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ABSTRACT 

.Fluctuations in coherent steady-state pulses are in

vestigated, theoretically, in the superradiant regime of a 

swept-gain laser amplifier. Spontaneous emission is modelled 

by letting the initial polarization be a complex stochastic 

variable. Energy fluctuations are found in the steady-state 

region. These fluctuations differ from peak power fluctua

tions in a laser oscillator in four ways: 

(1) these energy fluctuations are macroscopic (^10% of 

the classical value); 

(2) they are unidirectional in that energies lower than 

the semiclassical value are always involved; 

(3) they are episodic in character and clearly different 

from "random walk" processes about a classical mean; 

(4) they are largely independent of the magnitude of the 

initial polarization. 

It is shown, analytically as well as numerically, 

that these energy fluctuations arise from fluctuations in 

the phase of the initial polarization. An energy distribu

tion is also derived, which is predicted to be observed in 

the output of this laser. It is also shown that these 

x 



xi 

fluctuations are fundamentally different from the macroscopic 

fluctuations in Dicke superradiance, which have been reported 

previously by Bonifacio, Schwendimann, and Haake and also by 

Degiorgio. 



CHAPTER 1 

INTRODUCTION 

In this dissertation we investigate, theoretically, 

fluctuations in coherent steady-state pulses in the super-

radiant regime of a swept-gain laser amplifier. The mathe

matical model to be studied is the Maxwell-Bloch equations 

= - Re< «?*»*) - i. y >_ 0, z > 0 

3 <?= a'^» • Ktf. 
9z 

Here & is the complex amplitude of the atomic polarization, 

£ is the complex amplitude of the envelope of the incident 

electric field, and n is the population inversion. T^ is 

the decay time for the electrons to drop to other energy 

levels, and T2 is the decay time for the atoms to depo

larize. z is the distance into the amplifier and 

y = t - z/c is the retarded time, where t is the time and 

c is the speed of light in the amplifier. The boundary 

conditions are <f(|i,z = 0) , y ^ 0 and = 0,z), 

n(y = 0,z) , z ̂  0. 

1 



Here, we set = 00 so we are in the superradiant 

regime, <s(y,0) = 0 so that the pulse builds up from 

spontaneous emission, and n(0,z) = +1 since initially all 

the electrons are in the excited state. We model spontaneous 

emission by letting 5P(0,z) be a complex stochastic 

variable. 

We find energy fluctuations in the steady-state 

region which differ from peak power fluctuations in a laser 

oscillator in four ways: 

(1) these energy fluctuations are macroscopic; 

(2) they are unidirectional; 

(3) they are episodic; 

(4) they are largely independent of the magnitude of the 

initial polarization. 

We show, analytically as well as numerically, that these 

energy fluctuations arise from fluctuations in the phase of 

& (0,z). We also derive an energy distribution that we pre

dict would be observed in the output of this laser. 

We begin, in Chapter 2, with a brief introduction 

designed for the reader unfamiliar with the basic facts 

about lasers. In Chapter 3 we describe the steady-state 

pulses which arise in this amplifier. Having introduced the 

necessary background information, Chapter 4 describes the 

problem at hand. Then, in Chapter 5, we present our 



numerical data to provide the intuitive understanding for 

the analysis to follow. In Chapter 6 we discuss, analyt

ically, the physical process which causes these energy 

fluctuations. In Chapter 7 we discuss, analytically, the 

stochastics, including the energy distribution which we 

predict would be observed experimentally in the output of 

real laser amplifier. Finally, in Chapter 8 we summarize 

our results. 



CHAPTER 2 

INTRODUCTION TO COHERENT RADIATION 

AND RESONANT MEDIA 

This introduction is designed to provide some general 

background material on lasers. The first half will describe 

the physical behavior of a laser from a semiclassical point 

of view, and the second half will introduce the mathematical 

equations for the particular model which we will study in 

the remainder of this dissertation. 

Physical Preliminaries 

To begin, we review some basic facts about light. 

When an electron, which is in an excited state of an atom, 

drops into a lower energy state, electromagnetic radiation (a 

photon) is created. This radiation travels away from the 

atom at the speed of light, c, which in free space is 

3 x 10*^ cm/sec. The energy given up by the atom in this 

decay process, &" , and the angular frequency of the emitted 
@ 

radiation, cj, are related by & = -hw where -ft, Planck's 

-27 2 
constant, is 1.05 x 10 gram cm /sec. In a typical laser 

15 -1 
the frequency of the radiation is a-4 x 10 sec with a 

wavelength, X = 2ttc/iu, of ^5 x 10 cm, which is visible 

light. The lifetime for this electron transition is defined 

4 
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as the time it would take, in a large sample, for a fraction 

1 - 1/e, ^.63, of the sample to emit photons by this tran

sition. The length of the light pulse (a photon wave packet) 

is proportional to this lifetime. In a typical laser the 

2 
length of a photon wave packet is VL0 cm. Such a pulse 

_ g 
of radiation passes a fixed point in M.0 sec. With these 

numbers one can show that laser radiation can be considered 

as monochromatic (of a single frequency) even though the 

pulse actually consists of a range of frequencies. To verify 

this assertion, use the Heisenberg uncertainty principle 

AzAio c, where Az is the length of the pulse and Aoj is 

g 
its frequency range. With the numbers given above, Ato ^ 10 

-1 15 sec which is certainly negligable compared to uj ̂  4 x io 

sec""1*. (In fact, the actual value of Aw in a laser is 

orders of magnitude less than this. The value given here is 

more appropriate to electron decay through spontaneous emis

sion which is defined below.) 

Normally, when a burst of light is created by a large 

number of atoms decaying in this way, most of the atoms emit 

photons spontaneously (i.e., independently of the photons 

being created by other atoms in the system). The photons 

created by this process, called spontaneous emission, travel 

away from the system in all directions. Since the photons 

are created independently, their phases are independent and, 
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when many photons are averaged to obtain light on a macro

scopic scale, no phase structure remains. However, there is 

another process which creates unidirectional, coherent (of 

the same wavelength and phase) light. This process is called 

stimulated emission. 

For simplicity, let us consider an idealistic two-

level atom, that is, an atom with only one electron which 

can be either of two energy levels, a or b. Let the 

energies of these two states be ^ and ^ with 

g- > Let the electron be in the lower energy state, 

state b, and let a beam of light pass by with frequency 

{ - #Y)/fi, which is the frequency difference between the 
Si  o  

two states. Then there is a certain probability that a 

photon in the light beam will be absorbed by the atom and 

excite the electron to state a. This process is called 

stimulated absorption. Conversely, once this electron is in 

the excited state, there is a certain probability that a 

photon will cause the electron to drop back into the lower 

level and emit another photon of the same frequency, 

{Or - 9", )/fc. This process is called stimulated emission 
a b 

The newly created photon has the remarkable property (be

cause of the resonant process of its creation) that it 

travels in the same direction and with the same phase as the 

incident photon. 



7 

Although classical mechanics is unable to completely 

explain either of these two stimulated processes, there are 

special circumstances under which it can give comparable 

results. For example, in Sargent, Scully, and Lamb (1974), 

it is shown that a monochromatic plane wave which impinges 

upon an infinite sheet of classical oscillators (charges 

fixed in position by springs) will cause similar processes. 
j 

This occurs because the incident plane wave sets up oscilla

tions in the sheet which are 90° out of phase with the 

plane wave; in turn the oscillating charges in the sheet set 

up their own electric field, which, for large distances from 

the sheet, is 90° out of phase with the sheet. Thus the 

resulting electric field is either in phase with or 180° out 

of phase with the incident plane wave. In this classical 

model, stimulated absorption results when the electric field 

which has been created by the oscillating charges is 180° 

out of phase with the incident plane wave, for then we have 

destructive interference between the incident and created 

fields and energy has been lost to the oscillators. However, 

if the two electric fields are in phase we have stimulated 

emission since the energy is being resonantly returned to 

the plane wave. 

To obtain coherent radiation, it is necessary that 

stimulated emission dominate stimulated absorption. Since 
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the probabilities for the two processes are equal, this means 

that more electrons must be in the excited state than in the 

lower state. Thus in a laser atoms are excited (pumped) to 

the upper energy level and photons are created by spontaneous 

emission. Initially most of these photons travel out the 

sides of the medium and their energy is lost. However a few 

travel down the medium creating more photons with the same 

frequency and phase by stimulated emission and so causing 

still more stimulated emission. This cascade effect con

tinues and greatly increases the intensity of the beam. (For 

example, in a ruby laser a light pulse can be produced with 

9 
a peak power (energy per unit time) of 10 watts which 

18 
contains ^10 photons and which passes a fixed point in 

-7 <vl0 sec.) As the electrons drop into the lower level, 

the probability for stimulated absorption increases and be

comes important. This is detrimental to the laser pulse be

cause some of the pulse energy is used to reexcite the 

electrons and thus return energy to the medium. Generally 

lasers avoid this problem by continually reexciting electrons 

by methods which do not interfere with the pulse itself. 

In this dissertation, we are concerned with partic

ular lasers where the halflife for spontaneous emission is 

very short. (One example is a laser with its electron tran-

-8  
sition in the far ultra-violet region, i.e., A ^ 10 "to 
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— 7 10 cm.) If all the electrons in the medium were excited 

at the same time, most would have decayed to the lower state 

by spontaneous emission long before the pulse arrived; then, 

by stimulated absorption, the pulse would die out. To avoid 

this difficulty, the electrons in the medium are excited at 

the speed of light in the medium so that the pulse always 

sees excited atoms directly in front of it. This process, 

called swept-gain excitation, can be caused by a second 

laser which sweeps its beam along the side of the medium at 

the speed of light and causes the excitation of the medium. 

Before introducing the mathematical model, let us 

discuss in more detail the resonant interaction of a single 

atom with an electromagnetic field. The electron in a two-

level atom has a certain probability density to be at any 

point in the atom. In the absence of outside forces, this 

probability density is symmetric about the nucleus, and so, 

on the average, the negative charge is at the nucleus. How

ever, in an external electric field, the probability density 

will no longer be at the nucleus. This charge asymmetry 

makes the atom into a small dipole which generates an 

electric field, which in turn reacts back on the initial 

electric field. A dipole is described by a vector quantity, 

called a dipole moment, whose magnitude is the charge of the 

electron times the effective distance between the center of 
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the electron charge and the nucleus and whose direction is 

from the negative to the positive charge. The polarization, 

p, is defined as the net dipole moment per unit volume. 

Thus, the physical model of a laser involves a 

resonant interaction between the incident radiation and the 

atoms in the medium. The atoms are initially excited. Then, 

from the quantum mechanical viewpoint, the incident pulse 

causes stimulated emission of photons which travel in the 

same direction and in phase with the incident pulse. Clas

sically, we say that the incident radiation stimulates the 

excited atoms to emit radiation which constructively adds to 

the incident radiation. In either model a cascade effect 

occurs so that the output of the laser is an intense, co

herent, unidirectional pulse. In the next section we model 

these points mathematically. We close with a schematic, 

Figure 2.1, of the swept-gain laser. 

Mathematical Model 

The semiclassical description of a laser can be found 

in many sources including Allen and Eberly (1975) and Icsevgi 

and Lamb (1969). The results are summarized here. 

In the semiclassical model, we treat the electro

magnetic field classically and obtain the equation governing 

the interaction between the field and the atoms, called the 

Maxwell wave equation, 
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second laser beam 

speed = c 

electromagnetic pulse E(z,t) 

->• z time = t 

z=0 

Figure 2.1. Schematic of the swept-gain laser, 

\ H ( 2 - 1 )  

3z c 3t c 3t 

Here E(z,t) denotes the electromagnetic field and p(z,t) 

the macroscopic polarization. 

The dynamics of a two-level atom are treated quantum 

mechanically by a two—component Schroedinger equation 

i to -qE 
= i<  )  ( ? )  •  ( 2 . 2 )  

3t 3 2 _gE _u B 

Here co is the frequency difference between the two energy 

levels, a{z,t,w) and 3(Z/t/W) denote the probability 
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amplitudes for the upper and lower states respectively, and 

g is a parameter describing the strength of the dipole. To 

describe the polarization of a two-level atom, P , in terms 
cL 

of a and 6, we introduce new variables 

T  =  I d 2  +  |  31 2  n  =  I a  I 2  -  le i 2  

(2.3) 

P, = ap* + a*e p = i(a$* - a*B) 
T " 

Then P& = qP+. In terms of these variables equation (2.2) 

becomes 

Jt* = 0 

^n = -qEP_ 

(2.4) 

^P+ = -oiP_ 

= 0)P+ + qEn, 

which are called the Bloch equations. 

The variable T = | a | 2 + |3|^ is the probability 

that the electron is in one of the two energy states and is 

initially one. From equation (2.4a) we see that T remains 
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one, so that the electron remains for all time in our two-

2 2 
level system. The variable n = |a[ - |0 j is the popula

tion difference between the upper and lower states. Thus 

n = +1 if the electron is in the excited state and n = -1 

if it is in the lower state. The variables P. and P are 
+ — 

polarization variables. 

To relate the classical part of the model, equation 

(2.1), (the macroscopic part) to the quantum mechanical part, 

equation (2.4), (the microscopic part) we need a map which 

converts the microscopic polarizations, P , of many atoms 
cl 

to a macroscopic polarization, p. We denote this map by 

< •> so 

p (z,t) = <Pa (z,t,oi)> . a 

Typically, this mapping process can include many physical 

effects. For example, the atoms can have slightly different 

transition frequencies due to effects such as collisions. 

It is common to include this frequency spread in the defi

nition of the micro to macro map. However, for our purposes 

here it is sufficient to assume that all the atoms have the 

same transition frequency as the frequency of the pulse and 

to let the mapping be simply given by 

p(z,t) = <Pa(z,t,io)> = nQPa (z, t,to0) (2.5) 
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where is the density of atoms in the medium. Equations 

(2.1) and (2.4), together with the definition (2.5) of the 

micro to macro map, constitute an idealized model of the 

system. 

We now simplify these equations. First, we introduce 

the monochromatic nature of the pulse by setting 

E(z,t) = $ (z , t) COS (kgZ - (i)q t + <Mx, t)) 

where the pulse envelope, £ , and the phase function, <f>, 

vary slowly on the length and time scales of the system, 

6« f  

iil « k % << u % 
3z o f at o 

with similar equations for <j>. Second, we introduce this 

same monochromatic nature into the polarization by a 

similar ansatz: 

P,(z,t) = u(z,t) sin(knz - wnt + cf> (z, t)) 

+ v (z,t) cos (kQz - uQt + <J) {z, t)) . 
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Again, the envelopes u and v are to be slowly varying. 

Finally, we introduce the complex amplitudes 

d?(z,t) = J (ZjtJe1̂ 2'10 , 

fPiz/t) = (u(z,t) + iv (z, t)) e"̂  * 

Then our equations become, with the inclusion of the slowly 

varying envelope approximation (a' is a positive constant), 

h* -

n̂ = -Re (&&>*) (2.6) 

< £  +  k j t ) s  - « ' » •  

This model is quite accurate once decays are in

cluded. There is a decay process, with lifetime T̂ , which 

describes the electron decay by, among other processes, spon

taneous emission (from the excited state to the lower state 

as well as from both states to other states which we are not 
3 i*i considering) and which enters in equation (2.6b) for A 

second decay process, with lifetime T2, describes the ran

domization of the phases of the individual atoms. This 

randomization causes interference between the electric fields 
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created by the polarizations and so decreases the energy 

available to the pulse. It enters in equation (2.6a) for 

Finally, the pulse itself would decay away, on a length 

scale of 1/k, due to nonresonant losses (such as radiation 

leaking out the sides of the medium and also into other modes 

of radiation). This enters in equation (2.6c). In this 

phenomenological manner, we introduce these decay processes 

to obtain the coupled system 

£*= <?n -

~n = -Re (£&*) - ̂ -n (2.7) 

+  ^ - k ) s  =  a , g " - K S  

This system is called the Maxwell-Bloch equations. 

It is natural to introduce a retarded time, u, 

where \i = t - z/c, in equation (2.7) both because of the 

particular form of the derivatives in equation (2.7c) and 

because our swept-gain excitation causes the "sweep" to 

arrive at the point z at the time t - cz (i.e., at 

\i = 0) . Then we obtain 
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Re (<8̂ *) - =r-n 
1 

( 2 . 8 )  

~ = a'5 3  -
d z 

where our boundary conditions are <g"(y,z = 0), (̂y = 0,z) , 

and n(y = 0,z). All of the atoms are excited by the 

"sweep" at y - t - z/c = 0; thus, n(0,z) = +1. Since the 

pulse will be formed by spontaneous emission, we assume no 

pulse is sent into the medium; thus <?(y,0) = 0. The 

boundary condition on the polarization (̂0#z) is more 

complicated and will be discussed in some detail at the end 

of the next chapter. These boundary conditions are shown in 

Figure 2.2. 

#°(0,z) stochastic 

n (0, z) = + 1 

Figure 2.2. Boundary conditions for the Maxwell-Bloch equa
tions, equations (2.8). 

<?(y,0) = 0 

z 



CHAPTER 3 

steady-state pulses 

To better understand the Maxwell-Bloch equations, we 

first rescale equation (2.8) to depend on a single parameter. 

Then we discuss the travelling waves, or steady-state pulses 

(SSPs), which arise from the reduced equations. And finally 

we discuss the boundary condition 

If we rescale the variables in equation (2.8) to be 

y/T2, kz, and T2S , we obtain 

3fi^r i p =  ( t2 < n n" * 

-  -Be{ (T . ,<?>*>* )  -  (3 .1 )  

(T0<g") = ——=• - (T- g ) . 
3 ( k z )  2  '  k  2 '  

T2 For this dissertation we neglect the term =—n in equation 
L1 

(3.1b) by setting T̂  = The rationale for this will be 

discussed later in this chapter. Then the only parameter 

in the equations is a'Tj/K, which is the ratio of the gain 

to the loss and must be greater than one for the simplifica

tion process to dominate. This rescaling shows that, without 

18 



loss of generality, we can simplify equation (3.1) by 

setting k = T2 = 1. Then our equations become 

19 

g 
jjj- & - g n - & 

-£-n - -Re(£&*) (3.2) 

d z 

These are the equations to be studied henceforth. 

We begin this study by discussing the steady-state 

pulses (SSPs) which arise as z 00 and we follow the dis

cussion in Arecchi and Bonifacio (1965). To see that SSPs 

are indeed formed in this limit, we concentrate on equation 

(3.2c), which can be integrated to give 

0 
(3.3) 

We assume that 

0 
(3.4) 

Then 
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lim £{}i,z) = lim aIe~z[ ex̂ "(ii,x)dx = a' & ( \ i , z )  (3.5) 
Z->oo Z~yco 

by L1Hospital's rule. Thus 

j} 
<£?(Vi,z) *> 0 as z •+ 00 for all y 0 3z 

and so z-independent SSPs form. 

To obtain an analytical expression for these SSPs, 

set =0 in equation (3.2c) so that <? = a'̂ » . Sub-o z 

stitute this into equations (3.2a) and (3.2b) and solve these 

equations with boundary conditions 

n(0,z) = +1 

&Q(z) = (̂0,z) = &Q = | iPQ | exp (iŜ » ) 
o 

to obtain 

1 u"Td n = —r- — e tanh ( ) 
a Tp 

y — tj 
& - e exp(iê , )sech( ) (3.6) 

cr Tp 

u-t. 
<§• =s -i-exp(iê , )sech( d) 

P o p 

where 
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e  -  \ A  -  ̂ - ) 2  + 1  * o i 2 -

i x 1+ (a1 -1) t 
Tp HT' Td ~ 2Tpln ̂ 1- (a1 -1) * p 

(Notice that our assumption, equation (3.4), is consistent 

with this SSP.) In this dissertation we always take 

I (P I  ̂10-8 to 10~̂  so a* - 1 >> I  ̂I and so the 1 o o 1 

parameters reduce to 

T
P * ^ Vi 12T¥tt)  ( 3 - 7 )  

This SSP is graphed in Figure 3.1. 

Figure 3.1. A steady-state pulse. 
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Let us clarify one feature of this SSP which is un

usual. Normally SSPs are functions of distance and are in

dependent of time. Here, however, we have SSP which is a 

function of time and independent of position. Thus, at any 

point in the laser, z, we graph in Figure 3.1 the SSP 

shape as a function of the retarded time, u — t - z/c (so 

that the swept-gain excitation arrives at the time of zero). 

For example, is the time difference, at a fixed point, 

between seeing the "sweep" and seeing the peak of the SSP. 

The quantity which we will most often use to describe 

the pulse is its energy, , which is defined as1 

& " { z )  =  | (u, z) | dy. (3.8) 
0 

For the SSP the energy is 

-v 2(a' - 1) . (3.9) 
sc 

(The subscript "sc" stands for "semiclassical".) 

Notice that the SSP which arises in our equations is 

a power-balance solution. That is, the pulse is losing 

energy due to nonresonant losses (the < term in the 

Maxwell-Bloch equations) and gaining energy from the medium. 

We absorb the ratio of dipole matrix element over Xi into 
the definition of &. The field has dimensions of frequency 
and & and n are dimensionless. Energies and powers have 
dimensions of frequency and frequency squared, respectively. 
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When these two energies balance the SSP forms. The shape of 

the SSP, determined by T , depends only on the gain, a', 
P 

(see equation (3.7)) which is fixed by the Maxwell-Bloch 

equations, that is, by the physical system itself. The 

center of the pulse, determined by t̂ , on the other hand, 

is fixed by the boundary conditions and not by the system 

itself. Thus the location is the only "free" parameter in 

the problem. 

Now let us return to our discussion of T̂  in 

equation (3.1). Recall that we set T̂  = « and thus neg

lected the decay of the electrons from the excited state. 

The purpose of this paragraph is to describe the physical 

problem of interest in this dissertation and show that neg

lecting this decay is appropriate. We are interested in the 

superradiant regime of the laser, that is, where the maximum 

height of the SSP is approximately proportional to the gain1 

a', the width to 1/a1, and thus the peak power (energy per 
o 

unit time) to (a1) and the energy to a'. (Normally in a 

laser the pulse width is independent of a' and the peak 

power and energy are approximately proportional to a'.) 

Thus, in the superradiant regime, the pulse width can be much 

shortened and the peak power greatly increased by increasing 

the gain. Since T̂  is the lifetime for the electrons to 

To be precise the gain referred to here is the small-signal 
gain and not the saturated gain. 
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be in the excited state, we want the center and width of 

the pulse, and respectively, to be much less than 

T̂  so that all of the energy given to the atoms by the 

"sweep" will be available to create and amplify the pulse 

and cause superradiance. There are two ranges of parameters 

which will satisfy this criterion (i.e., << T̂ ). 

The first is to fix T̂  and T2 and pick a' large enough 

(since t ->-0 as a'-*00). The second is to fix a' d p 
and T2 and let T̂  be large enough. We choose the second 

range and let T̂  = °° but we note that this- approximation 

also gives the correct answer in the first range (Bonifacio, 

Hopf, Meystre, and Scully 1975). 

To close this chapter, we describe various choices 

of the boundary condition of the polarization &(Q,z) 

= Q̂(z). Quantum mechanical fluctuations in spontaneous 

emission enter the Maxwell-Bloch equations only through 

Q̂(z). The classical approach ignores such fluctuations, 

and sets *̂0(z) = 0/ in which case no photons will be 

created to start stimulated emission; hence, no pulse will 

form. Still worse, even if an incident pulse is sent into 

the medium (i.e., (y,0) ̂  0) , it will eventually dis

appear. The semiclassical method of handling spontaneous 

emission is by setting equal to a non-zero con

stant as we have done in this chapter. This is why we used 
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the term "senticlassical" for the energy of the SSP, equation 

(3.9). Finally, we can quantum mechanically model the random 

nature of spontaneous emission by letting be a 

stochastic variable. Of course in this case there is no SSP 

since condition (3.4) for their existence is violated. 

This concludes our general background discussion of 

lasers and the Maxwell-Bloch equations. In this dissertation 

we model spontaneous emission in the superradiant regime 

quantum mechanically by letting stochastic. Our 

problem is to understand how this stochastic nature of the 

boundary condition affects the behavior of the steady-state 

{i.e., the power-balance) pulse. 



chapter 4 

ENERGY AND POWER FLUCTUATIONS 

In this chapter we summarize the results of our study 

of the behavior of steady-state (i.e., power-balance) pulses 

in the superradiant regime of a swept-gain laser amplifier, 

modelling spontaneous emission by a stochastic (̂z). In 

order to visualize the actual behavior of the SSPs,̂ " we open 

with the original computer simulation which shows large-scale 

fluctuations in the SSPs. To underscore the unusual behavior 

of these fluctuations, we contrast them to fluctuations ob

served in other laser models. .Finally, we discuss the phys

ical origin of our fluctuations in the Maxwell-Bloch equations 

to bring out the causes of their unusual behavior. This dis

cussion of the physical origin can be read either as pre

senting the physical reasons for the fluctuations or as 

presenting, intuitively, the nature of the fluctuations in 

preparation for the analysis to follow. With either view

point, the mathematical analysis which corroborates our 

claims is presented in the next two chapters. 

"'"In the stochastic case, we use the term "SSP" to denote 
power-balance pulses whose shapes are slowly varying. 

26 
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History of SSPs 

Before beginning our study of SSP behavior, we sum

marize some historical background material on SSPs that we 

refer to in this dissertation. Coherent pulse amplification 

in an inverted laser medium, as discussed in Chapters 2 and 

3, was first studied analytically by Arecchi and Bonifacio 

(1965), who discovered the SSP solution (see also Armstrong 

and Courtens 1968 and 1969) for the case of a homogeneously 

broadened (T̂  and T2 finite) amplifier with a linear 

loss {< > 0). Subsequently, a number of authors extended 

this analysis to cover inhomogeneous broadening (i.e., to 

cover that case in. which the atoms have a range of transi

tion frequencies centered around the frequency of the pulse) 

{Hopf 1968) and lossless (k = 0) operation (Hopf and Scully 

1969). All these treatments were semiclassical in that the 

input pulse was taken to be a classical field. In the latter 

two papers, spontaneous emission was neglected ( ̂ (z) = 0) . 

Recall from the last chapter that in this case the pulse will 

eventually disappear; however, this decay is rather slow and 

the pulse still can be studied numerically for a long time. 

The coherent pusle amplification problem was reinvestigated 

further in the context of a swept-gain travelling wave ampli

fier (Hopf, Meystre, and McLaughlin 1976; Bonifacio, Hopf, 

Meystre, and Scully 1975; Hopf, Meystre, Scully, and Seely 

1975; Hopf and Meystre 1975). It was found that, in the 
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presence of a linear loss (k > 0), semiclassical approxima

tions (treating the pulse classically) were inadequate (Hopf 

et al. 1976); however, as discussed in Chapter 3, one could 

circumvent some of these difficulties by letting the boundary 

condition &Q(Z) ke a non-zero constant (Bonifacio et al. 

1975). 

Next, the effects of spontaneous emission in a swept-

gain amplifier were studied by letting (̂z) be a sto

chastic variable and studying the Maxwell-Bloch equations, 

equation (2.7), with T̂  = T2> In Hopf and Meystre (1975) 

the equations were studied numerically at the leading edge 

of the pulse (i.e., vi small) where | £ & | << 1, so 

n +1 and the equations become linear. (This is called 

the linear region of the laser.) Next, Hopf et al. (1976) 

studied the Maxwell-Bloch equations analytically in this 

same linear region. And finally Bonifacio et al. (1975) 

studied the equation numerically in the nonlinear region 

(i.e., for all y 0). These latter authors found that, in 

the T̂  = T2 regime, SSPs would form and that the energies 

of these SSPs would have Gaussian fluctuations about the 

semiclassical value. 

In this dissertation we reexamine the effect of 

spontaneous emission in the superradiant regime of the 
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amplifier. We discover large-scale fluctuations which, as 

will be discussed shortly, are quite unlike the Gaussian 

fluctuations found previously. 

Computer Simulation 

Before discussing the results of the computer simu

lation, we first fix the stochastic boundary conditions. 

Hopf et al. (1976) used the fully quantum mechanical version 

of the Maxwell-Bloch equations to show that the quantum 

amplification process in the linear region could be simu

lated exactly by replacing the spontaneous emission operator 

of quantum theory by a Gaussian stochastic variable. While 

this is not a valid procedure in the nonlinear region of the 

pulse, it is intuitively obvious that any large effects in 

the nonlinear region, due to spontaneous emission, will be 

visible in the linear region. Indeed, the large fluctuations 

to be studied here originate from spontaneous emission 

effects in the linear region, and the stochastic representa

tion is justified. 

We thus take *̂0(z) to a bivariate Gaussian 

stochastic variable with mean zero and delta correlation, 

that is, 

<  ̂ 0(z)> = 0 

< 0»Q(z) 0»o(z')> = Wo
26(z - z"). 

(4.1) 



30 

The value of the standard deviation, 3* , is fundamentally 

related (Hopf et al. 1976) to the gain a1, to the lifetime, 

, for the excited atoms to decay, and to the population 

in the upper state; in addition, it contains a somewhat 

arbitrary geometric factor. For that reason, we find it 

convenient to regard 0 as an extra free parameter in 

the problem. 

To study the SSP behavior, it is convenient to use 

two quantities which are fundamental to the pulses, namely, 

their energy, & , (recall 

-oo 

(̂z) = |<?(u,z) | 2dy 
J 0 

from Chapter 3), and their peak power, I (z) , which is the 
tr 

square of the maximum height of the pulse, 

I (z) = max | (4.2) 
P y>0  

As fixed reference values for these quantities, we will use 

their semiclassical values, that is, the energy and peak 

power of the corresponding semiclassical SSP, denoted by 

and I respectively. This corresponding semi-SO sc 
classical SSP is found by replacing the stochastic boundary 

condition, 5̂ (z), as defined in equation (4.1), by the 
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semiclassical boundary condition, (z) = 3* , discussed o o 

in Chapter 3, where for 8*̂  we use the standard deviation 

of the stochastic £̂ (z), namely ~WQ. We find, from 

Chapter 3, that 

9"  ̂2 (a* - 1) and I  ̂ 1 
sc ' sc a'-l* 

«••• 

In Figure 4.1 we plot the results of the original 

numerical solution of the Maxwell-Bloch equations, equation 

(3.2), with stochastic boundary data 5̂ (z), as described 

in equation (4.1). We restrict our attention to the steady-

state region (i.e., where the power-balance has formed). 

(Recall that we always take n(0,z) = +1 and <?(y,0) = 0.) 

Note that for simplicity we are taking the ratio of the 

stochastic quantities to their semiclassical values so that 

the value 1.0 on the ordinate refers to the semiclassical 

value. In this example the parameters are a* - 2 and 

~W ~ 10 (Although the numerical code was accurate to 

a few percent, only a few values of were printed out so 

that Figure 4.1 is only accurate to -̂10%, i.e., 

1 -  z )  /  9 "  is accurate to 1̂0%.) 

In Figure 4.1a, the plot of the pulse energy, there 

are four properties to which we focus the reader's attention. 

Each will be discussed in some detail later. First, the 



(a) 1.0 

.8 i 

1.2 -

Figure 4.1. Energy and peak power for a stochastic (z) {a1 = 2, &> = 10 6). 

oj 
to 
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fluctuations are "large" (about 10% of the classical value). 

Second, the fluctuations are unidirectional in that energies 

lower than the semiclassical value are always involved. 

Third, they are episodic in character (i.e., they occur 

"once in awhile"). Finally, the fluctuations are largely 

independent of the ·standard deviation g, 
0 

of the boundary 

data ~ (z). In fact, when we reduced g, 
0 

by a factor 

of 100 but chose the same set of random numbers to generate 

g, (z), the fluctuations remained the same within the 
0 

limits of the numerical analysis. 

Comparison with Other Fluctuations 

To see the unusual character of these properties, 

let us contrast them to the behavior in a normal laser oscil-

1 lator. (The comparison is sensible because the formula for 

the pulse energy, given in equation (3.9), is closely 

analogous to the expression for the peak power in a single 

mode laser. 

tion energy 

It is simply necessary to replace the satura

-1 
T2 in equation (3.9) by the saturation power 

1
In physics terminology the term "laser" or "laser oscil

lator" refers to an amplifying medium in which the pulse is 
reflected back through the medium many times before it 
attains enough energy to be emitted from the medium. The 
term "laser amplifier" or "amplifier" refers to an amplifying 
medium in which the pulse passes down the medium only once 
and is then emitted. To be precise, in this dissertation we 
are studying a "swept-gain laser amplifier". Beginning in 
this chapter we have been adhering to these definitions. 
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(Harvey 1970, Chapter 24, has an exhaustive 

reference list on laser fluctuations.) First, in a laser, 

the power fluctuations are many orders of magnitude smaller 

than the energy fluctuations in Figure 4.la. We note that 

our fluctuations do not become laser-like as the gain is 

further increased. While the fluctuations typically de-

crease as the gain a' increases, they are still ~5% for 

a'= 20. Second, in a laser the power fluctuations are 

Gaussian and centered about a mean as opposed to the unidi-

rectional energy fluctuations observed here. Third, laser 

fluctuations are l'irandom walk'' processes (i.e., Brownian 

motion) and not episodic. Finally, laser fluctuations are 

strongly dependent on the standard deviation of the noise 

(spontaneous emission) while, as mentioned earlier, when we 

reduced ~ 
0 

by a factor of 100 the fluctuations re-

mained the same within ~10%. 

Physical Intuition about the Origin 
and Characteristics 

of Amplifier Fluctuations 

To study the physical origin of laser amplifier 

fluctuations, let us begin with the T
1 

= T
2 

regime. Re

call that T
1 

is the lifetime for the excited atoms to 

decay and so, in this case, the excited atoms are decaying 

on a time comparable to the location of the center of the 

SSP I T d. (Recall that Td is the time difference between 
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the swept-gain excitation and the peak of the SSP passing a 

fixed point.) Thus, the farther a pulse lags behind the 

swept-gain excitation, the less energy there is in the atoms 

to be transferred to the pulse. And so the energy of the SSP 

depends crucially on The stochastic nature of the 

magnitude of causes the center of the SSP to jiggle 

about a central point, which is the semiclassical (i.e., 

#»o(2) = W Q) center of the SSP. Thus the energy of the * 

SSP also jiggles about the semiclassical energy. 

However, in the superradiant regime (where we set 

T̂  - oo) fluctuations in the magnitude of not 

cause significant energy fluctuations. We present here a 

very simple argument for this fact. After we have discussed 

the actual origin of the fluctuations in Figure 4.1a we will 

be able to present more convincing arguments. And, finally, 

in the next chapter we will present numerical data to support 

our claims. 

The simple argument is as follows: The energy of 

the semiclassical SSP in the superradiant regime is 

2(a1 - 1) which is independent of the initial polarization 

& (z) . Thus in the stochastic case, even though fluctua-o 
tions in & (z) cause a jitter in the location of the 

o j 

center of the SSP, the energy of the SSP is independent of 

the centering and should remain constant. Thus the 
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magnitude of (̂z) cannot be the source of the macroscopic 

fluctuations observed in Figure 4.1a. 

To understand the physical origin of the fluctuations 

in Figure 4.1a, we write S- | <?jexp(i0g, ) with a similar 

definition for 9* and combine equations (3.2c) and (3.8) to 

obtain an equation for the pulse energy, g- , 

.  _  , «  

i f  - 2 a '  | & I I ̂  I cos (0̂ , - )dw - 2 & . (4.3) 

The first term on the right hand side of equation (4.3) 

represents the energy extracted from the inverted medium 

which sustains the SSP against the dissipative losses in the 

second term. For convenience, we define a relative phase 

angle = 0̂ , - 9̂  . tj> is the term that appears in the 

cosine and dominates the physics of this problem. The semi-

classical pulse is given by $ - 0, but in the stochastic 

case, because changes randomly, the phase differ

ence is non-zero. Since this makes the cosine term smaller, 

the extracted energy is less than that given by classical 

results. For the most part, 4> « 0, which means that the 

fluctuations are too weak to be seen in the numerical re

sults. Occasionally, however, one finds (J) to be large, 

and, since as we shall see, this phase quantity is not at

tenuated significantly as it passes through the main portion 
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of the pulse, the extracted energy drops suddenly, and the 

pulse energy is dissipated in the losses. After this "phase 

wave" has passed through the pulse, <j> reverts to being 

near zero and the pulse quickly recovers. These events 

occur rather frequently and lead to episodes of pulse de

struction whose duration (in the z-direction) is character

ized by the gain a'. The correlation of the phase waves 

with energy destruction is very evident in our numerical 

calculations. We do not show it here. 

Now let us return to our argument about the inde

pendence of fluctuations in the magnitude of and 

fluctuations in energy. As we have just seen, fluctuations 

in the phase of occasionally cause a phase wave to 

form at the leading edge of the pulse (small y). This phase 

wave then travels back through the pulse creating a condi

tion under which the medium cannot give its energy as ef

ficiently to the pulse. (In fact, occasionally the phase 

wave causes the pulse to return energy to the medium.) Thus 

the pulse loses energy due to nonresonant losses (the k 

term) . 

Fluctuations in the magnitude of can onlY 

affect the energy of the pulse if they influence strongly 

some element of the above chain if events. However, the 

magnitude of does not influence the creation of 
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phase waves as will be shown analytically in Chapter 6. 

Fluctuations in the magnitude of as mentioned 

previously, shift, logarithmically, the average location of 

the peak of the pulse. However this shift only affects the 

energy fluctuation weakly as can be seen from the following 

argument. Once a large, and potentially destructive, phase 

wave is launched, it dies away quite slowly, but moves 

rapidly back through the pulse with a constant speed which 

is dependent only the the gain a1 (as we shall see later). 

Thus, fluctuations in the magnitude of will not 

affect the speed of the phase wave but only cause the phase 

wave to travel different distances before encountering the 

peak of the pulse. Now, & Q ( z )  only affects the location 

of the center of the pulse, x̂ , logarithmically so large 

changes in Q̂(z) will give rise to small changes in t .̂ 

And, in addition, the phase wave dies away slowly so changes 

in will only affect the phase wave slightly. It is the 

combination of the weak influence of & (z) on t, and o a 

the weak influence of x̂  on the phase wave which makes 

the energy fluctuations insensitive to changes in £̂ (z). 

A similar argument shows why changes in the standard 

deviation of (̂z), !F Q/ only affect the size of the 

energy fluctuation weakly. {This is one of the unusual 
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properties of our fluctuations that was commented on pre

viously. ) Simply repeat the above argument, replacing the 

term "fluctuations in the magnitude of (̂z)" by "changing 

Power Fluctuations 

In addition to energy fluctuations in the SSPs, there 

are also fluctuations in power. There are two distinct 

powers which can be studied, namely the power of the pulse 

at the point (y,z), I(u,z), which is defined as 

i ( u , z )  =  |  ( u , z )  | 2  

and also the peak power of the pulse, I (z), which, as we 
i r  

have already defined in equation (4.2), is 

I (z) = max j (p,z) | 2. 
y>0 

The power at a point, I(y,z), is not particularly useful 

for discussing SSP destruction because, as just mentioned, 

the peak of the pulse shifts back and forth under the in

fluence of the magnitude of 5̂ (z). This shifting will give 

rise to large variations in the power at the point although 

the peak power will be hardly affected. Thus, in Figure 4.1b 

we have plotted the peak power of the pulse. 
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Notice that in the interval 140<_z£l60 in 

Figure 4.1 that the energy is constant but the peak power is 

varying by 5̂%. As we will show numerically in the next 

chapter, in this interval the fluctuations are due to 

changes in the magnitude of 3̂ (z) and not changes in its 

phase. All the other fluctuations in the figure are due to 

changes in the phase of 3£(z). From other numerical cal

culations, the maximum power fluctuations when a' = 2 are 

M.0% from amplitude modulations in &>Q(z) and a.70% from 

phase modulations. When a' =10 the respective numbers 

are 2̂% and 5̂0%. Thus the fluctuations in peak power 

are also fundamentally different from those in the = T2 

regime, which, like the energy fluctuations, are due to 

location jitter. 

Finally, for those acquainted with Dicke super-

radiance (Dicke 1954; Banfi and Bonifacio 1974; Rehler and 

Eberly 1971), in which all the atoms are excited at the same 

time and the model is a more complicated version of the 

Maxwell-Bloch equations, equation (2.7) (Bonifacio, Kim, and 

Scully 1969; Bonifacio et al. 1971), we contrast the theo

retical predictions of fluctuations in Dicke superradiance 

(Degiorgio 1971? Bonifacio, Schwendimann, and Haake 1971) 

with our fluctuations. In Dicke superradiance, the quantum 

problem is analyzed taking the ensemble average of the power 
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at a point (u, z), i.e., (I(n,z)), and then comparing this 

average with the semiclassical prediction of the power of 

the SSP at (y, z). Since the location jitter of the peak of 

the pulse, which occurs in the Dicke case in a manner 

identical to ours, is of the order of the pulse width, this 

procedure leads to a large difference between the quantum 

and semiclassical powers. Hence, one finds "macroscopic 

fluctuations" (Bonifacio et al. 1971) in the power. Using 

peak power, however, it is shown in Degiorgio (1971) that 

there are no fluctuations in the Dicke case of the type shown 

in Figure 4.1. In other words, the analysis of the Dicke 

problem predicts that one should observe the semiclassical 

peak power and energy for every pulse emitted by the laser. 

The conclusion results direction from imposing "mean field" 

conditions (i.e., spatial homogeneity) on the problem and 

hence eliminating from the beginning the phase waves that 

cause the fluctuations in Figure 4.1. We note that swept-

gain and Dicke superradiance have very different geometries, 

so it is not clear whether our fluctuations should be present 

in the Dicke case. However our method of analysis should be 

applicable, although with greater difficulty in the numerical 

portion. Since the experimental state of the art (Bowden, 

Howgate, and Robl 1977 has a recent compendium on the experi

ments in Dicke and swept-gain superradiance) is far more 
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advanced in the Dicke case than for swept-gain amplifiers, 

it will be worthwhile to investigate this question in detail. 

In the next two chapters we analyze the fluctuations 

in the nonlinear region of the SSP. This study can be broken 

up into three issues: 

(1) how the phase waves are started; 

(2) how they propagate through the pulse; and 

(3) how they affect the energy and power. 

Of these, only the first is quantum mechanical {i.e., sto

chastic) , and the first two, together, can be treated 

analytically by the methods used in Hopf et al. (1976). The 

third issue is treated deterministically using numerical 

solutions to show how phase waves of different magnitudes 

affect the waveform. Since the parameter !? affects the 

fluctuation weakly, the problem reduces to a single parameter 

(a1) study. We deal with the nonlinear question (the second 

and third issues) first in Chapter 5. This allows us to 

give a qualitative description of the behavior of the phase 

waves. The analytical discussion of the phase waves, in

cluding probability distributions, is contained in Chapters 

6 and 7. The analytical formulae are somewhat impenetrable 

so we rely on the numerical work for intuition. 



CHAPTER 5 

NUMERICAL COMPUTATIONS 

Since the fluctuations in Figure 4.1 are episodic 

in nature and rarely overlap, we can study them as individual 

entities. In this chapter the boundary condition 

is given deterministically and we solve, numerically, the 

fully nonlinear Maxwell-Bloch equations, equation (3.2), to 

study the behavior of an individual phase wave. (The de

tails of the numerical code are in Appendix A.) Our results 

will show that such a phase wave will indeed generate a 

fluctuation in energy and power which has the general 

characteristics of a single fluctuation in Figure 4.1. 

First, we discuss what choices of & (z) give rise o 

to large fluctuations. Second, we describe the destruction 

process and clarify the nature of the phase wave, <{> = 0̂ > 

~ e<? • Third, we correlate the properties of the phase wave 

with changes in energy and power. Finally, we describe the 

physical process by which the phase wave is constrained to 

lie within a range of 360° (so we choose |$| £180°). 

As discussed in the last chapter, letting the magni

tude of fluctuate causes no visible fluctuations in 

energy and only slight variations in peak power. To see 

43 
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these slight fluctuations numerically, we graph, in Figure 

5.1, the electic field, , and the peak power, I (z) , 

for a* =2 with the boundary condition 

/10"4 for z < z — o 

& (z) = -(10 4 - 10 )̂ (z - zn) + 10 4 for z < z < z + 1 o o o o 
10~5 for z < z +1 — o 

where zQ is large enough that an SSP will have formed. 

This linear change in was picked for simplicity. 

In Figure 5.1b we plot the peak power of the pulse. Notice 

that while changes by a factor of 10, the peak 

power only fluctuates by .1. (The peak power levels of at 

.994 because the analytical shape of the SSP, equation 

(3.6c), is weakly dependent on through the param

eters and Tp*) T̂ e energy is not plotted here because 

it only decreased to .993 and quickly returned to its SSP 

value of 1.000. Thus we see that the fluctuation shown 

here is similar to the fluctuations in Figure 4.1 in the 

interval 140 <_ z < 160 where the peak power fluctuated by 

5̂% and the energy remained constant. 

To understand the cause of this minor power fluctua

tion, we plot the electric field, S , in Figure 5.1a. At 

z = zQ (the solid line) the SSP has formed. At z - zQ = 24 
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Figure 5.1. Changing the magnitude of £̂ (z) (a' = 2). 

-4 -5 
Q̂(z) is initially 10 , changes linearly to 10 for 

-5 z < z < z +1 and remains at 10 . z - z„ = 0 is the o — — o o 

solid line, = 24 is the dashed line, = 48 is the dotted 

line. The gain, a1, is 2. 
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(the dashed line) the pulse is shifting to the right. (Re

call that as £Pq(2) decreases, the location of the center 

of the SSP shifts to the right, and as increases 

the location of the center shifts to the left.) At z - z o 

- 48 (the dotted line) the pulse has reformed an SSP. 

edge of the pulse (small yj begins moving to the right 

before the trailing edge. This causes the pulse to narrow 

and increase in height. In Figure 5.1a it is just possible 

to observe that the dashed curve is indeed narrower and 

higher. However, as can be seen, the increase in peak power 

is due to a minor, barely visible, deformation of the SSP. 

Q̂(z) do, indeed, cause no macroscopic fluctuations in 

energy and only minor fluctuations in peak power. However, 

as discussed previously, fluctuations in the phase of ,̂̂ z) 

can lead to large-scale fluctuations in both quantities. To 

observe this behavior, we let the phase of & (z) be o 

initially zero. We then change it as follows: 

The increase in power occurs because the leading 

Thus we see that fluctuations in the magnitude of 

/ for z < z 0 o 

(z) - & e r for z O V o o < z < z + r 
— o (5.1) 

for z + r < z o 
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Here again zq is large enough so that an SSP will have 

formed, and & is real and positive. The linear increase 

in the phase is chosen for simplicity in the analysis to be 

presented in Chapter 6. We note that this linearity seems 

to give a good approximation to typical cases involving the 

stochastic boundary condition. For each choice of $ and 

r, one observes a fluctuation in energy and power as the 

SSP attempts to change its phase from 0 to 0 (see equa

tion (3.6c)). (We allow r = 0 in equation (5.1) in which 

case the phase shifts by 3 at z = z .) 

Representative examples, which show the major fea

tures we have been discussing in the previous chapters, are 

shown in Figures 5.2-5.9. (We caution the reader to check 

the scales before comparing graphs, since, for ease in 

viewing, the graphs must all be about the same size.) We 

focus our attention, first, on the energy ( ̂ "(z)/ &~c„) and Sv 

peak power (I (z)/l ) curves in Figure 5.2, where the P SO 
-4 parameters are a' =2, 0=160°, r = 1, and  ̂= 10 

Notice that the energy fluctuation shown here bears a 

striking resemblance to the energy fluctuations in Figure 

4.1a and the same remark holds for the power fluctuations, 

even down to the initial increase in peak power before it 

drops off suddenly. Thus we see that the fluctuations in 

Figure 4.1 are, indeed, caused by phase waves. 



Figure 5.2. Changing the phase of (̂z) {a1 = 2,(3 = 160° 
r = 1, SP = 10"4) . 

In Figures 5.2-5.9 the magnitude of 5£(z), remains 

constant, the phase of -̂s initially 0 for 

z < and is B for z > z +r. If r>0 the phase — o o 
changes linearly between 0 and 3. If r = 0 the phase 

changes discontinuously. In Figure 5.2 z - zq = 4 is the 

solid line, - 10 is the dashed line, = 16 is the dotted 

line. 
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Figure 5. 2. Changing the phase of (a1 = 2,fJ = 

r = 1, &0 = 10"4) . 
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Figure 5.2 (continued). 
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Changing the phase of (z) ( a '  170° Figure 

z - zq = 4 (solid line), 10 (dashed line), 14 (dotted 

line). 
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Figure 5.3 (continued). 
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Figure 5.4. Changing the phase of (a' = 5,3 = 160°, 
r = 0, & = 10"4). 

o 
z - zq = 4 (solid line), 10 (dashed line), 14 (dotted.line). 
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Figure 5.5. Changing the phase of (a' = 10,3 = 176° 
r = 0, = 10~4) . 

z - z =5 (solid line), 10 (dashed line), 13 (dotted line). 
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Figure 5.6. Changing the phase of = 10,0 ~ 160°, 
r = 0, &o = 10"4) . 

z - z =4.5 (solid line), 9 (dashed line), 12 (dotted line). 
o 
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Figure 5.7. Changing the phase of 0̂(z) (a' ~ 40= 176° 
r = 0, ̂  = 10~4) . 

2 _ z  =  4 . 6  ( s o l i d  l i n e ) ,  9 . 2  ( d a s h e d  l i n e ) ,  1 2 . 3  ( d o t t e d  
o 

line). 
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Figure 5.8. Changing the phase of (a1 = 20,0 = 176° 
r = 0, ̂  = 10~4) . 

o 
z - z = 4.7 (solid line), 11 (dashed line), 14.2 (dotted 

o 
line). 
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Figure 5.9. Changing the phase of &' (z) (a1 = 5,B - 170°, 

dashed-z - z =2 (solid line), 8 (solid line in <? 

dotted line in <J>) , 14 (dashed line), 20 (dotted line). 
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To see the effect of the phase wave in more detail, 

we also graph in Figure 5.2 the phase wave, <}>, and all the 

internal variables in the Maxwell-Bloch equations, namely 

| S | , , \ &* \ r f and n. {Recall that n is the 

population difference between the two energy states, so 

n = +1 if all the electrons are in the excited state and 

n — -1 if all the electrons are in the lower state.) At 

z = z the SSP has formed and also n and t & I have o 1 1 

formed their steady-state shapes (see equation (3.6)). These 

steady-state shapes are the solid lines in the graphs of 

j S j, |& \ , and n. When z - zq = 4 (the solid line) the 

pulse has not yet changed shape, but 6̂  now follows the 

phase shift in & and a phase wave has formed. When z - zq 

= 10 (the dashed line) the pulse is moving to the right. 

This is because the pulse is not obtaining much energy from 

the medium near the phase wave and so it can only obtain this 

energy at a little later time when the phase wave is small. 

This time delay can be seen in the plot of n where the 

population of excited atoms decreases at a slightly later 

time than before, but still the same fraction of atoms 

eventually gives their energy to the pulse. When z - zq 

= 16 (the dotted line) the phase wave has nearly reached 

the peak of the pulse, which has now lost its characteristic 

shape (in later figures we will see the pulse undergo much 
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more of a collapse). Notice from the plot of n that the 

energy transfer from the excited atoms to the pulse has 

been greatly delayed and many more atoms are left in the 

excited state. For slightly larger z, the phase wave will 

reach the peak of the pulse and cause the greatest change in 

the pulse shape. Then the pulse will quickly move back to 

the left and regain its former shape. 

Let us now return to the energy and peak power graphs. 

In the energy plot we see the energy decrease rapidly once 

the phase wave reaches the main body of the pulse. Notice 

that the minimum energy occurs at z ̂  17.3, which is when 

the phase wave reaches the peak of the pulse. As will be 

discussed at length later, the decrease in the energy is 

governed by the size of the phase wave. Thus, phase waves 

whose maxima are near 180° at the peak of the pulse cause 

the largest energy fluctuations. The peak power also de

creases rapidly in this region, reaching its minimum at the 

same point as does the energy. It also quickly recovers 

its former value once the phase wave has passed by. The 

initial increase in power has the same cause as in Figure 

5.1, namely the leading edge moves back before the trailing 

edge and so the pulse narrows and increases in height. Al

though this initial increase in peak power occurs in all the 

figures to follow, its size decreases with increasing gain 

until it can no longer be seen for a' =20 and 40. 
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Figures 5.3-5.9 all show essentially the same fea

tures just seen in Figure 5.2, although certain features 

show up better in one figure than another. The rest of the 

figures do show the quantitative differences in the pulse 

shape, as well as the energy and power fluctuations for dif

ferent values of the parameters. 

In Figure 5.3 we plot the same variables as in the 

last figure and choose our parameters to be a1 = 5, 
-4 0 = 170°, r - 0, and & « 10 . (As we shall see later, 

letting r = 0, so that 0̂(z) is discontinuous, does not 

cause any qualitative differences in the variables.) As in 

all the figures in this chapter, the SSP shape is the solid 

line in the | j plot. Also in this figure the steady-

state shapes for |& j and n are the solid lines in their 

respective plots. The only noticeable difference in be

havior from Figure 5.2 is that the phases of S and & do 

not return to zero for large y. The cause can be seen when 

the Maxwell-Bloch equations are rewritten in polar 

coordinates: 

ĵ| 0* | = | S |n cos <j> - | 9 | (5.2) 

19l̂ r0̂  = "I s ln sin * 
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ĵ-n = -| <? | | 9> [cos $ 

I = O' l̂ lcos <f> - j <? | 

I * '"Sz0^ = a' I ^ lsin 

t 

g 
Concentrating on equation (5.2b), we see that 

changes sign when n changes sign. From the equation for 

n in the SSP, equation (3.6a), we see that n will become 

negative for large y if a1 > 2. As can be seen from 

JJ Figure 5.3, <f> < ir so sin 4> is positive. Thus 

changes from negative to positive when n passes through 

zero (y ̂  3.5) and so the phase of & increases for 

y > 3.5. As can be seen from all the figures to follow, the 

phase of also begins increasing at about this value and 

the phase wave levels off at some value. This effect is 

not significant in our discussion. 

Another observation which can be seen more clearly 

in this figure than the last is that the pulse shape flattens 

out in the vicinity of the phase wave. As mentioned pre

viously, this is because the pulse cannot extract as much 

energy due to the presence of the phase wave, and so the 

dissipative losses (the K term) can be as large or larger 
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than the energy extracted from the medium. Notice in the 

differential equation for the pulse energy, equation (4.3), 

the energy decreases most rapidly for $ near 180°. 

In later figures we dispense with the plots of n, 

|̂ |/ / and 0̂  since they have the same behavior as 

in Figures 5.2 and 5.3. Thus in Figure 5.4 we only plot 

| & | , <j)> the energy, and the peak power. The parameters 

are a' » 5, fJ = 160°, r = 0, and = 10 Thus, this 

figure can be compared to the last to see how crucial the 

magnitude of the phase wave is to the pulse destruction. 

In Figures 5.5 and 5.6 we again compare the size of 

the phase wave. The parameters are a' =10, r = 0, and 

& = 10"4 for both figures. In addition, in Figure 5.5 

3 - 176° and in Figure 5.6 $ = 160°. In Figure 5.5 we 

again plot n to show a case where the pulse returns energy 

to the medium (the dotted line). 

In Figure 5.7 the parameters are a' =40, 6 =176°, 

_  - 4  r = 0, and = 10 . Note that the graphs are quite 

similar to Figure 5.5. In Figure 5.8 the parameters are 

a' ~ 20, 0 = 176°, r = 0/ & ~ 10 4. If we had chosen 

z - zQ = 9.45 and 12.6 we would have shapes quite similar 

to the dashed and dotted, respectively, Figures 5.6 and 5.7. 

However we have graphed these curves at slightly larger dis

tances to show how quickly the pulse regains its former 
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shape once the phase wave has passed by. If we had chosen 

z - ẑ  = 12.6 we would see the pulse trailing off slowly as 

in Figures 5.5 and 5.7 (the dotted lines). Thus we see how 

quickly this tail forms and then disappears. 

Finally in Figure 5.9 the parameters are a' =5, 
— fi 0 = 170°, r = 0, and & — 10 . Thus this figure can be 

compared with Figure 5.3 to see the effect of a change in 

the magnitude of *̂ . Comparing the two figures we see 

that a change in by a factor of 100 causes the size 

of the energy fluctuation to decrease by a factor of .̂1 

and the size of the peak power fluctuation to decrease by a 

factor of .̂05. 

The figures shown so far have brought out all the 

essential features of the pulse behavior which were described 

in previous chapters. Figure 5.1 has shown the weak in

fluence of the magnitude of on energy and power 

fluctuations as well as upon pulse destruction, while 

Figures 5.2-5.9 have shown the strong influence of the phase 

of 5"o{z) . The weak influence of the magnitude of 5̂ (z) 

on a phase wave, and thus on the energy and power fluctua

tions can be seen in Figures 5.2 and 5.9. Also the slow 

decay of the phase waves and their travelling at a constant 

speed can be seen in all of Figures 5.2-5.9. 
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The reason for the catastrophic collapse of the pulse 

due to the phase wave can be clearly understood with an in

stantaneous phase shift of 180° in (i.e., 

3 = 180° and r = 0). Since 0* (z) is real and so is o 

S (u,0) (since it is zero), it follows from the Maxwell-

Bloch equations that & and <? remain real with the phase 

shift occurring as a change in sign (Hopf and Scully 1969, 

Icsevgi and Lamb 1969). The phase shift must propogate 

through the pulse and change S from positive (Qg, = 0°) 

to negative (0̂  = 180°). Moreover, <F(y,z) is a con

tinuous variable in y and z (see equation (3.3)) so that 

at the point at which <§* changes sign, (i.e., 0̂  changes 

from 0° to 180°), the electric field is zero. The phase 

shifts in & and & look like shock fronts propogating 

through the pulse, while the phase wave, <f>, looks like a 

square wave. When the phase shift of the field reaches the 

peak of the pulse, the field is zero at the point, and so 

one necessarily finds large changes in the waveform with cor

responding fluctuations in energy and power. A representa

tive example is given in Figure 5.10 where a' = 2, and 

= 10"4. Note that since is real, we plot & and 

not | | . 

Now that we have shown how the phase waves propagate 

through the pulse we will discuss, numerically, the 
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relationship between the phase wave and the energy and peak 

power fluctuations. The point of maximum energy and power 

decrease in any episode occurs when the maximum of the phase 

wave reaches the peak of the pulse. Because of the central 

role of the maximum value of the phase wave at the peak of 

the pulse, we denote it with the special symbol $
max' 

where 

$max = max I *(u  ̂Td'z) '* (5,3) 
z 

Here the range of z goes over the duration of an individual 

phase wave, which is normally well resolved. In equation 

(5.3) we indicate that the peak of the phase wave is not well 

resolved as the phase wave approaches, by writing "p ̂  

This can be seen from the figures in this chapter, where the 

peak of the phase wave shifts back by 20% to 50% when a 

large phase wave approaches. This creates no problem be

cause, as can be seen from the figures, the phase wave is 

slowly varying near the peak of this pulse. We note that 

some care must be taken in using this definition for $ max 

equation (5.3), since the phase wave loses its characteristic 

shape as it passes the peak of the pulse. This problem can 

be avoided by considering the maximum over z only for z 

up until the phase wave begins losing its characteristic 

shape. 
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We also define new symbols &" . and I . as -1 mm mm 

the minimum energy and peak power, respectively, in one ex

cursion. We find, empirically, that the phase waves have 

basically the same shape at the peak of the pulse so that we 

can quantify to within 10% (which is satisfactory for our 

purposes) the energy and power fluctuations with the single 

variable 6 rather than with the more fundamental max 

variables, r and 3. We show in Figure 5.11 how the energy 

and peak power vary with this parameter and with the gain a' 

by plotting the curves for a1 = 2, 5, 10, 20, and 40. 

This figure will be used in the next chapter and may be of 

experimental interest. 

The gradual diminishing of the energy fluctuations 

with increasing gain is obvious in Figure 5.11a. As the 

gain increases, the phase waves move faster and the pulse 

width becomes narrower. The interaction time between the 

phase wave and the pulse is therefore reduced and the de

struction is less marked. Of course, for $ . near 180® max 

the phase wave is nearly a square wave with amplitude VL8O0 

and so large energy fluctuations (̂ 30%) still occur. 

Later on, we will use a fortuitous property of the 

energy (as opposed to the power) fluctuations, namely, that 

they can be treated as if they follow adiabatically the 

instantaneous magnitude of the phase wave at the peak of 
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Figure 5.11. Minimum energy and peak power vs. *max-
a* = 2 (solid line), 5 (dashed-dotted line), 10 (dashed 
line), 20 (dotted line), 40 {dot-dot-dotted-dashed line 
in the energy graph, dotted line in power graph). 
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the pulse, which is |<f>(U  ̂T̂ ,z)j (recall that the peak of 

the pulse is not well defined). This adiabatic property is 

physically correct (to within the 10% uncertainty in Figure 

5.11) for the destructive half of the episodes. The re

covery of the waves, however, is a complicated process in 

which the peak shifts forward in time quite rapidly, 

separating away from the phase wave. If one continues to 

view the phase wave at the same value of y where it caused 

the maximum destruction, one finds that it dies away at 

almost the same rate as the wave recovers. We thus make no 

additional error by the useful fiction that the interaction 

is adiabatic throughout the entire interaction. Hence, the 

energy curve in Figure 5.11a can be taken to define the in

stantaneous value of the fluctuation #*(z)/ as a func-b v 

tion of | <j> (u ̂  !• We will use this in Chapter 7 to 

predict the energy distribution function. Since the peak 

power is not adiabatic (note the initial increase in power 

in the figures), we do not attempt to compute that distribu

tion function. 

To close this chapter, we discuss numerically some 

important dynamical effects that enter into the determina

tion of $ from the fundamental parameters 0 and r. max 

This discussion will be repeated analytically in the next 

chapter. When r = 0 (which is, of course, not physical 
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when & (z) is stochastic), 3 enters the equation for o 

q ( z ) ,  equation (5.1), only in the term exp(i$). Thus 

we need only consider $ for |3| £ 180°. However this is 

no longer true when r > 0 since then 0 does not occur 

modulo 360°. If 0 < 3 < 180°, the phase wave behaves as 

in Figures 5.2-5.9, namely, it spreads out and decays in 

height. However if 180° < 0 < 360° the phase wave ini

tially varies in exactly the opposite fashion, namely it 

narrows and increases in height. When $ reaches 180°, max 

the phase wave becomes discontinuous. When the phase wave 

again settles down, it has "flip-flopped" and becomes nega

tive (i.e., 0̂ > < 0̂  so <f> = 0̂  - 0̂  < 0) . 

In order to explain this strange behavior in some 

detail, let us begin with an example. In Figure 5.12a, b, c, 

and d we plot | S \ , Qg , [ | , 0̂ , , and <f> before (a 

and b), during (c), and after (d) this "flip-flop" has oc

curred. The parameters are a' - 2, 3 = 200°, r = 2, and 

-4 & = 10 . In Figure 5.12a (where z - z =4.5) we see o o 
* 

that 9̂  and 0<£ have steep negative slopes corresponding 

to the points where | & | and | 8 | are near zero. In 

Figure 5.12b (z - z = 5.5) we see that the slopes of 0̂ , 

and have decreased further and become even steeper neg

ative. Again this steepening corresponds to the points 

where |& \ and | & | are now even closer to zero. This 

steepening occurs because, in the neighborhood where [̂ | 



Figure 5.12. A "flip-flop" of the phase wave (pt* = 2, 
3 = 200°,r = 2, 9̂  = 10"4) . 

Figures 5.12a, b, c, d: In the graph of the phase, 0<§> 
is the solid line, 0̂  is the dashed line, and <J> is the 

dotted line. In the graph of the magnitude \ & \ is the 

solid line and \@>\ is the dashed line, z - z =4.5 is o 
(a), 5.5 is (b) , 6.5 is (c), 7.5 is (d). 

Figure 5.12e: The graph of (̂y,z) for z = 5.5 (the solid 

line) and 6.5 (the dashed line) 

Figure 5.12f: The complete graph of the phase wave, 

z - zq = 4 (the solid line), 12 (the dashed line), 20 

(the dotted line). 
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Figure 5.12. A "flip-flop" of the phase wave ( a 1  = 2, 
3 = 200°,r =2, &>Q = 10"4). 
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Figure 5.12 (continued). A "flip-flop" of the phase wave 
(a1 = 2,3 = 200°,r =2, &Q = 10-4). 
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Figure 5.12 (continued). A "flip-flop" of the phase wave 
(a' = 2,3 = 200°,r = 2, & = 10~4). 
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Figure 5.12 (continued). A "flip-flop" of the phase wave 
(a* = 2,3 = 200° ,r =2, &>Q = 10"4) . 
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Figure 5.12 (continued). A "flip-flop" of the phase wave 
(a' = 2,3 = 200°,r =2, &>Q = 10-4). 
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Fighre 5.12 (continued). A "flip-flop" of the phase wave 
(a' = 2,8 = 200°,r =2,  ̂= 10"4). 
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is small, 0̂  can change rapidly. At the point where |& | 

becomes zero, 0̂  indeed becomes discontinuous and changes 

by 180°. In Figure 5.12c (z - zq = 6.5) we plot the 

curves right after |& \ has reached zero and begun to in

crease again. The phase of now increases to 360°. 

The reason for this "flip-flop" can be understood 

by considering £P(u,z), which is a differentiable function 

of }i. Consider z - zq = 5.5 (Figure 5.12b). Then 

& (0,z) has a magnitude of 'v.OOOl and phase of 2̂00°, 

while for u > 30, (̂y,z) has large magnitude and phase 

near 0. Graphing (̂y,z), in Figure 5.12e for z - zq 

= 5.5 (the solid line), we see that the curve goes above 

the origin so the phase goes from 200° to 0°. However 

this curve is moving downward with increasing z and so for 

z - z =6.5 (the dashed line) the curve has passed through 
o 

the origin and so the phase goes from 200° to 360°. 

Referring back to Figure 5.12d (z-z =7.5) we 
o 

see that j j has also passed through zero and so the phase 

wave is returning to its usual shape. 

To see that this "flip-flop" takes place when 

(j) = 180° we need to consider the Maxwell-Bloch equations in 

polar coordinates, equation (5.2). Concentrating on equation 

(5.2b) = "I ̂  ln s*n we see that the slope of 

0̂ , changes sign when <J) = 180° (recall n « +1) . Recall 
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that in Figure 5.12a the phase wave is narrowing and in

creasing in height before the "flip-flop". Thus, just as <J> 

reaches 180° the slope of switches from negative to 

positive. Thus, except for the very short interval between 

|& j passing through zero and | S | passing through zero, 

we have |<t>| < 180° or 3> < 180°. 11 — max — 

Waves that change in this way cause the most violent 

episodes of pulse destruction (e.g., causing the pulse to 

split into two peaks), since the initial increase in the 

peak of the phase wave delays the process of attenuation. 

Thus, comparing Figure 5.12f, where the entire curve is 

plotted, to Figure 5.2 we see that this "flip-flop" effect 

has created a larger energy and power fluctuation when 

3 = 200° than occurred when 6 = 160°, because $max 

larger in Figure 5.12. However, if 6 is too close to 360° 

the phase wave decays away rapidly since, once the "flip-flop 

has occurred, the phase wave behaves as if the initial change 

in angle had been 3 - 360°, which is small. Thus the 

maximum pulse destruction occurs for 3 near 180°. (Values 

of 8 > 360° are statistically insignificant, but we mention 

that they also will perform this "flip-flop" and afterwards 

0̂ > and 0̂ > will start at 0 and go to the nearest 

multiple of 360°.) 



CHAPTER 6 

ANALYTICAL EXPRESSION FOR THE PHASE WAVE 

In this chapter we find an analytical expression for 

the phase wave at the leading edge of the pulse, where the 

Maxwell-Bloch equations are linear. Comparing this ana

lytical expression with our numerical computations, we 

find that this expression remains valid, to within 1̂0%, 

even in the nonlinear region of the pulse. Thus, we can 

find the speed and the attenuation of the phase wave as it 

passes through the pulse. Finally, we will use this ana

lytical expression to discuss the "flip-flop" of the phase 

wave. 

To find the analytical expression for the phase 

wave, we let the initial polarization, (̂z), be deter

ministic and given by equation (5.1). Then, at the leading 

edge of the pulse (y small) , \S&\ « 1 and n « +1. 

Thus, the Maxwell-Bloch equations, equation (3.2), reduce to 

A. 3" = e.g. 

4- £ = a' 9 - S 
D Z 

(6.1) 
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The equation for the phase wave is then found {in Appendix 

B) to be 

S 2  +  (tan2(3/2)(T2 - j )  
<J>(li,z) ̂  arccot[ s tan g/2 ] (6,2J 

where 

S = /7T(Z-Z0) + IF™//2. - 1) 

T = a'p - (z - zQ) + j. 

We fix r < 1, and assume that z  -  z  >> r, and that S 'Vi r o 

is not too near zero. The range of the arccotangent is 

(0,tt) when the denominator of the argument of equation (6.2) 

is positive and (-tt,0) when it is negative. 

The derivation of equation (6.2) presented in 

Appendix B shows that our formula for <t>(u,z) is valid at 

the leading edge of the pulse. In addition, the numerical 

computations show that equation (6.2) remains valid, to 

within 1̂0%, in the main body of the pulse until the phase 

wave reaches the peak of the pulse. A typical computation 

is graphed in Figure 6.1 where we compare the analytical 

expression (the solid line) with the numerical computation 

(the dashed line). The parameters are the same as in 
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50° 
(b) 

50° 

<j> 

0 °  

10 0 V 

Figure 6.1. A comparison between the analytic expression 
(the solid line) and the numerical computation 
for the phase wave. 

(a' - 2,3 = 160°,r = 1, & = 10~4) z  -  zq  =  4  i s  ( a ) ,  

10 is (b), 16 is (c) . 
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Figure 5.2, namely a' =2, 3=160°, r « 1, and 

-4 - 10 . The curves are plotted at the same values of 

z - zq as Figure 5.2, namely z - zQ = 4 (a), = 10 (b), 

and = 16 (c). The analytical expression can be seen to be 

extremely accurate until the phase wave reaches the peak of 

the pulse (in Figure 6.1c). This accuracy would be main

tained if we had used any of the other figures in Chapter 5. 

Now we return to the analytical expression for 

<t>(u,z), equation (6.2), and find the speed and the attenua

tion of the phase wave. For fixed z, the maximum value of 

4) I occurs when 

T = ct'u - (z - Zq )  + | = 0  (6 . 3 )  

which shows that the speed of the phase wave is the gain a1, 

i. e., 

Az 
Ay 

= a' 

Similarly, near the peak of the phase wave, the first term 

in the numerator of the argument of equation (6.2) (i.e., S) 

dominates the second. To obtain a rough estimate for the 

attenuation of a phase wave, we use the first order Taylor 

series expansion for the arccotangent and obtain 
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max U(y,z) | [ /it (z—z ) + |(tag - 1) ]_1. (6.5) 
jj>0 ' 

This shows that the peak of the phase wave is roughly pro-

—1/2 portional to (z - z ) . These expressions for the speed 

and the attenuation of the phase wave agree with all the 

figures in Chapter 5. 

As we have discussed in the last chapter, the magni

tude of the fluctuations in energy and peak power are func

tions of the gain and $ , the maximum value of the phase max 

wave at the peak of the pulse. Using equation (6.2) we can 

now relate $ to the parameters 3 and r, which enter max 

into the boundary condition for &Q{z) , equation (5.1). 

The absolute value of the phase wave at the peak of the 

pulse, | 4> y  ̂t̂ ,z) |, can be found by evaluating equation 

(6.2) at \i  ̂t̂ .. (Recall that the pulse shifts back by 

^30% as a large phase wave approaches.) For fixed z ,  

equation (6.3) shows that the peak of the phase wave occurs 

at 

U = (z - zQ - |")/a'. 

Thus, the peak of the phase wave reaches the peak of the 

pulse when 
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z - z  o  

Thus 

max |$(y ̂  xd,z - zQ  ̂ot*+ ̂-) | 

gives the maximum value of the phase wave in terms of a', 

3, r, and 9P„ • o 

be obtained from equation (6.2), if we let r > 0. When 

0 < 3 < 180°, then S > 0 and the denominator of the argu

ment of equation (6.2) is always positive. Thus 

0 < <f> < 180°. Furthermore, as z increases so does S, so 

that the phase wave takes on the form 

for large S. As S increases, cf> decreases to zero and 

so the phase wave attenuates away. 

and, for z - z Q  small enough, S < 0. Thus 0° < cf> < 180°. 

However, as z increases so does S, and so S approaches 

zero. For S near zero $ is near 180°, and the max 

numerator of the argument of equation (6.2) can be either 

Finally, we notice that the "flip-flop" effect can 

• <1I,Z) ~ arccot(tanSBy2) ( 6 . 6 )  

However, when 180° < 3 < 360°, then tan 3/2 < 0 
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positive or negative depending on y and z. Thus, <j> can 

vary wildly over a small range. In this region, equation 

(6.2) is not valid. However, as z increases further, S 

becomes positive so that the denominator of the argument of 

equation (6.2) becomes negative and so -180° < <f> < 0°. Now, 

as z increases further, the phase wave again takes on the 

form of equation (6.6) and attenuates away. As we discuss 

in Appendix B, for 0 > 360° equation (6.2) is only valid 

for z large enough that the "flip-flop" has already 

occurred. 



CHAPTER 7 

STOCHASTICS 

In the previous chapters, we have satisfactorily ac 

counted for two of the four striking properties of the 

fluctuations in energy — the unidirectional character of 

the energy fluctuations, and also the weak dependence of the 

fluctuations on the magnitude of the stochastic boundary 

condition Q̂(z). The primary goal of this chapter is to 

quantify the remaining two effects, namely, the episodic 

nature of the fluctuations and their non-Gaussian character 

First, we will show their episodic behavior by estimating 

the number of phase waves that one expects to see over a 

given length of amplifier. Second, we will determine a 

probability distribution function for the energy that we 

predict would be observed experimentally. 

Probability Density Function 
for the Phase Wave 

We consider the boundary condition 0̂(z) as a 

stochastic variable and derive analytically a probability 

density function for the phase wave <f» at the leading edge 

of the pulse. This function will be used both to estimate 

the number of phase waves one expects to observe- and to de

termine the energy distribution. 

86 
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Let us fix a point (ii,z) and study the stochastic 

variable $(y,z). That is, we fix a distance, z, into the 

amplifier, fix a time, y and then, for each "sweep" (i.e., 

for each realization of the stochastic boundary condition 

•̂ Q{z)), we observe the phase <}>(ii,z), at this point. 

Thus, along with <j>(u,z), we have a probability density 

function, P{|<|>(ii,z) |)r which is an ensemble average over 

the boundary data. 

We will find, analytically, this probability density 

function in the linear region of the Maxwell-Bloch equa

tions. However, all the striking features of the fluctua

tions occur for the phase wave near the peak of the pulse. 

Thus, we would like to evaluate the probability density func

tion P{|<f>(y,z) [}, for" u  ̂t̂ . Since numerical comparisons 

show that the analytical expression for the phase wave is 

valid, to within M.0%, up to the peak of the pulse, we 

assume that P{|d>(y ,vr,z)[} is also accurate to within 
a 

1̂0% at the peak of the pulse, even though the actual 

analysis only guarantees its accuracy at the leading edge 

of the pulse. 

Specifically, we let Q̂(z) be a stochastic vari

able with mean zero and delta correlation (see equation 

(4.1)), and we fix (y,z) with y at the leading edge of 

the pulse. Then d?(y,z) and (̂y,z) are complex 
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Gaussian stochastic processes as can be seen from the fol

lowing argument. As discussed in Appendix A, Q̂(z) can 

be considered the limit of the discrete Gaussian stochastic 

process  ̂as 0, where 

< ̂ Az) (z)> = 0 

< (Z) ̂(Az)*(z')> 

9>Q 
-r=- if z, z' € [(k - l)Az,kAz) for some AZ 

k = 1, 2, 3, 

otherwise 

and ( •) denotes the ensemble average. Now, solving the 

linearized Maxwell-Bloch equations, equation (6.1), we 

obtain (see Appendix B, equation (b.2)) 

<fl(U,z) = a'e"̂ [ e I (2/a1y(z-x)) &' (x)dx 
Jo 

____ 
ufZ _ (~_x\ X-, <2 v/ot!»p (z-x) ) 

f P ( \ i f z )  =e ̂ ^*(z) + /a' ye e ' (x)dx. 
° 1n 7̂ 37 ° 

Since integrals of Gaussian processes are still Gaussian 

(Miller 1974, Chapter 4), (y,z) and <3?(Az) 

are Gaussian. As Az -*• 0 the variances of and 
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0> remain finite. Thus (̂p,z) and Ĉy,z) are 

complex Gausian Processes. 

From Miller (1974) we find a formula for the joint 

probability density function of & and & in polar co

ordinates, f (| & | , 0̂  , | ̂ | ,0̂  ). Then the joint density 

function of their phases, g(0<g> /0̂ > ) is 

g (0̂  / 0̂ > ) -
*00 fCO 

f (I $ | ,e- J ,0,® ) d| s |d|̂ > 
0J 0 

( 2 / 2 2~~ 1-A yl-A cos $ + A cos tfr arcos (A cos tfr) 
477 (l-A2cos2<t>)3/2 : 

_ for 6*, , 0̂ , € {-7r,-rr) 

0 otherwise 

where, as usual, * ~ V " 6<? ' and A is defined as 

(7.2) 

A(y,z) = { $ (u, z) * (y, z)} '̂j 3 j  

/< | 2>< | ̂(u,z) |2> 

Note that g(0̂ > r ) is a function only of <j), so the 

probability density function of (J), P{<J>} is 27rg(9g> ,0̂ , ). 

Thus 

2 t  2 2 _ r1 _ 1-A v1-A cos £ + A cos £ arccos(A cos £) 
^ J. p { | (U r z) [ — t,J" — - ' •* 2 3/2 

17 (1-A cos7 

(7.4) 
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Later we will also need the probability of observing an 

absolute phase | (f> (p, z> | greater than £, P{ | <f> (y, z) | •> £}• 

This probability is 

Equation (7.2) is valid for g and as long as they are 

complex Gaussian processes with mean zero. However, to 

evaluate the expectations in equation (7.3)/ we will need to 

use equation (7.1), the solutions of the linearized Maxwell-

Bloch equations. We assume that y is large enough (but 

still in the linear region) so that the (z) term in o 
equation (7.1b) can be neglected. We also assume that 

z >> 1 so that we are in the power-balance region where the 

SSPs can form. Then, inserting g and SP, as given in 

equation (7.1), into equation (7.3) yields 

£ 

JL A sin g  ̂_ arcos(A cos £) ̂ 

(7.5) 

A 
e a  X'"*" ' - 1  

y2a' yea' (a1 y) {ea' u{IQ(a* y) -1̂  (a1 pj;)-l} 

+ 0(e"̂ : (7.6) 

where Iq and are Bessel functions with imaginary 
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arguments. Notice that A is independent of z for z >> 1, 

and so the probability density function, P{|<J>(vi,z) |}, is 

only a function of u. We will denote this by P{|<J>(y) [}. 

The analytical expression P{|<f>(u) |)r with A as given in 

equation (7.6)f has been compared with numerical computations 

for u at the leading edge of the pulse and found to agree 

at the 97% confidence level. 

Recall that we are actually interested in the 

probability density function at the peak of the pulse, 

P{|<j>(y U' since the phase waves cause all of the un

usual fluctuations there. Also recall our assumption from 

numerical comparisons P{|<f>(u  ̂Ta) ! 3" valid, to within 

1̂0%, at the peak of the pulse. Thus to calculate 

P{ [ <J> (y ̂  t̂ ) |} we can use equation (7.5) where A is given 

in equation (7.6). In Figure 7.1a we graph P{|<j>(u  ̂x̂ )j = £} 

versus £ using the same parameters as in Figure 4.1, namely 

a1 = 2 and 8P = 10 We also mention that A can be o 

simplified near the peak of the pulse to 

A(lJ) - 1 - 8̂ 7 + O((o'iijr2). 

Episodic Character of the Fluctuations 

Let us turn our attention to the episodic character 

of the energy and peak power fluctuations. Since one energy 



(a) 

o 
10 

p 

-5 
10 

- 2  10 (b) 

# 

-5 10 

180 max 

Figure 7.1. Semilog graph of p{|<J>(y  ̂ and 

max 
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and power fluctuations corresponds to one phase wave passing 

the peak of the pulse, we begin by estimating the number of 

phase waves per unit length. Thus, we will calculate 

#{$max 
= t̂ le number of phase waves per unit length 

whose maximum absolute height at the peak of the pulse is p. 

(Recall that $ is defined by max 

$ = max 6 (U ^ T ,, z) max 1r K d z 

where z goes over an individual phase wave.) 

In order to estimate the number of phase waves per 

unit length, let us first consider a thought experiment. Let 

us follow the "sweep" down the amplifier, looking near the 

peak of the pulse. We will observe the magnitude of the 

phase wave and plot it, [ <f> (y ̂  z) | , as' a function of z. 

(Of course, we do not begin looking at the phase until we 

are in the power balance region.) In Figure 7.2 we have 

graphed a typical result of our thought experiment. In 

Figure 7.2a we plot the complete pulse, showing the phase 

waves (the solid black shapes) from their formation in the 

stochastic boundary condition through their disappearance 

once they have passed the peak of the pulse. In Figure 7.2b 

we graph the phase that we would see in our thought experi

ment if we were sitting at u  ̂ in Figure 7.2a. To 
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(a) 

S 

|(j> (u % T 

A 
(b) 

5" 

14» (P * T*)l 
o 

Az 

(c) 

Az 

Figure 7.2. Typical graph of the thought experiment. 

In (a) the entire electric field, | & |, is graphed, in (b) 
the phase, | <j>) , that the observer at \x  ̂t would see, 
and in (c) the length that | <j> | > 5. 
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estimate the number of phase waves per unit length with 

$max = p, it is merely necessary to count the number of 

maxima at p in Figure 7.2b and divide by the total length, 

Z. 

With this thought experiment firmly in mind, let us 

estimate the number of phase wave? per unit length analyt

ically. To do so, we will use the probability distribution 

function P{|<}>(U  ̂t̂ ) I O equation (7.5), which was de

termined analytically in the last section. Recall that this 

probability distribution was calculated by taking an ensemble 

average over the boundary data &*Q(z) . To agree with our 

thought experiment, we will convert this ensemble average to 

an average over z of |<f>(U  ̂ I* To calculate 

P{|<j)(li  ̂T̂ ) | averaging over z instead of over 

(z) , let us return to Figure 7.2, which is the phase we 

observe as we travel down the amplifier. To estimate the 

probability of seeing a phase whose absolute value is greater 

than we merely find the length, Az, that the phase is 

greater than 5 and divide by the total length, Z. That 

is, 

A t  

p{ | <f> (y ^ x ) | > £> = lim -p- = lim —*— (7.7) 
d - 1-+ 00 C 1+OP *-

(see Figure 7.2c). 
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(In this replacement of ensemble averages with space 

averages, we have not merely assumed ergodicity. This is 

because and (̂p#z) only depend on a portion 

of the boundary data, that is, § and  ̂only depend upon 

»̂o(x) for x belonging to a small interval z - zQ <_ x 

<_ z. This fact can be seen in the solutions of the linear

ized Maxwell-Bloch equations, equation (7.1), since the in

tegrands contain the term exp{ -(z - x) }. Because of this 

exponential decay, it is possible to define a distance zD 

beyond which the integrands make a negligable contribution 

to the integrals. This small interval amounts to a small 

domain of dependence over which &,Q(x) influences 

and #*(y,z). Returning to the point of this paragraph, we 

can thus replace ensemble averages over 3P (x) by averages 

over z (as long as our averages are over many of these 

domains of dependence). Said differently, the small width 

of this domain of dependence allows us to view long amplifier 

lengths as consisting of many independent experiments. With 

this viewpoint, ensemble averages can be effected by averages 

over z.) 

In order to estimate the number of phase waves per 

unit length, #{$. ~ p), we will relate this quantity to 3 max 

P { | (y  ̂T̂ ) [ as defined in equation (7.7), i.e., 



P{ |<j»| > « lim A? 
l+°0 *-

97 

First, we introduce a function h(£,p). To understand this 

function, let us again return to our thought experiment where 

we plot 1(y ̂  t̂ .,z) | versus z. In this plot, given a 

phase wave with maximum value p, h(f;,p) is the width of 

the phase wave at the value £, where 0 < 5 < p (see 

Figure 7.3). 

Figure 7.3. h(£,p). 

(From numerical computations the shape of a phase wave, near 

the peak of the pulse, is dependent mainly on p, the gain 

a1, and the location of the peak, It is largely in

dependent of the parameters which actually form the phase 
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wave, namely, the phase shift in &>q(z) , $, and the length 

over which the phase shifts, r. Thus h can be calculated 

without knowing how the phase wave was formed from the 

stochastic boundary data.) 

With all these ingredients, we can now find an equa

tion relating #{$__„ = p) to P{|cj)(y % xd) | >_ 5). So fix luetic  ̂ ' 

£ and p and again refer to our plot of | <f> Cy  ̂Td'z) 1 

versus z. The distance that the phase, | <p | , is greater 

than £, due to one phase wave with maximum height p, is 

h(£,p). Thus, the distance per unit length (or the fraction 

of length) that the phase, | cj> [ , is greater than £, due 

to all the phase waves with maximum height p, is 

h(5 ,p ) # {4 m a x  =  p } .  

and the total distance per unit length that | <f> | > £, due 

to all phase waves, is the sum over all phase waves with 

maximum height greater than %, i.e., 

1 
\(5,p)#{$ v = p}dp. (7.8) 
r IuclX 
€ 

However, as we mentioned previously, P{ | ({> (u ̂  t̂ ) | ̂ is 

the length, Az that the phase, j <J) | , is greater than £ 

divided by the total length I (see equation (7.7)). But 
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this is exactly what we have calculated in equation (7.8) . 

Thus, we have our relation between #{$ = p} and ' max 

P{j<f)(y  ̂Td) | >_ namely 

I 
h(£,p)#{$ = p}dp (7.9) 

= p{ | (J) (p ̂  tj) | >_ £} for all £ 6 (0,T). 

Once we know h, the width of a phase wave, we can solve 

this ingegral equation (at least numerically) to obtain #, 

the number of phase waves per unit length. 

To calculate h we use the analytical expression for 

the phase wave, equation (6.2), and let r = 0 since the 

phase waves all have approximabely the same shape by the 

time they arrive at the peak of the pulse. Given a phase 

wave with maximum value p, we find the width at the value 

£ (in p for fixed z) by using equation (6.2). To convert 

this width to a width in z for fixed u, we use the fact 

that the phase wave is slowly varying. Thus we can use the 

speed of the phase wave, which is a' (see equation (6.4)), 

to convert from a temporal width to a spatial length and 

obtain 

h(E o) ~ sin (p-£) 
nu'p) ~ J sin SU-cos p) U.xoj 



100 

Now we can solve equation (7.9) numerically for 

#{$max = Pi with h as given in equation (7.10). In Figure 

7.1b we solve for # using the same parameters as in Figure 

4.1. The curve is truncated at $ , =» 10°. (Below this max 

value, our approximation to 9Qes negative. This 

inaccuracy is due to the fact that the analytical expression 

for the phase wave, equation (6.2), gives too large a value 

out in the wings of the phase wave, and so h, as given in 

equation (7.10), is too large. Also, small phase waves 

overlap and are not episodic far away from the region of 

maximum energy loss. We expect that our choice of h will 

tend to undercount the small phase waves. We will see below 

that this is the case.) 

We note, from Figure 5.11a, that for a1 =2 the 

phase waves with $ >20° give maximum excursions in e max —  ̂

energy of more than 10% (i.e., ̂ nin/ 8"sc < .9 i-n Figure 

4.1). We integrate #{$__„ = p) from 20° to 180° and rricix 

multiply by a distance of 160 to predict that there should 

be three such excursions (there are four in Figure 4.1a). 

If we integrate from the cutoff at 10% (3% energy fluctua

tions) to 20%, we find that there should be two more 

fluctuations between 3% and 10% (there are five). (Note 

that one of the fluctuations in Figure 4.1a is less than 3%.) 

As expected, then, we find the estimate!of the number of 

small fluctuations is somewhat low. (Heuristically, we can 
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improve our expression for h by replacing the sin 5 term 

in the denominator of equation (7.10) by sin £ + .01 (it - £) 

so that h remains bounded as £ •+• 0. This replacement 

raises the number of phase waves to four for energy fluctua

tions greater than 10% and to three the number of energy 

fluctuations between 3% and 10%.) 

We have just quantified the episodic character of 

the phase waves and, thus, of the energy and peak power 

fluctuations. However, we have also quantified another un

usual feature of Figure 4,1a. Recall that 1 -

is the magnitude of one energy fluctuation. For Gaussian 

fluctuations small fluctuations should occur much more fre

quently than large fluctuations. However in Figure 4.1a we 

see that the fluctuations whose magnitudes are between 3% 

and 20% all occur with about the same frequency. This can 

now be understood from Figures 5.11 and 6.2. The number of 

large phase waves, at a given small, but all large 

phase waves correspond to roughly the same energy. The 

number of small phase waves, at a given is large, ITlciJw 

but small phase waves correspond to a wide range of energies. 

Hence, the number of phase waves of a given size is nearly 

constant. 
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Energy Distribution 

Here, we determine the energy distribution that we 

predict would be observed at the output of the laser. Recall 

that we have found the probability density function for 

observing a given phase, £, at the peak of the pulse 

p{|cf>(y  ̂xd) | = £}, and from Chapter 5 that the energy 

fluctuations depend adiabatically on the value of the phase 

wave at the peak of the pulse. Thus we need merely to con

vert the probability density function at the peak of the 

pulse into an energy distribution function. As discussed in 

Chapter 5, that is precisely what Figure 5.11a does when we 

let the variable on the ordinate be and the 
bv 

variable on the abscissa be | <f> {y  ̂T(j»z) I* Thus, combining 

equation (7.4), the expression for the probability density 

function of the phase, with Figure 5.11a, the relation be

tween the phase and the energy, we obtain the energy density 

function P{ / &"_„}• We have calculated this energy density 
9 w 

using the same parameters as Figure 4.1 and graphed it in 

Figure 7.4. We also show a histogram constructed from the 

numerical data in Figure 4.1a. In view of the fact that the 

analysis is, by this point, only accurate to 2̂0% and that 

the numerical histogram is made up of only ten statistically 

independent events, the close agreement of these two curves 

is somewhat fortuitous. We are, nonetheless, justified in 
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Figure 7.4. Probability of observing a given energy in the 
output of the amplifier (graph) and the cor
responding histogram from Figure 4.1a. 
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concluding that this method gives a satisfactory prediction 

of the energy fluctuations. 

The energy distribution we have just calculated 

could have been calculated by continuing the arguments of 

the previous section. However the energy has the fortuitous 

property that it is adiabatic. This has allowed us to pre

sent the energy distribution by the simpler arguments of 

this section. As for the power distribution, since the 

peak power fluctuations are not adiabatic, we would need to 

use the arguments of the previous section to find the power 

distribution. We would have to guess some characteristic 

shape for the power fluctuations and deduce the probability 

of a given power fluctuation from the number of power fluctua

tions of a given size. The situation would be made more 

complicated by the smaller fluctuations arising out of the 

jitter in '̂ (z) due to amplitude fluctuations in the 

initial noise (see Chapter 4 and Figure 5.1). While these 

are statistically independent of the phase changes in the 

linear region, they are superceded by the phase wave effect? 

in the nonlinear region. For these reasons, we have chosenj 

not to analyze the power in detail. 



CHAPTER 8 

SUMMARY 

In conclusion, in the superradiant regime of the 

swept-gain amplifier we have seen that there are macroscopic 

fluctuations in energy and peak power which are unlike 

normal laser fluctuations. In particular, our fluctuations 

are (1) macroscopic, (2) unidirectional, (3) episodic, 

and (4) weakly dependent on the standard deviation of 

Q̂(z). We have shown that our fluctuations originate in 

fluctuations in the phase of the stochastic 0̂(z) (i.e., 

quantum mechanical spontaneous emission). We have shown that 

these fluctions in the phase of generate phase waves 

which travel through the pulse and directly cause all of the 

effects described above. And, finally, we have plotted an 

energy distribution function that we predict would be 

observed in the output of such an amplifier. 

Although no experiment, to date, has succeeded in 

reproducing the exact conditions that we have assumed for 

our calculations, we emphasize that our method of analysis 

should be directly applicable to other problems in which 

superradiant dynamics play an important role. Two physical 

problems come to mind. The first is the swept-gain 
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experiments in the far infrared (Ehrlich et al.). In the 

nonlinear region of this swept-gain device, there are Raman 

processes associated with the three-level dynamics. Thus, 

our calculations would have to be modified to include three-

level (rather than two-level) quantum mechanics. The second 

case is Dicke superradiance, which was discussed briefly in 

Chapter 4. The experiments in Dicke superradiance 

(MacGillivray and Peld p. 1; Gibbs p. 61; Vrehen p. 79; 

Rosenberger, Petuchowsky, and DeTemple p. 15 in Bowden et al. 

1977) are somewhat more advanced than the far infrared 

swept-gain experiments. (In that regard, we note that the 

fluctuations we predict are similar to those in a malfunc

tioning apparatus so that the experimental conditions must 

be well controlled.) The linear region of the Dicke problem 

has a very similar analytic form to the case we deal with 

here. The main differences are that one has two fields 

travelling in opposite directions and that one analyzes 

ensemble averages in the polarization phase at fixed time. 

In any case, the analytical methods which we have developed 

in this dissertation could certainly be extended to include 

these other physical situations. 



APPENDIX A 

THE NUMERICAL CODE 

The numerical code described here solves the fully 

nonlinear Maxwell-Bloch equations, equation (3.2). It does 

this by solving the system of ordinary differential equations 

All the methods used in this code are fourth order. At 

z=0 equation (A.l) is solved by a Runge-Kutta method 

(Abramowitz and Stegun 1972, p. 896, 25.5.10). For z > 0 

Adams-Bashforth predictor-corrector is used (Abramowitz and 

Stegun 1972, p. 896, 25.5.4 and 25.5.5). To calculate the 

integral in equation (A. 2) a Lagrange integration method is 

used (Abramowitz and Stegun 1972, p. 915). And a finite 

difference method is used to begin these methods. The code 

r- = $n - & 

(A.l) 

•J—*n = -Re { <§&>*) 

where d? is calculated by 

(A.2) 
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used to generate Figure 4.1 is a second order version of the 

above methods and was written by Frederic A. Hopf. 

In all the stochastic numerical work (̂z), with 

mean zero and delta correlation, was replaced by a discrete 

Gaussian stochastic variable, (z) , where 

<̂ Az) (z» = 0 

 ̂̂ >(Az) j z )  ̂ ,(Az) * (z, )> _ 

—2 
SPr, 

if z1 € [ (k - 1)Az,kAz) 

for some k = 1, 2, 3, 

otherwise. 

z was typically chosen so that the length z from a phase 

wave forming to its reaching the peak of the pulse was 

divided into a few thousand intervals on the z-axis. 



APPENDIX B 

THE ANALYTICAL EXPRESSION 

FOR THE PHASE WAVE 

As mentioned previously, the Maxwell-Bloch equations 

are linear at the leading edge of the pulse (0 <_ }J < r, - x ) 
lr 

where \S&"\ « 1 so n « +1. In the linear regime the 

Maxwell-Bloch equations, equation (3.2), reduce to 

8  - g >  

= a' &> - $ 
a Z 

as given in equation (6.1). The solutions of these equa

tions can be found either by using Laplace transforms or by 

noting that this is a Riemann problem (see Hopf et al. 1976). 

In either case the solutions are 

<?(U,z) =• a'e"vfZe"(z""x)I (2/a'y (z-x)) (x) + e~z <?(U,0) 
J r ° 

r\i .  , . I, (2Ax'z(u-v)) 
+ /aT7e~zf e~(y~v) — <£(v,0)dv 

J n /u-v 

(B . l )  

/y-v 
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I- (2/a1y(z-x)) 
t Z I  

& > ( } i t z )  =  /a1 ve~̂ J e~̂ z"x̂  /ẑ x *̂0 (x) + e ^ & > Q ( z )  

+ e"zf1Je"(u"v)I (2/a'z (y-v) ) <?(v,0)dv, 
Jo ° 

where I and are Bessel functions with imaginary argu

ments. Here the SSP solution, corresponding to & * Q { z )  =  & > Q ,  

is 

( V , z )  =  & >  e T a , ~ 1 ) y  

SSP,linear o 

ŜSP,linear(u'z) a'̂ SSP,linear*y'z) 

To see for what values of y this linear SSP is a 

good approximation to the nonlinear SSP, let us compare the 

two. The nonlinear SSP, ŝSP nonlinear' îve11 in equa

tion (3.6c), can be rewritten as 

e (a'-i)y 

ŜSP, nonlinear ̂  a ' I &>Q I (a'-l)y 2* 
l+[ —̂e 

2(1 - ~r) 

Thus if 

I & 
[ o —e(a1-1)yj 2 < e (B.2) 
2(1 -

then 
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1 < ŜSP,linear 
ŜSP,nonlinear 

< 1  +  6 .  

Now equation (B.2) gives 

1 - A-

M i ĵ i[£tl2 ijWT") - M1 m Ta -1 ̂I£nr 

where is the location of the peak of the nonlinear SSP 

Thus 

U „ , 1 1 In l/€ 

Td " 2 aI-1 xk 

For example, let € = .01. If & = 10~4, then for all 
o 

a* >2, -H- < .75. 
— T, ̂  a 

To obtain the analytical expression for the phase 

wave, equation (6.2), let us concentrate on equation (B.l) 

and find <S?(u,z). A similar argument works for (̂ii,z). 

First, our boundary conditions are 

ôe 
ief 

& (z) = t 
o 

ie 

for 0 < z < r 

for r < z 

(B.3) 

i . (u,0) = a' ̂ ê '"1̂  
SSP,linear o 
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(We could, instead, let <£(y,0) = 0, and zq >> 1 so that 

a SSP would have formed. However, we choose to insert the 

SSP directly into the boundary condition and then change the 

boundary polarization immediately.) 

Once we have inserted the boundary conditions, equa

tion (B.3), into equation (B.1), then it becomes necessary 

to evaluate the integrals. The main concern of this ap

pendix is this integration. To begin, we assume that u 

and z are large enough so that I (y) and 1̂ (y) can be 

replaced by 

e* 

/2uy 

(From numerical computations of the integrals themselves, 

this replacement gives 1-3% errors in the integrals for 

z >> 0, 0 << u < - T ) . Thus, the only regime in which 

this replacement is not valid is where the phase wave is 

forming. By the time the phase wave has attained its 

characteristic shape, as it has in the figures in Chapter 5, 

our replacement is valid (see Figure 6.1 for further 

confirmation). 

Then, equation (B.l) gives 
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_Urr -(z-x) 2/a1p(z-x) iBp-
<?(P,z) = a'e H e tz  ̂ =. e rdx 

J 0 îr /a1 p (z-x) 

ŷ Tr /a' p (z-̂ T 

+ a' &> ê a'"1'lie~z 
o 

, 2fU e~(u"v) e2/a,' z (p-v) (a'-l)v 
+ /a1 ze I ™1 e dv 

;0 /p-v /a"'p(z-x) ° 

(Note that the singularities in the integrals are no problem 

since they are integrable singularities.) These integrals 

will be evaluated by two distinct methods - lowest order ex

pansions and the method of steepest descent. In order to 

use lowest order expansions we will need — << 1 and so we 

will require this throughout. To begin these methods let us 

separate the integrals out further: 

„, -P rr . . 2/a' p (z-x) i£~ 
<?(p,z) = &> — -̂TTa) e 174̂  dx (B,5) 

° 2/? (a1p) ' J o (z-x)1/4 

x 

P i3 JiL j"1 + fZ e2̂ '̂z-x) 

° 2/if (a'u)1''4 'r ' P1 (z-x)1/4 

+ a- Vz + o 



1X4 

r"2 'V 
+ & — (a'ar̂ e "( + 
° 2/tT 

p2 

(y-z) e2'«,«(V-v) (a'-l)v. 
1 3/4'"° dv 

( y - v ) J / 4  

where and P2 will be defined later but satisfy 

1̂ 2̂ 
-r « i' — <,: 

Now let us begin to evaluate these integrals. Let 

us begin by evaluating 

I 
V<Z-x> ef̂ f̂ ic*dx (B.6) 
a (z-x) 174 

which is the first integral in equation (B.5) for a = 0, 

_ 6 
" r* 

b = p̂ , and c = 0. We have, in either case, 

b = r, and c = It is also the third integral for a = r, 

- << 1, - << 1. 
z z 

This integral will be evaluated by lowest order expansion 

using the fact that — << 1 for a £ x £ b. Thus, equation 
Z ~ ' 

(B.6) can be rewritten as 
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2/a'yzd - ~) 
_e2f_f̂ >-(1+ic) x e z 

T^a (1 -  #)X / 4  

Taking the first order expansions for 1 - ̂  we 

obtain 

ê fbe(1+ic)xe2/a'uza 2z> 
(1 + ax (B.7) 

z / 'a 

which is 

e~ze2/a1 ]iz jb (l+±c-J^-)x 

7̂4 
e v * (1 + £)dx. 

Now to evaluate this integral to lowest order, neglect the 

x/4z in the integrand. Then we obtain 

-« 2/̂  d+io-'̂ ?)b (l+ic-̂ )a 
e e e 

—-J*? 

Now let us evaluate the integral 

(B. 8) 

z , . 2/a'n (z-x) 
e-<z-*) S TT̂ -dX (B.9) 

I;" "53*> 
I 

which is the third integral in equation (B.5). This integral 

will be evaluated by steepest descent. Replacing x by 

z-x in equation (B.9) we obtain 
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I. 

2 1̂ 2/a1yx -x e j 
e 1r̂ x. 

x ' 

This is, by completing the square in the exponent, 

, rz-pl - (/x-/a' y) 2 
P
a y H , d* 

Jo 

Letting s = /_£_ - l we obtain y a y 

2(a'u)3/4e«Vf"a a'uS /s + Ids. (B.10) 
-1 

In order to evaluate this integral by steepest descent, we 

need to know the upper limit. We will delay evaluating this 

integral until we know what the upper bound should be. 

Now let us evaluate this fourth integral in equation 

(B.5), namely 

r̂ l t \ _2/a1z(y-v) / , n \ ( e~(yv) e Q(a -l)vdVi (B.ll) 
Jo (y-v)J/4 

Again we will use lowest order expansions since v/y << 1 

for 0 £ v £ p̂ . Thus, we obtain, similar to a previous 

integral, 



e-u f
Bl o'v .2/5̂  e-" A0' v . 

T^Jo ( l -v / , ) 3 / 4  T^Jo 

/—  (B .  12 )  

a-/S' Pl-! _ _2/a'uz e  ̂ e 
" e 7̂4 " 

U ™ i M _ / ±: ) 

Our final integral is 

/".-(P-V) («'-l)vdv, (B.13) 
V (u-v)J/4 '2 

which will also be evaluated by steepest descent. First, let 

us replace v by u - v in equation (B.13) to obtain 

(a'-l)y e 
fP_P2 _0.v e2v/aTzv 

e 37T̂ v 
0 vJ/ 

_ Ca'-lJuV"2 s-(̂ -̂ )2. 
6 Jo ^71 dv" 

Letting s = - 1 we obtain 

'a' (y-P2) 

e (a--l)yez2(̂ .j 1/4 T 2 £21̂ 5. (B. 14) 
a '-1 /i+T 

Again this integral cannot be evaluated until the upper limit 

is known . 

Let us now substitute into equation (B.5) the inte

grals we have evaluated, equations (B.8) and (B.12), and 



118 

the steepest descent integrals which we have left to eval

uate, equations (B.10) and (B.14) to obtain 

a1 -y 2/a' yz -z 
<?(y,z) « —2— ® T7f—I 

' 11 r» \ 4 
2/7 (a'uz) ' l+î  - /a' u Lt-lsL 

r v ss 

iB e v 2 -e v 2 
r 

+ ] (B. 15) 

1-

r p i  
ê a'/oPU , , . /Va"y 1 . 2 

+ f° e"a ys /i+Tds 
/? >-1 

+ a' ̂ e(0',-1)|Je-z o 

a' 1/4 0 /-i a'(1"/̂ '̂p2 , , o z -z -y 2/a1y z e v -1 

2/? e e rr 
A"va * y 

*(P-P9) 
z - 1 2 

+  5£>' -W 2  £!!^ s .  
/? J -1 /i+I 

In order to determine the upper limits of the two integrals 

in equation (B.13), let us simplify the equation by setting 

r = - 0. Then we obtain 



+ ei®/ciTv f 
/¥ J-

I Z _ 1 Va'ii 
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/i" 

/â T 
2 z -zŝ  

. e â s /s+lds + /z ** 

(B.16) 

0 ds] . 
-1 /s+1 

Recall that the phase wave is largest when 0̂  and 0̂ » are 

both changing rapidly, i.e., when 0̂  and 0̂ , are near B/2 

{see Figures 5.2 and 5.3). Notice in equation (B.16) that 

the first integral has phase 3 and the second integral has 

phase 0. Thus, for the phase of & to be near 3/2, we 

want both integrals to have approximately the same magnitude. 

This requires that « 1. 

Thus, let be fixed and let z = a'uQ so that 

z is fixed. We wish to find <?(y,z) for y near yQ so 

let y = y + € where «< 1. Now we only keep terms to 

G € order £ and r and ignore O (€—) and 0 (r—) . 
wo 

Let us return to the equation for , equation 

(B.15). In order to carry out the two remaining integrals we 

would like the upper limit of integration to be zero. This 
2 is where the slopes of the argument of the exponents, -ays 

2 and -zs , are zero. (This is indeed why and p2 were 

inserted in equation (B.5).) Thus we require that - -a'€, 
p21 p_ = 6 and thus —— << 1 and << 1 as was assumed 

2 Z Z 

previously. Then our integrals can be evaluated as follows: 
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'V u°s /i+ras = I(̂ T- 5̂ 1 + 0((a-Po)-3/2) 

(B.17) 

I-i = + 0((a,V-3/2»-

Before substituting these expressions into equation 

(B.15), let us mention one final point. In all the terms 

where the integral has already been evaluated we have the 

term 

e-lie2/a'uze-z = e(aI-l)ye-(v/a7TT-/i')2> 

Substituting in z = a' \iQ, jj = jjq + € we find that 

- ̂  (_§_) 

g-tf&VVz)2 w e 

and this will be ignored since it is of higher order than we 

are considering. Now, substituting equation (B.17) into 

equation (B.15) we obtain 

*<„,«> - 4^ 
2/nVa,y0 /I T /A 1  yQ 

+ (1 + 1+?a'€ )1 . 
2/rrVa' y ° 

o 

This can be written as 
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<?(P,z) = & ̂U{a'"1)yei3/2[{(2 - )cos 3/2 
° 2 /tF/O7!! 

(B.18) 

r sin 3/2! ,l+2a'€+r̂  _ n/nl + —7rpj-—/ - i(— ) sin 3/2]. 
/5r/a' u ' Ss/aJv 

Using the same techniques we find 

#>(U,z) = -Se(c',"1)ye:LB/2[{ C2 ) cos 3/2 
/tt/CTHJ 

(B.19) 

r sin $ / 2 x  .. ,-l+2a'6+rx _ „ /0i + —rr-pj-—/ - i( —) sin 3/2 j . 
/ir/a1 u ' /if/a' u 

(Notice that the phase of is 3/2 when l+2a'6+r=0 

and the phase of 8P is 3/2 when -1 + 2a'£ + r = 0. Thus 

lags behind 0̂  in time by (r + l)a'.) 

Rewriting equation (B.18), 

e~î 2 &(\i, z) _ r (i/o a. r sin 3/2 
a )̂c(a'-l)yi /rr/a1 y /nVa' u 
2 (B.20) 

. l+2a'€+r„.._ „/n - i sin 3/2, 
/rF/a' y 

we see that the phase of e is in (- if the 

real part of equation (B.20) is positive. If the real part 

is negative then the phase will be in • Thus, the 

phase of @ is 
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6, = | - arctanl11*2''611'̂ 8̂ ) (B.21) 
* 2 2/?/5nTr-r+r£S|7|Zi 

if the real part of equation (B.20) is positive. If the real 
Q  S 

part is negative, we replace  ̂by j + ir. 

Concentrating on the phase of S , equation (B.21), 
q TT 6 TT 

we note that 0g, goes from ^ + 2 to 2 ~ 2 n̂stea<̂  of 

from 3 to 0. Thus, out in the wings equation (B.21) is 

inaccurate. However we emphasize that, for small €, it is 

a good approximation. From comparisons with the numerical 

computations, equation (B.21) is accurate to 2̂% for small 

€. The phase of is 

« 0 / (-l+2a,€+r) tan 0/2 v V  -  j  -  a r c t a n f ^ ^ ^ — ( B . 2 2 ,  

If the real part of equation (B.20) is positive, and, again, 

v must be added if it is negative. Finally, to calculate 

the phase wave, <J> = 0̂ , - 0̂ , we subtract equation (B.22) 

from equation (B.21) and obtain equation (6.2), where we let 

z  -  zq  =  a ' ^ o  a n d  a ' ^  =  C  ( u  -  y 0 )  =  a ' u  -  (z - z Q ) .  

Although the analytical expressions for v 3113 e* 

are inaccurate for large €, the analytical expression for 

<j), equation (6.2), is accurate for all €. This occurs be-
p TT 

cause the values of 0̂ > and 9̂  are approaching j ~ 2 

out in the wings of the phase wave and so <p = 0̂ > - 0̂  
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is near zero. Thus the errors are cancelling out. We 

emphasize that, although the absolute error is small out in 

the wings of the phase wave, the relative error is not. 

Thus the relative error of the analytical expression for the 

phase wave is 3̂% in the main body of the pulse. Out in 

the wings the relative error is very large (̂ 100%) al

though the absolute error is small (̂ 3% of the maximum 

height of the phase wave). This large relative error out 

in the wings will become important in Chapter 7. 

Note in equation (6.2) that <J> = 0 when 0 = 360°. 

This occurs both because the phase wave decreases rapidly 

once the "flip-flop" occurs and also because we have only 

considered lowest order effects. Thus we see that, for 

(3 > 360°, equation (6.2) is only valid for z large enough 

that the "flip-flop" has already occurred. Although it is 

possible to keep higher order terms in the calculation of 

the phase wave, we emphasize that this would make the 

analytical expression for the phase wave completely un-

managable and would not significantly improve our results. 
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