimization techniques

in this development, as such topics may be found in any good introductory text on the

subject (see for instance [37]). Rather, we will present Karnaugh maps for the functions

we implement, and a minimized circuit implementation using the basis NOR for all gates.

We will then present a direct optical implementation of the function whose computation

graph is represented by the given circuit. The functions we present have been generated

by randomly assigning minterms to their ON-set on the basis of a random event (the toss

of a coin).

The circuit implementations have been minimized by finding the prime implicants of

the function, factoring the resulting sum-of-products form to reduce the required fanout

of the literals, and converting the resultant expression to a NOR implementation. Now,

while the NOR may most cheaply be used to implement expressions in product-of-sums

form, the converse form was used for two reasons: first, the sum-of-products form is the

most frequently used in the optical computing literature and hence we present a familiar

underlying notation; second, the slight increase in gate count which may occur from

implementing a function expressed in sum-of-products form by NOR gates will further

our goal of demonstrating that a worst case implementation of a function by the present

method is still superior in gate count to that of other methods.

60

00 01 11 10

f = ac + ab + be = a (b + c) + be

Table 4.1: Karnaugh map of a random three-input function and minimized formula.

a

b

c

Figure 4.1: Circuit realization of the three-input function using NOR gates as a basis.

4.1.1 An arbitrary 3-input function.

The first function we will implement has three inputs. The Karnaugh map for this

function is shown in table 4.1, with it's circuit graph shown in figure 4.1. This function

would require two AND, two OR, and three NOT gates to implement in the factored form

shown in table 4.1. In the implementation shown in the figure, the function requires only

eight NOR gates. Notice that only the uncomplemented inputs are required, and that

full use is made of the techniques of logical design.

Figure 4.2 shows the optical implementation of the function for three vectors of three

bits in parallel. There are three basic elements: masks, image intensifies, and NOR

61

gates. The process of construction is as follows: first the input image (the column at the

left) is replicated as many times as there are variables in the input vector. In this case,

there are only three variables, and so the image is split into three images with one image

representing the variables a, b, and c. These variables are then mapped in pairs to the

first level of the computation graph. The outputs of this first level are a set of four images

(including the image of the variable a, which does not participate in any computations at

this level), which are then focused on the gate planes at the second level of computation.

The process continues until the final gate computes the desired function.

Notice, in the figure, that the number of gates in each computation plane is one third

the number of input variables, and that the density of these gates is similarly reduced.

This reduction is caused by the inherent parallel nature of the light imaged by the spatially

invariant devices used in the method. By isolating each variable in separate image planes,

we can map any two images to a gate plane with no overlap of variables outside the two

we wish to compute. Thus we can achieve both masking and gate functions with one

plane. This will be the case in all the functions we demonstrate in this chapter.

4.1.2 An arbitrary 4-input function.

To continue our development, we discuss the design of a random four-input boolean

function. As before, we provide the Karnaugh map for the circuit along with a factored

boolean formula in table 4.2. The formula for this function has been rendered in product of

sums form rather than sum of products. This results in a small decrease in the number of

NOR gates required to implement the function, but does not provide a dramatic decrease.

62

Transparent

Mask

NOR Element

Figure 4.2: Optica! implementation of the three-input function.

63

a ,b

c ,d

00

10

f (a ,b , c ,d) = a ' (b 'd ' + cd)+bc ' (a + d)

= { a ' + b c ') (a + b ' + d) (b + c + d ')

Table 4.2: Karnaugh map of the random four-input function, and the resultant minimized
formula.

The optical implementation of this function is shown in figure 4.4. In this figure,

a pair of four bit vectors are mapped to the input plane, again without providing the

complements. In order to provide the fanout from the input variables, four image inten

sifying elements are employed in order to provide the required intensities at the seven

images representing the inputs to the actual computation (a, a', b, b', c, d, d'). Once

these seven images have been generated the computation proceeds through the spatially

variant interconnected circuit.

Charging all active elements to the cost of this circuit, we see that sixteen elements

are required in the NOR implementation. If AND and OR functions were used instead,

inversions not counted, and given an arbitrary degree of fanout, the circuit could have

been constructed from only eight active elements. But restrictions imposed on the gates,

and the method of counting have doubled the gate count required of this implementation.

64

a £>

b £>
c

d

Figure 4.3: Circuit realization of the four-input function in terms of NOR gates.

4.1.3 An arbitrary 5-input function.

The last arbitrary function we describe has five inputs and one output. The Karnaugh

map of this function is shown in table 4.3. This function has fifteen minterms which

can be combined to form six prime implicants. Factoring the resulting sum of products

formula to achieve a multi-level realization yields the formula shown at the bottom of the

table.

The resulting implementation (excluding the network providing fanout from the inputs)

is shown in figure 4.5. This NOR implementation requires twenty gates and seven levels.

The optical implementation of this function for one input vector is shown in figure 4.6.

Again, this figure is highly spatially variant, but achieves a one to one mapping from

the graphical realization. The only increase in complexity in this implementation is that

required by providing the required fanout from the input variables.

65

d c h a d c b a

W{8
i&ii

~ Transparent

Mask

NOR Element

~~ Intensifier

Figure 4.4: Optical implementation of the four-input function.

66

a

b

d

c

e

a

b

b

c

e

c

c

d

b

a

Figure 4.5: Circuit realization of the five-input function in terms of NOR gates.

Mask

NOR Element

Intensifier

Figure 4.6: Optical implementation of the five-input function.

68

d ,e
V_00 10 01 00 01 10 11 11

00

01 01

11 11

10 10

0 a 1

f (a ,b , c ,d , e) = a (b (ce + cd) + bee) + ce (b + a) + abd

Table 4.3: Karnaugh map and resultant minimized formula for the five-input function

4.2 Implementations of Some Selected Functions

We now turn our attention to some practical applications, the full adder, and the carry

look-ahead adder. While numerous optical papers have demonstrated designs of the full

adder, we will go beyond this simple circuit, and demonstrate the design of the carry look-

ahead adder, which is a parallel adder. Despite the apparent parallelism hypothesized for

optical systems, most adders proposed to date are based on the full adder with ripple

carry between full adder stages. This kind of addition is fundamentally serial, and does

not truly exploit the high degree of parallelism which should accompany the use of opt ical

computing elements. After first demonstrating the implementation of the full adder, we

will demonstrate how the carry look-ahead adder might be implemented. Specificly, we

69

will demonstrate the design of a carry look-ahead adder which takes as its inputs two

2-bit binary numbers, and a carry input, and produces two sum bits and a carry-out.

Larger adders can be constructed from this circuit by rippling the carry between these

stages, by increasing the size of the adder to accept a greater number of bits in each

input vector, or by adding another level of carry look-ahead. While a four or eight bit

stage would be more practical in a real application, the size of these adders would merely

complicate the drawings without shedding any more light on the design technique we

hope to demonstrate.

4.2.1 The full adder.

The normal full adder design is shown in a simplified form in figure 4.7, and its realiza

tion in NOR logic is shown in figure 4.8. Our optical design is shown in figure 4.9. While

there are several ways to implement the full adder the one we have chosen has three logic

levels in XOR-AND logic. While there is a two-level design, the total gate count of this

adder is slightly greater, and the fanout of some of the nodes is greater also. From the

preceding discussions, it should be clear, that we need not have chosen an adder circuit

which has a maximum fanout from any one node of two. The choice of this adder circuit

was driven by the minimality of the number of gates rather than fanout restrictions. We

will not dwell on the design of this adder other than to note that the size of this adder,

as measured by the number of image planes is quite comparable to that of Programmable

Logic, and to that of any SSL implementation. While the number of detection planes in

70

CinO"

B O

O
>

>
O

5=0- •out

Figure 4.7: A minimized circuit graph for the full adder.

-in

-=5>

Figure 4.8: A minimized NOR gate implementation of the full adder.

Shadow Casting logic is limited to one, the space bandwidth product of the effective data

plane in this implementation, is again eight times that of any one of the input planes.

4.2.2 The carry look-ahead adder.

As with any general adder, the carry look-ahead adder takes as its inputs two n-bit

vectors and a carry as its inputs, and generates an n + 1-bit result. The two-bit carry

look-ahead adder is shown in figure 4.10. In this figure the carry look-ahead adder is

implemented under the basis {AND,OR,XOR}. The circuit operates by computing in

71

El NOR Clements

m Amplification Clement

I Masking Clements

• Transparent Clements

Cs cs cs cs

Figure 4.9: Optical implementation of the full adder.

72

s2 Si

Figure 4.10: A minimized circuit graph for the carry look-ahead adder.

parallel a pair of intermediate signals for each pair of inputs. These signals are shown

in figure 4.10 as <?,- and P, for i = 1,2. The signal G{ = A{Bi is true if a carry is

generated by inputs A{ and 5,-. The signal P,- = Ai © B{ is true if a carry is propagated

by the pair. A carry look-ahead adder having 2n + 1 inputs will then generate 2n of

these intermediate signals. From this information, the carry out from the ith pair can be

computed as:

Ci = Gi + (P.G.-O + • • • + (P.P,-! •••P2G1) + (PiPi-t • • -PiCo), (4.1)

while the corresponding sum is computed as:

Si = Pi@Ci_i. (4.2)

The cost in number of gates and the delay to realize the adder for pairs of n inputs

under the basis {AND, OR. XOR} can be computed by a counting argument. The terms

73

Gi and Pi can be realized in unit size and depth. The computation of the sum 5,- can also

be realized in unit size and depth given Pi and C,_i. Hence for each output we have at

least three gates required. The carry C; will require one i + 1-input OR gate, and i AND

gates having (2,3,..., i, i + 1) inputs. The i + 1-input OR gate may be implemented by

a binary tree whose nodes are two-input OR gates. For i = 0, there is no cost since the

car ry Co i s an inpu t . I f i = 1 , then on ly one two- inpu t OR wi l l be requ i red . For i > 1 , i

two-input OR gates will be required, and the depth of the OR-tree will be flog2 i]. Thus

the i + 1-input OR may be replaced by a circuit consisting of t'-OR gates, with depth

[log2i] exactly.

The analysis of the number of AND gates is somewhat more involved. We can easily

construct a j-input AND gate from a binary tree of j — 1 two-input AND gates (j > 2).

Thus, the total number of two-input AND gates required to implement the carry for the

ith bit is:

C AND'S = = YLI = (4-3)
j=2 j=i

while the depth of the resulting tree is the depth of the largest sub-tree which is:

BAND'S = R°S2(i+1)l- (4-4)

Thus, the total cost of a carry look-ahead adder having two n-bit inputs is the sum over

the costs of all outputs:

C C L A = £ (3 + ' + ̂)

= »3+ii+5i2>

= H + ! * ± 4 + i (; + £ + £)

74

1 3 2 23
-n3 + n2 + —n. (4.5)

The depth is found as the maximum depth, which is associated with the final carry:

The implementation of the two-bit carry look-ahead adder is shown in figure 4.11.

An upper bound to the number of NOR gates required to implement this circuit can be

calculated by multiplying the number of XOR, AND, and OR gates by the number of

NOR gates required to implement each of these functions, and summing the results. This

is an upper bound because the possibility exists that minimizations such as canceling

two successive inversions can reduce the number of gates actually required. Even though

the direct conversion of the carry look-ahead adder to a NOR-based implementation

increases the gate count, this increase is bounded by at most a constant multiple, hence

the implementation will still require only 0(n3) gates, and 0(log2n) depth. The direct

optical implementation of this circuit is shown in figure 4.12.

DCLA - R°G2 "1 + I"L°G2(N + !)1 + 2- (4.6)

S i

Figure 4.11: A minimized NOR gate implementation of the carry look-ahead adder.

76

E3 —NOR elements

H3 —Amplification elements

I —Masking elements

O —Transparent elements

Figure 4.12: Optical implementation of the carry look-ahead adder.

CHAPTER 5

Comparisons with Other Methods

Having developed our method and demonstrated several functional implementations,

we can now demonstrate the viability of this method in relation to other digital optical

computing methods which have been advanced. In terms of complexity, this method

has advantages over all the other methods analyzed, since these other methods are so

similar in complexity. A tabular comparison of the orders of complexity of the proposed

system, and the other systems addressed by this paper may be found in table 5.1, for

three separate measures of complexity. The first two columns summarize the required

complexity for the various paradigms under consideration in terms of the normal methods

of boolean complexity (ie. gate count, and circuit depth). The third column summarizes

the energy required for the computation in terms of the number of inputs to the function.

This last measure provides a more uniform view of the alternatives, since the energy

required to switch a given detector or gate is a fundamental limiting parameter of any

logic implementation, and since the energy required at the input to a SSL implementation

increases exponentially, and is not implicit in the count of detectors.

While the table 5.1 only reports results for one particular function, the results can

be extended to arbitrary functions. Since spatially variant interconnections will allow

78

Method
Number of Gates,
Detection Planes,

or Sources

Circuit Depth or
Time Complexity

Normalized Energy
1 Gate/Detector = 1

SSL 0(2") fi(logj n) ft(r»2n)
Shadow Casting 0(2") 0(1) fi(2")

Programmable Logic fi(n2") fi(n) fl(n2")
Proposed Spatially

Variant Method
(Carry Look-Ahead

Adder)
0(n3) 0(log2 n) 0(n3)

Table 5.1: Order analysis of an n-bit parallel adder using the methods in this paper.
Normalized Energy refers to the amount of energy required to compute the function in
terms of the energy required to switch one gate or detector.

implementation of boolean functions at a cost in gate count and depth consistent with

the best theoretical limits, any polynomially complex function could alternately be con

sidered, and similar results obtained. A more detailed comparison of the advantages of

spatially variant implementation of boolean functions will reveal further advantages. Such

a comparison is provided in the following sections.

5.1 The present method vis-a-vis Symbolic Substitution.

In analyzing SSL, we saw that the power required at the input plane increased as ft(n*

2") times the power required to switch the detector, and that there was no way to reduce

this requirement without leaving the boolean domain. While SSL is a viable method

for certain algorithms which can be transformed to serial implementations operating on

many sets of a small number of bits [38], or for those algorithms which can make use of

large numbers of "don't care" combinations, as a general-purpose computing paradigm,

it suffers from the above mentioned limitations. In contrast, the method proposed in this

paper provides several advantages.

79

Perhaps the greatest advantage with this method, is the ability to achieve near minimal

complexity in gate count (and hence power dissipation), while retaining the high degree of

parallelism promised by optics. Once the input has been duplicated to provide a number

of separate images equal to the number of input variables (a process which has a 0(n)

gate or amplification count, and a depth O(flog2 n])), the subsequent computations are

performed in a minimal number of operations, providing the circuit has been properly

minimized. Thus the design cycle is similar to that of the electronic domain, in that the

initial effort is devoted to computations and methods which have only abstract connection

to the physical realization, but which generate a "good" realization when translated to

the physical realm. Hence we may use well established methods of circuit minimization

in our initial design, with the certainty that any minimal design so conceived will be

increased in complexity only by an additive linear term, and the depth increased by only

an additive logarithmic term. More concretely, given a function whose implementation

requires 0(n3) gate count, and 0(log2 n) depth, we will be able to implement the function

opticly with costs:

C(fn) = 0(n3) + 0{n)\ D{fn) = 0(log2n) + 0(log2n). (5.1)

Thus for functions of a large number of inputs, the cost involved in duplicating the input

plane is a small fraction of the cost of implementation, which is itself much smaller than

that which could be achieved in SSL.

We achieve a further gain over most SSL implementations by using simple intensity

coding. The factor of two increase in data density achieved by this encoding may be

increased over that of SSL in those cases in which SSL must provide "dead space" between

80

fields of operands. Our density of active elements is also twice that of SSL. In additive

SSL, there is only one active element for every n input bits, corresponding to 2n pixel

positions. The method we propose here will result in one active element for every n pixels.

5.2 The present method vis-a-vis Shadow Casting Logic.

Shadow Casting Logic is the most difficult of the proposed paradigms with which

to compare the proposed system. This difficulty results from the ways in which the

paradigm's complexity is measured. The decrease of available light with increasing num

bers of inputs does show an exponential variance and the numbers of sources required is

0(2n). There does not seem to be a good choice for a single unit of measure which can

combine these two variances. In the best case for Shadow Casting, the implementation

of a function having only one minterm in its On-set, the available light at the detector is

only 2~" of that which is incident on the corresponding cell. In this case, however, the

method we propose can implement such a function by a circuit having 0(n) gates.

That this is true may be seen from the following argument. A single minterm of n

variables may be implemented by a n-input AND gate whose inputs are suitably assigned

the value of each variable or that variable's complement, depending upon the form of

the minterm. Hence at most n inverters are required in addition to the n-input AND,

if the complements of the inputs are not available. Now a n-input AND gate may be

constructed from n - 1 2-input AND gates; the resulting tree having a depth of [log2 n].

Thus a function having n-inputs, and having only one minterm in its On-set may be

implemented by a circuit containing at most n inverters, and n — 1 AND gates, for a total

81

of 2n — 1 active elements. Even when restricted to NOR gates alone, each AND may be

replaced by at most three NOR gates, and each inverter with one, resulting in a circuit

having at most An — 3 gates. Since the power required of a circuit is proportional to the

number of gates, such a function can be constructed having O(n) power requirements.

At the other extreme, to compute the parity function a Shadow Casting implementation

will require 2n_1 sources or detectors. An implementation of this function in terms of

the XOR will require only O(n) XOR gates, each of which can again be replaced by a

constant number of NOR gates. In between these extremes, there will be functions which

will require a direct optical implementation of the best theoretical solution have fi(2"/n)

gate functions, and hence power dissipation. This will still be an improvement over that

achievable with Shadow Casting.

5.3 The present method vis-a-vis Programmable Logic.

With respect to Programmable Logic, this method provides many of the same ad

vantages, while eliminating several of the former method's weaknesses. As with Pro

grammable Logic, this method uses optical non-linearities directly as logic gates. The use

of general interconnections, however, overcomes the exponential complexity imposed by

the limited interconnection capabilities of the cross-over network.

Comparing the carry look-ahead adder with a parallel adder implemented with only

the crossover interconnection, we can see that for the two-bit adder demonstrated, 34

NOR gates were required in the spatially variant implementation, while the latter method

would require a minimum of 2 * 5 * 2s = 320 AND and OR gates. Even given that the

82

latter method can provide fault tolerance [35], a triple-modular-redundant version of

the spatially variant circuit with voting would still require fewer gates, and hence be

fundamentally more reliable.

Further, even when a function implementation can be minimized in Programmable

Logic to a level requiring only n * 2" logic elements, the number of outputs which can

then be computed is indeterminate, and is limited by the ability to find contention-free

paths through the OR-stage of the network.

5.4 The present method vis-a-vis Combinatorial Logic.

Comparison with the method of Combinatorial Logic is difficult. While the spatially

invariant version of this method has been shown to be capable of implementing only a

small subset of the possible functions, allowing spatially variant interconnections may

extend the capabilities of that system to allow a greater portion, perhaps all, of the

possible boolean functions to be computed. We note however, that the system which we

propose can implement all boolean functions, at a cost in power and speed commensurate

with the best theoretical implementations. As our system is spatially variant overall, and

uses optical elements directly as gates, there is no need to pre-compute partial terms

electronicly, and hence the speed should be close to the maximum attainable opticly.

83

CHAPTER 6

Conclusions

We have seen that several seemingly dissimilar optical computing paradigms have

complexity measures which are quite similar:

• SSL requires 2" detector planes and 2n shift operations per detection operation.

• Shadow Casting logic requires n planes of spatial light modulators, 0(2n_1) light

sources, with a resultant decrease in illumination on the detector plane a function

of2"n.

• Programmable Logic requires a field in each plane of at least 2" gates width, and a

number of planes at least 2n be reserved.

• The spatially invariant subsystem of the Combinatorial Logic method can not com

pute all the possible boolean functions.

It has been our contention that all these systems share similar complexity measures be

cause of the nature of the restrictions imposed by their imaging techniques.

We have further shown that simple spatially invariant interconnects can reduce the

complexity required of an optical implementation. This reduction is achieved because

spatially invariant implementations impose exponential lower bounds on any completely

84

specified boolean function, whereas many functions have upper bounds which have only

polynomial complexity in the best theoretical implementation, and allowing spatially vari

ant patterns of interconnection yields a direct mapping of any arbitrary boolean circuit

to the optical domain. Further, most functions peculiar to the arithmetic-logic unit of

a computer have such polynomial upper bounds. Such reductions in complexity, from

exponential to polynomial, become essential when attempting to construct systems hav

ing practical application, particularly so in high-end systems which typically have word

lengths of 32, 64, or even 128 bits. The spatially invariant optical computing paradigms

operating on such large operands can only implement functions which can be serialized,

and the full potential parallelism of optical computing is not realized.

Obviously, what we have presented here is in the nature of a plausibility argument,

rather than a strict proof. A rigorous model of spatially invariant imaging elements and

spatially invariant interconnections applicable to the level considered here is needed. Such

a model could be used as the basis of constructive proofs which could demonstrate rigor

ously whether there is any set of spatially invariant interconnections which can optimally

construct boolean functions of higher order. The model of Thompson [39] has had a great

impact on VLSI design; a similar model for spatially invariant optical systems, or possibly

a model incorporating spatially variant techniques, should make a similar impact on the

field of optical computing.

Modelling spatially invariant imaging elements will likely rely on the linearity of the

transforms defined by the object plane to image plane mapping of such imaging systems.

Proof of lower bounds to the gate count achievable by such means will probably involve

85

either an argument which counts the number of interconnections achievable in this manner

and compares this to the number of interconnections possible as a function of the number

of inputs, or may resemble the counting argument advanced by McColl [12]. In addition,

a model of spatially variant imaging techniques incorporating such physical aspects as

focal length and aperture, will likely provide tight bounds on features such as delay, area,

and volume for specific functions, allowing a designer to evaluate such a system prior to

construction.

86

Appendix A

Notations and Conventions from Boolean Function Theory

This paper will use a variety of notations, conventions and results from the field of

Boolean function theory. These notations are not normally used in introductory texts

in the field of switching theory where the emphasis is on achieving a minimization of

the cost of some particular boolean function, and not on studying the characteristics of

boolean functions in general. The later field is principly involved with finding bounds on

the complexity of given functions, in order to determine whether a given implementation

of some function is as economical or as fast as possible. To this end, the normal measure

of cost is the number of gates required to implement a given function, denoted C{f). The

normal measure of the speed of an implementation is the depth of the function, denoted

£(/)•

By boolean function, we mean a function whose inputs are binary variables, and whose

outputs are also binary variables. We will use the following forms as shorthand:

• We use the notation B to denote the set {0,1}.

• We use the notation B2 to denote the cartesian product: {0,1} X {0,1}.

• The extension of the above to n dimensions is denoted: Bn .

87

• We will denote by /„ a function mapping Bn —• B . In other words f n denotes a

function having n binary variables as its inputs, and computing a single output.

• A function mapping B" —• Bm , will be denoted: /„im . This will be the notation

used for a boolean function having n inputs and computing m results.

• The set of functions having n inputs will be denoted: {/„ }.

• The set of functions having n inputs and m outputs will be denoted: { f n , m } •

We will also make use of the following notations which are standard in several branches

of mathematics and computer science:

• A function is bounded above by (grows no faster than) another function, denoted

f(n) = 0(g(n)) if:

f (r t \
lim . . < c; c : a constant.

g(n)

• A function is bounded below by (grows no slower than) another function, denoted

f(n) = Q(0(n)) if:

9(n)
lim -rr̂ : < c; c : a constant.

n — o o f (n)

• A function is bounded above and below by another function, denoted f(n) = Q(g(n))

if:

/(") = 0(g(n)), and f{n) = fi(£(n)).

Now the number of boolean functions of n variables computing one output may be found

to be:

| { /n} |=2 2 " , (A . l)

88

and the number of functions computing m outputs can be shown to be:

K/»,m}| = 2™J-. (A.2)

One of the early results in the field of boolean function theory, due to Shannon [40], is

that for "almost all" boolean functions, the complexity (cost in gates) to implement is:

C(/») = (A.3)
n

where:

• again, n is the number of inputs to the function, and

• "almost all" has the precise definition that the ratio of the number of functions

having this property to the total number of functions is asymptotic to 1, as the

number of inputs becomes arbitrarily large. Or written more concisely:

almost all /„ have Property P o lim = 1- (A.4)
n—*oo 2

Now it is true that many functions do not grow in complexity as quickly as Shannon's

theorem would indicate (a fact that Shannon, himself, recognized). For many functions

and classes of functions polynomial upper bounds have been established [36]. Moreover,

quadratic upper bounds have been established for some functions.

89

Appendix B

Derivation of Theorems

In this appendix we will establish a result which allows us to consider only those

functions which depend on all of their variables, without considering those functions

which do not. A function f is said to be essentially dependant on a given variable i,- if:

/ (Co> C\ , , Cj_ J , 1, , . . ., Cn_i) 7^ /(c 0, Cl, . . ., C,'_ J, 0) Ci-f-i, . . ., Cn_l),

where the cjt are any constant values of their respective variables. A function which

is essentially dependant on all its variables is termed non-degenerate. Now almost all

functions of n variables are non-degenerate, in the sense of "almost all" defined above.

To see this is so, we note that:

{/n-l} C {/n} t 71 > 1.

Now given those functions of n — 1 variables out of the functions of n variables, there are
f \

n
ways of choosing the n — 1 variables from the total set of n variables. Thus,

n — 1
\

we have:

\{degenerate(/n)}| <
. ^

n — 1

x 2

90

Taking the limit of the ratio of the number of degenerate functions to the total number

of functions yields:

um n^7;;°y/n)>i < Bm
n-°° K/n}|

(\
n

n — 1

*22"-

n-oo 22"

n
* nhiS=2^'

= 0.

Thus, only a vanishingly small number of the total number of boolean functions are

degenerate. To make this somewhat more concrete, of the 221 = 4 functions of one

variable, two are degenerate; of the 16 functions of two variables, six are degenerate; of

the 256 functions of three variables, 38 are degenerate. Thus, when we consider boolean

functions in general, we need only consider those which are non-degenerate.

91

REFERENCES

[1] M.I. Nathan, J.C. Marinace, R.F. Rutz, A.E.Michel, and G. Lasher, "GaAs injection
laser with novel mode control and switching properties," J. Appl. Phys., vol. 36,
pp. 473 - 480, 1966.

[2] W. Smith, "Computer Applications of Lasers," Proceedings of the IEEE, vol. 54,
no. 10, pp. 1295 - 1300, Oct. 1966.

[3] R.W.Keyes and J. Armstrong, "Thermal Limitations in Optical Logic," Applied Op
tics, vol. 8, no. 12, pp. 2549 - 2552, Dec. 1969.

[4] H. M. Gibbs, S. L. McCall, and T. C. Venkatesan, "Optical Bistable devices: The
basic components of all-optical system," Optical Engineering, vol. 19, pp. 463-468,
1980.

[5] P. W. Smith and W. J. Tomlinson, "Bistable Optical Devices Promise Subpicosecond
switching," IEEE Spectrum, pp. 26-33, June 1981.

[6] D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and
W. T. Tsang, "Large Room-Temperature Optical Nonlinearity in GaAs/Gaj_xA/rAs
Multiple Quantum Well Structures," Appl. Phys. Lett., vol. 41, no. 8, pp. 697 - 681,
15 Oct. 1982.

[7] C. T. Seaton, S. D. Smith, F. A. P. Tooley, M. E. Prise, and M. R. Taghizadeh,
"Realization of an InSb Bistable Device as an optical AND Gate and Its Use to
Measure Carrier Recombination Times," Appl. Phys. Lett., vol. 42, pp. 131 - 133,
Jan. 1983.

[8] J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarian, A. . C. Gossard,
and W. Wiegmann, "3-pJ, 82 Mhz Optical Logic Gates in a Room Temperature
GaAs-AlGaAs Multiple Quantum-Well Etalon," in Appl. Phys. Lett., vol. 46, no. 10,
pp. 918 - 920, 15 May 1985.

[9] G. Livescu, D. A. B. Miller, J. E. Henry, A. C. Gossard, and J. H. English, "Spatial
light modulator and optical dynamic memory using a 6 x 6 array of self-electro-optic-
effect devices," Optics Letters, vol. 13, no. 4, pp. 297 - 299, April 1988.

92

[10] A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and
L. M. F. Chirovsky, "Symmetric Self-Electrooptic Effect Device: Optical Set-Reset
Latch, Differential Logic Gate, and Differential Modulator/Detector," IEEE J. of
Quantum Electronics, vol. 25, no. 8, pp. 1928 - 1936, Aug. 1989.

[11] W. F. McColl, "On the Planar Monotone Computation of Threshold Functions," in
Lecture Notes on Computer Science, vol. 182, pp. 219 - 230, Springer-Verlag, 1985.
Originally in Proc. 2nd Symp. on Theoretical Aspects of Computer Science.

[12] W. F. McColl, "Planar Circuits Have Short Specifications," in Lecture Notes on
Computer Science, vol. 182, pp. 231 - 242, Springer-Verlag, 1985. Originally in
Proc. 2nd Symp. on Theoretical Aspects of Computer Science.

[13] A. Huang, "Parallel algorithms for Optical Digital Computers," in Proceedings IEEE
Tenth Int'l Optical Computing Conf., pp. 13 - 17, 1983.

[14] K. H. Brenner and A. Huang, "An Optical Processor Based on Symbolic Substi
tution," in Technical Digest, Topical Meeting on Optical Computing, pp. WA4.1-
WA4.3, 1985.

[15] K. H. Brenner, A. Huang, and N. Streibl, "Digital Optical Computing with Symbolic
Substitution," Applied Optics, vol. 25, pp. 3054 - 3060, 15 Sept 1986.

[16] K. H. Brenner, "New Implementation of Symbolic substitution logic," Applied Optics,
vol. 25, 15 September 1986.

[17] J. N. Mait and K. H. Brenner, "Optical Systems for Symbolic Substitution," Topical
Meeting on Optical Computing, vol. 11, 1987. Optical Society of America, Washing
ton, D. C.

[18] K. H. Brenner, "Programmable Optical Processor Based on symbolic substitution,"
Applied Optics, vol. 27, no. 9, pp. 1687 - 1691, 1 May 1988.

[19] J. N. Mait and K. H. Brenner, "Optical symbolic substitution: system design using
Phase-only holograms," Applied Optics, vol. 27, no. 9, pp. 1692 - 1700, 1 May 1988.

[20] K. H. Brenner, A. W. Lohmann, and T. M. Merklein, "Symbolic Substitution im
plemented by spatial filtering logic," Optical Engineering, vol. 28, no. 14, pp. 390 -
396, 1989.

[21] D. P. Casasent and E. C. Botha, "Multifunctional optical processor based on symbolic
substitution," Optical Engineering, vol. 28, no. 4, pp. 425 - 433, April 1989.

93

[22] J. Weigelt, "Binary logic by spatial filtering," Optical Engineering, vol. 26, no. 1,
pp. 28 - 32, Jan. 1987.

[23] J. Weigelt, "Space-bandwidth product and crosstalk of spatial filtering methods for
performing binary logic optically," Optical Engineering, vol. 27, no. 10, pp. 883 -
892, Oct. 1988.

[24] H. Jeon, M. A. G. Abushagur, A. A. Sawchuk, and B. K. Jenkins, "Digital Optical
Processor Based on Symbolic Substitution Using Holographic Matched Filtering,"
Applied Optics, vol. 29, no. 4, pp. 2113-2125, May, 1990.

[25] J. Tanida and Y. Ichioka, "Optical Logic Array Processor Using Shadowgrams,"
Journal of Optical Society of America A, vol. 73, no. 6, June 1983.

[26] J. Tanida and Y. Ichioka, "Optical-logic-array processor using shadowgrams. III.
Parallel neighborhood operations and an architecture of an optical digital-computing
system," J. Opt. Soc. Am. A, vol. 2, no. 8, pp. 1245 - 1253, August, 1985.

[27] J. Tanida and Y. Ichioka, "OPALS: Optical Parallel Array Logic System," Applied
Optics, pp. 1565 - 1570, 15 May 1986.

[28] J. Tanida and Y. Ichioka, "Modular Components for an Optical Array Logic System,"
Applied Optics, vol. 26, pp. 3954 - 3960, 15 Sept. 1987.

[29] R. Arrathoon and S. Kozaitis, "Shadow casting for multiple-valued associative logic,"
Optical Engineering, vol. 25, no. 1, pp. 29 - 37, Jan. 1986.

[30] P. S. Guilfoyle and W. J. Wiley, "Combinatorial Logic Based digital optical comput
ing architectures," Applied Optics, vol. 27, no. 9, pp. 1661 - 1673, May 1988.

[31] M. J. Murdocca, A. Huang, J. Jahns, and N. Streibl, "Optical Design of Pro
grammable Logic Arrays," Applied Optics, vol. 27, pp. 1651 - 1660, May 1988.

[32] M. J. Murdocca and T. J. Cloonan, "Optical Design of a Digital Switch," Applied
Optics, vol. 28, no. 13, pp. 2505 - 2517, 1 July 1989.

[33] M. J. Murdocca, "Design of a symbolic substitution-based optical Random access
memory," in Technical Digest, Topical Meeting on Optical Computing, vol. 9, pp. 92
- 95, Feb. 1989.

[34] M. J. Murdocca, "Computer-Aided Design of Digital Optical Circuits," in Proc.
Asilomar Conf. ?, October, 1989.

94

[35] M. J. Murdocca, "Fault Avoidance for Optical Logic Arrays and Regular Free-Space
Interconnects," in Proc. 1990 O-E/Lase Conf., 1990.

[36] J. E. Savage, The Complexity of Computing. New York: Wiley, 1976.

[37] F. J. Hill and G. R. Peterson, Switching Theory and Logical Design. New York: J.
Wiley, 1981.

[38] A. Louri, "Three-Dimensional Optical Architecture and Data-Parallel Algorithms
for Massively Parallel Computing," IEEE Micro, pp. 24 - 27, 65 - 82, April, 1991.

[39] C. D. Thompson, A Complexity Theory for VLSI. PhD. Thesis, Carnegie-Mellon
University, Computer Science Department, 1980.

[40] C. E. Shannon, "The Synthesis of Two-Terminal Switching Circuits," Bell System
Technical Journal, vol. 28, pp. 59 - 98, 1949.

