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Many numerical models involve utilization of a
large number of input parameters, which often
results in complex interactions between inputs and
algorithms within the model. In all models it is
generally desirable to understand the relationships
between the sensitivity of outputs on input param-
eter values and how these relationships affect
model predictions. This is important not only for
gaining a better understanding of the model be-
havior, but also for detecting model deficiencies
and unreasonable responses induced by the high
level of model complexity and the high number of
model input factors.

Sensitivity analysis (SA) is a method widely
used to ascertain simulation model response to
changes in its input factors. In practice, SA is not
only applied to examine the importance of input
parameters but is also considered as an important
element of the model development process. SA
helps to elucidate the impact of different model
structures, to prepare for model parameterization,
and to direct research priorities by focusing on the
parameters that contribute greatest to uncertainty
in the model response (Saltelli and Campolongo
2000; Breshears et al. 1992).

The objective of this paper is to provide a new
local sensitivity analysis framework that can be
used to effectively show the interdependencies of
sensitivity to multiple model inputs, and which
can be used in the model development process to
help identify undesirable or illogical model
responses. We used an algorithm similar to the
Morris framework, but a different local sensitivity
index to build a localized sensitivity matrix for a
model. The sensitivity matrix was further analyzed
to make SA more effective as an aid in the model
development process. We illustrate the use of this
framework to (1) examine the distribution of the
sensitivity to each parameter, and thus to list and
classify the importance of input parameters; (2)
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decompose the dependency of model response on
input parameter values and understand the
parameter interactions, using correlations and
regressions; and (3) reveal the nonlinear relation-
ships, thresholds, and potential weaknesses or
problems of model structure.

We applied our new method to the Rangeland
Hydrology and Erosion Model (RHEM), which
was developed from the Water Erosion Prediction
Project model (Flanagan and Nearing 1995; Near-
ing et al. 1989; Laflen et al. 1997). Several local SA
tests have been conducted on WEPP (Baffaut et al.
1997; Tiscareno -Lopez et al. 1994). These previous
studies were based on site -specific data and pa-
rameter values, and the results could not be ex-
trapolated to other locations. This paper, taking
the erosion predictions in RHEM as an example,
not only highlights the local sensitivities but also
describes how to investigate the interactions
between RHEM parameters and how to identify
unusual RHEM behavior. Results from this study
will be helpful in improving the understanding of
the model behavior and parameter interactions in
RHEM, and also in improving the integrity of the
model predictions.

METHODOLOGY

Sensitivity Equation

The local sensitivity index in this paper is quan-
tified by equation 1:

St(xo) _

x? +axi,...,x)-Y(xo)) /Y(x0)
axi / x? (1)

where Si(x0) is the sensitivity of output Y to the
input factor xi at the point of x°(xi°, ..., ,

Si(x°) is a non -dimensional, localized index that
represents the normalized response of output to
the increase of the input value xi . The absolute
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magnitude of Si(x0) indicates the degree of sensi-
tivity of Y to xi at the point of x °. A positive (nega-
tive) Si indicates the positive (negative) relation-
ship between Y and xi; that is, the increase of xi
will cause the increase (decrease) in Y. The per-
centage of ax, / x° is expected to be small enough
to ensure the Si to be representative at the point x°.
One of the merits of equation 1 is that if ax, / x°
remains a constant percentage, the value of Si(x0)
can be used to compare the sensitivity to an input
variable at its different magnitudes. It can also be
used to compare the sensitivity of output to
different individual input factors, for example the
sensitivity of Y to xi and xi at the point of x°.

Procedure

Figure 1 is a flow chart of our methodology. It
starts with selecting the input and output pa-
rameters to be analyzed. The ranges of each input
parameter should then be given to build the pa-
rameter space of interest, which could encompass
the full realistic range of all input parameters.
Then points, x °, were randomly selected from the
parameter space, and sensitivity indices were
calculated for each parameter at the selected point.
The Latin hypercube sampling (LH) method
(McKay et al. 1979) was used for random sampling
of points, x °. At each point selected by LH, the
model was executed (1 + 1) times. The first run was
to calculate and save the output value at the point
x° with no perturbation, and the next I times were
to calculate new output values after increasing
each parameter, one at a time, by a predetermined
percentage (ax, / 4). The local sensitivity index
for each input parameter at the point was then cal-
culated using equation 2 based on the (1+ 1) values
of the output at this point. The sampling pro-
cedure and local sensitivity index calculation were
repeated 10,000 times, after which the parameter
space was well covered and points were well
distributed. At the conclusion of the runs a sensi-
tivity index matrix had been constructed from the
results, containing the values of each parameter at
each selected point and the local sensitivity of
output to each input parameter at each point. The
absolute values of the sensitivities were also gen-
erated for further analysis. A FORTRAN program
was written to connect the model, LH sampling,
the sensitivity loops, and the building of the
sensitivity matrix.

Model RHEM and Input Parameter Space
We selected 14 input parameters used in the

hydrology and erosion components of RHEM for

the sensitivity analysis. Soil loss (kg /m2), the
amount of soil erosion from the hillslope, was se-
lected as the targeted output variable. The parame-
ter space of interest for this study is the entire
applicable space of the RHEM model. Thus the full
range of reasonable parameter values for each
input variable was used to build a 14- dimensional
parameter space. The sources of the ranges came
from the recommendations in the WEPP model
manual (Flanagan and Nearing 1995) and WEPP
database (unpublished data, personal communica-
tion; see Table 1).

Table 1 gives the name, range, and descriptions
of each input parameter studied. The range of each
input parameter was required for the sensitivity
study. The increment of each input parameter and
the total number of samples were also required for
the SA program. The increment was arbitrarily set
at 5 percent in this study. A small value of the
increment is preferred to make the sensitivity
index representative of the exact localized effect,
but it must be large enough to avoid rounding
errors in the calculations. The total number of
points should be determined by considering not
only the number of input parameters but also the
complexity of the model. We used 10,000 points in
this study as a representative sampling of the full
input parameter space.

RESULTS
Approximately 50 percent of the total 10,000

events did not generate rainfall excess, which
means that runoff and erosion from these events
was zero, and approximately 20 percent of the
total events yielded runoff of less than 5 mm,
which was considered to be too small to be of
interest in terms of output. As a result, only the
3180 of the 10,000 simulated events that generated
runoff greater than 5 min were saved in the sensi-
tivity matrix for further analysis.

Localized Sensitivity
Absolute local sensitivity can be used to com-

pare the relative importance of the input factors.
Each row of the sensitivity matrix generates a
ranking of parameter importance based on the
rank of the absolute sensitivity values at each
point. However, the importance of a factor varied
from point to point. For example, at point 23, the
ranking of sensitive parameters was rain, dur, ke,
ns, xip, ki, sln, psd, slp, fe, fr, rsp, kr, rc. At point 30,
the ranking was psd, rain, dur, xip, ke, ki, ns, slp, fe,
sln, fr, rsp, kr, zc. Figure 2 gives lists of the four
most important factors based on the count of the
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A numerical model

1
Build an interested input parameter space
Identify the targeting output parameter

Sensitivity loops
1. Randomly select a point from the space

2. Calculate sensitivity index for each parameter at that point
3. Go back to I, till enough points were selected
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1

Statistics of sensitivities
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New parameter space

Scatter plots
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i
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Figure 1. A flow chart of the sensitivity analysis conducted in this paper.
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Figure 2. The distribution of the four top- ranked input factors based on the count of events. The first
graph shows that rain was the most sensitive factor for 97.99% of events, with psd, dur, xip, sip, z6,
and ke the most sensitive factors for the remaining 2.01 % of the events.
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Table 1. Parameters and parameter ranges used in this study.

Parameter Upper Bound Lower Bound Unit Description

slp 3 30 °/O Slope

sln 10 100 m Slope length
rain 20 120 mm Rainfall volume
dur 0.5 2 hr Rainfall duration
xip 1 20 Rainfall intensity variable

ki 1000 2000000 kg*s/m4 Interrill erodibility
kr 0.00001 0.004 s/m Rill erodibility

Tc 0.0001 7 N /m2 Critical shear stress

ke 0.8 40 mm/hr Effective hydraulic conductivity
ns 0.00025 0.7 m Matric potential
fr 4.07 200 Friction factor for runoff
fe 1.11 100 Friction factor for erosion
rsp 0.8 5 m Inter space
psd 7 -1 Particle size distribution

events. For 98.0 percent of the total 3180 events, the
total rainfall depth, rain, was the most important
factor, but psd, dur, xip, sip, T and ke also showed
up as the top- ranked factors, and these variables
accounted for the remaining 2.0 percent of the
events. Storm duration, dur, was the second most
sensitive factor for 68.5 percent of the total events;
slp, rain, xip, ki, kr, ke, fe, and psd accounted for the
rest of 31.5 percent events. The third and the
fourth ranked important factors were more widely
distributed among the input variables (Figure 2).
The results show that for a complex model in
which the input parameters interact with each
other, the sensitivity for input factors may vary
greatly from point to point in the parameter space.

Figure 3 gives the distribution of each Si based
on absolute values. The parameters are listed by
the ranking of their mean sensitivities, the "over-
all" effect: rain, dur, xip, ke, ns, kí, psd, slp, sln, fe, fr,
zc, kr, and rsp.

Tiscareno -Lopez et al. (1994) conducted a sensi-
tivity analysis on a similar soil erosion model,
WEPP, on the USDA -ARS Walnut Gulch Experi-
mental Watershed located near Tombstone, Arizo-
na. The results from their study indicated that
rainfall amount was the most sensitive factor on
that watershed, followed by ke. From our results,
rain was the first important factor for 98.0 percent
of all the events, followed by either slp, psd, ki, ;,
or ke, depending on the combination of input val-
ues. From Figures 2 and 3, one can see that RHEM
is a complex model, whereby the localized sensi-
tivities vary greatly from site to site.

Scatter Plots to Identify Characteristics
of Model Behavior

In this section we generate the scatter plots of
the sensitivity index Si at each point over the
values of the ith parameter at this point to show
how this type of scatter plot can be used to help
modelers survey the model response and identify
nonlinear relationships, thresholds, and potential
model problems.

Figure 4 is a plot of Spsd over the corresponding
psd values. The parameter psd is important because
it is the only factor that accounts for particle size
distribution in this study. Figure 4 is a surprising
plot because it reveals an unexpected and undesir-
able model response around the psd value of -3.2.
The same sensitivity procedures focused on a
narrow region of psd ( -3.0, -3.4) were processed
again and this "closer" look confirmed the incon-
sistent model behavior. For example, for sediment
with a psd of -3.31, a 5 percent increase in psd
could induce 70 percent increase in soil loss, which
was much more sensitive than those simulations
with psd outside this region. This is not a reason-
able model response for this variable.

Dependencies of Sensitivity Indices on
Input Parameter Values

We use regression and correlation analysis in
this paper to understand the dependence of the
sensitivity for a factor on the input parameter
values (Table 2). The coefficient of determination,
R2, of the regression describes the percentage of
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rain dur xip ke ns ki psd slp sln fe fr te kr rsp

Input parameter

Figure 3. Statistics of absolute sensitivities for each input parameter. The sensitivity on the Y axis only
shows values less than 10. The parameters are listed on the X axis by ranking of their mean sensitivities,
represented by the smallest boxes. Each S¡ is represented as a separate box chart. The box is deter-
mined by the 25th and 75th percentiles. The whiskers are determined by the 5th and 95th percentiles.
The dash marks are determined by the minimum and maximum values. Descriptions of all input parame-

ters refer to Table 1.
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Figure 4. Scatter plot of sensitivity of soil loss to psd (Spsd) vs. psd values. It reveals the
incorrect model response when psd is close to -3.2.
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the variance of the sensitivity index that can be
explained by the magnitudes of the input parame-
ters. The correlation coefficients of Si and values of
each input parameter reveal the dependence of Si
on each input factor. For example, it can be seen
from Table 2 that approximately 50 percent of the
variance of Sr, Ssi,,, and Ske could be explained by
the magnitudes of the entire input parameter set.
The correlation matrix in Table 2 helps to further
decompose this dependency. As one can see, Sfr is
dependent on the factor kr and ki; thus, the sensi-
tivity of the friction factor of runoff, fr, is related to
magnitude of the erosion coeffcients.

The coefficients in Table 2 reveal many insights
on the relationships between the parameters. For
example, S s and Ske are dependent on the value of
rain, dur, and xip. This relationship reflects the fact
that the runoff generation in RHEM is controlled
by both the rainfall regime (associated with rainfall
parameters rain, dur, and xip) and the infiltration
regime (associated with hydrologic factors ke and
ns).

Table 2 also shows that there is negative correla-
tion between Ske and ke, which indicates that the
response of soil loss to ke is dependent on the mag-
nitude of ke itself. The negative correlation coeffi-
cient indicates that the higher the ke, the more
sensitive the ke. This relationship makes sense
because the high ke is often associated with the
small amount of runoff and soil loss, and the sensi-
tivity of soil loss to input factors increases as the soil
loss value decreases.

CONCLUSION

A sensitivity analysis based on the concept of
local sensitivity and Latin hypercube sampling
was conducted using the soil erosion component
in the model RHEM as a case study. The local sen-
sitivity indices of soil loss to 14 input parameters of
RHEM at 10,000 points from the full parameter
space were obtained and used to build a sensitivity

matrix. The sensitivity matrix was analyzed in
several ways to draw useful insights on model
response and interactions between model parame-
ters: (1) the results highlighted the importance of
local sensitivity, which varies from site to site for a
complex model such as RHEM. (2) The method
was also used to decompose the independency of
model response on input parameter values. (3) The
method effctively detected model errors.

The method of this paper can be used as an
element of the iterative modeling process whereby
model response can be surveyed and problems
identified and corrected in order to construct a
robust model.
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