
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in

reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly

to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

Order Number 1352375

Programmable real time network emulator

Scottis, Marios George, M.S.

The University of Arizona, 1993

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

PROGRAMMABLE REAL TIME

NETWORK EMULATOR

by

Marios George Scottis

A Thesis Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE
WITH A MAJOR IN ELECTRICAL ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

19 9 3

2

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of requirements for an
advanced degree at The University of Arizona and is deposited in the University Library to
be made available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission,
provided that accurate acknowledgment of source is made. Requests for permission for
extended quotation from or reproduction of this manuscript in whole or in part may be
granted by the head of the major department or the Dean of the Graduate College when in
his or her judgment the proposed use of the material is in the interests of scholarship. In all
other instances, however, permission must be obtained from the author.

SIGNED: l / C f

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

Ming-Kang Liu
Assistant Professor of

Electrical and Computer Engineering

Date

3

ACKNOWLEDGMENTS

I would like to thank my graduate advisor Dr. Ming-Kang Liu for his guidance and

encouragement that made this thesis possible. I would also like to thank my committee's

members Dr. Frederick Hill and Dr. Jo Dale Carothers for their interest in my work.

Secondly I would like to take the opportunity and express my sincere thanks to the

manager of Pricilab Ltd., Nicosia-Cyprus Mr. Christodoulos Maimaris for manufacturing

the Printed Circuit Boards used in this thesis free.

Finally but most of all, I would like to thank my parents for their financial and

moral support which help me throughout my work.

4

To my parents,
George and Leto

5

TABLE OF CONTENTS

LIST OF FIGURES 7

LIST OF TABLES 9

ABSTRACT 10

1. BACKGROUND 11
1.0 Introduction 11

1.0.1 Circuit Switching Networks 12
1.0.2 Packet Switching Networks 14

1.1 Motivation 17
1.2 Issues 19
1.3 Approach 20
1.4 Thesis Organization 21

2. NETWORK EMULATOR DESIGN 22
2.0 Introduction 22
2.1 General Overview 22
2.2 Data Format 25
2.3 Memory Buffer 27
2.4 Data And Memory Control 31

2.4.1 Serial To Parallel Converter 33
2.4.2 Parallel To Serial Converter 37
2.4.3 Packet Activity Detection Circuit 41
2.4.4 Packets In Memory Counter 42
2.4.5 Memory Read Circuit 44

2.5 Computer Interface 48
2.6 Control Logic 48
2.7 Packet Delay/Loss Circuit 53
2.8 Implementation 55

6

TABLE OF CONTENTS - Continued

3. EMULATOR PROGRAMMING 57
3.0 Introduction 57
3.1 Bit Rate And Frame Size 57

3.1.1 Setting The Frame Size 58
3.2 Statistics 59

3.2.1 Download The Data 61

4. EMULATOR TESTING 63
4.0 Introduction 63
4.1 Testing Set Up 63
4.2 Results 65

5. CONCLUSIONS AND FUTURE WORK 73
5.0 Introduction 73
5.1 Future Work 74

REFERENCES 76

7

LIST OF FIGURES

1.1 Integrated Digital Network 13

1.2 Digital Hierarchy 14

1.3 Packet Switching Network 15

1.4 Transmission Of Packets 16

1.5 Video Compression And Communication Over Networks 18

1.6 Example Of Incoming And Outgoing Frames 20

2.1 Block Diagram 23

2.2 Timing Signals 25

2.3 Data Structure 26

2.4 An SRAM Implementation for First-In-First-Out Memory Buffer 28

2.5 Functional Block Diagram 29

2.6 Asynchronous Read And Write 31

2.7 Data And Memoiy Control Block Diagram 32

2.8 Serial To Parallel Converter Block Diagram 34

2.9 Timing Signals For The Serial To Parallel Converter 35

2.10 Write Control Signal 36

2.11 Parallel To Serial Converter Block Diagram 38

2.12 Timing Signals For The Parallel To Serial Converter 39

2.13 Read Control Signal 40

8

LIST OF FIGURES - Continued

2.14 Packet Activity Detection Circuit With An Active Packet 41

2.15 Packet Activity Detection Circuit With An Empty Packet 42

2.16 Write And Read Cycles 43

2.17 Memory Read Block Diagram 45

2.18 Memory Read Circuit Timing Signals (With FIFO Not Empty) 46

2.19 Memory Read Circuit Timing Signals (With FIFO Empty) 47

2.20 Computer Interface Block Diagram 49

2.21 Control Logic Block Diagram 52

2.22 Packet Loss/Delay Block Diagram 54

3.1 Position Of The DIP Switches 59

3.2 Flowchart For Downloading The Data 62

4.1 Testing Set Up 64

4.2 Transmitted Data 66

4.3 Received Data 68

4.4 Logic Analyzer (General View) 70

4.5 Logic Analyzer (Time Slot 2) 71

4.6 Logic Analyzer (Time Slot 4) 72

9

LIST OF TABLES

2.1 8255A Address Map 49

4.1 Packet Loss/Delay Statistics 67

10

ABSTRACT

The tremendous development of the digital video technology on data compression

made the idea of video communications over computer networks a reality. This project

helps in the study of these compression techniques.

To understand the video transmission performance over a packet switching

network, we designed and implemented a programmable real time network emulator. The

proposed emulator will be used in the study of new compression algorithms and help in

their evaluation over different networks. The emulator was tested and found to operate

successfully. Some directions in which the emulator can be expanded are also proposed

11

CHAPTER 1

BACKGROUND

1.0 Introduction

The need of communication dates back to the ancient times in which many

techniques such as smokes, sound signals, reflected sun light, and fire beacons during the

night were used. To transmit more information over longer distance, more advanced

techniques of communications have been developed. Over the last few decades, the

telecommunication technology has built a worldwide telecommunication network available

to the general public. This worldwide telecommunication infrastructure is believed to be

one of the greatest achievements in the recent human history. One primary objective of the

worldwide network was to provide voice services. Today, it is used for a variety of

services such as data transfer, credit verification, bank transactions, airline reservations,

and home shopping.

In the past, networks were developed to meet the transport characteristics of

different types of traffic. According to the geographic size, there are Local Area Networks

(LANs), Metropolitan Area Networks (MANs), and Long-Haul Networks. According to

the way traffic is switched, there are two types of networks; circuit switching networks

and packet switching networks.

12

1.0.1 Circuit Switching Networks

Circuit switching networks were designed originally for voice traffic. In their first

version, voice channels were set up through a series of circuit switches upon call requests.

To carry multiple voice channels over one physical transmission line, analog transmission

techniques based on Frequency Division Multiplexing (FDM) were used. As digital

transmission technology was introduced in 1960's, voice signals were digitized and

transmitted in bits. A time domain multiplexing technique called Time Division

Multiplexing (TDM) was used to transmit multiple digital voice channels over the same

transmission line. The first digital system introduced by AT&T in the North America is

called the T-carrier system (T stands for Time or TDM). It has a multiplexing hierarchy

from low bits to high bit rates. Figures 1.1 and 1.2 illustrate an Integrated Digital Network

(IDN) and the digital hierarchy respectively.

In Figure 1.2, we see the lowest bit rate of the digital signals is 64Kb/s, which is

capable of carrying one Pulse Code Modulation (PCM) voice channel. This lowest bit rate

digital signal is called Digital Signal 0 (DSO). In the first level of multiplexing, 24 DSO

streams are multiplexed into one DS1 signal, which has a rate of 1.544Mb/s. Four of these

DS1 streams can be multiplexed into a higher speed digital signal DS2, seven of which can

be multiplexed into a DS3 stream at a bit rate of 44.736Mb/s. This DS3 rate is the highest

rate practically used in the North America, although there is an even higher rate digital

signal DS4 which multiplexes six DS3 signals and has a rate of 274.176Mb/s.

As mentioned earlier, a DS1 signal has 24 PCM channels. These 24 channels are

multiplexed in bytes. That is, 24 bytes with one byte each from the 24 DSO channels are

13

interleaved in the time domain. These 24 bytes plus one framing bit form one TDM frame.

In TDM, each byte in the frame is called one time slot. Therefore, one time slot carries on

a PCM voice channel. When a call request is received, an open time slot needs to be found

to carry the voice. Once the time slot is allocated, it will be used in every frame for the

same voice conversation. Therefore, this is equivalent to a dedicated circuit switched link

and guarantees no interruptions. This is an important characteristic of circuit switching.

DIGITAL

swrrcH
DIGITAL

HIERARCHY
DIGITAL
SWITCH

Figure 1.1: Integrated Digital Network.

14

64Kbfe

1544MW»

44.736MW«

6.312Mty>

DS2 i

Z74.176HVi

Figure 1.2: Digital Hierarchy.

1.0.2 Packet Switching Networks

Different from circuit switching networks, packet switching networks were

designed originally for data traffic. In packet switching information is transmitted via

"packets", which consist of the header and information payload. The header contains

information for touting and source identification. The payload carries data to be

transmitted. When a packet is sent to the network, it is switched according to the address

information. In computer communications, data generated is usually random and bursty.

As a result, packets are generated only when there is data to transmit. In this case, packet

switching becomes an attractive choice since there are no lines or time slots dedicated for

each connection. Figure 1.3 shows a typical packet switching network.

15

COMPUTERS

COMPUTER 1

COMPUTER 2

GATEWAY

NODE

COMPUTER 4

Figure 1.3: Packet Switching Network.

As illustrated in Figure 1.3, a packet switching network consists of switching

nodes which are connected by constant rate links. In practice, these links can be DSO

(64Kb/s) channels borrowed from existing circuit switching networks, or dedicated DS1

lines. Each switching node routes incoming packets according to their final destinations.

Therefore, packet switching can be also described as store-and-forward. There is a special

kind of nodes called gateways, which perform packet conversion between two different

networks.

16

One of the main advantages of the packet switching networks is the pipelining

effect which is illustrated in Figure 1.4. Lets assume that in Figure 1.3 computer 2 needs

to send data to computer 3. There are multiple routes that packets might follow. One

such route is through nodes D, E, F and B. As soon as the first packet enters the link

between nodes E and F the second packet can be transmitted from node D to node E and

so forth. This means that two or more packets might be in the network at the same time

heading for computer 3. Thus, pipelining effect increases the efficiency of the network.

Jbcketl

fkckstl
Packet delay

•

D E F B

Figure 1.4: Transmission Of Packets.

17

One problem in packet switching is the random delay. Since there is no dedicated

line allocated for a given connection as in the case of circuit switching, a packet sent to the

network may find traffic congestion. That is, there can be more packets that need to be

transmitted over a given link than the link capacity. As a result, the packet can be either

lost or has to wait in the buffer of the switching node. As an example assume that

computer 1 needs to talk to computer 4. A possible route is through nodes A, B, and F,

through the gateway, and finally through nodes G, H and I. If now the link between the

nodes B and F is fully occupied by the traffic between computers 2 and 3, packets from

computer 1 will have difficulty to go through. On the other hand, if there is no traffic on

the link, the packet can be switched immediately. Therefore, transmission delay in a packet

switching network is not a constant and highly depends on the network traffic intensity.

1.1 Motivation

Video communication has been a dream for many people. Video communications

such as video telephony, teleconference, and interactive video over personal computers

have been actively pursued over the last two decades. Recently, the low bit rate digital

video compression technology has been made possible. Recent standards on low bit rate

video such as the CCITT H.261, MPEG and JPEG have been proposed [l]-[3].

These low bit rate video compression standards have one common characteristic.

That is, they are designed for a fixed bit rate transmission channel. In other words, they

are designed for transmission in circuit switching networks. Since we have more and more

18

access to computers and packet switching networks, it is desirable to transmit video data

over a packet switching network.

Video communication over a packet switching network is illustrated in Figure 1.5.

First, an analog video signal is digitized by an analog to digital converter. The digital

output is send to an encoder for data compression. The compressed signal is packetized

and sent to the network. On the receiver side, the received packet is depacketized and

decoded. The final decompressed output is sent to a digital to analog converter to get the

original video signal. If a computer monitor is used, the decompressed output can be sent

to the computer directly for display.

PAczrraiTiox
WD

•ITVOU
nnnci

TnaumUterSUe1

NETWORK

Reconfbuctad Decompnasd

L/<Oi VBTWOIK
DITMFACB
AID PACKET
DBTBCTOt

JtecetoerSide

Figure 1.5: Video Compression And Communication Over Networks.

19

1.2 Issues

As mentioned earlier, one important characteristic of packet switching is the

random transmission delay. When there are too many packets stored in a buffer,

subsequently incoming packets will be lost. In data communications, random delay is in

general not a problem, and lost packets can be recovered from re-transmission. For real

time video communication, however, random delay and packet loss can become significant

problems. Since the video signal is continuous in time and has no time for re-transmission,

random packet delay and packet loss can significantly degrade the quality of video

transmission.

Therefore, to overcome the delay and loss problems, we need to develop new

compression algorithms. Since the performance of new algorithms can depend on the

packet switching network used, we need to perform real time transmission over a given

network to evaluate the performance of a given network. This can be time consuming and

expensive. An alternative way is to develop a programmable real-time network emulator.

The network emulator is used to emulate a real packet switching network illustrated in

Figure 1.5. With the programmability, we can easily study the transmission performance

over different switching networks. Since it is also real-time, we can evaluate performance

quickly and direcdy.

20

1.3 Approach

The basic idea to implement a real-time network emulator is illustrated in Figure

1.6. Each incoming packet sent to the emulator can be dropped or not according to the

programmed pattern. If it is not dropped, a programmed delay determines how long it will

stay in the buffer before it is sent out. In this approach, we can use given traffic statistics

to emulate the packet loss and random delay of the target packet switching network.

Programmed to
be dropped

A | Bitfrgr

(b)

Frame header Time slot carrying a packet LJ An empty time slot •

Figure 1.6: Example Of Incoming And Outgoing Frames.
(a) Incoming data
(b) Outgoing data

21

1.4 Thesis Organization

In the remaining of this thesis, detailed design of the programmable real-time

network emulator is explained in Chapter 2. Chapter 3 explains how to program the

emulator, and Chapter 4 shows some experimental results. Finally chapter 5 gives the

conclusion and addresses future work.

22

CHAPTER 2

NETWORK EMULATOR DESIGN

2.0 Introduction

As mentioned in Chapter One, one primary objective of this thesis was to build a

real-time programmable network emulator for a packet switching network such as

Ethernet, Fiber Distributed Data Interface (FDDI), frame relays, and Broadband-

ISDN/ATM networks. In the design, programmability was one of the most challenging

parts. In addition, to meet the high speed requirement for real-time transmission, high

speed logic components such as the Fairchild Advance Schottky TTL (FAST) series were

used. The FAST series facilitates high switching speeds (typical in the range of 80-

115MHz), small propagation delays (~3ns), large fan-out capability (>50), superior noise

margins, and low power consumption [4].

2.1 General Overview

In this section, we first explain the overall emulator design. The functional block

diagram of the emulator is illustrated in Figure 2.1. As shown, the emulator consists of

23

(1) the memory buffer section, (2) the data and memory control section, (3) the computer

interface section, (4) the control logic section and (5) the packet delay-loss section.

FRAME 0 FRAME IN

CONTROL LOGIC
CLOCK 01 CLOCK IN

lou. PACKET
LOSS/DELAY

MEMORY AND DATA
CONTROL

DATA OUT

DATA IN

COMPUTER
INTERFACE MEMORY BUFFER

Emulator

HOST COMPUTER

Figure 2.1: Block Diagram.

24

Under normal operation, external data DATA_IN is first sent to the memory and

data control section. The purpose of the memory and data control is to manipulate the

data flow for packet loss and delay control. To do this, it receives control signals from the

control logic section (framing timing etc.) and the packet delay and loss signals from the

packet delay/loss section. From these signals, it generates the write and read cycles for the

memory buffer section. The data read back from the memory buffer is sent out by the

DAT A OUT signal from the memory and data control section.

The primary function of the control logic section is to generate the necessary

timing signals for the system It receives the external FRAME IN and CLOCKJN signals

for frame timing and bit timing. From these signals it generates signals to indicate the

beginning of each frame and time slot

The packet loss/delay section receives user programming commands through the

computer interface. In other words, this section uses the input packet loss and delay

information to generate the packet loss and delay signals for the memory and data control

section.

To provide the user programmability, the computer interface is another important

pan of the system. It initializes the emulator and transfers the delay and loss data from the

computer to the packet delay/loss section.

The computer that controls the emulator is located at the bottom of the block

diagram. The probability distributions for the packet loss and delay are pie-generated by

the computer and then downloaded to the emulator.

25

As noted from the block diagram, the input signals to the emulator include not

only the data itself but also the frame timing and bit timing. Inclusion of these timing

signals is to simplify the design by avoiding the bit timing and frame timing recovery. Since

the transceivers and emulator are all local during emulation, the inclusion of these signals

is not a problem. Figure 2.2 illustrates the timing signals used in the emulator. The

beginning of each frame is indicated by the rising edge of the frame signal. Both, the frame

and data signals are synchronous to the bit clock signal.

^nnnrLrinnju^ARfinju^m »

(b)

1 J (c)

Figure 2.2: Timing Signals.
(a) Clock signal
(b) Frame signal
(c) Typical data

2.2 Data Format

Each frame of the input DATAJN signal to the emulator is assumed to have a

certain number of time slots of identical size. Each time slot is used to carry one packet. In

this thesis, we specifically consider emulation for B-ISDN/ATM (Asynchronous Transfer

Mode) since it is likely to be used for future broadband services [5].

26

The ATM packet size is 53 Octets from the CCITT recommendation [6]. The first

5 Octets in the packet are used for the header, and the remaining 48 Octets are the

information field or pay load. Figure 2.3c shows a typical packet structure. The header is

divided into fields. There are the generic flow control field (4 bits), the virtual path field

identifier (8 bits), the virtual channel field identifier (16 bits), the payload-type field (2 bits)

Frame N-2 Frame N-1 Frame N+1 Frame N-3 Frame N-4

Time Slot 2 Time Slot n

Frame
header

424 bits

Packet header

Active/idle bit

1 = Time slot carries a packet
0 = Time slot carries no data

Figure 2.3: Data Structure.
(a) Alternative frames
(b) A typical frame with n number of time slots
(c) A typical packet

27

the loss priority indicator (1 bit), the reserve field, (1 bit), and the header checksum

sequence (8 bits).

For the emulation purpose, the emulator does not examine the header bits except

the 51*1 bit, which is used to determine if the slot carries an active ATM packet or not (see

Figure 2.2c). If this active/idle bit is one, it indicates that the slot carries an active packet.

If the active/idle bit is zero, the slot carries no data. The active/idle bit is set by the

packetization circuit in Figure 1.5. When there are enough data to fill a packet, the

active/idle bit is set to one and a packet is sent to the network. On the other hand, if there

are not enough data to fill a packet, the active/idle bit is set to zero, and an empty packet

is transmitted.

A frame has a number of slots for ATM packets as illustrated Figure 2.2b. The

frame length is set at 125(is. Because of the fixed frame size in time, the number of time

slots in each frame depends on the bit rate. For example, at a bit rate of lOOMb/s, each

frame has 12,500 bits (=100Mb/s times 125|i.s). Since each time slot has 424 bits, one

frame in this case can carry 29 time slots, which represents 12,296 bits out of the total

12,500 bits. The remaining 204 bits are used for the frame header (see Figure 1.2b).

2.3 Memory Buffer

The incoming packets are stored and retrieved in a first-in-first-out (FIFO)

sequence. One way to implement this is to use a Static RAM (SRAM) as illustrated in

Figure 2.4. An address generator and additional control logic are needed to read and write

28

the data. In this implementation, since the data bus is used for both read and write, the

control circuit must prevent simultaneous write and read and provide isolation between

the input and the output data lines.

Data in

ADDRESS
GENERATOR

kt&rm
bat

STATIC
RAM

W

CONTROL 1
LOGIC I

H w I

Data out

Figure 2.4: An SRAM Implementation for First-In-First-Out Memory Buffer.

29

An alternative approach to simplify the control circuit implementation is to use

commercially available FIFO memory chips. These chips have internal control logic to

handle asynchronous read and write. FIFO memory chips are available from manufactures

such as Motorola, National Semiconductors, and Micron Technology. The FIFO chip we

used is the MT52C9020-25 from Micron Technology . The MT52C9020-25 is a 2Kx9

FIFO with access time of only 25 nsec. Its functional block diagram is given in Figure 2.5.

It is based on the low-power CMOS technology and employs a true dual port with dual

write and read pointers to handle the internal addressing. This dual port pointer design

allows data to be written to and read from the FIFO asynchronously and independently.

R-
READ

CONTROL

D1-D9

XI

W -

FURT-

R S "

WRITE
CONTROL

RESET
LOGIC

T
READ ADDRESS POINTER

2048 x 9 BIT
DUAL PORT
MEMORY

WRITE ADDRESS POINTER

© m

EXPAND
LOGIC

I
FLAG
LOGIC

Q1-Q9

+-XO/HF

-• EF

-• FF

Figure 2.5: Functional Block Diagram.

30

The signal levels of the chip are fully TTL compatible. The chip has also empty, half-

full, and full flags to signal buffer occupancy, and has provisions for depth and/or

width expansion [7].

The trade-off of using FIFO memory is the cost. It is generally much more

expensive than ordinary SRAMs. The price for the same capacity can be five to eight times

higher than that of SRAM's. When the memory size is small as in our case, this higher

cost is compensated by the external control circuit required for addressing SRAM's.

Before using the FIFO, the RESET (/?s) pin must be taken LOW in order to

initialize the read and write pointers and the flags. Data can be read from the FIFO from

the Q1-Q9 pins by taking the read strobe (/?) pin LOW and the FIFO occupancy is non

zero. The read access time is tA after the falling edge of R (see Figure 2.6). If the FIFO is

empty, any attempted reads are prohibited and the output pins will stay inactive (high

impedance).

Data can be written into the FIFO by taking the write strobe (w) LOW and the

FIFO is not full. The write cycle starts at the falling edge of W and data on D1-D9 pins

will be latched on the following rising edge of W (see Figure 2.6). If the FIFO is full, any

attempted writes are prohibited and the data will be lost.

In the current design, four MT52C9020 chips are cascaded to have a total size of 8

Kbytes. For the ATM cell size of 53 bytes, this FIFO size can store up to 154 packets.

31

DATA OUT (1)
VALID

DATA OUT (2)
VALID

D1.D9 / DATA IN (1) \ / DATA IN (2)
\ VALID / \ VALID

• UNDEFINED

Figure 2.6: Asynchronous Read And Write.
tA=Access time
tRC=Read cycle time
t^^Write cycle time

2.4 Data And Memory Control

The data and memory control section is the heart of the emulator. As mentioned

earlier, its mission is to manage the data flow, introduce packet loss and delay, and control

the read/write strobes of the memory buffer. The block diagram of this section is shown in

Figure 2.7. It consists of serial to parallel conversion, parallel to serial conversion, packet

"B
3
Si « -J

U
B

a.
£ a

2
I
w
8 *•
D
s
9

CLOCK

DATA IN

Write enable signal ^

SERIAL
TO

PARALLEL
CONVERTER

End of picket+5

Ion

htrinwl

PACKET
ACTIVITY

DETECTION
CIRCUIT

T1ATA1N

PARALLEL
TO

SERIAL
CONVERTER

D-
. DATA OUT

CLOCK

DIVIDE
BY 8

COUNTER

MEMORY
READ

CIRCUIT

Multiple control signals
see ten

Memory Memoiy

enable
signal

PACKETS
IN MEMORY

COUNTER

empty

Multiple control signals
see text

T
DATA AND MEMORY CONTROL CIRCUIT S>

33

activity detection, packets in memory counter, memory read circuit, and other control

logic. These components are discussed below.

2.4.1 Serial To Parallel Converter

On the top left side of the block diagram is the serial to parallel converter. The

input data is serial to parallel convened for two reasons. First, to transmit high speed data,

parallel data can reduce the speed requirement for the memory buffer. For a bit rate of

lOOMb/s, the read and write cycles must be within 10 nsec if data is stored and forwarded

serially (see Figure 2.6). Therefore, the access time must be in the range of 5 to 7 nsec.

However, the fastest FIFO available has an access time of 25 nsec, which gives a transfer

rate of at most 40Mb/s. If we use serial to parallel conversion, the transfer rate can be

multiplied by the degree of parallelism. In the current design, the parallel bus is 8 bits.

With 25 nsec access time, we can have up to 320 Mb/s transfer rate.

Another reason to use serial to parallel conversion is to reduce the cost of the

emulator. The FIFO chip we are using has a 9-bit input/output data bus. If serial to parallel

conversion is not used, only one of the nine bits was to be used, which wastes almost 90%

of the FIFO's capacity. On the other hand, with serial to parallel conversion used, eight of

the nine bits are used. This dramatically reduces the number of FIFO chips required

resulting in a more compact design and at a lower cost.

Figure 2.8 shows the block diagram for the serial to parallel converter, which

consists of a shift register, a D-Flip Flop, and a divide by 8 counter. The serial input data

34

and the inverse of the input clock (CLK) are applied to the shift register. The parallel

output of the shift register is connected to the input of the D-latch. The shift register shifts

on the rising edge of its clock signal. Therefore the input data will be shifted on the middle

of each data bit. Every eight bits a pulse latches the data to the output of the D-latch. The

data remain in the latch until the next set of data is latched. This serial to parallel

conversion provides enough time for the memory control circuit to store the data into

the FIFO (see Figure 2.9f). The signal that shifts the data to the output of the D-latch

comes from the divide by eight counter.

Serial Data Input

SHIFT REGISTER
Inverse of input clock (CLK)

DIVIDE BY 8

COUNTER
Write enable

D-LATCH

To the FIFO
Data Input

Figure 2.8: Serial To Parallel Converter Block Diagram.

35

H One write cycle ^

jiARjijmnjTim w
i • i
• i i

(c)

(d)

(e) DEEta

Wnte into the FIFO

Data latched to the
D-latch output

(0

Data corresponding
to the previous byte

Figure 2.9: Timing Signals For The Serial To Parallel Converter.
(a) Input clock signal
(b) Inverse clock signal
(c) Typical data
(d) Clock pulse to the D-latch
(e) Output of D-latch
(f) Write control signal

The serial to parallel conversion is enabled by the control logic at the end of every

frame header, and is disabled again one byte after the end of the frame. This process

allows conversion for only the packets not the frame header. Because of the conversion,

there is one byte delay in storing the data to the memory buffer. Hence, the first byte of

the packet is sent to the FIFO during the second byte of the packet (see Figure 2.10a). To

prevent invalid data stored during the first byte of the first packet in each frame, a sccond

signal that is also generated by the control logic is used to prohibit data loading to the

buffer at the first write cycle of the first packet. Similarly, the 53r^ byte of the last packet

36

in each frame is written into the FIFO one byte after the end of the frame (see Figure

2.10b).

• # •
ft ft •

(a)

1 is written Byte
into the FIFO

• • » ft «

s

ft «

a

ft
m

1 1
• 1

* • •' 1 11 1 1 1 • • i — • i

' V Byte 53 is written
into the FIFO

Frame header Packet earring real data

Figure 2.10: Write Control Signal.
(a) Moving from the frame header to the first packet in the frame
(b) Moving from the last packet in the frame to the frame header of the next frame.

37

2.4.2 Parallel To Serial Converter

When data is read back from the FIFO, we need to perform parallel to serial

conversion to get the serial data out. In this process, data in the FIFO is first read out byte

by byte. The block diagram of the parallel to serial converter is shown in Figure 2.11 and

is consisted of a D-latch, a shift register, a flip-flop, a decoder, and a divide by eight

counter. The decoder is connected to the output of the divide by eight counter and it

generates the required control pulses for the operation of the converter. After parallel data

appears on the FIFO's output bus, a pulse latches diem on the D-latch. The output of the

D-latch is connected to the parallel input of the shift register. The mode selection input of

the shift register is connected to the output of the D flip-flop. Depending on the level of

the mode selected, the shift register operates either in the parallel load or the shift mode. If

the mode selection input is HIGH, the shift register operates in the parallel load mode and if

the mode input is LOW, it operates in the shift mode. To load the parallel data to the shift

register, a pulse generated by the decoder sets the flip-flop output HIGH, which forces the

shift register to load the parallel data appeared on the D-latch output. After one bit clock,

the flip-flop is reset and sends a LOW signal to the shift register, which changes the shift

register to the shift mode (see Figure 2.12e). Following this are seven clock cycles which

shift seven internal bits of the register to the right. In the next cycle, the next byte on the

FIFO's output bus is loaded to the shift register and the same sequence repeats.

