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ABSTRACT 

Problem solving has been a core theme in education for several decades. Educators and 

policy makers agree on the importance of the role of problem solving skills for school and real 

life success. A primary purpose of this study was to investigate the influence of cognitive 

abilities on mathematical problem solving performance of students. The author investigated this 

relationship by separating performance in open-ended and closed situations. The second purpose 

of this study was to explore how these relationships were different or similar in boys and girls. 

Multiple regression analyses were performed to predict students’ problem solving 

performance. Intelligence, creativity, memory, knowledge, reading ability, verbal ability, spatial 

ability, and quantitative ability constituted independent variables whereas mathematical problem 

solving performance scores in closed and open-ended problems were the dependent variables. 

The author found that mathematical problem solving performance (MPSP) in closed 

problems was correlated significantly with cognitive variables including mathematical 

knowledge, quantitative ability, verbal ability, general intelligence, general creativity, and spatial 

ability. However, MPSP in closed problems was not correlated at a significant level with 

working memory and reading ability. Similarly MPSP in open-ended problems was correlated 

significantly with several cognitive abilities including verbal ability, general creativity, spatial 

ability, mathematical knowledge and quantitative ability. However, MPSP in open-ended 

problems was not correlated significantly with working memory, reading ability, and general 

intelligence. 

No significant difference was found between girls and boys in cognitive abilities 

including general intelligence, general creativity, working memory, mathematical knowledge, 

reading ability, mathematical problem solving performance, verbal ability, quantitative ability, 
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and spatial ability. After controlling for the influence of gender, the cognitive abilities explained 

51.3% (ITBS) and 53.3% (CTBS) of the variance in MPSP in closed problems as a whole. 

Mathematical knowledge and general intelligence were found to be the only variables that 

contributed significant variance to MPSP in closed problems. Similarly, after controlling for the 

influence of gender, the cognitive abilities explained 51.3% (ITBS) and 46.3% (CTBS) of the 

variance in mathematical problem solving performance in open-ended problems. General 

creativity and verbal ability were found to be the only variables that contributed significant 

variance to MPSP in open problems. 

The author concluded that closed and open-ended problems require different cognitive 

abilities for reaching correct solutions. In addition, when combining all of these findings the 

author proposed that the relationship between cognitive abilities and problem solving 

performance may vary depending on the structure (type) and content of a problem. The author 

suggested that the content of problems that are used in instruments should be analyzed carefully 

before using them as a measure of problem solving performance. 
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CHAPTER I:  INTRODUCTION 

Problem Solving 

 No one would deny that humans are social beings who encounter a variety of problems in 

everyday life. We may not be able to solve every kind of problem, but, as human beings, we 

have the capacity to devise strategies and procedures to approach problems (Willats, 1990). 

Butterworth and Hopkins (1988) stated that this capacity appears to be innate. For example, even 

young babies can communicate their desires to bring caregivers closer to meet their comfort and 

food needs (Ellis and Siegler, 1994).   

 In the field of education, the 1930s and 1940s were important eras for educators who 

believed that school curricula should be redesigned around “real-life” situations (Hiebert et al., 

1996). One major concern stated by many educators in the U.S. was that the knowledge acquired 

in the classroom did not transfer well to the professions, such as medicine, engineering, social 

work, or education (Boud & Feletti, 1991). Dewey’s (1933) ideas about reflective thinking and 

problem solving provided educators with strong motivation and pathways to redesign school 

curricula. Dewey believed that reflective thinking was the key to moving beyond the distinction 

between knowing and doing, thereby providing “a new way of viewing human behavior” 

(Hiebert et al., 1996). Stemming from Dewey’s distinction between knowing and doing, 

educators produced models for increasing the usefulness of students' knowledge, such as a model 

of problem-based learning that was designed as “a way of conceiving of the curriculum which is 

centered on key problems in professional practice” (Boud and Feletti, 1991, p. 14).   

Definitions of Problem Solving 

 Problem solving is a process “to search consciously for some action appropriate to attain 

a clearly conceived, but not immediately attainable aim” (Polya, 1962, p.117). Kayan (2007) 

suggested that what may be a problem for one individual may not be a problem for another. For 
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example, dressing for a ceremony might be a big problem for a speaker to solve but not for 

another person attending the same ceremony. 

 The term “problem solving” has different meanings depending upon on the domain of the 

definer. To a psychologist, problem solving means a state of desire for reaching a 

certain goal from a present condition that either is not directly moving toward the goal, is far 

from it, or needs more complex logic for finding a missing description of conditions or steps 

toward the goal (Robertson, 2001). To a mathematician, problem solving means a mathematical 

situation for which a solution is needed, and for which a direct route to a solution is not known 

(Polya, 1962). Schoenfeld (1992) adapted Polya’s definition to the field of mathematics 

education, and defined problem solving as a process wherein students encounter a question for 

which they have no immediately apparent resolution, nor an algorithm that they can directly 

apply to get an answer. All of these definitions have a commonality when defining problem 

solving: an act toward making an unknown situation known. 

 Schoenfeld (1992) stated that any research in problem solving should include the 

researcher’s operational definition of the term problem solving. My operational definition for 

problem solving for this study is a cognitive act or process directed toward making the unknown 

situation known in the domain of mathematics. 

Problem Solving Concept in the Field of Mathematics Education 

 In mathematics education, problem solving has been a core theme for several decades. In 

the 1940s, problem solving as a theme started to appear in official commission reports on 

mathematics education. For example, in 1940 the Joint Committee of the Mathematical 

Association of America and the National Council of Teachers of Mathematics (NCTM) 

recommended that “the study (of mathematics) should emphasize problem solving and modes of 
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thinking, and should not become a mere sequence of formal and relatively abstract drills” (Joint 

Commission of the MAA and the NCTM, 1940, p.58). Although the commission’s 

recommendation was determined, very few researchers and educators in the field heard it. 

 Research on mathematical problem solving has been drawn on, and has evolved from, 

Polya’s (1945) book How to Solve It. In his book, Polya provided the outline of a problem 

solving framework, a hint of the details necessary to implement it, and a description of steps for 

solving mathematics problems. Polya’s problem solving framework included a four-step 

description of the problem solving process: (a) understanding the problem, (b) devising a plan, 

(c) carrying out the plan, and (d) looking back. At the first step (understanding the problem) of 

the process, the problem solver identifies the known and unknown variables. At the second step 

(devising a plan), the problem solver chooses strategies for responding to what is asked for in the 

problem, and the solver makes connections between the known and the unknown to develop a 

plan for the solution (Polya, 1973). At the third step (carrying out the plan), the problem solver 

implements the plan devised in step 2, and performs any necessary actions or computations. This 

step is not considered problem solving, but rather the use of mathematics to generate the final 

result (McAllister 1996). At the last step (looking back), the problem solver checks his plan and 

solution, and acts upon it to produce the results. 

 Polya’s ideas about problem solving influenced the field of mathematics education for 

decades. The call of the National Council of Teachers of Mathematics (NCTM) in 1980 for 

problem solving to become “the focus of school mathematics” was widely echoed in the field of 

mathematics education (NCTM, 1980, p.1). Later, the members of the council endorsed this 

recommendation with the statement that “problem solving should underlie all aspects of 

mathematics teaching to give students experience of the power of mathematics in the world 



16 
 

 

around them” (NCTM, 1989). Most recently, through the Principles and Standards for School 

Mathematics, the members of the council recommended that “by the end of grade 12 students 

should be able to (a) build new mathematical knowledge through problem solving, (b) solve 

problems that arise in mathematics and in other contexts, (c) apply and adapt a variety of 

appropriate strategies to solve problems, and (d) monitor and reflect on the process of 

mathematical problem solving” (NCTM, 2000, p.3). One of the reasons why the council 

members had emphasized problem solving in its reports was that problem solving “encompasses 

skills and functions that are an important part of everyday life and furthermore it can help people 

to adapt to changes and unexpected problems in their careers and other aspects of their lives” 

(NCTM, 2000, p.4). The NCTM pushed successfully for problem solving to become the 

centerpiece of the mathematics curriculum.  

 In addition to NCTM’s emphasiss on problem solving, many other researchers also 

highlighted the importance of problem solving in mathematics education. For example, 

according to Cockcroft (1982), problem-solving ability lies “at the heart of mathematics” (p.73) 

because it is the means by which mathematics can be applied to a variety of unfamiliar 

situations. Carpenter (1989) expressed the view that teaching problem solving is important to 

encourage students to refine and build onto their own processes over a period of time as they 

discard some ideas and become aware of further possibilities. Resnick (1987) asserted that a 

problem-solving approach contributes to the practical use of mathematics by providing an 

opportunity for people to develop the facility to be adept when, for instance, technology breaks 

down.  

In summary, both governmental councils and mathematics educators have “elevated a 

problem solving approach into a position of prominence” (Otten, 2010, p. 14) by locating it at 
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the center of mathematics education. As Otten (2010) pointed out, researchers believe that this 

emphasis on problem solving would not be only self-contained to the domain of mathematics 

education but also would transfer into society in positive ways by promoting a knowledgeable 

citizenry and by creating pathways of advancement for students (Hiebert et al., 1996; 

Schoenfeld, 2007). 

Problem Solving Concepts in the Field of Psychology 

 The nature of problem solving processes and methods has been studied by psychologists 

for over one hundred years. In the early 1900s, Thorndike developed a theory of learning and 

created the ‘law of effect’ based on his studies about animals. According to the law of effect, 

behaviors are likely to be repeated when they are followed by positive consequences. In his 

puzzle box experiment, Thorndike put a cat inside a box and observed how a cat used various 

methods to try to escape. However, the cat could not get out of the box until it hit a lever. After 

experiencing difficulty, the cats eventually “learned” that the lever opened the box and allowed 

faster escapes with successive trial, until the rate of escape leveled off. Thorndike (1911) 

asserted that success in each trial was linked to the success of prior trials. Thorndike greatly 

influenced the behaviorist view of problem solving. Behavioral psychologists believed that 

successful problem solving was a process of trial and error.  

 Contrary to the behavioral psychologists’ approaches to understanding the elements of 

problem solving processes, gestalt psychologists sought to understand how these elements were 

organized (Carlson & Heth, 2010). Gestalt psychologists claimed that when thinking about a 

solution for a problem, problem solvers constructed internal representations of the problem, 

leading usually to a flash of “insight” that helped them to reach a solution. In his book, The 

Mentality of Apes, Köhler (1917) described his of studies about apes and he found that the apes 
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demonstrated “insight” during problem solving processes. In one of his studies, Köhler observed 

that chimpanzees figured out to use some tools (e.g., stacked wooden crates as makeshift ladders 

or long sticks) to reach bananas. Köhler concluded that the chimpanzees had experienced an 

insight to solve their food problem instead of a trial and error method. The role of insight in the 

problem solving process was of immense interest to gestalt psychologist (Steele, 2003).  

 Gestalt theories of perception were criticized for being descriptive rather than 

explanatory in nature by cognitive psychologists and computational neuroscientists. In his 

theory, Piaget (1923) proposed a theory of developmental stages, stating that individuals 

demonstrated distinct common patterns of learning and cognition in each stage of their 

development. Following Piaget’s theory of cognitive development, the cognitive aspects of 

problem solving have been considered as essential to the notion of intelligence (Resnick & 

Glaser, 1976; Sternberg, 1982). Later researchers continued to focus on problems that required 

no background knowledge, but placed greater emphasis on memory and on use of cognitive 

strategies through the study of multi-step problems (Newell & Simon, 1972). In their 

book, Human Problem Solving, Newell and Simon (1972) described their problem space 

theory of problem solving. In this theory, individuals are believed to solve problems by searching 

in a problem space that is comprised of states including (a) initial state, (b) goal state, and (c) 

other possible states in between. Newell and Simon claimed that individuals solve problems by 

moving from one state to another state. According to this theory, cognitive short-cuts, known 

as heuristics helps them to reach successful solutions.  

Types of Problems 

 Early classifications of problem types appeared in the studies of Minsky (1961) and 

Reitman (1965). These researchers distinguished between two main types of problems: well 



19 
 

 

defined and ill defined. Minsky (1961) asserted that a well-defined problem had an unambiguous 

solution that could be presented in a systematic manner. Well defined problems have a definite 

initial state and the goals and operators are known (Dunbar, 1998). Classic examples of well-

defined problems include solving an equation (Dunbar) or calculating the perimeter of a circle. 

On the other hand, ill-defined problems evoke a highly variable set of responses concerning 

referents of attributes, permissible operations, and their consequences (Reitman, 1965). Unlike 

well-defined problems, ill-defined problems are ones in which the solver does not know the 

operators, the goal, or even the current state (Dunbar). Examples of an ill-defined problem might 

be finding a cure for cancer (Dunbar) or finding a solution for global warming. 

 Another problem classification was suggested by Getzels and Csikszentmihalyi (1976), 

who proposed that the structure, method, and solution of a problem could be used for 

classification purposes. The key finding from Getzels and Csikszentmihalyi’s research was that 

problem solving could be categorized into three types, based on the interaction between the 

presenter and solver of a problem (Alhusaini, 2012). The knowledge of both persons about (a) 

the problem, (b) the method, and (c) the solution made the problem types range from open-ended 

to closed. Building on Getzels and Csikszentmihalyi’s work, Maker and Schiever (1991) 

proposed the “DISCOVER Problem Continuum” in which six problem types were displayed, 

along with how much information was known and how much structure was provided for both the 

problem presenter and the problem solver in each problem type (Table 1.1).  

The Problem Continuum was an expanded version of the model developed by Getzels 

and Csikszentmihalyi (1976, 1967). Maker and colleagues added Problem Types III and IV to 

provide a more fluid transition between the Types, based on observations during research 

(Maker, 1978; 1981; 1993; Whitmore & Maker, 1985). In this context, problems were classified 
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as either closed or open based on the number of alternatives available to the problem solver. For 

example, a problem was defined as closed if it could be solved in only one way and open if it 

could be solved in an infinite number of ways.  

Table 1.1  

Problem Continuum 

Type   
Problem 

  
Method 

  
Solution 

Presenter Solver Presenter Solver Presenter Solver 

C
lo

se
d
 I 

  

Specified Known 

  

Known Known 

  

Known Unknown 

II Specified Known Known Unknown Known Unknown 

III Specified Known Range Unknown Known Unknown 

O
p
en

-E
n
d
ed

 

IV Specified Known Range Unknown Range Unknown 

V Specified Known Unknown Unknown Unknown Unknown 

VI Unknown Unknown Unknown Unknown Unknown Unknown 

Note: Adapted from Maker, J., & Schiever, W. (2010). Curriculum development and teaching 

strategies for gifted learners (3rd Ed.). Austin, TX: Pro-Ed  

Problem Type Examples 

 Type I. The problem and the method of solution are known to the problem presenter and 

the problem solver; the presenter knows the (one) correct solution. Solving math problems by a 

known algorithm or method; following a formula, in language, music, math or science; and 

performing prescribed body movements, as in dance or sports, are Type I problems. 

 Type II. In Type II problems, the problem is known by the presenter and the solver, but 

the method of solution and solution are known only to the presenter. Type II is close to Type I in 

structure, except that the problem solver does not know the method by which to arrive at a 

solution. Problems such as mathematical “story problems” requiring the solver to figure out and 



21 
 

 

apply the appropriate method to solve the problem, answering questions about factual material, 

scientific “experiments” with prescribed materials and variables, playing an instrument while 

sight-reading the music, and creating a scale drawing are Type II problems. 

 Type III. The problem is known to the presenter and the solver, but more than one 

method may be used to arrive at the correct solution, which the presenter knows. Type III 

problems require a specific solution but many methods may be used to reach this solution. 

Finding the “key” to mathematical, word, or linguistic patterns; movement sequences created to 

meet specific requirements; constructions using specified materials; and meeting given criteria 

are Type III tasks. 

 Type IV. The problem is known to the presenter and the solver, but the problem may be 

solved in more than one way and the presenter knows the range of solutions. Problems that can 

be solved inductively but that have an accepted range of answers, such as geometry problems 

that may be solved using manipulatives, creating as many equations as possible using three 

(provided) numbers and the operations of addition and subtraction, and creating music or 

movement sequences within defined parameters are examples of Type IV problems. 

 Type V. The problem is known to the presenter and the solver, but the method and 

solution are unknown to both. Type V problems are clearly defined, but methods and solutions 

are open. Questions such as, “In what ways might you share the results of your survey?” define 

Type V problems, as do constructions using specific materials and meeting pre-set goals (such as 

building a mousetrap vehicle), creating prose or poetry, making a self-sustainable terrarium or 

aquarium, writing lyrics to an existing melody, writing a melody for existing lyrics, and finding 

new ways to apply existing formulas. The problem is known to the presenter and the solver, and 
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the solver is taught the creative problem solving process to use in developing his/her solution, 

but the solution is unknown to all. 

 Type VI. The problem is unknown or undefined, and the method and solution are 

unknown to both presenter and solver. Type VI problems have the least structure; are the most 

complex; need to be defined and, possibly, redefined; and have numerous possible solutions. 

These are the problem situations in real life that can be defined in more than one way, and that 

may need redefining during the problem solving process. Type VI problem situations include 

those such as environmental pollution; student behavior; ethical behavior and standards; global 

warming; urban problems; social issues, such as violence or declining literacy; and international 

border issues. 

Significance of the Study 

 Researchers have agreed that the wide spectrum of cognitive activities presents a 

dilemma as they attempt to understand the structure of intellectual abilities (Vickers, 2003). How 

do these cognitive variables influence problem solving performance as a whole? How are boys 

and girls different or similar in this relation? My strong desire to answer these questions has been 

the driving force behind this study. Although many researchers investigated the influence of 

individual factors on problem solving performance, no prior researchers attempted to explore 

how these cognitive variables influence problem solving performance as a whole because of the 

ambiguity of the constructs and complexity of the relationships. For this reason, this study 

contributed  valuable information, including the understanding of how problem solving 

performance is influenced by cognitive variables including intelligence, creativity, knowledge, 

memory, reading ability, verbal ability, spatial ability, and quantitative ability. Also the findings 

help to extend the current research on student thought processes. The knowledge about 
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characterization of students’ thinking might provide teachers with a plan to implement problem 

solving-based teaching in classrooms.  

This study was different from prior studies because the author distinguished between 

open-ended and closed problem solving performance. No prior researchers attempted to 

investigate how the influences of these cognitive variables on mathematical problem solving 

performance differ in open-ended and closed situations. This approach provides educators and 

researchers with a comprehensive understanding of the problem solving process. 

Recent discourses related to problem solving in mathematics education have been 

contextualized through sociocultural perspectives. However, problem solving has been defined 

as a higher-order cognitive process that requires control of many fundamental skills (Goldstein 

and Levin, 1987). This fact implies that an exploration of problem solving process from a 

cognitive perspective is needed. The author’s approach to investigate the problem solving 

process through the information processing framework provided researchers in mathematics 

education with a different ‘lens’ to understand intellectual abilities. From this perspective, I 

believe this study had significant findings for the field of mathematics education. 

The findings can be applied to the development of teaching methods and materials to be 

used in future mathematical problem solving classes to facilitate the development of students’ 

abilities and skills for solving open-ended and closed problems. Furthermore, this research was 

important for curriculum design in that the results supported the creation of curricula that could 

be more effective and supportive of students.  

Statement of Purpose 

 A primary purpose of this study was to investigate the influences of cognitive abilities 

including intelligence, creativity, memory, knowledge, reading ability, verbal ability, spatial 

ability, and quantitative ability on the mathematical problem solving performance of students. 
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The author investigated this relationship by separating performance in open-ended and closed 

situations. The second purpose of this study was to explore how these relationships were 

different or similar in boys and girls.  

Research Questions 

 The following research questions guided this study: 

1. To what extent are cognitive variables (intelligence, creativity, memory, knowledge, 

reading ability, verbal ability, spatial ability, and quantitative ability) and mathematical 

problem solving performance in open-ended and closed problems related to each other? 

2. To what extent are boys and girls similar or different in mathematical problem solving 

performance in open-ended and closed problems? 

3. To what extent do cognitive variables (intelligence, creativity, memory, knowledge, 

reading ability, verbal ability, spatial ability, and quantitative ability) predict 

mathematical problem solving performance in closed problems? 

4. What cognitive variables are the best predictors of the mathematical problem solving 

performance in closed problems? 

5. To what extent do cognitive variables (intelligence, creativity, memory, knowledge, 

reading ability, verbal ability, spatial ability, and quantitative ability) predict 

mathematical problem solving performance in open-ended problems? 

6. What cognitive variables are the best predictors of mathematical problem solving 

performance in open-ended problems? 

Definitions of Terms 

The following terms have been used throughout the study, and defined below for clarity 

in their application to this study. 
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Problem is a situation in which something is to be found or shown and the way to find or 

show it is not immediately obvious (Grouws, 1996). 

Problem solving is engaging in a task for which the solution method is not known in 

advance (NCTM, 2000). 

Insight is a sudden state of mind that constitutes a quick transition from a state of ‘not 

knowing’ to a state of ‘knowing’ (Pols, 2002). 

Heuristics are rules that determine which moves are to be made in the problem space, as 

opposed to a random walk (Davidson and Sternberg, 2003). 
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CHAPTER II:  REVIEW OF THE LITERATURE 

 A primary purpose of this study was to investigate the influences of cognitive abilities 

such as intelligence, creativity, memory, knowledge, reading ability, verbal ability, spatial 

ability, and quantitative ability on the mathematical problem solving performance (MPSP) of 

students. The author modeled this relationship by separating performance in open-ended and 

closed problems. Furthermore, I investigated how these relationships were different or similar in 

boys and girls. This chapter contains a review of previous studies related to problem solving and 

a brief explanation about the present study’s research framework. 

Method 

The review of literature was conducted in two phases. In the first phase studies that were 

conducted to explore the relationships between cognitive abilities and MPSP were identified. In 

the second phase studies that were conducted to explore the gender differences in MPSP were 

identified. 

Phase I 

The search for studies that were designed to explore the relationships between cognitive 

abilities and MPSP was conducted through reviewing articles, dissertations, and theses. The all-

purpose databases Worldcat Local and Google Scholar were used to search for the key words 

“mathematical problem solving” and “cognitive ability” to find related articles. Other studies 

were found and collected from bibliographies and reference lists in the studies themselves. The 

Proquest Dissertations and Theses database and Google Scholar were used to search for the key 

words “mathematical problem solving” and “cognitive ability” to find related dissertations and 

theses. The search yielded 37 articles and 425 dissertations and theses. Each study was screened 

based on the following four criteria:  

1. The study included mathematical problems. 
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2. The study included information related to the relationship between cognitive abilities 

and mathematical problem solving performance. 

3. The study included numerical outcomes. 

Among 37 articles and 425 dissertations and theses, 22 empirical studies were filtered 

according to the above criteria. 

Phase II  

The search for studies that were designed to explore gender differences in MPSP was 

conducted through reviewing articles, dissertations, and theses similar to Phase I. The all-

purpose databases Worldcat Local and Google Scholar were used to search for the key words 

“mathematical problem solving” and “gender differences” to find related articles. Other studies 

were found and collected from bibliographies and reference lists in the studies themselves. The 

Proquest Dissertations and Theses database and Google Scholar were used to search for the key 

words “mathematical problem solving”, and “gender differences” to find related dissertations 

and theses. The search yielded 18 articles and 35 dissertations and theses. Each study was 

screened based on the following four criteria:  

1. The study included mathematical problems. 

2. The study included information related to the gender differences in mathematical 

problem solving performance. 

3. The study included numerical outcomes. 

Among 18 articles and 35 dissertations and theses, 10 empirical studies were filtered 

according to the above criteria. 

Table 2.1 has information about the studies that were conducted to explore the 

relationships between cognitive abilities and MPSP. Table 2.2 has information about the studies 
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that were conducted to explore the gender differences in MPSP. In this chapter, a brief 

explanation about the present study’s theoretical framework was presented first and then the 

author included his evaluation and critique of the studies’ designs, methods, analysis, findings, 

and participants while discussing the results of the studies.  

Theoretical Framework 

Most contemporary researchers in the field of education have been influenced by theories 

that have a socio-cultural emphasis. Similarly, in recent studies related to problem solving in 

mathematics education researchers mostly draw on the work of Wittgenstein and Vygotsky 

(Ernest, 1994).  As Lerman (2000) pointed out, mathematics has been viewed as a social product 

in these studies. For example, Ernest (1994), as a social constructivist, sees problem solving as 

the heart of mathematics learning that juxtaposes mathematical discovery and student 

empowerment (Wilding-Martin, 2009). For Ernest and many other social constructivists, 

problem solving is an enculturation of students into mathematical forms of life, while raising 

social awareness and encouraging students to challenge social justice (Wilding-Martin, 2009). 

However, the author’s goal with this study was to explore the cognitive structure of 

mathematical problem solving processes rather than understating its development in a 

sociocultural context. In addition, the problem solving concept was referred to by scholars 

(Resnick & Glaser, 1976; Sternberg, 1982) as a high order thinking process that was composed 

of major intellectual abilities and cognitive processes. Therefore, approaching the problem 

through a cognitive lens would be more appropriate to answer the research questions of the 

study.    

The theoretical framework of this study was rooted in Newell and Simon’s (1972) 

information-processing (IP) theory of learning. In their theory, Newell and Simon highlighted the 

similarities between artificial intelligence and human problem solving and they emphasized the 
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role of factors such as working memory capacity and cognitive retrieval of relevant information. 

They claimed that ability to solve problems successfully depended on a number of factors related 

to the human information-processing (IP) system. This higher order learning theory has been 

used to elaborate the cognitive processes of problem solving.  

Analysis of the Studies 

The studies were analyzed in two sections: (a) cognitive abilities and mathematical 

problem solving and (b) gender and mathematical problem solving. 

Cognitive Abilities and Mathematical Problem Solving 

 Twenty two studies (Awofala et al., 2011; Bahar and Maker, 2011; Byrnes and Takahira, 

1993;  Byrnes and Takahira, 1994; Burns et al., 2006; Garderen, 2006; Hegarty and 

Kozhevnikov, 1999; Heinze, 2005; Huggins, 1988; Hwang et al., 2007; Iguchi, 2008;  James and 

Adewale, 2012; Jordan, 2003;  Lee and Chen, 2009; Serafino and Cicchelli, 2003; Sriraman, 

2003; Swanson, 2004; Vickers et al., 2004; Vilenius-Tuohimaa et al., 2008; Walker, 2012; Xin 

and Zhang, 2009) included findings on the relationship between cognitive abilities and 

mathematical problem solving performance. The summary of the analysis of the studies is 

presented in Table 2.1. 

Findings. Findings within the topic of cognitive abilities and mathematical problem solving 

performance could be categorized under a cognitive ability that was mainly investigated in the 

studies: (a) general intelligence, (b) general creativity, (c) mathematical knowledge, (d) working 

memory, (e) reading ability, and (f) other cognitive abilities. 
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Table 2.1 

Studies Related to the Influence of Cognitive Abilities on Mathematical Problem Solving 

Study  Purpose 
Mathematical Problem 

Solving Correlate 

Participants' 

Age/Grade Span 

Number of 

Participants 

     

Huggins (1988)  To investigate the influence of 

specific thinking skills training on 

mathematics problem solving 

performance 

Intelligence Grade 5 132 

Hegarty and Kozhevnikov 

(1999)  

To identify how spatial and 

visual imagery abilities affect 

problem solving in mathematics 

Intelligence, verbal 

reasoning, non-verbal 

reasoning, spatial ability 

Grade 6 33 

Vickers et al., (2004)  To investigate individual 

differences in performance with 

several instances of an even more 

difficult, visually presented 

problem solving task and to 

examine their relationship with a 

measure of intelligence 

Intelligence, spatial 

reasoning, verbal 

reasoning 

17 to 53 years old 69 

Burns et al., (2006) To understand better the 

previously reported relationship 

between performance on difficult 

optimization problems and a 

measure of intelligence 

Intelligence, spatial 

reasoning, verbal 

reasoning 

Mean age = 25.3, 

SD = 7.6 years 

101 
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Table 2.1 (Continued)  

Studies Related to the Influence of Cognitive Abilities on Mathematical Problem Solving 

Study Purpose 
Mathematical Problem 

Solving Correlate 

Participants' 

Age/Grade Span 

Number of 

Participants 

     

Xin and Zhang (2009)  To explore the associations 

between students perceived 

cognitive holding power, fluid 

intelligence, mathematical 

achievement, and their realistic 

problem solving 

Intelligence, 

mathematical 

achievement 

Grades 4 to 6 119 

Heinze (2005)  To investigate problem solving 

strategies and processes of 

thinking of mathematically gifted 

elementary students 

Intelligence 6 to 10 years old ? 

Sriraman (2003)  To investigate the differences in 

mathematical problem solving 

performance of gifted and non-

gifted students 

Intelligence Grade 9 9 

Bahar and Maker (2011)  To investigate the relationship 

between students’ creative 

performance and achievement in 

the mathematical domain through 

problem solving 

Creativity  Grades 2 to 4 78 
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Table 2.1 (Continued)  

Studies Related to the Influence of Cognitive Abilities on Mathematical Problem Solving 

Study  Purpose 
Mathematical Problem 

Solving Correlate 

Participants' 

Age/Grade Span 

Number of 

Participants 

     

Hwang et al., (2007)  To explore student multiple 

representation skills and creativity 

in solving mathematical 

problems 

Creative ability / thinking Grade 6 25 

Byrnes and Takahira (1993)  To investigate whether prior 

knowledge and cognitive 

processes  affect problem solving 

performance while observing 

gender differences 

Mathematical knowledge, 

computation skill 

Grades 9 to 12 40 

Byrnes and Takahira (1994)  To investigate whether prior 

knowledge and cognitive 

processes  affect problem solving 

performance 

Mathematical knowledge, 

computation skill 

Grades 9 to 12 40 

Serafino and Cicchelli 

(2003)  

To test the effects of prior 

knowledge on student 

mathematical problem solving and 

transfer to an analogous task 

Mathematical knowledge Grade 5 50 

Lee and Chen (2009) To investigate the effects of type 

of question prompt and level of 

prior knowledge on non-routine 

mathematical problem solving 

Knowledge Grade 9 78 
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Table 2.1 (Continued)  

Studies Related to the Influence of Cognitive Abilities on Mathematical Problem Solving 

Study  Purpose 
Mathematical Problem 

Solving Correlate 

Participants' 

Age/Grade Span 

Number of 

Participants 

     

Iguchi (2008)  To examine the relationship 

between mathematics achievement 

through problem solving and 

working memory and whether this 

relationship changes across levels 

of math education 

Working memory 6 to 16 years old 136 

Swanson (2004)  To assess relationship between the 

components of working memory 

and mathematical problem solving 

performance 

Working memory, 

reading ability, numerical 

skills, and intelligence 

Grades 1 to 3 353 

Walker (2012)  To examine the relationship 

between oral reading fluency 

(ORF) scores and mathematics 

problem solving scores 

Reading ability Grades 3 to 5 121 

Jordan (2003) To examine mathematical 

competencies in students with 

specific mathematics difficulties, 

and to compare them with students 

with comorbid mathematics and 

reading difficulties 

Reading ability 7 to 9 years old 180 
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Table 2.1 (Continued)  

Studies Related to the Influence of Cognitive Abilities on Mathematical Problem Solving 

Study  Purpose 
Mathematical Problem 

Solving Correlate 

Participants' 

Age/Grade Span 

Number of 

Participants 

     

Vilenius-Tuohimaa et al. 

(2008)  

To investigate the interplay 

between mathematical word 

problem skills and reading 

comprehension 

Reading ability Grade 4 225 

Garderen (2006) To investigate students’ use of 

visual imagery and its relationship 

to spatial visualization ability 

while solving mathematical word 

problems 

Spatial Ability Grade 6 66 

Awofala et al. (2011)  To investigate the effects of verbal 

ability and cognitive style as 

moderator variables on 

mathematical word problem 

achievement 

Verbal abilities Grade11 450 

James and Adewale (2012)  To explore the relationship 

between the achievement of 

students in mathematical problem 

solving and intellectual abilities  

Verbal abilities, 

intelligence, numerical 

abilities 

Grades 9 to 12 206 

 

 



35 
 

 

 General intelligence. In the everyday world, the ability to solve practical problems has 

been regarded generally as an expression of intelligence (Vickers et al., 2004). Similarly, in the 

field of psychology, the cognitive aspects of problem solving have long been considered as 

essential to any well-conceived notion of intelligence (Resnick & Glaser, 1976; Sternberg, 

1982). In this section, seven studies (Burns et al., 2006; Huggins, 1988; Hegarty and 

Kozhevnikov, 1999; Heinze, 2005; Sriraman, 2003; Vickers et al., 2004; Xin and Zhang, 2009) 

related to the relationship between general intelligence and mathematical problem solving were 

analyzed and a summary of the studies has been shown in Table 2.1. 

 Five of the studies (Burns et al., 2006; Huggins, 1988; Hegarty and Kozhevnikov, 1999; 

Vickers et al., 2004; Xin and Zhang, 2009) were correlational and two (Heinze, 2005; Sriraman, 

2003) were qualitative. Researchers in all five correlational studies used several instruments but 

only two of them (Huggins, 1988; Hegarty and Kozhevnikov, 2009) documented reliability and 

validity measures for all the instruments used. Researchers in all of the correlational studies 

provided information related to sex, age, and grade level of the participants. However, none of 

the researchers provided a thorough description of participants including demographic 

background and socio-economic status. Statistical information was reported by all researchers. In 

addition all researchers interpreted these statistical findings and effect sizes, as suggested by 

Thompson et al. (2005). 

 Both researchers (Heinze, 2005; Sriraman, 2003) observed students’ problem solving 

skills to conduct their qualitative studies. They documented information related to participants’ 

age and grade level. However, Sriraman (2003) was the only researcher who provided a thorough 

description of participants including sample size, demographic background, and socio-economic 

status. In addition, Sriraman (2003) was the only researcher who used one or more procedures to 
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triangulate the data from his study. He had triangulation of data sources, namely data from 

students’ journal writing, the researcher’s journal writing, and the interview protocol. In both of 

the studies, the authors provided descriptions of the data they collected, providing explanations 

of participants’ narratives and interpretation of results with excerpts from the interviews. 

 Findings within the topic of general intelligence could be divided in three main areas: (a) 

influence of intelligence on accuracy of solutions, (b) influence of intelligence on understanding 

problem complexity, and (c) influence of intelligence on devising problem solving strategies. 

 Accuracy. The relationship between problem solving accuracy and performance on a 

measure of intelligence was investigated by researchers (Xin & Zhang, 2009; Vickers et al., 

2004; Burns et al., 2006). Regardless of strategies and methods used to solve a problem, when 

final answers were considered as the only indicator of mathematical problem solving 

performance, scores on measures of intelligence were found to be correlated with scores on 

measures of mathematical problem solving at a significant level. In addition, general intelligence 

was found to be a significant predictor of mathematical problem solving performance (Xin & 

Zhang, 2009; Vickers et al., 2004; Burns et al., 2006).    

 Although intelligence was found to be an important factor to reach an accurate answer 

when solving a problem, no information was provided related to the function of intelligence 

when solving open-ended problems, which might have numerous possible accurate solutions. 

When considering that many real life problems have an open-ended structure, the association 

between intelligence and solving open-ended problem solving performance should be 

investigated so that the influence of intelligence on problem solving processes can be 

understood.  
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Understanding complexity. Mathematically gifted students were found to be more 

successful at understanding the complexity of problems than were non-gifted students (Sriraman, 

2003). In addition, non-gifted students displayed absence of some problem solving and 

generalization skills found in gifted students. Most commonly lacking were comprehension of 

the problem situation, assessment of the adequacy of the information given in the problem, 

identification of the assumptions in the problem situations, and differentiation between 

interrogative and declarative statements (Sriraman, 2003). When students were asked to solve 

complex optimization and probability problems, students’ problem solving scores and their IQ 

scores on the Raven’s test were found to be correlated at a significant level (Vickers et al., 2004). 

Also students’ IQ scores were found to be correlated significantly with understanding path 

complexity, which was another aspect of their performance when solving the problem (Burns et 

al., 2006; Vickers et al., 2004). Furthermore, people’s ability to solve complex problems was 

found to be predicted by their intelligence and it was related to the ability to reason, plan, think 

abstractly, and comprehend complex ideas (Burns et al., 2006; Sriraman, 2003; Vickers et al., 

2004).  

 Devising strategies. The influence of intelligence on devising strategies to solve 

mathematical problems was investigated by researchers (Hegarty and Kozhevnikov, 1999; 

Heinze, 2005; Huggins, 1988). When students were grouped based on their IQ scores, the effect 

of IQ scores on devising strategies to solve mathematical problems were found to be at a 

significant level (Huggins, 1988). In addition, when gifted and non-gifted students’ mathematical 

problem solving strategies and thinking processes were compared, gifted students were found to 

need less time to resolve problems and they showed more systematic and logical strategies in 

developing solutions to problems than did those were not gifted (Heinze, 2005. In addition, 
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gifted students showed a better ability to verbalize and explain their solutions, and to use their 

insight to discover the mathematical structure of the problem (Heinze, 2005). Furthermore, the 

use of schematic spatial representations and strategies was associated with success in 

mathematical problem solving and also the use of schematic spatial strategies was found to be a 

significant predictor of mathematical problem solving performance (Hegarty & Kozhevnikov, 

1999). 

 Although the methods and research designs of the studies (Burns et al., 2006; Huggins, 

1988; Hegarty and Kozhevnikov, 1999; Heinze, 2005; Sriraman, 2003; Vickers et al., 2004; Xin 

and Zhang, 2009) that were analyzed in this section varied from study to study, findings were in 

accordance: Intelligence was a significant predictor of problem solving performance.  

General creativity. Many researchers viewed creativity as a special intellectual act to 

solve problems (Bransford & Stein, 1984; Hayes, 1981; Henle, 1962; Newell, Shawn, & Simon, 

1962; Newell & Simon, 1972; Perkins, 1981; Vaughan, 1985).  Newell, et al. (1962) defined 

creativity as “a special class of problem solving activity characterized by novelty, 

unconventionality, persistence, and difficulty in problem formulation” (p.66), whereas Hayes 

(1981) defined it as “a special kind of problem solving, that is the act of solving an ill-defined 

problem” (p. 199). In this section, two studies (Bahar & Maker, 2011; Hwang et al., 2007) 

related to the relationship between general creativity and mathematical problem solving were 

analyzed and a summary of the studies has been shown in Table 2.1. 

  Both of the studies (Bahar & Maker, 2011; Hwang et al., 2007) were correlational. 

Researchers in both of the studies used several instruments and both of them documented 

reliability and validity measures for all the instruments used. In both of the studies, researchers 

provided information related to sex, age, and grade level of the participants. However, only 
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Bahar & Maker, 2011 provided a thorough description of participants including demographic 

background and socio-economic status. Statistical information was reported by both researchers. 

In addition, all researchers interpreted these statistical findings and effect sizes, as suggested by 

Thompson et al. (2005). 

 In both of the studies (Bahar & Maker, 2011; Hwang et al., 2007) researchers 

investigated the relationship between students’ creativity and achievement by observing 

participants’ mathematical problem solving performance. Significant relationships were found 

among all measures of creativity and mathematics achievement. In addition, mathematical 

creativity was found to be a significant predictor of mathematical achievement scores (Bahar & 

Maker, 2011; Hwang et al., 2007). Also the ability to elaborate, as an aspect of creativity, was 

found to be a key factor that influenced students’ problem solving performance (Hwang et al., 

2007). Furthermore, students with high ability to elaborate took better advantage of peer 

interactions and teacher guidance to generate more diversified ideas and solutions in problem 

solving (Hwang et al., 2007). In contrast, students with low ability to elaborate had great 

difficulty in manipulating their representation skills.  

 Bahar and Maker’s (2011) and Hwang et al.’s (2007) studies were different in their 

nature. For example, they had different perspectives on the domain of creativity. Bahar and 

Maker investigated creativity in a specific domain (only in the mathematics domain) whereas 

Hwang et al. had a domain general perspective. Despite the differences between their nature, 

when combining Bahar and Maker’s (2011) findings with Hwang et al.’s (2007) findings, the 

author concluded that creativity was an important predictor of mathematical problem solving 

performance.  
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Mathematical knowledge. Prior knowledge is defined as an important tool that is used to 

structure the information in the problem, allows the individual to apply a familiar scaffold to the 

information, regardless of how helpful or harmful it might be (Pretz, Naples, & Sternberg, 2003). 

Furthermore, Pretz et al. (2003) asserted that prior knowledge mediates an individual’s ability to 

represent the problem in the most efficient fashion. Specifically, researchers found that 

individuals who have accumulated considerable knowledge in a domain represent information 

about problems differently from the ways these problems are represented by individuals without 

extensive knowledge bases (Chi, Glaser, & Farr, 1988). In this section, four studies (Byrnes & 

Takahira, 1993; Byrnes & Takahira, 1994; Lee & Chen, 2009; Serafino & Cicchelli, 2003) 

related to the relationship between mathematical knowledge and mathematical problem solving 

were analyzed and a summary of the studies has been shown in Table 2.1. 

 All four studies (Byrnes & Takahira, 1993; Byrnes & Takahira, 1994; Lee & Chen, 2009; 

Serafino & Cicchelli, 2003) were correlational. Researchers in all four studies used several 

instruments but only two of them (Lee & Chen, 2009; Serafino & Cicchelli, 2003) documented 

reliability measures for all the instruments used. In addition none of the researchers documented 

the validity of instruments. All researchers provided information related to sex, age, and grade 

level of the participants. However, none of the researchers provided a thorough description of 

participants including demographic background and socio-economic status. Statistical 

information was reported by all researchers. In addition, all researchers interpreted these 

statistical findings and effect sizes, as suggested by Thompson et al. (2005). 

 In these studies prior knowledge was found to be a significant predictor of mathematical 

problem solving performance (Byrnes & Takahira, 1993; Byrnes & Takahira, 1994; Lee & Chen, 

2009; Serafino & Cicchelli, 2003). The influence of mathematical achievement and instructional 
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models on problem solving performance was investigated as well as prior knowledge. Prior 

knowledge was found to be not only a significant but also the strongest predictor of students’ 

performance in mathematics problem solving performance among these variables (Byrnes and 

Takahira, 1993).  

 When the effects of question prompts, prior knowledge, and interaction of question 

prompts and prior knowledge were investigated in open-ended mathematical tasks, prior 

knowledge was found to predict problem solving performance at a significant level (Lee & Chen, 

2009). In addition, when the effects of prior knowledge and instructional models were evaluated 

on student mathematical problem solving performance, students with a high prior knowledge had 

a higher mean in problem solving scores than students with a low prior knowledge regardless of 

the type of the instruction they were given (Serafino & Cicchelli, 2003). Furthermore, the 

influence of prior mathematical knowledge on problem solving performance in open-ended 

situation was analyzed and prior knowledge was found to be a significant predictor of problem 

solving performance in open-ended situations (Lee & Chen, 2009).  

Working memory.  Human working memory was declared to be the foundation of 

mathematical problem solving (Lubienski, 2007). In this section, two studies (Swanson, 2004; 

Iguchi, 2008) related to the relationship between working memory and mathematical problem 

solving were analyzed and a summary of the studies has been shown in Table 2.1. 

 Both studies (Swanson, 2004; Iguchi, 2008) were correlational. Researchers in both of 

the studies used several instruments and both of them documented reliability and validity 

measures for all the instruments used. All researchers provided a thorough description of 

participants including demographic background and socio-economic status. Statistical 
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information was reported by all researchers. In addition all researchers interpreted the statistical 

findings and effect sizes, as suggested by Thompson et al. (2005). 

Working memory was found to predict mathematical problem solving performance at a 

significant level (Swanson, 2004; Iguchi, 2008). In addition to working memory, fluid 

intelligence, reading ability, processing speed, and knowledge of algorithms were found to be 

significant predictors of mathematical problem solving performance. However, working memory 

was found to predict solution accuracy of word problems independent of measures of fluid 

intelligence, reading skill, math skill, phonological processing, semantic processing, speed, 

short-term memory, inhibition, and knowledge of algorithms (Swanson, 2004).  

The effect of working memory on three specific areas of math achievement was 

investigated, including knowledge of basic math facts, calculation skills, and application of math 

concepts through problem solving (Iguchi, 2008). Greater auditory working memory capacity 

was found to predict a higher level of math achievement in all areas. Also auditory working 

memory explained unique variance, above and beyond the contributions of verbal and nonverbal 

reasoning and processing speed, in overall math achievement, fact fluency, and problem solving, 

but not calculation skills (Iguchi, 2008). The variance in overall math achievement, fact fluency, 

and calculation skills explained by variance in working memory remained stable across two age 

groups representing elementary and secondary levels of education. Researchers concluded that 

both elementary and secondary level mathematics achievement relied on auditory working 

memory (Iguchi, 2008).  

Reading ability. Reading ability has been considered a basic requirement for success in 

many academic subjects, including mathematics. Solving mathematical word problems requires 

strong reading comprehension and educators need to improve students’ reading skills to improve 
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mathematics performance (Fuentes, 1998). In this section, three studies (Jordan et al., 2003; 

Vilenius-Tuohimaa et al., 2008; Walker, 2012) related to the relationship between reading ability 

and mathematical problem solving were analyzed and a summary of the studies has been shown 

in Table 2.1. 

 All three studies (Jordan et al., 2003; Vilenius-Tuohimaa et al., 2008; Walker, 2012) were 

quantitative. Researchers in all three studies used several instruments and all of them 

documented reliability and validity measures for all the instruments used. All researchers 

provided information related to sex, age, and grade level of the participants. However, only one 

of the researchers (Vilenius-Tuohimaa et al., 2008) provided a thorough description of 

participants including demographic background and socio-economic status. Statistical 

information was reported by all researchers. In addition, all researchers interpreted the statistical 

findings and effect sizes, as suggested by Thompson et al. (2005). 

 In these three studies, reading ability was found to be associated with mathematical 

problem solving performance. When participants were grouped based on their reading 

comprehension ability, the students in the good reading group were found to perform better on 

mathematical word problems tests than did those students assigned to the poor reader group 

(Vilenius-Tuohimaa et al., 2008). In addition, a significant correlation was found between 

reading comprehension scores and mathematics problem solving scores (Walker, 2012). 

Furthermore, when students with reading disabilities and mathematical disabilities were grouped 

based on their disabilities, the students with only mathematical disabilities performed better than 

the students with mathematical and reading disabilities in problem solving but not in calculation 

(Jordan et al., 2003). Another important finding was reading abilities influenced growth in 
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mathematics achievement whereas mathematics abilities did not influence growth in reading 

achievement. 

 One major concern for all three studies (Jordan et al., 2003; Vilenius-Tuohimaa et al., 

2008; Walker, 2012) was related to the content of the problems that were used for measuring 

mathematical problem solving performance. In all three studies, the problems were word 

problems with long sentences. Therefore, reading comprehension and reading ability would be 

expected to be a predictor of mathematical problem solving performance. When problems are 

designed with excessive verbal content, reading achievement would be expected to influence 

growth in mathematics achievement whereas mathematics abilities do not influence growth in 

reading achievement. Especially English language learners (ELL) might perform less well on 

these problems because they read more slowly (Mestre, 1988). Furthermore, ELLs may not 

recognize vocabulary terms and they may not be familiar with the linguistically complex 

structure of these problems (Duran, 1989). From this perspective, the influence of reading ability 

on problem solving performance might vary depending on the problem solver’s familiarity with 

the language. For this reason, instruments with less verbal complexity have been considered to 

be more fair as tools to measure student performance. 

 Other cognitive abilities. Researchers have searched for links between problem solving 

skills and mental abilities because high-order thinking seemed to be linked to problem solving 

(Cattell, 1971). Hembree (1992) found several abilities related to problem solving. He reported 

that creative thinking, critical thinking, memory, perception, reasoning, skill with analogies, skill 

with inferences, and spatial ability were correlated significantly with mathematical problem-

solving measures.  
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In this section, four studies (Awofala et al., 2011; Garderen, 2006; Hegarty & 

Kozhevnikov, 1999; James & Adewale, 2012) related to the relationship between other cognitive 

abilities and mathematical problem solving were analyzed and a summary of the studies has been 

shown in Table 2.1. All four studies were quantitative. Researchers in all four studies used 

several instruments and but only two of them (Garderen, 2006; Hegarty & Kozhevnikov, 1999) 

documented reliability and validity measures for all the instruments used. All researchers 

provided information related to sex, age, and grade level of the participants. However, only one 

of the researchers (Hegarty & Kozhevnikov, 1999) provided a thorough description of 

participants including demographic background and socio-economic status. Statistical 

information was reported by all researchers. In addition, all researchers interpreted the statistical 

findings and effect sizes, as suggested by Thompson et al. (2005). 

 One of the cognitive abilities associated with mathematical problem solving performance 

was spatial ability. Spatial ability was defined as the ability to generate, retain, and manipulate 

abstract visual images, and it was described by researchers as one of the important factors 

influencing problem-solving performance (Lohman, 1979). Gardner (1984) proposed a 

multifaceted model of intelligence in which spatial abilities were one of seven major 

components. Gardner described “spatial ability” as the capacity to perceive the visual world 

accurately, to perform transformations and modifications upon initial perceptions, and to be able 

to recreate aspects of visual experience even in the absence of relevant physical stimuli. Gardner 

also stated that spatial ability works in collaboration with logical-mathematical ability 

(mathematical ability and the ability to reason). Similarly, in her hierarchical "three-stratum 

theory" of ability, Carroll (1993) demonstrated the positioning of spatial ability in juxtaposition 

with verbal and mathematical ability. 
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In two studies (Garderen, 2006; Hegarty & Kozhevnikov, 1999) researchers investigated 

the effects of spatial ability on solving mathematical problems. Spatial ability was found to be 

one of the main factors affecting mathematical performance. Individuals with high spatial ability 

were found to have a wider range of strategies and they were better at determining when to use a 

particular strategy during problem solving (Hegarty & Kozhevnikov, 1999). Researchers found 

that the use of schematic images was positively related to success in mathematical problem 

solving, whereas the use of pictorial images was negatively related to success in mathematical 

problem solving. In addition the use of schematic imagery was associated with high spatial 

ability (Hegarty & Kozhevnikov, 1999). In addition, spatial visualization ability was found to be 

correlated with mathematical problem-solving performance at a significant level (Garderen, 

2006). However, I would question the validity of these two studies by referring to the claims of 

Fennema and Tartre (1985). Fennema and Tartre claimed that a student's spatial ability did not 

affect his or her likelihood of solving certain math problems correctly, but the students with high 

spatial ability were still more likely to be “...able to convert word problems to accurate diagrams, 

and to use those diagrams to get correct solutions” (1985, p. 193). At this point, I would 

recommend further studies to investigate the role of spatial ability in solving problems that do 

and do not require use of diagrams to get correct solutions. 

Verbal ability was another cognitive ability linked with problem solving performance. 

Verbal ability has been described as a student's ability in oral and written expression, reading and 

comprehension skills, and literal understanding and use of words. Verbal abilities were 

associated with and related to success in mathematical problem solving (Lester, 1980). 

In two studies (Awofala et al., 2011, James & Adewale, 2012) verbal ability was found to 

be an important predictor of problem solving performance. In addition, students with high verbal 
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ability performed significantly better than students with low verbal ability in problem solving 

performance (Awofala et al., 2011). Also verbal reasoning scores of the students accounted for 

58% of the variance in mathematical problem solving scores (James & Adewale, 2012). 

Although verbal ability had significant effects on students’ achievement in mathematical word 

problems, the accordance of these findings might be because of the similar structure of the 

problems that were used in these studies. How does the relationship between verbal ability and 

problem solving performance change when non-verbal problems are used? The author 

recommends that the relation between verbal ability and mathematical problem solving 

performance is complex and further studies are needed to explore this relationship. 

Gender and Mathematical Problem Solving 

In this section 10 studies (Benbow, 1988; Buchanan, 1984; Duffy, Gunther & Walters, 

1997; Garrard, 1982; Hembree, 1992; Hyde et al. 1990, Kallam, 1996; Landau, 1984; Lindberg 

et al., 2010; Paik, 1990) that included findings on the gender differences in mathematical 

problem solving performance were analyzed and the summary of the analysis of the studies has 

been presented in Table 2.2.  

 Six of the studies (Benbow, 1988; Duffy, Gunther & Walters, 1997; Garrard, 1982; 

Kallam, 1996; Landau, 1984; Paik, 1990) were correlational, three were meta-analysis 

(Hembree, 1992; Hyde et al. 1990; Lindberg et al., 2010) and one (Buchanan, 1984) was 

qualitative. Researchers in all six correlational studies used several instruments but only four of 

them (Benbow, 1988; Garrard, 1982; Landau, 1984; Paik, 1990) documented reliability measures 

for all the instruments used. Only one of the researchers (Benbow, 1988) documented validity of 

instruments, mainly content and construct validity. Researchers in all of the correlational studies  
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Table 2.2 

Studies Related to the Gender Differences in Mathematical Problem Solving Performance 

Study  Purpose 
Participants' 

Age/Grade Span 
Number of Participants 

    

Benbow, 1988 To describe the sex differences in 

scores on the mathematics section of the 

Scholastic Aptitude Test (SAT-M) among the 

intellectually talented and the relation of this sex 

difference to other attributes and achievement 

12 and 13 years 

old 

9927 

Buchanan, 1984 To determine if any observable qualitative 

differences were found in mathematical problem 

solving performance between girls and boys 

Grades 3 to 5 12 

Duffy, Gunther & Walters, 

1997 

To investigate the relationship between 

mathematical problem solving and gender 

12 years old 159 

Garrard, 1982 To investigate the mathematical problem solving 

and spatial visualization ability of female and 

male students 

Grade 8 120 

Hembree, 1992 To analyze prior experiments and relational 

studies in problem solving 

Grades 1 to 12 

and college 

students 

37022 (meta-analysis of 

154 studies) 
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Table 2.2 (Continued) 

Studies Related to the Gender Differences in Mathematical Problem Solving Performance 

Study  Purpose 
Participants' 

Age/Grade Span 
Number of Participants 

    

Hyde et al. 1990 To find the magnitude of gender differences in 

mathematics performance 

5 to 52 years old 3,175,188 (meta-analysis 

of 100 studies) 

Kallam, 1996 To investigate the differences in mathematical 

problem solving between males and females 

 18 to 27 years 

old 

47 

Landau, 1984 To investigate how spatial visualization ability, 

problem presentation format, and the interaction 

of the two influenced middle school students' 

performance on mathematical problems and to 

examine gender-related differences in their 

performance 

Grades 6 to 8 384 

Lindberg et al., 2010 To analyze gender differences in recent studies 

of mathematics performance 

All ages 1,286,350 (meta-analysis 

of 242 studies) 

Paik, 1990; To investigate the influence of individual 

differences such as gender and cognitive abilities 

in metacognitive ability and problem solving 

performance 

Grade 10 80 
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provided information related to sex, age, and grade level of the participants. However, none of 

the researchers provided a thorough description of participants including demographic 

background and socio-economic status. Statistical information were reported by all researchers. 

In addition all researchers interpreted these statistical findings and effect sizes, as suggested by 

Thompson et al. (2005). 

 Only one of the researchers (Buchanan, 1984) used qualitative methods to investigate 

gender differences in mathematical problem solving performance. Buchanan provided a 

thorough description of participants including sample size, demographic background, and socio-

economic status as well as grade level and age. She used triangulation of data sources, namely 

data from analysis of videotapes, the researcher’s writings, and an interview protocol. In 

addition, the author provided descriptions of the data collected, providing explanations of 

participants’ narratives and interpretation of results with excerpts from the interviews. 

 Findings. Particularly within the fields of psychology and education, gender differences 

in mathematics problem solving performance have been studied intensively. Findings within the 

topic of gender and mathematical problem solving performance could be categorized under 

schooling age: (a) elementary school period (grades K-6), (b) grade 7 and later years. 

In four studies (Buchanan, 1984; Hembree, 1992; Hyde et al. 1990; Lindberg et al., 2010) 

researchers investigated gender differences in elementary school students’ mathematical problem 

solving performance. No significant differences in problem solving performance between boys 

and girls were found during the elementary years (K-6). Females were found to perform better in 

computation skills in grades K-6. In addition, no gender difference was found in understanding 

of mathematical concepts during elementary and middle school (Hyde et al. 1990). 
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After grade 7, significant differences between boys and girls were found in mathematical 

problem solving performance. Boys showed higher performance than girls in mathematical 

problem solving in high school and college at a significant level ((Benbow, 1988; Duffy, 

Gunther & Walters, 1997; Garrard, 1982; Hembree, 1992; Hyde et al. 1990, Kallam, 1996; 

Landau, 1984; Lindberg et al., 2010; Paik, 1990). Boys were found to perform higher than girls 

in spatial visualization ability scores (Garrard, 1982; Landau, 1984). In addition to spatial ability, 

boys performed significantly higher than girls in meta-cognition scores (Paik, 1990).  

At this point, three comprehensive meta-analyses (Hembree, 1992; Hyde et al. 1990; 

Lindberg et al., 2010) provided valuable information to explain the inconsistent findings among 

these studies. In these three meta-analysis studies researchers found that the gender differences in 

problem solving were not significant in the elementary and middle school years but in the high 

school and college years a moderate effect size favored males. Although these meta-analyses 

seemed to indicate clear understanding of the relationship between gender and problem solving 

performance, Zhu (2007) recommended further studies to investigate how different factors 

interact to produce gender differences in mathematical problem solving performance. 

Furthermore, he questioned the ability of test scores to indicate the real differences in cognitive 

abilities.  

In his review of research, Zhu analyzed the influences of factors involved in 

mathematical problem solving including cognitive abilities, speed of processing information, and 

many complex variables related to problem solving, such as (a) physiological differences in 

brains, (b) influences of sex hormones, (c) learning styles, (d) learners’ attitudes, (e) stereotype 

threat in mathematics tests, (f) differences in socialization, and (g) socioeconomic variables. He 

concluded that the findings of the studies were complex and inconsistent. Based on the difficulty 
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of explaining the inconsistencies between the studies, Zhu recommended analyzing the 

relationship between gender and mathematical problem solving from a comprehensive 

perspective. The author suggested further studies to explore how biological and psychological 

variables interact with both experience and the environment to contribute to gender differences 

in mathematical problem solving patterns. 

Conclusion 

Problem solving is referred to an “extremely complex form of human endeavor that 

involves much more than the simple recall of facts or the application of well-learned procedures” 

(Lester 1994, p. 668).  Researchers concluded that to be a good problem solver in mathematics, 

students should be able to select and use task-appropriate cognitive strategies for understanding, 

representing, and solving problems (Mayer, 1992; Schoenfeld, 1985).  

Problem solving has come to be viewed as a process that requires use of many cognitive 

abilities and processes including intelligence (Polya, 1973; Resnick & Glaser, 1976; Sternberg, 

1982), creativity and originality (Polya, 1953), reading ability (Hite, 2008), spatial ability (Booth 

and Thomas, 1999), verbal ability (Dodson, 1972), working memory (Swanson 2004), and 

knowledge (Lester, 1980). In the studies that were analyzed in this chapter researchers found that 

cognitive abilities influenced mathematical problem solving at significant levels. However, this 

analysis showed a need for exploring the relationship between these cognitive variables and 

problem solving performance as a whole instead of individual relationships because the 

interactions between cognitive abilities could impact the relationships. To fill this gap in the 

studies, the author investigated the influence of several cognitive abilities including general 

intelligence, general creativity, working memory, mathematical knowledge, reading ability, 
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spatial ability, quantitative ability, and verbal ability on mathematical problem solving 

performance as a whole. 

Another gap in the studies was that prior researchers did not consider that the relationship 

between cognitive abilities and problem solving performance could vary depending on the type 

of the problem. To fill this gap, the author modeled this relationship by separating performance 

in open-ended and closed problems. By doing so, he aimed to investigate how problems with 

different structures might require different cognitive abilities for reaching successful solutions.  
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CHAPTER III: METHOD 

 A primary purpose of this study was to investigate the influences of cognitive abilities 

such as intelligence, creativity, memory, knowledge, reading ability, verbal ability, spatial 

ability, and quantitative ability on the mathematical problem solving performance (MPSP) of 

students. The author modeled this relationship by separating performance in open-ended and 

closed problems. Furthermore, the author investigated how these relationships were different or 

similar in boys and girls. This chapter included the research methodology and design, 

participants and sampling, settings, and instruments sections. The data collecting procedures and 

data analyses sections were presented in this chapter. 

Research Method and Design 

 The purpose of this study was to investigate the influences of cognitive abilities on the 

mathematical problem solving performance of students. For the exploration of potential 

relationships among these variables, numerical data were analyzed. Therefore, this study was 

classified as quantitative research. According to Burns and Grove (2005), in quantitative 

research, numerical data are used and statistical analyses are employed to obtain information 

about the world, giving the opportunity to describe and examine possible relationships among 

variables.  

 The research design of this study was a non-experimental and descriptive correlational 

study. Correlational studies have been used to examine the relationships among two or more 

variables, and they provide an opportunity to determine the pattern and the strength of the 

existing relationships and also allow for hypotheses generation. A correlational relationship 

indicates association between variables in a synchronized manner that does not imply causal 

relationship. Non-experimental studies are very common in the field of education, because many 



55 
 

 

human characteristics cannot be manipulated experimentally due to natural and ethical reasons. 

Studies that combine descriptive and correlational characteristics are used to examine variables 

and to describe relationships among them (Burns & Grove, 2005; Polit & Beck, 2004; Trochim, 

2001). 

Participants and Sampling 

 The data in the study were collected during the STEP-UP and DISCOVER Project. The 

participants included 67 students in grade 3. The participants were from four schools in a 

southwestern state in the U.S. as presented in Table 3.1. All schools were located in the Diné 

Nation, and all were in rural, low-income areas. At least 94% of the students at each of these 

schools came from low income families. 

Table 3.1 

The Number of Students at Each School  

    Gender 

School  Number Male Female 

School A 20 7 13 

School B 13 6 7 

School C 17 12 5 

School D 17 11 6 

Total 67 36 31 

 

School A was a K-8 school near a small town with approximately half its students being 

boarders (some of whom went home each weekend, and some of whom went to homes of 

relatives and friends only during extended vacations) and half its students being day students. Of 

the 630 children, 98-99% were Diné (Navajo), and the only non- Diné were the children of the 
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staff. Approximately 70% of the children spoke Diné as their home and dominant language, and 

some were bilingual in English and Diné. All early elementary teachers spoke Diné and used it 

when necessary to provide directions to children. 

 School B was a K-6 public school located in a small community. Of the 390 students, 

approximately 99% were Diné and others were children of teachers or other staff members. 

Many of the students spoke Diné as their first or dominant language, so early elementary 

teachers either spoke Diné or worked with an instructional assistant who did. 

 School C was a small community controlled school funded by Bureau of Indian Affairs. 

The school had 430 students in grades K-12 located in a Diné Indian Reservation. Many of the 

students spent one to three hours riding the school bus each day. Approximately 98% of the 

students were Diné, with the only non- Diné students being those whose parents were teachers or 

administrators at the school. The faculty and staff were 90% Diné, and most came from local 

community. The school was unique on the Diné nation, being the only school in which total 

bilingualism and literacy in Diné was taught K-12. 

 School D was a K-6 school located in a small community near the border. Of the 574 

students, 99% were Diné and 1% Caucasian. Although most of the children spoke some English, 

many of them would not have been considered proficient in either language when they entered 

school. Most teachers were Caucasian, but teachers in primary grades were assisted by a 

bilingual teaching assistant. The bilingual instructional model would be considered transitional 

or English immersion, with all or most teachers having an endorsement in teaching English as a 

second language (ESL). 

Settings 
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 The data were collected from the archives of the DISCOVER projects at the University of 

Arizona. Specifically, the author selected students who were enrolled in classrooms that were 

part of the Systematic Training of Educational Programs for Underserved Pupils (STEP-UP) 

project, a research and development grant that was federally funded. In general, the project 

involved four states and 12 local school districts. The main purpose of the STEP-UP project was 

to develop and test procedures for identifying gifted students who came from diverse 

backgrounds and then provide them with appropriate curricula. In the DISCOVER project 

archives, longitudinal data about students who enrolled in the STEP-UP project’s classrooms 

were available for researchers, including results that were collected using a variety of tests. In the 

Southwestern region of the United States, the coordinator of the STEP-UP project agreed to 

organize the classrooms to be self-contained in four different schools (A, B, C, and D) to monitor 

students’ development over time, provide them with appropriate curricula, and collect 

longitudinal data. More details about the STEP-UP project in the Southwestern region of the 

United States are in the STEP-UP project report (Maker, 1993). 

Operational Definitions of Variables 

 General intelligence. General intelligence was defined as a person’s capacity to 

apprehend meaningless figures presented for his/her observation, see the relations between them, 

conceive the nature of the figure completing each system of relations presented, and so doing, 

develop a systematic method of reasoning (Raven, 1988). 

 General creativity. General creativity was defined as a competence to generate 

unconventional figures with overall meaning (Urban & Jellen, 1996). 
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 Mathematical knowledge. Mathematical knowledge was defined as the competence to 

deeply understand basic mathematical concepts and computation (i.e. use of arithmetic 

operations - addition, subtraction, multiplication, or division). 

 Mathematical problem solving performance. Mathematical problem solving 

performance was defined as a performance of an act to make unknown situations/questions 

known in the domain of mathematics. 

 Working memory. Working memory was defined as a brain system that provides 

temporary storage and manipulation of the information necessary for such complex cognitive 

tasks as language comprehension, learning, and reasoning (Baddeley, 1992). 

 Verbal ability. Verbal ability was defined as the cognitive ability to understand and use 

language. 

 Fluency. Fluency was defined as the ability to deliver information quickly and 

accurately. 

Measurement of Variables 

The Measurement of Mathematical Problem Solving Performance 

DISCOVER assessment. The Discovering Intellectual Strengths and Capabilities while 

Observing Varied Ethnic Responses (DISCOVER) assessment scores were used in this study to 

measure the participants’ problem solving performance in mathematics. The DISCOVER 

assessment model was developed to identify gifted students from culturally diverse groups by 

observing the number and the choice of problem solving strategies used by children. The 

assessment was grounded in the theory of multiple intelligences (Gardner, 1984), the theory of 

the triarchic mind (Sternberg, 1989), and studies of creativity (Getzels & Csikszentmihalyi, 

1976).  
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The DISCOVER assessment was developed from research involving numerous age 

groups, cultures, languages, geographic locations, and ethnic identities.  Its corresponding design 

is applicable and accurate in all languages and cultures, virtually eliminating the ethnic, cultural, 

and linguistic bias prevalent in many current instruments. In the DISCOVER assessment, rather 

than relying on paper-and-pencil tests, performance is measured over a broad perspective of 

potential abilities, using a range of materials. Each ability is measured in a way appropriate to its 

own characteristics, rather than being filtered through another ability. This component is critical 

to an accurate assessment of abilities and unfortunately is not present in many traditional 

instruments.  Consider, for example, a math exercise that is presented as a word problem in 

English.  A child with a dominant language other than English might struggle with the language 

component, thus masking his or her true ability to solve the problem.  In this case the ability 

actually being assessed is linguistic, not mathematical, producing potentially skewed or 

erroneous results.  For accuracy, each ability must be assessed (as much as possible) in a manner 

free from dependency on any other ability. 

Problem solving has been a key component of the DISCOVER assessment model.  

Problem solving was conceptualized in the model based upon the problem classification 

proposed by Getzels and Csikszentmihalyi (1976). In this context, problems were classified as 

either closed or open based on the number of alternatives available to the problem solver. For 

example, a problem was defined as closed if it could be solved in only one way and open if it 

could be solved in an infinite number of ways.  

For the DISCOVER assessment model, problem structure was rated on a scale that ranged 

from a Type I problem to a Type VI problem (Table 1.1).  A Type I problem would be closed 

whereas a Type VI problem would be completely open-ended.  All conceivable problems could 
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fall somewhere on the continuum between the two extremes. Sak and Maker (2005) investigated 

the construct validity of the problem continuum by determining the relationships among the 

problem types.  They found that correlations between the problem types varied according to the 

proximity of the types to each other.  For instance, the correlation between Type I and Type II 

problems was .49, between Type I and Type III was .41, and between Type I and Type IV was 

.39.  All correlations were statistically significant at the .01 level, showing the validity of the 

distinctions between problem types. 

Table 1.1 has the problem types in the DISCOVER problem continuum (Maker & 

Schiever, 2005), a tool used to design assessments and curricula. The six problem types have 

been displayed from Type I through Type VI, along with how much information was known—

how much structure was provided—for both the problem presenter and the problem solver in 

each Problem Type.  

The math section of the assessment included Types I, II, IV, and V problems. Open-

ended problem solving performance was assessed using Type IV and V problems whereas closed 

problem solving performance was assessed using Type I and II problems. The DISCOVER 

assessment varied in form and implementation according to the age group being 

assessed.  Different forms were developed for Pre-K, K-2, 3-5, 6-8, and 9-12.  

Previous studies of the DISCOVER assessment showed high inter-rater reliability 

ranging from 80% to 100% (Sarouphim, 1999; Griffiths, 1996). Sak and Maker (2003) 

investigated the predictive validity of DISCOVER, and found that it explained 20% of the 

variance in Stanford 9 Math scores with p=.007 and 20% of the variance in AIMS Math scores 

with p=.009. These results provided evidence for the predictive validity of DISCOVER. The 

results obtained by Sak and Maker (2004) and Maker (2001) showed that moderate correlations 
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existed between the DISCOVER assessment and math achievement (r= .30, p<.01) and IQ 

scores (r=.35, p<.01).  

The Measurement of General Intelligence 

Raven’s Colored Progressive Matrices (RCPM). The RCPM is a norm-referenced test 

that was designed in 1948 to measure general intelligence of young children aged 5 through 11. 

The RCPM is a nonverbal group test, typically used in educational settings, and can be 

administered individually or after the age of 8 in a group format. The test consists of 36 items, 

grouped into three sets (A, Ab, B) of 12 items in each set. Set A consists of problems in a 

continuous pattern. Items in sets Ab and B include four parts, three of which are presented and 

individuals have to choose the correct one from the alternatives. Items in each set increase 

progressively in perceptual difficulty. The test was designed in spatial form, and it contained 

structural representations of space, which was used to describe relations between objects in a 

visual scene, such as the relative location of these objects (Lovett, Forbus & Usher, 2010). Each 

item in the test had a missing part in a pattern to be completed from the given choices. The 

correlations between the item difficulties, established separately for different ethnic groups, 

ranged from .97 to 1.00 (Jensen, 1980). Also the test-retest reliabilities have ranged from .71 to 

.92 and concurrent validity estimates ranged from .55 to .86 (Sattler, 1988). 

As a non-verbal measure, the RCPM has been described by its authors as a “fair measure 

of ability for individuals from different cultures because it was not influenced by language 

differences. This helps reduce cultural bias in your employee evaluations – an important benefit 

in today’s multicultural society and global workforce.”  (Raven’s Progressive Matrices™, 2012).  

The Measurement of General Creativity 
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Test for Creative Thinking-Drawing Production (TCT-DP). The TCT-DP (Urban and 

Jellen, 1996), a tool for measuring general creativity, was designed as a cross-cultural 

instrument. The TCT-DP test consisted of six figural fragments that stimulate further drawing in 

a free and open way: a semi-circle, a point, a large right angle, a curved line, a broken line, and a 

small open square outside the large square frame.  The drawing product was evaluated and 

scored by means of 14 evaluation criteria: continuations, completions, new elements, 

connections made with a line, connections made to produce a theme, boundary breaking that was 

fragment dependent, boundary breaking that was fragment independent, perspective, humor, 

affectivity, unconventionality (sub scores A, B, C, D), and speed (Urban & Jellen, 1996). These 

fourteen scores were then combined into a total score. 

According to Urban and Jellen (1996), the reliability of the TCT-DP was high—from .89 

to .97. The authors (Urban & Jellen, 1996) claimed that the validity of the TCT-DP was difficult 

to evaluate because no comparable instrument existed, and cited studies showing low or no 

correlations between the TCT-DP and measures of achievement as evidence of its discriminant 

validity. However, others found correlations ranging from .21 to .41 with the Raven Matrices and 

the TCT-DP (Urban & Jellen, 1996). The TCT-DP was designed as a nonverbal assessment. The 

test was field-tested with hundreds of elementary students in 11 countries from diverse 

backgrounds. 

The Measurement of Mathematical Knowledge and Reading Ability 

 Iowa Tests of Basic Skills (ITBS). The ITBS was a norm-referenced nationally 

standardized test providing a comprehensive measurement of growth in word analysis, 

vocabulary, listening, reading, methods of study, the mechanics of writing, and mathematics. The 

mathematics section included subtests of problem solving, math concepts, and computation. The 
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ITBS ‘math concepts’ score was used as a measure of the participants’ mathematical knowledge 

in this study. The ITBS ‘reading’ score was used as a measure of the participants’ reading ability 

in this study. Test–retest stability coefficients over a one-year time interval were measured in the 

.70 to .90 range and internal consistency and alternate forms reliability coefficients were in the 

.80s and .90s (Linn & Miller, 2005).  The ITBS was used at Schools A and C.  

The test publishers stated that they minimized bias through item analysis by expert 

reviews and quantitative analyses of test results from tryout studies conducted with students from 

diverse backgrounds. However, the ITBS assessment was critiqued by educators and researchers 

because of its verbal structure. Some educators claimed that the verbal complexity of the items in 

the ITBS might be a potential problem for students from diverse backgrounds (Jamal, 2007).  

 Comprehensive Tests of Basic Skills/4 (CTBS/4). The CTBS/4 was designed to 

measure achievement in reading, language, spelling, social studies, study skills, mathematics, 

and science. The mathematics section included subtests of ‘concepts and arithmetic’, and 

‘computation’. The CTBS/4 ‘concepts and arithmetic’ score was be used as a measure of the 

participants’ mathematical knowledge in this study. The reading section included subtests of 

vocabulary and comprehension. The CTBS ‘reading comprehension’ score was used as a 

measure of the participants’ reading ability in this study. Reliability coefficients (KR-20) for the 

levels used by the sample ranged from .88 to .94 (Shepard, 1985). The CTBS/4 was used at 

Schools B and D. 

The Measurement of Working Memory 

 Structure-of-Intellect (SOI) Learning Abilities Test. The SOI learning abilities test 

(Meeker & Meeker, 1976) was designed to measure discrete cognitive abilities based on 

Guilford's structure of intellect (SI) theory, in which intelligence was viewed as being comprised 
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of operations, contents, and products. The SOI test has been available in two alternate forms, A 

and B. Each form could be individually or group administered to students in grades 2-12. The 

test included 26 subtests and each subtest measured each of Guilford’s 26 intellectual abilities 

(Guilford, 1967). For example, the first subtest, CFU, measured “cognition of figural units”. 

Along with general cognitive assessment, the SOI has been used widely to diagnose learning 

disabilities, prescribe educational interventions, profile strengths and weaknesses, identify 

reasons for underachievement, match cognitive style and curriculum material, and screen for 

gifted students. The test-retest reliabilities of the SOI have ranged from .00 to .74 (Coffman, 

1985). For this study, the SOI total memory score was used as a measure of the participants’ 

working memory. The total memory score was calculated as the sum of four subtests: memory of 

figural units (MFU), memory of symbolic implications (MSI), memory of symbolic systems 

(MSS), and memory of symbolic units (MSU). 

 The SOI test was described as an effective instrument in identifying gifted students from 

minority backgrounds (Meeker, 1978). Roid (1985) claimed that the SOI test was an ideal 

assessment for culturally and linguistically diverse students because of its predominant 

nonverbal and figural structure. 

The Measurement of Verbal, Spatial, and Quantitative Abilities 

 Developing Cognitive Abilities Test (DCAT). The DCAT (Beggs & Mouw, 1980) was 

a group administered test designed as a measure of learning characteristics and abilities that 

contribute to academic performance of students in grades 1-12 (Wick, Beggs, & Mouw, 1980). 

The test had three categories: verbal, quantitative, and spatial. Each category of the DCAT was 

comprised of 27 items, for a total of 81 test items. Internal consistency coefficients of the test 

ranged from .70 to .96, with the majority in the mid .80s (Wick, 1990). The DCAT’s verbal, 
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spatial, and quantitative scores were used as measures of verbal, spatial, and quantitative abilities 

respectively. The DCAT also has been used as a screening measure for identifying potentially 

gifted students (Wick, 1990). One of the important distinguishing characteristics of the DCAT is 

the link between specific items and Bloom’s (1956) cognitive taxonomy (Canivez, 2000). 

 Canivez and Konold (2001) assessed the fairness of the Developing Cognitive Abilities 

Test (DCAT) across gender, race/ethnicity, and socioeconomic dimensions. They concluded that 

the DCAT provided a generally unbiased assessment of cognitive abilities across race/ethnicity, 

gender, and SES.  

Data Collection 

 The data related to general intelligence, mathematical knowledge, working memory, 

verbal ability, spatial ability, quantitative ability, reading ability, and mathematical problem 

solving were collected at the end of the spring semester of grade 3 in a regular classroom setting. 

The assessments were administered on different days.  The data related to general creativity were 

collected almost a year later than the data related to other cognitive abilities. 

Test Administration 

The DISCOVER Assessment was administered by classroom teachers or DISCOVER 

team members in classroom settings. Students were given a blank sheet and a worksheet 

containing math problems. Classroom teachers and DISCOVER research team members gave 

students clear instructions, worked sample problems with them, and made certain all understood 

the tasks. Students were given as much time as they needed to complete the assessments and 

were encouraged to use the blank paper they were given to work out problems and solutions.  

Test Scoring 
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The DISCOVER mathematics assessment included four parts. In the first part of the 

assessment, students solved Type I problems. Students were asked to compute one correct 

answer for each problem in this part. In the second part of the assessment, students solved Type 

II problems. In this part, students were asked to solve magic squares through placing numbers 

and applying math operations. In the third part of the assessment, students solved Type IV 

problems. Students were asked to write true addition or subtraction problems by using only the 

three numbers given in the problem. In the last part, students solved Type V problems. Students 

were asked to write as many problems as possible that had a certain number as the answer. The 

answer was given in the problem.  

Qualified researchers and graduate assistants scored students’ solutions to the problems. 

Students’ solutions were scored in two categories: open-ended and closed. Students were given 

one point for each correct answer. The scores from part I and II were summed as the student’s 

closed problem solving performance score. The sum of scores from part IV and V was used as 

the open-ended problem solving performance score.  

Data Analysis 

 To answer the research questions, the author employed statistical procedures described 

below using SPSS.  First, preliminary analyses were conducted in the form of a missing data 

analysis for the data set. These analyses were conducted to explore systematic errors in the data 

set resulting from missing data or errant unrepresentative results due to observations with 

excessive influence.   

 To answer Research Question 1, Pearson correlations were performed to determine the 

relationship among intelligence, creativity, memory, knowledge, reading ability, verbal ability, 

spatial ability, quantitative ability, and problem solving performance in open-ended and closed 
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mathematics problems.  To answer Research Question 2, a one-way between-group multivariate 

analysis of variance (MANOVA) was performed to examine differences between boys and girls. 

MANOVA was an ideal analysis technique to explore whether the mean differences between the 

groups on the combination of dependent variables were likely to have occurred by chances 

(Pallant, 2010; Tabachnick & Fidell, 2007).  

 To answer Research Questions 3, 4, 5, and 6, multiple regression analyses were 

performed to predict students’ problem solving performance. To employ multiple regression 

analyses, intelligence, creativity, memory, knowledge, reading ability, verbal ability, spatial 

ability, and quantitative ability constituted independent variables. For Research Question 3, the 

author used closed problem solving performance scores as the dependent variable, and for 

Research Question 5, open-ended problem solving performance scores were used as the 

dependent variable. 

 For Research Questions 3, 4, 5, and 6, structural equation modeling (SEM) could be 

preferred as a powerful data analysis technique (Bagozzi and Fornell, 1982) rather than multiple 

regression analysis. However, the design and structure of the study were not appropriate for the 

use of SEM. For example, a central assumption in SEM is that the relationship between the 

observed variables and their constructs, and between one construct and another, is linear. SEM 

has no established tools for handling variations from this assumption, unlike linear regression 

that has established and proven remedial data transformational methods for handling data that 

have nonlinear relationships (Gefen, Straub, and Boudreau, 2000). Linear regression also can 

deal with multicollinearity (violations of the assumed independence of predictor variables), 

outliers, heteroscedasticity (unequal variance among the measurement items), and polynomial 

relationships, such as: Y = b0 + b1X + b2X2 (Hair et al., 1998; Neter et al., 1990). In this study, a 
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moderate multicollinearity was expected to occur among the independent variables as suggested 

in the review of research. SEM has no tools to identify, let alone handle, these violations of the 

major distribution assumptions.   
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CHAPTER IV: RESULTS 

 The purpose of this study was to investigate the influences of cognitive abilities on the 

mathematical problem solving performance of students. This chapter included findings for the 

research questions in the order that was introduced in the first chapter. First, preliminary analyses 

were conducted to explore systematic errors in the data set resulting from missing data or errant 

unrepresentative results due to observations with excessive influence. In addition, descriptive 

statistics on the variables were obtained and the author assured that none of the assumptions 

made for statistical tests were violated. 

Data Screening and Preliminary Analysis 

Missing Data 

 Exploring systematic errors in the data set resulting from missing data is an important 

task to consider before analyzing data. According to Tabachnick and Fidell (2007, p.63), if 5% 

or less data points are missing in a random pattern from a large data set, “the problems are less 

serious and almost any procedure for handling missing values yields similar results.” In this 

study, only 4.6% of data points were missing, which can be ignored. One procedure suggested by 

Tabachnick and Fidell (2007) for handling data analysis with few missing values was simply to 

drop any cases with missing data. Therefore, the author removed 4 participants with missing data 

from the study and the final participants were 67 students. 

Controlling for Assumptions 

 Multiple regression analysis was the main statistical method used in this study to answer 

the majority of the research questions. Use of multiple regression analyses indicated that several 

assumptions were needed to be satisfied (Tabachnick and Fidell, 2007, p.123). The author 

controlled for the following assumptions.  
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 Outliers. Multiple regression analysis is sensitive to outliers and checking for extreme 

scores should be part of the initial data screening process (Pallant, 2010). Tabachnick and Fidell 

(2007, p. 128) described outliers as those “with standardized residual values above about 3.3 or 

less than –3.3.” Pallant (2010, p. 127) recommended that “outliers can either be deleted from the 

data set or, alternatively, given a score for that variable that is high but not too different from the 

remaining cluster of scores.” In this study, no outliers were found in the dependent variables. 

Few outliers were found in the independent variables (3 outliers from MPSP in closed problems 

and 2 outliers from MPSP in open-ended problems; however, none of the outliers were removed 

from the data set. First of all, removing outliers from a sample size of 67 would diminish the 

strength of the study. Furthermore, the outliers (such as extreme performance in solving 

problems) provided important information for such a study exploring the cognitive 

characteristics because they were rare to find.  

 Multicollinearity. Multicollinearity occurs when the independent variables are highly 

correlated. Multiple regression analysis was a more powerful data analysis technique to deal with 

multicollinearity (Bagozzi and Fornell, 1982) than other techniques (e.g. SEM). However, 

Pallant (2010) recommends checking for multicollinearity before analyzing data. In this study, 

independent variables were correlated in a range between -0.316 and 0.676 and a moderate 

multicollinearity was observed among independent variables.  

 Normality. The assumption of normality was referred to an aspect of the distribution of 

scores in which the residuals should be normally distributed about the predicted dependent 

variable scores (Tabachnick and Fidell, 2007). The author assessed the normality of independent 

and dependent variables by examining for skewness (the symmetry of a distribution) and kurtosis 

(the clustering of scores toward the center of a distribution) values (Table 4.1).  
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Table 4.1 

Skewness and Kurtosis Values for Measures 

  N Skewness Kurtosis 

Measure   Statistic SE Statistic SE 

General Creativity 
67 0.219 0.293 -0.369 0.578 

Reading Ability (CTBS) 
33 -0.396 0.409 0.254 0.798 

Reading Ability (ITBS) 
34 0.377 0.403 -0.706 0.788 

Mathematical Knowledge (CTBS) 
33 0.298 0.409 0.526 0.798 

Mathematical Knowledge (ITBS) 
34 0.119 0.403 0.175 0.788 

General Intelligence 
67 -0.021 0.293 -0.059 0.578 

Verbal Ability 
67 0.210 0.293 0.049 0.578 

Quantitative Ability 
67 -0.031 0.293 0.196 0.578 

Spatial Ability 
67 -0.054 0.293 -0.107 0.578 

MPSP in Closed Problems 
67 0.172 0.293 0.343 0.578 

MPSP in Open-ended Problems 
67 0.100 0.293 0.443 0.578 

Working Memory 
67 0.138 0.293 -0.270 0.578 

 
Note. MPSP = mathematical problem solving performance. 

  

 A perfectly normal distribution has a skewness and kurtosis value of zero. Some 

statisticians recommend a threshold of ± 0.5 as indicative of departures from normality (e.g., 

Runyon, Coleman, & Pittenger, 2000), whereas others prefer ± 1.00 for skewness, kurtosis, or 

both (e.g., George & Mallery, 2003; Morgan, Griego, & Gloeckner, 2001). The statistics 
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presented in Table 4.1 for skewness and kurtosis values showed an acceptable normality for all 

variables employed in this study. 

Descriptive Statistics 

 Descriptive statistics for the cognitive variables and mathematical problem solving 

performance in closed and open-ended problems have been presented in Table 4.2. 

Table 4.2 

Descriptive Statistics for Variables 
        

Measure N Min. Max. M SD 

General Creativity 67 9 43 24.75 9.52 

General Intelligence 67 16 50 31.85 7.23 

Verbal Ability 67 231 561 377.22 69.98 

Quantitative Ability 67 213 488 354.58 53.47 

Spatial Ability 67 290 552 399.51 53.23 

MPSP in Closed Problems 67 1 39 11.75 6.76 

MPSP in Open-ended Problems 67 0 35 8.88 8.10 

Working Memory 67 9 35 21.36 6.01 

Reading Ability (CTBS) 33 486 730 643.58 62.45 

Reading Ability (ITBS) 34 62 117 84.68 14.52 

Mathematical Knowledge (CTBS) 33 613 744 654.24 30.88 

Mathematical Knowledge (ITBS) 34 72 131 92.62 14.10 

 

Note. MPSP = mathematical problem solving performance. 
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Research Question 1 

 To what extent are the cognitive variables (intelligence, creativity, memory, knowledge, reading 

ability, verbal ability, spatial ability, and quantitative ability) and mathematical problem solving 

performance in open-ended and closed problems related to each other? 

 The primary goal of this study was to investigate the relationship between dependent and 

independent variables. As a preliminary step, calculating the basic correlation coefficients 

between the dependent variables and independent variables was valuable to understand how the 

variables were related to each other. To answer Research Question 1, the Pearson product-

moment correlation coefficients among all the variables were calculated. These coefficients are 

presented in Table 4.3.  

 Two different mathematical knowledge and reading ability measures were presented as 

shown in Table 4.3. At schools A and C, the Iowa Test of Basic Skills (ITBS) was used to assess 

students’ mathematical knowledge and reading ability whereas the Comprehensive Test of Basic 

Skills (CTBS) was used at schools B and D.  For this reason, three correlation analyses were 

employed separately and the correlation coefficients that were obtained from these analyses have 

been listed in Table 4.3. For the first analysis, correlation coefficients among the variables 

including general intelligence, general creativity, verbal ability, quantitative ability, spatial 

ability, MPSP in closed problems, and MPSP in open-ended problems were explored. For the 

second analysis, mathematical knowledge and reading ability scores that were obtained from the 

ITBS were correlated with other variables. For the third analysis, mathematical knowledge and 

reading ability scores that were obtained from the CTBS were correlated with other variables. 

Finally all of the correlation coefficients have been listed in Table 4.3. 
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Table 4.3 

Intercorrelations among cognitive variables and mathematical problem solving performance 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 

1. General Creativity 1.000 
           

2. General Intelligence 0.435** 1.000 
          

3. Verbal Ability 0.289* 0.408** 1.000 
         

4. Quantitative Ability 0.358** 0.443** 0.532** 1.000 
        

5. Spatial Ability 0.384** 0.485** 0.259* 0.388** 1.000 
       

6. MPSP in Closed Problems 0.245* 0.419** 0.483** 0.513** 0.263* 1.000 
      

7. MPSP in Open-ended Problems 0.394** 0.291* 0.452** 0.310* 0.328** 0.300* 1.000 
     

8. Working Memory -0.054 0.043 0.021 0.010 0.037 0.167 -0.069 1.000 
    

9. Reading Ability (ITBS) 0.183 0.047 0.282 0.281 0.167 0.280 -0.316 0.426* 1.000 
   

10. Reading Ability (CTBS) 0.064 0.247 0.622** 0.291 0.242 0.327 0.286 -0.091 N/A 1.000 - 
 

11. Mathematical Knowledge (ITBS) 0.393* 0.198 0.333 0.391* 0.472** 0.361* 0.100 0.244 0.457** N/A 1.000 
 

12. Mathematical Knowledge (CTBS) 0.106 0.204 0.408* 0.446** 0.303 0.676** 0.401* -0.061 N/A 0.526** N/A 1.000 

Note. MPSP = mathematical problem solving performance. 

** Correlation is significant at the 0.01 level (2-tailed). 

         * Correlation is significant at the 0.05 level (2-tailed). 
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 As seen in Table 4.3, mathematical problem solving performance (MPSP) in closed 

problems was correlated with several cognitive abilities including mathematical knowledge 

(CTBS), r = 0.676, p < .001; quantitative ability, r  = 0.513, p < .001; verbal ability,  r = 0.483, p 

< .001; and general intelligence, r = 0.419, p < .001. Also MPSP in closed problems was 

correlated with certain cognitive abilities including general creativity; r = 0.245, p = .046 and 

spatial ability, r = 0.263, p = .032. However, reading ability and working memory were not 

correlated with MPSP in closed problems at a significant level. 

 Mathematical problem solving performance (MPSP) in open-ended problems was 

correlated with several cognitive abilities including verbal ability, r = 0.452, p < .001, general 

creativity, r = 0.394, p = .001, and spatial ability, r = 0.328, p = .007. Also MPSP in open-ended 

problems was correlated with some cognitive abilities including mathematical knowledge 

(CTBS), r = 0.401, p = .021 and quantitative ability, r = 0.310, p = .011. However, no significant 

correlations were found between MPSP in open- problems and working memory, r = 0.167, p = 

.176. Reading ability was not correlated with MPSP in open-problems at a significant level. 

 General creativity, general intelligence, verbal ability, quantitative ability, spatial ability, 

MPSP in closed problems, and MPSP in open-ended problem were the variables correlated with 

each other significantly. However, working memory was not correlated with any dependent or 

independent variable. 
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Research Question 2 

To what extent are boys and girls similar or different in mathematical problem solving 

performance in open-ended and closed problems? 

 In Table 4.4, the means and standard deviations are presented for boys and girls in 

measures of cognitive abilities and mathematical problem solving performance. Reading ability 

and mathematical knowledge scores were grouped in two categories as seen in Table 4.4, 

because two different tests, ITBS and CTBS, were used to assess each of them. 

Table 4.4 

Comparison between Boys and Girls in Measure of Variables 

  Girls   Boys   Total 

Measures (N=31) 

 

(N=36) 

 

(N=67) 

  M SD 
 

M SD 
 

M SD 

General Creativity 23.968 7.825 

 

25.417 10.843 

 

24.746 9.524 

General Intelligence 32.968 5.683 

 

30.889 8.294 

 

31.851 7.228 

Verbal Ability 389.935 58.496 

 

366.278 77.689 

 

377.224 69.980 

Quantitative Ability 349.097 44.083 

 

359.306 60.630 

 

354.582 53.470 

Spatial Ability 393.355 43.635 

 

404.806 60.404 

 

399.507 53.230 

MPSP in Closed Problems 11.355 4.223 

 

12.097 8.409 

 

11.754 6.764 

MPSP in Open-ended Problems 9.548 8.667 

 

8.306 7.649 

 

8.881 8.097 

Working Memory 21.387 5.993 

 

21.333 6.109 

 

21.358 6.009 

  (N=20) 
 

(N=13) 
 

(N=33) 

Reading Ability (CTBS) 643.500 54.714 

 

643.692 75.227 

 

643.576 62.447 

Mathematical Knowledge (CTBS) 649.350 28.839 

 

661.769 33.544 

 

654.242 30.883 

  (N=11) 

 

(N=23) 

 

(N=34) 

Reading Ability (ITBS) 86.818 14.324 

 

83.652 14.816 

 

84.676 14.518 

Mathematical Knowledge (ITBS) 94.364 13.336   91.783 14.666   92.618 14.099 
 

Note. MPSP = mathematical problem solving performance. 
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 As seen in Table 4.4 boys had higher mean scores in closed problem solving performance 

than girls (for boys M = 12.097 and for girls M = 11.355), whereas girls had higher mean scores 

than boys in open-ended problem solving performance (for boys M = 9.548 and for girls M =. 

8.306). In addition, boys had higher mean scores than girls in general creativity, quantitative 

ability, and spatial ability whereas girls had higher mean scores than boys in general intelligence, 

verbal ability, and working memory (Table 4.4). 

To answer Research Question 2, a one-way between-group multivariate analysis of 

variance (MANOVA) was performed.  The dependent variables included general intelligence, 

general creativity, working memory, mathematical knowledge, reading ability, mathematical 

problem solving performance, verbal ability, quantitative ability, and spatial ability. The 

independent variable was gender. Preliminary assumption testing was conducted to check for 

normality, linearity, univariate and multivariate outliers, homogeneity of variance covariance 

matrices, and multicollinearity, with no violations noted. 

No significant difference was found between males and females on the combined 

dependent variables, F (12, 54) = 1.459, p = .208; Pillai’s Trace = .164; partial eta squared = 

.164. When the results for the dependent variables were considered separately, no differences 

reached statistical significance, using a Bonferroni adjusted alpha level of .004 (Table 4.5). This 

result showed no significant differences between girls and boys in cognitive abilities including 

general intelligence, general creativity, working memory, mathematical knowledge, reading 

ability, mathematical problem solving performance, verbal ability, quantitative ability, and 

spatial ability.
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Table 4.5 

Gender Differences in Problem Solving Performance and Cognitive Abilities 

Measures Mean Square F Sig. 

General Creativity 34.969 0.382 0.539 

Reading Ability (CTBS) 0.291 0.000 0.993 

Reading Ability (ITBS) 74.587 0.347 0.560 

Mathematical Knowledge (CTBS) 1215.203 1.285 0.266 

Mathematical Knowledge (ITBS) 49.571 0.244 0.625 

General Intelligence 71.984 1.386 0.243 

Verbal Ability 9322.549 1.930 0.169 

Quantitative Ability 1735.950 0.604 0.440 

Spatial Ability 2184.011 0.768 0.384 

Working Memory 0.048 0.001 0.971 

MPSP in Closed Problems 9.180 0.198 0.658 

MPSP in Open-ended Problems 25.728 0.389 0.535 

Note. MPSP = mathematical problem solving performance. 

 
   ** Correlation is significant at the 0.01 level (2-tailed). 

  * Correlation is significant at the 0.05 level (2-tailed). 
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Research Question 3 

To what extent do the cognitive variables (intelligence, creativity, memory, knowledge, reading 

ability, verbal ability, spatial ability, and quantitative ability) predict mathematical problem 

solving performance in closed problems? 

 Hierarchical multiple regression was employed to assess the ability of cognitive variables 

(intelligence, creativity, memory, knowledge, reading ability, verbal ability, spatial ability, and 

quantitative ability) to predict mathematical problem solving performance in closed problems, 

after controlling for the influence of gender. Preliminary analyses were conducted to ensure no 

violation of the assumptions of normality, linearity, multicollinearity, and homoscedasticity. As 

seen in Table 4.6, 4.7, and 4.8, regression models have been presented in two categories: ITBS 

and CTBS. At schools A and C, the ITBS was used to assess students’ mathematical knowledge 

and reading ability and the CTBS was used at schools B and D.  

Table 4.6 

Changes in Explained Variance for Performance in Closed Problems   

 
Measures of mathematical knowledge and reading ability 

 

ITBS 
 

CTBS 

Model SS df F 

 

SS df F 

1
a
 0.689 1 0.032 

 

196.818 1 4.078 

2
b
 352.192 9 2.821* 

 

1097.994 9 4.717** 

 

Note. SS = sum of squares.   

a Predictors: (Constant), Gender 

b Predictors: (Constant), Gender, reading ability, general intelligence, math knowledge, verbal 

ability,  quantitative ability, general creativity, spatial ability, working memory 

 

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 
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 As seen in Table 4.7, gender was entered into Model 1, and accounted for 0.1% (ITBS) 

and 11.6% (CTBS) of the variance in mathematical problem solving performance (MPSP) in 

closed problems. After entry of cognitive variables (intelligence, creativity, memory, knowledge, 

reading ability, verbal ability, spatial ability, and quantitative ability) into Model 2, the total 

variance explained by the model as a whole was significant, R
2
 = 0.514, F (8, 24) = 2.821, p = 

.02 (ITBS) and R
2
 = 0.649, F (8, 23) = 4.717, p < .001 (CTBS).  

 As seen in Table 4.7, the cognitive abilities explained 51.3% (ITBS) and 53.3% (CTBS) 

of the variance in MPSP in closed problems, after controlling for gender responding. When 

compared with Model 1, Model 2 improved the predictions for MPSP in closed problems 

significantly, F change (8, 23) = 3.168, p = 0.02 (ITBS) and F change (8, 24) = 4.355, p = 0.001 

(ITBS).  

Table 4.7 

Summary of Hierarchical Regression Analysis for Variables Predicting Closed Problem 

Solving Performance 

 
Measure of mathematical knowledge and reading ability 

 
ITBS 

 
CTBS 

Model R R
2
 ΔR

2
 SEE 

 
R R

2
 ΔR

2
 SEE 

1
a
 0.032 0.001 0.001 4.625 

 
0.341 0.116 0.116 6.947 

2
b
 0.717 0.514 0.513* 3.724   0.805 0.649 0.532** 5.086 

 

Note. SEE = standard error of estimates.   

a Predictors: (Constant), Gender 

b Predictors: (Constant), Gender, reading ability, general intelligence, math knowledge, verbal  

ability,  quantitative ability, general creativity, spatial ability, working memory 

 

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 
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Research Question 4 

What cognitive variables are the best predictors of the mathematical problem solving 

performance in closed problems? 

 To answer Research Question 4, hierarchical regression analysis was employed. Model 2 

included the following set of predictors: intelligence, creativity, memory, knowledge, reading 

ability, verbal ability, spatial ability, and quantitative ability. Mathematical problem solving 

performance (MPSP) in closed problems was used as the dependent variable.  

Table 4.8 

Hierarchical Analysis of Mathematical Problem Solving Performance in Closed Problems 

  
 

Measures of mathematical knowledge and reading ability 

Model Predictor 
CTBS 

 
ITBS 

SE β t 

 

SE β t 

1 Gender 2.475 0.341 2.019 
 

1.695 0.032 0.180 

2 Gender 2.460 0.100 0.594 
 

1.509 0.185 1.174 

 
General Creativity 0.116 -0.060 -0.420 

 
0.083 -0.052 -0.286 

 
Reading Ability 0.021 0.009 0.050 

 
0.059 0.314 1.601 

 
Math Knowledge 0.037 0.488 3.083** 

 
0.065 0.560 2.690* 

 
General Intelligence 0.176 0.439 2.552* 

 
0.144 0.958 3.857** 

 
Verbal Ability 0.019 0.122 0.642 

 
0.015 -0.357 -1.906 

 
Quantitative Ability 0.028 0.260 1.220 

 
0.017 0.099 0.530 

 
Spatial Ability 0.019 -0.107 -0.701 

 
0.021 -0.553 -2.615* 

  Working Memory 0.173 0.210 1.585   0.135 -0.329 -1.748 

 
 ** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 
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 As found in Research Question 3, Model 2 accounted for 51.3% (ITBS) and 53.3% 

(CTBS) of the variance in MPSP in closed problems, after controlling for gender responding. As 

shown in Model 2, when the CTBS was used as a measure of mathematical knowledge and 

reading ability, students’ mathematics knowledge and general intelligence were found to be the 

only significant predictors of their MPSP in closed problems (Table 4.8).  

 When the ITBS was used as a measure of mathematical knowledge and reading ability, 

students’ mathematics knowledge, general intelligence, and spatial ability (only for the ITBS 

category) were found to be the only significant predictors of their MPSP in closed problems 

(Table 4.8). However, working memory, verbal ability, reading ability, quantitative ability, and 

general creativity did not explain the variance in MPSP in closed problems at a significant level. 
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Research Question 5 

To what extent do the cognitive variables (intelligence, creativity, memory, knowledge, reading 

ability, verbal ability, spatial ability, and quantitative ability) predict mathematical problem 

solving performance in open-ended problems? 

 Hierarchical multiple regression was used to assess the ability of cognitive variables 

(intelligence, creativity, memory, knowledge, reading ability, verbal ability, spatial ability, and 

quantitative ability) to predict mathematical problem solving performance (MPSP) in open-

ended problems, after controlling for the influence of gender. Preliminary analyses were 

conducted to ensure no violation of the assumptions of normality, linearity, multicollinearity, and 

homoscedasticity. As seen in Table 4.9, 4.10, and 4.11, regression models have presented in two 

categories: ITBS and CTBS. At schools A and C, the ITBS was used to assess students’ 

mathematical knowledge and reading ability whereas the CTBS was used at schools B and D. 

Table 4.9 

Changes in Explained Variance for Performance in Open-ended Problems 

 
Measure of mathematical knowledge and reading ability 

 

ITBS 
 

CTBS 

Model SS df F 

 

SS df F 

1
a
 76.650 1 1.632 

 

77.036 1 1.027 

2
b
 872.187 9 3.287** 

 

1112.702 9 2.404* 

 

Note. SS = sum of squares.   

a Predictors: (Constant), Gender 

b Predictors: (Constant), Gender, reading ability, general intelligence, math knowledge, verbal ability,  

quantitative ability, general creativity, spatial ability, working memory 

 

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 
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              As seen in Table 4.10, gender was entered into Model 1 and accounted for 4.9% (ITBS) 

and 3.2% (CTBS) of the variance in MPSP in open-ended problems. After entry of cognitive 

variables (intelligence, creativity, memory, knowledge, reading ability, verbal ability, spatial 

ability, and quantitative ability) into Model 2, the total variance explained by the model as a 

whole was significant, R
2 

= 0.552, F (8, 24) = 3.287, p < .001 (ITBS) and R
2
 = 0.649, F (8, 23) = 

2.404, p = .0487 (CTBS).  

              In addition, as seen in Table 4.10, the cognitive abilities explained 51.3% (ITBS) and 

46.3% (CTBS) of the variance in MPSP in open-ended problems after controlling for gender 

responding, F change (8, 23) = 3.373, p = 0.01 (ITBS) and F change (8, 24) = 2.386, p = 0.049 

(CTBS). 

 

Table 4.10 

Summary of Hierarchical Regression Analysis for Variables Predicting Open-ended 

Problem Solving Performance 

 
Measure of mathematical knowledge and reading ability 

 
ITBS 

 
CTBS 

Model R R
2
 ΔR

2
 SEE 

 
R R

2
 ΔR

2
 SEE 

1
a
 0.220 0.049 0.049 6.854 

 
0.179 0.032 0.032 8.662 

2
b
 0.743 0.552 0.504** 5.430   0.680 0.463 0.431* 7.490 

 

Note. SEE = standard error of estimates.   

a Predictors: (Constant), Gender 

b Predictors: (Constant), Gender, reading ability, general intelligence, math knowledge, verbal 

ability,  quantitative ability, general creativity, spatial ability, working memory 

 

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 
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Research Question 6 

What cognitive variables are the best predictors of mathematical problem solving performance 

in open-ended problems? 

 To answer Research Question 6, hierarchical regression analysis was employed. Model 2 

included the following set of predictors: intelligence, creativity, memory, knowledge, reading 

ability, verbal ability, spatial ability, and quantitative ability. Mathematical problem solving 

performance (MPSP) in open-ended problems was used as the dependent variable.  

Table 4.11 

Hierarchical Analysis of Mathematical Problem Solving Performance in Open-ended Problems 

  
 

Measures of mathematical knowledge and reading ability 

Model Predictor 
CTBS 

 
ITBS 

B SE t 

 

B SE t 

1 Gender 3.127 3.086 1.013   -3.209 2.512 -1.277 

2 Gender -1.639 3.623 -0.452 
 

-2.689 2.2 -1.222 

 
General Creativity 0.227 0.17 2.829** 

 
0.264 0.122 2.172* 

 
Reading Ability -0.014 0.031 -0.459 

 
-0.195 0.086 -0.963 

 
Mathematical Knowledge 0.073 0.055 1.331 

 
0.043 0.095 0.449 

 
General Intelligence -0.648 0.259 -2.505* 

 
0.243 0.21 1.155 

 
Verbal Ability 0.051 0.028 2.022* 

 
0.011 0.022 2.503* 

 
Quantitative Ability 0.008 0.042 0.194 

 
-0.012 0.024 -0.505 

 
Spatial Ability 0.04 0.027 1.486 

 
0.005 0.03 0.178 

  Working Memory -0.091 0.255 -0.357   -0.139 0.197 -0.707 

                  

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 
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 Model 2 accounted for 55.2% (ITBS) and 46.3% (CTBS) of the variance in mathematical 

problem solving performance in open-ended problems, after controlling for gender responding. 

As shown in Model 2, when the CTBS was used as a measure of mathematical knowledge and 

reading ability, students’ general creativity, verbal ability, and general intelligence were found to 

be significant predictors of their mathematical problem solving performance in open-ended 

problems.  

 When the ITBS was used as a measure of mathematical knowledge and reading ability, 

students’ general creativity ability and verbal ability were found to be significant predictors of 

their mathematical problem solving performance in open-ended problems (Table 4.11). Gender, 

working memory, spatial ability, quantitative ability, reading ability, and mathematical 

knowledge did not contribute significantly to the variance in MPSP in open-ended problems. 
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CHAPTER V: DISCUSSION 

 This chapter included a discussion of the findings, limitations of the study, implications, 

and final thoughts. The purpose of this study was to investigate the influences of cognitive 

abilities on the mathematical problem solving performance of students.  

 This study was different from prior studies of mathematical problem solving in that the 

author measured and analyzed mathematical problem solving performance in two categories 

(closed and open-ended problems) rather than considering it as a whole. By doing so, the author 

aimed to explore how the influence of cognitive abilities on problem solving process would vary 

depending on the types of problems solved. 

Discussion of Findings 

Relations between Cognitive Variables and Mathematical Problem Solving Performance 

 The author found that mathematical problem solving performance (MPSP) in closed 

problems was correlated significantly with cognitive variables including mathematical 

knowledge, quantitative ability, verbal ability, general intelligence, general creativity, and spatial 

ability. However, MPSP in closed problems was not correlated significantly with working 

memory and reading ability.  

Similarly MPSP in open-ended problems was correlated significantly with several 

cognitive abilities including verbal ability, general creativity, general intelligence, spatial ability, 

mathematical knowledge, and quantitative ability. However, MPSP in open-ended problems was 

not correlated significantly with working memory and reading ability. 

 As reported in the review of literature, significant correlations between cognitive abilities 

and MPSP were expected. However, two cognitive abilities, reading ability and working 

memory, were correlated with neither MPSP in closed problems nor MPSP in open-ended 
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problems. This finding was not consistent with the findings of previous studies in which working 

memory and reading ability were found to be significant predictors of mathematical problem-

solving performance (e.g., Swanson & Beebe-Frankenberger, 2004). For example, Swanson and 

Beebe-Frankenberger (2004) found that working memory, fluid intelligence, reading ability, 

processing speed, and knowledge of algorithms were the only predictors of mathematical 

problem solving performance of elementary students. One potential explanation for this 

inconsistency, which is related to the influence of reading ability, could be the differences in the 

characteristics of the problems that were used to assess students’ mathematical problem solving 

performance. The DISCOVER instrument, which was used in this study to assess students’ 

MPSP, was designed to have minimal verbal content, thus not dependent on reading ability. 

For example, the problems in the mathematics section of the DISCOVER assessment included 

only a few words, verbal instructions were given, and those administering the assessment made 

certain that all students understood what they were expected to do. In contrast to the DISCOVER 

assessment, Swanson assessed students’ mathematical problem solving performance through 

using word problems. Students who participated in Swanson’s study might have needed reading 

ability of at least a moderate level to comprehend and solve the problems because of the verbal 

complexity of the long word problems.  

Another reason for this inconsistency could be the age differences between the samples 

of the studies. For example, Swanson’s study included children in grades 1, 2, and 3 whereas this 

study included children only from third grade. Reading ability of children has been found to 

contribute to student achievement in the earlier years of schooling (Baker et al., 2008) which 

means that reading ability might be a more significant predictor of mathematical performance for 

children in the first and second grades than for those in third grade. These two major differences 



89 
 

 

might be possible explanations for the fact that reading ability did not contribute to the variance 

in mathematical problem solving performance in this study.  

 In addition to reading ability, working memory was correlated with neither MPSP in 

closed problems nor MPSP in open-ended problems. This finding is inconsistent with the 

findings of Swanson (2004) and Iguchi (2008). Both Swanson and Iguchi found that working 

memory was correlated significantly with mathematical problem solving. Furthermore, in Newell 

and Simon’s (1972) information-processing (IP) theory of learning, the working memory 

capacity of a person was considered to be a major component influencing his/her problem 

solving performance. One possible explanation for this inconsistency might be the measurement 

of working memory. In this study working memory was measured through the Structure-of-

Intellect (SOI) Learning Abilities Test, which included four subtests: memory of figural units 

(MFU), memory of symbolic implications (MSI), memory of symbolic systems (MSS), and 

memory of symbolic units (MSU). The items on these subtests were designed to measure 

memorization of figural and symbolic representations. However, the possible solutions for the 

problems used in this study to measure MPSP did not include the use/memorization of figural or 

symbolic representations.  

 When considering the inconsistencies among the studies as a whole, the author 

recommends that the relationship between cognitive abilities and problem solving performance 

might possibly vary depending on the content of a problem. For example, reading ability might 

be correlated significantly with problem solving performance when problems with complex 

verbal structures are used. On the other hand, reading ability may not be related to problem 

solving performance when problems with non-verbal structures are used. The author suggests 

that the content of problems that are used in instruments should be analyzed carefully before 
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using them as a measure of performance. In mathematics, generally the term ‘content’ is used to 

refer to specific topics and subjects such as (e.g., probability, geometry, and algebra). What I 

mean by the term, content of problem, is different from its use in mathematics. With the term 

content of problem, I refer to a problem’s linguistic complexity, figural and visual structure, and 

proximity to a problem solver.   

Gender Differences in Mathematical Problem Solving Performance 

 Boys had higher mean scores in closed problem solving performance than girls whereas 

girls had higher mean scores in open-ended problem solving performance than boys. However, 

none of these differences were statistically significant. This finding shows that boys and girls are 

not different in their performance in solving mathematical problems. These findings are 

consistent with the findings of previous researchers who found no significant gender differences 

in mathematical problem solving performance of elementary and middle school students (Caplan 

and Caplan, 2005; Fennema and Tartre, 1985; Hembree, 1992; Hyde et al. 1990, Lindberg et al., 

2010). 

 Another finding was no significant differences in cognitive abilities (including 

mathematical knowledge, quantitative ability, verbal ability, general intelligence, general 

creativity, working memory, reading ability and spatial ability) between boys and girls. This 

finding provides a remarkable explanation for the fact that no significant gender differences 

existed in mathematical problem solving performance of elementary students. As reported in 

Chapter 4, cognitive abilities accounted for a substantial variance (ranging from 51.3% to 64.9%) 

in mathematical problem solving performance. Considering the significant influence of cognitive 

abilities on mathematical problem solving performance (MPSP), expecting a significant 

difference between boys and girls in MPSP would not be reasonable. 
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Predicting Mathematical Performance in Closed Problems 

 Using a hierarchical regression analysis, the author found that cognitive abilities were 

significant predictors of MPSP in closed problems as a whole. In Model 1, gender accounted for 

only 0.1% (ITBS) and 11.6% (CTBS) of the variance in MPSP and it was not a significant 

predictor of MPSP in closed problems. When cognitive variables (intelligence, creativity, 

memory, knowledge, reading ability, verbal ability, spatial ability, and quantitative ability) were 

entered into Model 2, the total variance explained by the model as a whole was 51.4% (ITBS) 

and 64.9% (CTBS). The cognitive abilities explained 51.3% (ITBS) and 53.3% (CTBS) of the 

variance in MPSP in closed problems, after controlling for gender responding. In Model 2, when 

CTBS was used as a measure of mathematical knowledge and reading ability, students’ 

mathematics knowledge and general intelligence were the only variables that contributed 

significant variance to MPSP in closed problems. When ITBS was used as a measure of 

mathematical knowledge and reading ability, students’ mathematics knowledge, general 

intelligence, and spatial ability were the variables that contributed unique variance to MPSP in 

closed problems.  

 Mathematical knowledge and general intelligence are the only variables that contributed 

significant variance to MPSP in closed problems (for both ITBS and CTBS). Although spatial 

ability was a significant predictor when ITBS was used as a measure of mathematical knowledge 

and reading ability, it was not a significant predictor when CTBS was used. In addition, a 

surprising fact was that none of the other cognitive variables that were found to be correlated 

significantly with MPSP in closed problems, including general creativity, verbal ability, and 

quantitative ability were significant predictors in Model 2. One statistical explanation for this 

finding might be that when the overlapping effects of all other variables are statistically 
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removed, mathematical knowledge and general intelligence might be the only unique 

contributors to the variance in MPSP in closed problems. However, this statistical explanation 

brings forth another question: Why are mathematical knowledge and general intelligence the 

only variables that contributed significant variance to MPSP in closed problems?  

To me, the answer is related to the structure of problems. According to information 

processing (IP) theorists, problem solving is associated with three sets of thinking processes: (a) 

understanding, (b) searching, and (c) implementing solutions. The influence of cognitive abilities 

on these thinking processes might vary depending on the type of problem. In this study the 

problems that were used to measure MPSP in closed problem solving performance were Types I, 

II, and III problems. As explained in Maker’s Problem Continuum model, in Type I, II, and III 

problems, the problem is known to both the presenter and the problem solver. The presenter also 

knows the correct solution. As Hong (1998) suggested, in solving these kinds of problems, if 

problem solvers possess appropriate domain-specific knowledge, including basic concepts, facts, 

and principles of a particular subject matter domain, the learners can solve the problem directly 

without searching for a solution using various searching strategies. When solvers do not have 

appropriate knowledge to solve the problem, they are required to use specific strategies to search 

for a solution (Chi, et al., 1982). Fingar (2012) stated that intelligence can help in creating these 

strategies by reducing uncertainty and providing insight. Therefore, performance in solving these 

kinds of problems might be associated with domain-specific knowledge or intelligence.  

Predicting Mathematical Performance in Open-ended Problems 

Using a hierarchical regression analysis, the author found that cognitive abilities 

predicted mathematical performance in open-ended problems significantly as a whole. In Model 

1, gender accounted for 4.9% (ITBS) and 3.2% (CTBS) of the variance in MPSP in open-ended 
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problems. Gender alone did not predict MPSP in open-ended problems at a significant level. 

After entry of cognitive variables (intelligence, creativity, memory, knowledge, reading ability, 

verbal ability, spatial ability, and quantitative ability) into Model 2, the total variance explained 

by the model as a whole was 55.2% (ITBS) and 64.9% (CTBS). The cognitive abilities explained 

51.3% (ITBS) and 46.3% (CTBS) of the variance in mathematical problem solving performance 

in open-ended problems, after controlling for gender responding. In Model 2, when CTBS was 

used as a measure of mathematical knowledge and reading ability, students’ general creativity, 

verbal ability, and general intelligence were the only variables that contributed significant 

variance to MPSP in open-ended problems. When ITBS was used as a measure of mathematical 

knowledge and reading ability, students’ general creativity and verbal ability were found to be 

the variables that contributed significant variance to MPSP in open-ended problems.  

 General creativity and verbal ability are the only variables that contributed significant 

variance to MPSP in open problems (for both ITBS and CTBS). Although general intelligence 

was a significant predictor when ITBS was used as a measure of mathematical knowledge and 

reading ability, it was not a significant predictor when CTBS was used. Again this statistical 

explanation brings forth the same question: Why are general creativity and verbal ability the 

only variables that contributed significant variance to MPSP in open-ended problems? In this 

study, the problems that were used to measure MPSP in open-ended problem solving 

performance were Type IV and V problems. As explained in Maker’s Problem Continuum 

model, Type IV and V problems are known to the presenter and the solver, but the problem may 

be solved in more than one way and the presenter knows the range of solutions. These problems 

can be solved inductively but they have an accepted range of answers. Because of the structure 

of these problems, the problem solver’s fluency is associated with his/her performance in these 
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types of problems. As Mednick (1962) suggested, fluency is an important component of 

creativity because more responses to a single prompt results in a higher probability that a 

problem solver will generate an original idea.  Therefore, expecting general creativity to be a 

significant predictor of open-ended problem solving performance is reasonable.  

The relationship between performance in solving open-ended problems and verbal ability 

might seem complicated to explain. One possible explanation for the fact that verbal ability was 

found to be a significant predictor of MPSP in open-ended problems might be the relation 

between fluency and verbal ability. Fluency is described as an aspect of verbal ability (Lamar, 

Zonderman, & Resnick, 2002). Researchers have found that individuals with high verbal ability 

perform well on measures of fluency (Ayotte, Potter, Williams, Steffens, & Bosworth, 2009). In 

addition, as declared before, open-ended problems have multiple potential valid solutions and the 

problem solver’s fluency is associated with his/her performance in these types of problems. 

Therefore, fluency can be described as a moderator between verbal ability and performance in 

solving open-ended problems, resulting in verbal ability being found to be a significant predictor 

of MPSP in open-ended problems. 

Another interesting finding was that spatial ability predicted MPSP significantly in 

neither open-ended nor closed problems. However, spatial ability was described by researchers 

as an essential factor influencing problem-solving performance (e.g., Hegarty & Kozhevnikov, 

1999; Garderen, 2006; Sherman, 1979; Fennema & Tartre, 1985; Lohman, 1979). Furthermore, 

Sherman (1979) reported that spatial ability was one of the main factors affecting mathematical 

performance significantly. She also found that individuals with high spatial ability had a wider 

range of strategies and they were better at determining when to use a particular strategy during 

problem solving. One possible explanation for the fact that spatial ability did not predict problem 



95 
 

 

solving performance might be that the problems that were used in this study to assess 

performance in both open-ended and closed problems required the ability to generate, retain, and 

manipulate abstract visual images at a minimal level. In addition, Fennema and Tartre found that 

a student's spatial ability did not affect his or her likelihood of solving certain math problems 

correctly, but the students with high spatial ability were still more likely to be “...able to convert 

word problems to accurate diagrams, and to use those diagrams to get correct solutions.” (1985, 

p. 193) Therefore, the relationship between spatial ability and mathematical problem solving 

performance might vary depending on the content and structure of the problems.  

Summary of Discussion 

 When combining all of these findings I propose that two facts are crucial to understand 

performance in solving mathematical problems. The first is that the relationship between 

cognitive abilities and problem solving performance may vary depending on the content of a 

problem. For example, reading ability might be a significant predictor of problem solving 

performance when problems with complex verbal structure are used. On the other hand, reading 

ability may not be a significant predictor when problems have a non-verbal structure. I conclude 

that the content of problems that are used in instruments should be analyzed carefully before 

using them as a measure of performance. 

The second is that the relationship between cognitive abilities and problem solving 

performance may vary depending on the structure of a problem. For example, mathematical 

knowledge and general intelligence were the only significant predictors of performance in 

solving closed problems whereas general creativity and verbal ability were found to be the only 

significant predictors of performance in solving open-ended problems. Readers of this study 

might claim that the impact of problem structure and problem content might intertwine and they 
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might be difficult to distinguish. Although this claim might be true for many problems, these 

impacts were distinct and evident in this study. The following problems clarify my proposal: 

 Problem A:  Solve this problem:  4 + 6 = ____ 

Problem B:  Write as many problems as possible that have 10 as the answer.  

Although these two problems include similar content and concepts, they have different 

structures. Problem A is defined clearly, has a specific method, and one right answer (closed, 

Type I). Problem B is defined clearly (all problems written must have an answer of 10), but the 

methods are not specified, and in fact, are infinite, an infinite number of solutions can be devised 

(open, Type V). Therefore, I conclude that closed and open-ended problems require different 

cognitive abilities for reaching successful solutions. These findings are thought-provoking, and 

can help educators and researchers understand how structure (type) and content of a problem 

might influence the relationship between cognitive abilities and problem solving performance.  

Limitations of the Study 

 This study has several limitations, and these should be considered by readers carefully as 

they interpret the results. The first limitation is the small sample size, which can contribute to 

inconsistent findings or findings affected by outliers. The author did not remove the outliers from 

the data set on purpose because they provided important information and they were rare to find. 

Different guidelines concerning the number of cases required for multiple regression analysis 

were suggested by different authors. Stevens (1996) recommended having 10-15 participants for 

each predictor used in a study for a reliable analysis. In this study the participants included 67 

students, which is less than what Steven recommended. In addition, the study sample consisted 

of only Dine students in grade 3, and therefore, the results might not be generalized to other 

populations and all grade levels. Future researchers should have a larger sample size with 
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participants from other ethnicities, socio-economic status, and grade levels so that the findings 

may be generalizable to diverse populations.  

 A second limitation is the use of two tests (ITBS and CTBS) to measure students’ 

mathematical knowledge and reading ability. This was unavoidable due to the fact that I was 

required to use the tests normally given in the schools in which the data were collected. Although 

these tests are seen as being similar, I attempted to eliminate this problem by analyzing the data 

in two different categories by separating the analysis (one analysis for each test). By doing so, I 

controlled for the influence resulting from different tests, but for the same reason, I had a smaller 

sample size in each category. I recommend that future researchers use a single instrument to 

assess a certain variable to avoid variations resulting from the use of different instruments.  

 The last limitation of the study is related to data collection. The data from the TCT-DP 

test that was used to assess general creativity were collected at the end of the spring semester of 

grade 4 whereas all other data were collected at the end of spring semester of grade 3. The data 

related to general creativity were collected almost a year later than the data related to other 

cognitive abilities, which might produce a misleading effect size. Although Brocher (1989) 

found a high pre- and post-test reliability with a coefficient of r = 0.81 after several months, I 

still have some questions about the potential influence of data collection at different time 

intervals. 

Implications 

  This study has several important implications for practitioners and researchers in the 

field of psychology, education, and other related disciplines. The findings of this study provide a 

better understanding of how the problem solving process works from the information processing 

perspective.       
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Implications for Practice 

 I found that open-ended problems have different processes and components than those of 

closed problems in mathematics. To develop students’ problem-solving skills, mathematics 

educators and teachers must design proper teaching and learning strategies using methods that 

correspond to the different characteristics and different nature of problems. 

 The characteristics of instructional strategies and teaching methods should be in 

accordance with educational goals. To improve students’ mathematical performance in closed 

problems, educators must focus on enhancing students’ mathematical knowledge and they should 

consider students’ intellectual levels. Similarly, to improve students’ mathematical performance 

in open-ended problems, educators must focus on fostering students’ creativity and verbal 

abilities. Underestimating students’ cognitive abilities and their interaction with learning 

processes might possibly result in failures. 

 Another important implication of the study for educators is related to understanding 

gender differences in mathematical problem solving performance. In this study, I found no 

significant differences between girls and boys in any of the cognitive abilities and mathematical 

problem solving performance of students in elementary school. This finding is in accordance 

with the findings of other studies that were conducted at the elementary and middle school level. 

However, gender differences were observed by other researchers during later periods of 

schooling (high school and college) and boys were found to perform better than girls (Hembree, 

1992; Hyde et al., 1990; Lindberg et al., 2010). These findings show that school settings, 

teaching methods, and other social factors might be promoting the development of these abilities 

in boys while blocking it in girls. Although a great deal of research has been done on the 

treatment of boys and girls in the classroom, changes in classrooms are rarely apparent (Kallam, 
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1996). For example, as Kallam noted, boys still tend to receive more attention and a greater 

amount of praise, and they are asked more probing questions (Sadker, Sadker, & Long, 1996). 

Educators and teachers must reconsider their roles as they can provide social equity in the 

classroom for boys and girls to enable girls to progress at a pace equal to that of boys in the later 

years of schooling.   

 Finally, to teachers and other educators, I would say that fostering students’ creativity in 

mathematics classrooms is a major component in learning mathematics. As the findings 

indicated, creativity contributes to mathematical problem solving performance significantly 

when the problem has an open-ended structure. Minimal or ineffective use of open-ended 

problems during instruction has been one common mistake made by teachers in many 

mathematics classrooms. This common practice does not allow students to use and apply their 

creativity in mathematics. However, children enjoy creative thinking experiences, and they can 

learn mathematics while also applying their creative thinking in the use of mathematical 

principles (Bahar & Maker, 2011). Curriculum designers and educators should produce rich 

learning settings and materials to address students’ creativity. In addition, teachers should create 

classroom environments in which students can defend their solutions or decisions, and therefore 

develop their creative thinking.  

I believe problem solving should play a key role in education, at all levels, precisely 

because it is so important in everyday life. Each of us may make hundreds of decisions every 

day, and the vast majority of these decisions are about how to solve open-ended problems 

because we are faced with numerous possible variations or alternatives. Deciding what to cook 

for dinner, for example, typically is an open-ended problem; usually one can see a clear need to 

do so, yet the method and solution will vary. Likewise is it not imperative for educators to help 
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students develop their problem solving skills, especially to solve complex, open-ended 

problems? Unfortunately much remains to be done in the standard classroom. Most mathematics 

problems in school curricula continue to be Problem Types I and II only—drill and practice, 

find-the-right-answer kinds of approaches. As educators, we cannot expect our students to 

function in the real world after teaching them twelve-plus years how to solve Problem Types I 

and II because these Problem Types are virtually non-existent after we graduate. 

Implications for Research 

 The findings of this study are thought-provoking and they have important implications 

for future researchers as they seek for a better understanding of problem solving processes. One 

major implication is that researchers should consider the structure (type) and content of a 

problem. While reviewing literature for this study, I found that many researchers use high-stakes 

tests such as the SAT and ACT, state standardized tests, or achievement tests to assess problem 

solving performance without considering the structure (type) and content of problems. For some 

reasons, this practice might be misleading. First of all, not all of these tests are capable of 

assessing problem solving performance because they are not designed for this purpose. Second, 

even though they are capable of assessing problem solving performance at some level, different 

items might have different characteristics and their solution might require different abilities. For 

example, solving a long word problem might require a higher reading ability than solving 

another problem that is non-verbal. Similarly, solving a geometry problem with complex shapes 

might require more spatial ability than solving another problem with less complex shapes. 

Researchers should be careful when selecting an instrument to assess problem solving 

performance and if possible they should check the appropriateness of each item in advance.   



101 
 

 

 As reported in Chapter 4, cognitive abilities accounted for a significant variance (ranging 

from 51.3% to 64.9%) in mathematical problem solving performance. The substantial influence 

of cognitive abilities on problem solving performance supports the theoretical framework of the 

study. However, researchers still need to identify the variables that account for the remaining 

unexplained variance in mathematical problem solving performance. Therefore, I suggest that 

future researchers should consider the fact that abilities and skills develop in a sociocultural 

context and they should analyze the influence of demographic variables including ethnicity, 

socioeconomic status, and cultural variables on problem solving performance.  

 Finally, future researchers should explore whether the findings related to open-ended and 

closed problem solving in this study generalize to other kinds of domains. The problems 

analyzed in this study were from the mathematical domain. Future studies should focus on how 

cognitive abilities influence problem solving performance in different domains including 

science, language, social studies, and other disciplines to explore if these findings apply. 

Final Thoughts 

Problem solving has been a core theme in education for several decades. Educators and 

policy makers agree on the importance of problem solving skills for school and real life success 

and they advocate for locating it at the center of education. Despite all these efforts, we, 

educators, could not succeed to do so. I hope that this study and its findings will be a landmark 

for further explorations and it will encourage future researchers and educators in their journey to 

better understand problem solving process. Halmos (1980) once said: 

“I do believe that problems are the heart of mathematics, and I hope that as teachers, in 

the classroom, in seminars, and in the books and articles we write, we will emphasize 
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them more and more, and that we will train our students to be better problem-posers 

and problem solvers than we are.” (p. 524) 

 I believe the more researchers and educators we have who think like Halmos, the more 

problem solving will be promoted in schools. Furthermore, as Otten (2010) pointed out, this 

emphasis on problem solving will not be self-contained only to the domain of mathematics 

education but also will transfer into society in positive ways by promoting a knowledgeable 

citizenry and by creating pathways of advancement for students (Hiebert et al., 1996; 

Schoenfeld, 2007). Therefore, the next generations will have fewer problems to deal with, not 

just in mathematics classrooms, but also in real life. 
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