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ABSTRACT 

The tremendous development of the digital video technology on data compression 

made the idea of video communications over computer networks a reality. This project 

helps in the study of these compression techniques. 

To understand the video transmission performance over a packet switching 

network, we designed and implemented a programmable real time network emulator. The 

proposed emulator will be used in the study of new compression algorithms and help in 

their evaluation over different networks. The emulator was tested and found to operate 

successfully. Some directions in which the emulator can be expanded are also proposed 
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CHAPTER 1 

BACKGROUND 

1.0 Introduction 

The need of communication dates back to the ancient times in which many 

techniques such as smokes, sound signals, reflected sun light, and fire beacons during the 

night were used. To transmit more information over longer distance, more advanced 

techniques of communications have been developed. Over the last few decades, the 

telecommunication technology has built a worldwide telecommunication network available 

to the general public. This worldwide telecommunication infrastructure is believed to be 

one of the greatest achievements in the recent human history. One primary objective of the 

worldwide network was to provide voice services. Today, it is used for a variety of 

services such as data transfer, credit verification, bank transactions, airline reservations, 

and home shopping. 

In the past, networks were developed to meet the transport characteristics of 

different types of traffic. According to the geographic size, there are Local Area Networks 

(LANs), Metropolitan Area Networks (MANs), and Long-Haul Networks. According to 

the way traffic is switched, there are two types of networks; circuit switching networks 

and packet switching networks. 
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1.0.1 Circuit Switching Networks 

Circuit switching networks were designed originally for voice traffic. In their first 

version, voice channels were set up through a series of circuit switches upon call requests. 

To carry multiple voice channels over one physical transmission line, analog transmission 

techniques based on Frequency Division Multiplexing (FDM) were used. As digital 

transmission technology was introduced in 1960's, voice signals were digitized and 

transmitted in bits. A time domain multiplexing technique called Time Division 

Multiplexing (TDM) was used to transmit multiple digital voice channels over the same 

transmission line. The first digital system introduced by AT&T in the North America is 

called the T-carrier system (T stands for Time or TDM). It has a multiplexing hierarchy 

from low bits to high bit rates. Figures 1.1 and 1.2 illustrate an Integrated Digital Network 

(IDN) and the digital hierarchy respectively. 

In Figure 1.2, we see the lowest bit rate of the digital signals is 64Kb/s, which is 

capable of carrying one Pulse Code Modulation (PCM) voice channel. This lowest bit rate 

digital signal is called Digital Signal 0 (DSO). In the first level of multiplexing, 24 DSO 

streams are multiplexed into one DS1 signal, which has a rate of 1.544Mb/s. Four of these 

DS1 streams can be multiplexed into a higher speed digital signal DS2, seven of which can 

be multiplexed into a DS3 stream at a bit rate of 44.736Mb/s. This DS3 rate is the highest 

rate practically used in the North America, although there is an even higher rate digital 

signal DS4 which multiplexes six DS3 signals and has a rate of 274.176Mb/s. 

As mentioned earlier, a DS1 signal has 24 PCM channels. These 24 channels are 

multiplexed in bytes. That is, 24 bytes with one byte each from the 24 DSO channels are 
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interleaved in the time domain. These 24 bytes plus one framing bit form one TDM frame. 

In TDM, each byte in the frame is called one time slot. Therefore, one time slot carries on 

a PCM voice channel. When a call request is received, an open time slot needs to be found 

to carry the voice. Once the time slot is allocated, it will be used in every frame for the 

same voice conversation. Therefore, this is equivalent to a dedicated circuit switched link 

and guarantees no interruptions. This is an important characteristic of circuit switching. 

DIGITAL 

swrrcH 
DIGITAL 

HIERARCHY 
DIGITAL 
SWITCH 

Figure 1.1: Integrated Digital Network. 
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Figure 1.2: Digital Hierarchy. 

1.0.2 Packet Switching Networks 

Different from circuit switching networks, packet switching networks were 

designed originally for data traffic. In packet switching information is transmitted via 

"packets", which consist of the header and information payload. The header contains 

information for touting and source identification. The payload carries data to be 

transmitted. When a packet is sent to the network, it is switched according to the address 

information. In computer communications, data generated is usually random and bursty. 

As a result, packets are generated only when there is data to transmit. In this case, packet 

switching becomes an attractive choice since there are no lines or time slots dedicated for 

each connection. Figure 1.3 shows a typical packet switching network. 
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COMPUTERS 

COMPUTER 1 

COMPUTER 2 

GATEWAY 

NODE 

COMPUTER 4 

Figure 1.3: Packet Switching Network. 

As illustrated in Figure 1.3, a packet switching network consists of switching 

nodes which are connected by constant rate links. In practice, these links can be DSO 

(64Kb/s) channels borrowed from existing circuit switching networks, or dedicated DS1 

lines. Each switching node routes incoming packets according to their final destinations. 

Therefore, packet switching can be also described as store-and-forward. There is a special 

kind of nodes called gateways, which perform packet conversion between two different 

networks. 
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One of the main advantages of the packet switching networks is the pipelining 

effect which is illustrated in Figure 1.4. Lets assume that in Figure 1.3 computer 2 needs 

to send data to computer 3. There are multiple routes that packets might follow. One 

such route is through nodes D, E, F and B. As soon as the first packet enters the link 

between nodes E and F the second packet can be transmitted from node D to node E and 

so forth. This means that two or more packets might be in the network at the same time 

heading for computer 3. Thus, pipelining effect increases the efficiency of the network. 

Jbcketl 

fkckstl 
Packet delay 

• 

D E F B 

Figure 1.4: Transmission Of Packets. 
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One problem in packet switching is the random delay. Since there is no dedicated 

line allocated for a given connection as in the case of circuit switching, a packet sent to the 

network may find traffic congestion. That is, there can be more packets that need to be 

transmitted over a given link than the link capacity. As a result, the packet can be either 

lost or has to wait in the buffer of the switching node. As an example assume that 

computer 1 needs to talk to computer 4. A possible route is through nodes A, B, and F, 

through the gateway, and finally through nodes G, H and I. If now the link between the 

nodes B and F is fully occupied by the traffic between computers 2 and 3, packets from 

computer 1 will have difficulty to go through. On the other hand, if there is no traffic on 

the link, the packet can be switched immediately. Therefore, transmission delay in a packet 

switching network is not a constant and highly depends on the network traffic intensity. 

1.1 Motivation 

Video communication has been a dream for many people. Video communications 

such as video telephony, teleconference, and interactive video over personal computers 

have been actively pursued over the last two decades. Recently, the low bit rate digital 

video compression technology has been made possible. Recent standards on low bit rate 

video such as the CCITT H.261, MPEG and JPEG have been proposed [l]-[3]. 

These low bit rate video compression standards have one common characteristic. 

That is, they are designed for a fixed bit rate transmission channel. In other words, they 

are designed for transmission in circuit switching networks. Since we have more and more 
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access to computers and packet switching networks, it is desirable to transmit video data 

over a packet switching network. 

Video communication over a packet switching network is illustrated in Figure 1.5. 

First, an analog video signal is digitized by an analog to digital converter. The digital 

output is send to an encoder for data compression. The compressed signal is packetized 

and sent to the network. On the receiver side, the received packet is depacketized and 

decoded. The final decompressed output is sent to a digital to analog converter to get the 

original video signal. If a computer monitor is used, the decompressed output can be sent 

to the computer directly for display. 

PAczrraiTiox 
WD 

•ITVOU 
nnnci 

TnaumUterSUe1 

NETWORK 

Reconfbuctad Decompnasd 

L/<Oi VBTWOIK 
DITMFACB 
AID PACKET 
DBTBCTOt 

JtecetoerSide 

Figure 1.5: Video Compression And Communication Over Networks. 
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1.2 Issues 

As mentioned earlier, one important characteristic of packet switching is the 

random transmission delay. When there are too many packets stored in a buffer, 

subsequently incoming packets will be lost. In data communications, random delay is in 

general not a problem, and lost packets can be recovered from re-transmission. For real

time video communication, however, random delay and packet loss can become significant 

problems. Since the video signal is continuous in time and has no time for re-transmission, 

random packet delay and packet loss can significantly degrade the quality of video 

transmission. 

Therefore, to overcome the delay and loss problems, we need to develop new 

compression algorithms. Since the performance of new algorithms can depend on the 

packet switching network used, we need to perform real time transmission over a given 

network to evaluate the performance of a given network. This can be time consuming and 

expensive. An alternative way is to develop a programmable real-time network emulator. 

The network emulator is used to emulate a real packet switching network illustrated in 

Figure 1.5. With the programmability, we can easily study the transmission performance 

over different switching networks. Since it is also real-time, we can evaluate performance 

quickly and direcdy. 
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1.3 Approach 

The basic idea to implement a real-time network emulator is illustrated in Figure 

1.6. Each incoming packet sent to the emulator can be dropped or not according to the 

programmed pattern. If it is not dropped, a programmed delay determines how long it will 

stay in the buffer before it is sent out. In this approach, we can use given traffic statistics 

to emulate the packet loss and random delay of the target packet switching network. 

Programmed to 
be dropped 

A | Bitfrgr 

(b) 

Frame header Time slot carrying a packet LJ An empty time slot • 

Figure 1.6: Example Of Incoming And Outgoing Frames. 
(a) Incoming data 
(b) Outgoing data 
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1.4 Thesis Organization 

In the remaining of this thesis, detailed design of the programmable real-time 

network emulator is explained in Chapter 2. Chapter 3 explains how to program the 

emulator, and Chapter 4 shows some experimental results. Finally chapter 5 gives the 

conclusion and addresses future work. 



22 

CHAPTER 2 

NETWORK EMULATOR DESIGN 

2.0 Introduction 

As mentioned in Chapter One, one primary objective of this thesis was to build a 

real-time programmable network emulator for a packet switching network such as 

Ethernet, Fiber Distributed Data Interface (FDDI), frame relays, and Broadband-

ISDN/ATM networks. In the design, programmability was one of the most challenging 

parts. In addition, to meet the high speed requirement for real-time transmission, high 

speed logic components such as the Fairchild Advance Schottky TTL (FAST) series were 

used. The FAST series facilitates high switching speeds (typical in the range of 80-

115MHz), small propagation delays (~3ns), large fan-out capability (>50), superior noise 

margins, and low power consumption [4]. 

2.1 General Overview 

In this section, we first explain the overall emulator design. The functional block 

diagram of the emulator is illustrated in Figure 2.1. As shown, the emulator consists of 
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(1) the memory buffer section, (2) the data and memory control section, (3) the computer 

interface section, (4) the control logic section and (5) the packet delay-loss section. 

FRAME 0 FRAME IN 

CONTROL LOGIC 
CLOCK 01 CLOCK IN 

lou. PACKET 
LOSS/DELAY 

MEMORY AND DATA 
CONTROL 

DATA OUT 

DATA IN 

COMPUTER 
INTERFACE MEMORY BUFFER 

Emulator 

HOST COMPUTER 

Figure 2.1: Block Diagram. 
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Under normal operation, external data DATA_IN is first sent to the memory and 

data control section. The purpose of the memory and data control is to manipulate the 

data flow for packet loss and delay control. To do this, it receives control signals from the 

control logic section (framing timing etc.) and the packet delay and loss signals from the 

packet delay/loss section. From these signals, it generates the write and read cycles for the 

memory buffer section. The data read back from the memory buffer is sent out by the 

DAT A OUT signal from the memory and data control section. 

The primary function of the control logic section is to generate the necessary 

timing signals for the system It receives the external FRAME IN and CLOCKJN signals 

for frame timing and bit timing. From these signals it generates signals to indicate the 

beginning of each frame and time slot 

The packet loss/delay section receives user programming commands through the 

computer interface. In other words, this section uses the input packet loss and delay 

information to generate the packet loss and delay signals for the memory and data control 

section. 

To provide the user programmability, the computer interface is another important 

pan of the system. It initializes the emulator and transfers the delay and loss data from the 

computer to the packet delay/loss section. 

The computer that controls the emulator is located at the bottom of the block 

diagram. The probability distributions for the packet loss and delay are pie-generated by 

the computer and then downloaded to the emulator. 
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As noted from the block diagram, the input signals to the emulator include not 

only the data itself but also the frame timing and bit timing. Inclusion of these timing 

signals is to simplify the design by avoiding the bit timing and frame timing recovery. Since 

the transceivers and emulator are all local during emulation, the inclusion of these signals 

is not a problem. Figure 2.2 illustrates the timing signals used in the emulator. The 

beginning of each frame is indicated by the rising edge of the frame signal. Both, the frame 

and data signals are synchronous to the bit clock signal. 

^nnnrLrinnju^ARfinju^m » 

(b) 

1 J (c) 

Figure 2.2: Timing Signals. 
(a) Clock signal 
(b) Frame signal 
(c) Typical data 

2.2 Data Format 

Each frame of the input DATAJN signal to the emulator is assumed to have a 

certain number of time slots of identical size. Each time slot is used to carry one packet. In 

this thesis, we specifically consider emulation for B-ISDN/ATM (Asynchronous Transfer 

Mode) since it is likely to be used for future broadband services [5]. 
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The ATM packet size is 53 Octets from the CCITT recommendation [6]. The first 

5 Octets in the packet are used for the header, and the remaining 48 Octets are the 

information field or pay load. Figure 2.3c shows a typical packet structure. The header is 

divided into fields. There are the generic flow control field (4 bits), the virtual path field 

identifier (8 bits), the virtual channel field identifier (16 bits), the payload-type field (2 bits) 

Frame N-2 Frame N-1 Frame N+1 Frame N-3 Frame N-4 

Time Slot 2 Time Slot n 

Frame 
header 

424 bits 

Packet header 

Active/idle bit 

1 = Time slot carries a packet 
0 = Time slot carries no data 

Figure 2.3: Data Structure. 
(a) Alternative frames 
(b) A typical frame with n number of time slots 
(c) A typical packet 
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the loss priority indicator (1 bit), the reserve field, (1 bit), and the header checksum 

sequence (8 bits). 

For the emulation purpose, the emulator does not examine the header bits except 

the 51*1 bit, which is used to determine if the slot carries an active ATM packet or not (see 

Figure 2.2c). If this active/idle bit is one, it indicates that the slot carries an active packet. 

If the active/idle bit is zero, the slot carries no data. The active/idle bit is set by the 

packetization circuit in Figure 1.5. When there are enough data to fill a packet, the 

active/idle bit is set to one and a packet is sent to the network. On the other hand, if there 

are not enough data to fill a packet, the active/idle bit is set to zero, and an empty packet 

is transmitted. 

A frame has a number of slots for ATM packets as illustrated Figure 2.2b. The 

frame length is set at 125(is. Because of the fixed frame size in time, the number of time 

slots in each frame depends on the bit rate. For example, at a bit rate of lOOMb/s, each 

frame has 12,500 bits (=100Mb/s times 125|i.s). Since each time slot has 424 bits, one 

frame in this case can carry 29 time slots, which represents 12,296 bits out of the total 

12,500 bits. The remaining 204 bits are used for the frame header (see Figure 1.2b). 

2.3 Memory Buffer 

The incoming packets are stored and retrieved in a first-in-first-out (FIFO) 

sequence. One way to implement this is to use a Static RAM (SRAM) as illustrated in 

Figure 2.4. An address generator and additional control logic are needed to read and write 
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the data. In this implementation, since the data bus is used for both read and write, the 

control circuit must prevent simultaneous write and read and provide isolation between 

the input and the output data lines. 

Data in 

ADDRESS 
GENERATOR 

kt&rm 
bat 

STATIC 
RAM 

W 

CONTROL 1 
LOGIC I 

H w I 

Data out 

Figure 2.4: An SRAM Implementation for First-In-First-Out Memory Buffer. 
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An alternative approach to simplify the control circuit implementation is to use 

commercially available FIFO memory chips. These chips have internal control logic to 

handle asynchronous read and write. FIFO memory chips are available from manufactures 

such as Motorola, National Semiconductors, and Micron Technology. The FIFO chip we 

used is the MT52C9020-25 from Micron Technology . The MT52C9020-25 is a 2Kx9 

FIFO with access time of only 25 nsec. Its functional block diagram is given in Figure 2.5. 

It is based on the low-power CMOS technology and employs a true dual port with dual 

write and read pointers to handle the internal addressing. This dual port pointer design 

allows data to be written to and read from the FIFO asynchronously and independently. 

R-
READ 

CONTROL 

D1-D9 

XI 

W -

FURT-

R S "  

WRITE 
CONTROL 

RESET 
LOGIC 

T 
READ ADDRESS POINTER 

2048 x 9 BIT 
DUAL PORT 
MEMORY 

WRITE ADDRESS POINTER 

© m 

EXPAND 
LOGIC 

I 
FLAG 
LOGIC 

Q1-Q9 

+-XO/HF 

-• EF 

-• FF 

Figure 2.5: Functional Block Diagram. 
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The signal levels of the chip are fully TTL compatible. The chip has also empty, half-

full, and full flags to signal buffer occupancy, and has provisions for depth and/or 

width expansion [7]. 

The trade-off of using FIFO memory is the cost. It is generally much more 

expensive than ordinary SRAMs. The price for the same capacity can be five to eight times 

higher than that of SRAM's. When the memory size is small as in our case, this higher 

cost is compensated by the external control circuit required for addressing SRAM's. 

Before using the FIFO, the RESET (/?s) pin must be taken LOW in order to 

initialize the read and write pointers and the flags. Data can be read from the FIFO from 

the Q1-Q9 pins by taking the read strobe (/?) pin LOW and the FIFO occupancy is non 

zero. The read access time is tA after the falling edge of R (see Figure 2.6). If the FIFO is 

empty, any attempted reads are prohibited and the output pins will stay inactive (high 

impedance). 

Data can be written into the FIFO by taking the write strobe (w) LOW and the 

FIFO is not full. The write cycle starts at the falling edge of W and data on D1-D9 pins 

will be latched on the following rising edge of W (see Figure 2.6). If the FIFO is full, any 

attempted writes are prohibited and the data will be lost. 

In the current design, four MT52C9020 chips are cascaded to have a total size of 8 

Kbytes. For the ATM cell size of 53 bytes, this FIFO size can store up to 154 packets. 
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DATA OUT (1) 
VALID 

DATA OUT (2) 
VALID 

D1.D9 / DATA IN (1) \ / DATA IN (2) 
\ VALID / \ VALID 

• UNDEFINED 

Figure 2.6: Asynchronous Read And Write. 
tA=Access time 
tRC=Read cycle time 
t^^Write cycle time 

2.4 Data And Memory Control 

The data and memory control section is the heart of the emulator. As mentioned 

earlier, its mission is to manage the data flow, introduce packet loss and delay, and control 

the read/write strobes of the memory buffer. The block diagram of this section is shown in 

Figure 2.7. It consists of serial to parallel conversion, parallel to serial conversion, packet 
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activity detection, packets in memory counter, memory read circuit, and other control 

logic. These components are discussed below. 

2.4.1 Serial To Parallel Converter 

On the top left side of the block diagram is the serial to parallel converter. The 

input data is serial to parallel convened for two reasons. First, to transmit high speed data, 

parallel data can reduce the speed requirement for the memory buffer. For a bit rate of 

lOOMb/s, the read and write cycles must be within 10 nsec if data is stored and forwarded 

serially (see Figure 2.6). Therefore, the access time must be in the range of 5 to 7 nsec. 

However, the fastest FIFO available has an access time of 25 nsec, which gives a transfer 

rate of at most 40Mb/s. If we use serial to parallel conversion, the transfer rate can be 

multiplied by the degree of parallelism. In the current design, the parallel bus is 8 bits. 

With 25 nsec access time, we can have up to 320 Mb/s transfer rate. 

Another reason to use serial to parallel conversion is to reduce the cost of the 

emulator. The FIFO chip we are using has a 9-bit input/output data bus. If serial to parallel 

conversion is not used, only one of the nine bits was to be used, which wastes almost 90% 

of the FIFO's capacity. On the other hand, with serial to parallel conversion used, eight of 

the nine bits are used. This dramatically reduces the number of FIFO chips required 

resulting in a more compact design and at a lower cost. 

Figure 2.8 shows the block diagram for the serial to parallel converter, which 

consists of a shift register, a D-Flip Flop, and a divide by 8 counter. The serial input data 
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and the inverse of the input clock (CLK) are applied to the shift register. The parallel 

output of the shift register is connected to the input of the D-latch. The shift register shifts 

on the rising edge of its clock signal. Therefore the input data will be shifted on the middle 

of each data bit. Every eight bits a pulse latches the data to the output of the D-latch. The 

data remain in the latch until the next set of data is latched. This serial to parallel 

conversion provides enough time for the memory control circuit to store the data into 

the FIFO (see Figure 2.9f). The signal that shifts the data to the output of the D-latch 

comes from the divide by eight counter. 

Serial Data Input 

SHIFT REGISTER 
Inverse of input clock (CLK) 

DIVIDE BY 8 

COUNTER 
Write enable 

D-LATCH 

To the FIFO 
Data Input 

Figure 2.8: Serial To Parallel Converter Block Diagram. 
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Figure 2.9: Timing Signals For The Serial To Parallel Converter. 
(a) Input clock signal 
(b) Inverse clock signal 
(c) Typical data 
(d) Clock pulse to the D-latch 
(e) Output of D-latch 
(f) Write control signal 

The serial to parallel conversion is enabled by the control logic at the end of every 

frame header, and is disabled again one byte after the end of the frame. This process 

allows conversion for only the packets not the frame header. Because of the conversion, 

there is one byte delay in storing the data to the memory buffer. Hence, the first byte of 

the packet is sent to the FIFO during the second byte of the packet (see Figure 2.10a). To 

prevent invalid data stored during the first byte of the first packet in each frame, a sccond 

signal that is also generated by the control logic is used to prohibit data loading to the 

buffer at the first write cycle of the first packet. Similarly, the 53r^ byte of the last packet 
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in each frame is written into the FIFO one byte after the end of the frame (see Figure 

2.10b). 
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' V Byte 53 is written 
into the FIFO 

Frame header Packet earring real data 

Figure 2.10: Write Control Signal. 
(a) Moving from the frame header to the first packet in the frame 
(b) Moving from the last packet in the frame to the frame header of the next frame. 
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2.4.2 Parallel To Serial Converter 

When data is read back from the FIFO, we need to perform parallel to serial 

conversion to get the serial data out. In this process, data in the FIFO is first read out byte 

by byte. The block diagram of the parallel to serial converter is shown in Figure 2.11 and 

is consisted of a D-latch, a shift register, a flip-flop, a decoder, and a divide by eight 

counter. The decoder is connected to the output of the divide by eight counter and it 

generates the required control pulses for the operation of the converter. After parallel data 

appears on the FIFO's output bus, a pulse latches diem on the D-latch. The output of the 

D-latch is connected to the parallel input of the shift register. The mode selection input of 

the shift register is connected to the output of the D flip-flop. Depending on the level of 

the mode selected, the shift register operates either in the parallel load or the shift mode. If 

the mode selection input is HIGH, the shift register operates in the parallel load mode and if 

the mode input is LOW, it operates in the shift mode. To load the parallel data to the shift 

register, a pulse generated by the decoder sets the flip-flop output HIGH, which forces the 

shift register to load the parallel data appeared on the D-latch output. After one bit clock, 

the flip-flop is reset and sends a LOW signal to the shift register, which changes the shift 

register to the shift mode (see Figure 2.12e). Following this are seven clock cycles which 

shift seven internal bits of the register to the right. In the next cycle, the next byte on the 

FIFO's output bus is loaded to the shift register and the same sequence repeats. 


