
GARNET: A GRAPH-BASED OCTILINEAR MIXED-SIGNAL STEINER TREE ROUTING 
SYSTEM. 

By 

Rexford David Newbould 

A Dissertation Submitted to the Faculty of the 

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 

In Partial Fulfillment of the Requirements 
For the Degree of 

DOCTOR OF PHILOSOPHY 

In the Graduate College 

THE UNIVERSITY OF ARIZONA 

2 0 0 4 



UMI Number: 3145112 

INFORMATION TO USERS 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

UMI 
UMI Microform 3145112 

Copyright 2004 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



The University of Arizona 
Graduate College 

As members of the Final Examination Committee, we certify that we have read the 

dissertation prepared by Rexford Newbould 

entitled Garnet: A Graph-Based Octilinear Mixed-Signal Steiner 

Tree Routing System 

and recommend that it be accepted as fulfilling the dissertation requirement for the 

Degree of Doctor of Philosophy 

Jo Dale Carothers, Ph.D. date 

J e r z Y W .  Rozenhlit, Ph.D. date 

HuglpBarnat(0, Ph.D. date 

7/z'^A'V 

Arthur F. Gmitro, Ph.D. 

date 

Final approval and acceptance of this dissertation is contingent upon the 
candidate's submission of the final copies of the dissertation to the Graduate College. 

I hereby certify that I have read this dissertation prepared under my direction and 
recommend that it be accepted as fulfilling the dissertation requirement. 

7/3 ?/ 
Disser^fationDirector: jo Dale Carothers, Ph.D. date 



STATEMENT BY AUTHOR 

This dissertation has been submitted in partial 
fulfillment of requirements for an advanced degree at The 
University of Arizona and is deposited in the University 
Library to be made available to borrowers under rules of 
the Library. 

Brief quotations from this dissertation are 
allowable without special permission, provided that 
accurate acknowledgment of source is made. Requests for 
permission for extended quotation from or reproduction of 
this manuscript in whole or in part may be granted by the 
head of the major department or the Dean of the Graduate 
College when in his or her judgment the proposed use of the 
material is in the interests of scholarship. In all other 
instances, however, permission must be obtained from the 
author. 

SIGNED: 



ACKNOWLEDGMENTS 

First and foremost. Dr. Jo Dale Carothers for keeping 
me challenged, and always putting her students first. 

Dr. Theodore Trouard, for giving me a chance to find 
what I wanted. 



DEDICATION 

To Annie, for keeping me sane, and showing me there' 
more to life than work. 



6 

TABLE OF CONTENTS 

ABSTRACT 13 

CHAPTER I. INTRODUCTION AND BACKGROUND 14 

A. Integrated Circuit Routing 14 

B. Routing in a Graph 15 

C. General Area Routing 17 

D. The Reserved Layer Model 20 

E. Modern Interconnect 21 

F. Mixed Signal Interconnect 23 

G. Coupling of Routes 24 

H. Analog Routing 26 

I. Mixed Analog and Digital Circuitry 28 

J. Euclidean, Rectilinear, and Octilinear Routing 28 

K. Routing Congestion 31 

L. Layer Balancing 33 

M. A Modern Integrated Circuit Router 34 

CHAPTER 11. STEINER'S PROBLEM 36 

A. Problem Formulation 36 

B. Steinerization of Nets 40 

C. Obstacles in Steiner Nets 41 



7 

CHAPTER III. PREVIOUS STEINER TREE HEURISTICS FOR ROUTING 43 

A. Rectilinear Steiner Trees 43 

B. Obstacle Avoiding Steiner Trees 48 

C. Octilinear Steiner Trees 49 

D. Weighted Steiner Trees 50 

E. Congested Steiner Trees 51 

CHAPTER IV. MULTIPLE COMPATIBILITY GRAPH REDUCTION 55 

A. Formulation 55 

B. Graph Construction 56 

C. Graph Reduction 57 

D. Routing Phases and Iterations 61 

E. Obstacles to the Routing Process 61 

F. Candidates and Candidate Sequences 62 

G. Octilinear Candidate Generation 70 

CHAPTER V. MCG-BASED STEINER TREE CONSTRUCTION 73 

A. Goals 73 

B. Spanning Tree Separation 74 

C. Steiner Tree Obstacles 76 

D. Candidate Generation 78 

E. Graph Formation: Edge Weights 79 

F. Graph Reduction 80 



8 

G. Candidate Selection 82 

H. Net Post Processing 83 

I. Rectilinear Steiner Tree Results 86 

J. Runtime Complexity Analysis 93 

CHAPTER VI. NON-MANHATTAN STEINER TREE GENERATION 95 

A. Routing Procedure 95 

B. Octilinear Steiner Tree Construction Results 100 

CHAPTER VII. MCG ROUTING FOR WEIGHTED STEINER TREES 103 

A. Routing Procedure 103 

CHAPTER VIII. MCG ROUTING FOR CROSSTALK AND DELAY 105 

A. Routing Procedure 105 

B. Crosstalk Avoidance Results 108 

CHAPTER IX. MCG ROUTING FOR CONGESTION 111 

A. Routing Procedure Ill 

B. Congestion Avoidance Results 112 

CHAPTER X. MCG ROUTING wrrn PLANARIZATION 114 

A. Routing Procedure 114 

B. Layer Planarization Results 116 

CHAPTER XI. AN MCG BASED FULL-FEATURED IC ROUTER 119 

A. Conclusion 119 

APPENDIX A: FUTURE RESEARCH DIRECTIONS 124 



9 

1. Multiple Minimum Spanning Trees Generating Candidates 124 

2. Timing Driven Steiner Tree Routing 124 

3. Steiner Arborescences 126 

4. Buffered Steiner Trees 127 

APPENDIX B : NETLIST FILE FORMATS 130 

1. GARNET Netlist Format Manual Page 130 



10 

LIST OF ILLUSTRATIONS 

Figure 1. Channels and a Switch Box 18 

Figure 2. Reserved Layers 19 

Figure 3. Coupled Nets 26 

Figure 4. Rectilinear, Octilinear, and Euclidean Paths 29 

Figure 5. Congestion 32 

Figure 6. Steiner and Spanning Trees 37 

Figure 7. The Hanan Grid 38 

Figure 8. Graph Using Weighted Regions 39 

Figure 9. Full Steiner Tree 47 

Figure 10. Flexibility in a Steiner Tree 53 

Figure 11. Compatibility Graph Construction and Reduction 58 

Figure 12. Rectilinear Candidate Routes 63 

Figure 13. Possible Two-Via Candidate Routes 65 

Figure 14. Rectilinear Candidate Routes, Outside the Bounding Box 67 

Figure 15. Routing with Line Probing 68 

Figure 16. Lengths of One-Via Octilinear Routes 71 

Figure 17. Octilinear Route Shapes 72 

Figure 18. A Non-Separable Spanning Tree 74 

Figure 19. Separable and Non-Separable Portions of a Spanning Tree 76 

Figure 20. Radial Line Probing For Non-Separable Trees 85 



11 

Figure 21. Single Steiner Tree 87 

Figure 22. MRST Improvement over R-MST 88 

Figure 23. R-MST Improvement vs Density 90 

Figure 24. A Non-Separable Octilinear Spanning Tree 96 

Figure 25. Maximum Overlap or Minimal Length? 97 

Figure 26. 100 Terminal Octilinear Steiner Tree 100 

Figure 27. Improvement over Octilinear Spanning Tree 102 

Figure 28. Colorized Congestion Map for IBM02's First Layer 112 

Figure 29. Congestion Map for IBM02, with Congestion Metrics 113 

Figure 30. Layer Pairs in IBM07 Before Layer Balancing 114 

Figure 31. Layer Pairs in IBM07 After Layer Balancing 118 



12 

LIST OF TABLES 

Table 1. IBM Netlists 91 

Table 2. Route Savings with Steiner Trees 93 

Table 3. Octilinear Steiner Tree Improvement 102 

Table 4. Crosstalk Aware Routing 110 

Table 5. Layer Balancing for IBM07 116 

Table 6. Layer Balancing for IBM08 117 

Table 7. Layer Balancing Results on IBM Netlists 118 

Table 8. Comparison of Run-Times 121 



13 

ABSTRACT 

A compatibility graph-based, general area router for integrated circuit (IC) 

designs is presented. The highly flexible constraint system allows a number of modern 

and mixed-signal routing requirements to be handled, even for a large number of nets. 

The IC router can efficiently construct near-minimal Steiner trees for multi-terminal nets 

in both classical rectilinear, or Manhattan, geometry as well as octilinear geometries. 

These Steiner trees can be constructed around blockages, and in the presence of obstacles 

such as other nets. A method for routing trees through weighted areas is also introduced. 

The routing system can predict congested routing areas before routing is performed, and 

appropriately weight congested areas in order to reduce net congestion. Finally, a fast 

crosstalk violation checker can run alongside the routing engine. Each portion of the 

router is bounded by 0(n log(n)) runtime, or less, making the entire routing process 

bounded by the same runtime. The system thus scales well to handle a very large number 

of exact routes in a fully mixed-signal aware engine, in either rectilinear or newly-

introduced octilinear geometries. 
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CHAPTER I. INTRODUCTION AND BACKGROUND 

A. INTEGRATED CIRCUIT ROUTING 

Integrated circuit (IC) routing involves interconnecting large numbers of circuit 

elements via electrically isolated wire runs, known as nets. Circuit elements are 

fabricated within a semiconductor substrate, yet most interconnections between these 

circuit elements occur as conductive paths fabricated inside insulating layers on top of the 

substrate. Modern IC's may contain thousands to millions of nets. Once completed, each 

net consists of one to many runs of conductive wires, each of which is commonly called a 

route; thus, a route may refer to either a portion of the net, or the entire net. The 

endpoints of these nets, known as terminals, are locations on pre-placed circuit blocks or 

cells existing in the substrate. The underlying goal of IC routing is to connect the fixed-

location, physically isolated circuit elements together in an electrically specified manner. 

Routes connecting unrelated or inequivalent circuit elements must remain electrically 

isolated. 

In an integrated circuit, routing takes place in one or more of these insulating 

layers. Each layer's conductive paths are electrically isolated from those on an adjacent 

layer, unless they are specifically connected by a conductive plug known as a via. It is 

instructive to formulate each layer as a two-dimensional routing plane, a collection of 

which defines the routing area. The routing problem in an IC is thus to find not only a 



path, but a set of layers inside which the path will travel, without intersecting another net. 

The set of terminals and their interconnections for a net form a tree in the graph. Often, 

one terminal is designated as the root of the tree, and is referred to as a source terminal. 

The remaining terminals are sink, or target, terminals. Routing is sometimes described as 

the process of connecting source terminals to sink terminals. 

Placing a route on certain locations in a set of layers effectively reserves those 

physical locations in each layer for that net, and no other net may use those locations. 

Additionally, each net could exist in one of many possible locations in the set of layers. 

Each choice of net location affects not only the quality of the solution of that net, but also 

affects the quality of the other nets' routes, and even their ability to be routed at all, 

known as the nets' routability. The general routing problem therefore quickly becomes 

computationally difficult. 

B. ROUTING IN A GRAPH 

The routing problem is most often approached as a graph problem. A routing 

graph is defined based on the terminals needing interconnection, forming set T. A 

convenient methodology for determining terminal locations is to overlay several 

Cartesian grid sets onto the underlying die surface. The set of every intersection of a 

horizontal and a vertical line in the Cartesian plane, with one plane per routing layer, 

forms the full Cartesian 3-space, and shall be the set of vertices C. Each element c e C is 

an ordered 3 element tuple (x,y,l), denoting x-coordinate, j-coordinate, and layer or depth 



coordinate of that element, respectively. By choosing a high resolution Cartesian grid, C 

can encompass the same locations as every teT. The vertices in T are then easily 

mapped to vertices in C. The resultant graph is known as a grid-graph. Some 

formulations discussed later only use the elements of T in the routing graph, and is 

sometimes called a terminal graph. Unless noted otherwise, grid-graphs are used 

throughout this work. 

The routing problem is then a problem of finding paths in the routing graph from 

each source terminal in T to every sink terminal existing in the same net. More formally, 

it is desired that given a set /? = (A^ u P), where c T is a maximal subset of T 

consisting of terminals in the same net and c C,\/ t s N, t is connected and N contains 

only one component. That is, a path must be found between all elements of N, using 

vertices from the set C. Finally, none of the vertices in set P may also be an element in 

the set (T - N), or P u (T-N) = ^ , and every set P is disjoint. More simply, each set of 

locations for the routes of a net may not coincide with another terminal, or another net. 

For an IC router, the vertices in T could have an {x,y) pair and vertices in C could 

have the aforementioned {x,y,l) tuple associated, corresponding to the physical location of 

that vertex. The mapping from T to C translates the vertex's pair {x,y) into the tuple 

{x,y,0). For each collection of terminals in a net, the router then must generate a series of 

tuples which define a path between every terminal. This path must remain valid in the IC 

topology (discussed below), remain electrically isolated from other paths, as well as 

possibly fulfill other electrical criteria, such as delay, length, or route shape. 
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C. GENERAL AREA ROUTING 

Classically, IC routing has been broken into two stages, global routing, which 

determines approximate paths for routes to follow, and detailed routing, which refines the 

global routing by determining exact locations for routes [Sherwani99]. The problem 

studied here is that of general area routing, rather than of global and detailed routing. A 

general area router handles both global and detailed routing in one step. General area 

routers are commonly used for local interconnects; small numbers of physically isolated 

routes which travel short distances. Global interconnection routing can also be handled 

by a general area router if the algorithm can scale well with the size of the routing 

problem. 

In addition to the general area routing problem, the proposed solution will be 

designed to handle macrocell or full-custom layouts. In a full-custom design style, the 

circuit is partitioned into functional blocks of any size or shape, and placed in any 

location on a circuit die [Sherwani99]. In order to attain complete control over the 

design, some portions of a full-custom design may even be done by hand, especially for 

analog or RF layouts. These complex designs often contain a variety of design rules and 

trade-offs not well captured by software tools. This allows the most flexibility for circuit 

designing, at the cost of the most geometric complexity. Among many other constraints, 

the routing solution for this design style must include the ability to handle routing 

blockages, areas of the die where routes may not be placed. 
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Figure 1. Channels and a Switch Box. 

On the left a standard-cell layout uses equal 

height rows, and routing occurs between rows, as 

well as gaps between the cells. On the right, routing 

occurs only in an enclosed region. 

Other design styles, such as standard-cell layouts, or gate array layouts, force 

geometric simplifications on the layout. These simplifications allow constraints to be 

added to routing formulations, possibly simphfying the routing problem. For example, 

standard-cell layouts consist of a number of rows of cells, each of the same height. 

Routing normally occurs between these rows. This can decompose the routing problem 

into detailed routing of channels and switch boxes. It is then customary to define the 

routing graph based solely on the cells or terminals, rather than the underlying geometry. 

Many techniques akeady exist for near-minimal solutions for this routing style. 

However, allowing flexibility in cell type, size, shape, and placement with macrocell or 

full-custom layouts can give more compact circuits with higher performance. 



As long as an algorithm can be developed to handle this general class of nets, the 

number of constraints on the net geometries inherent in other layout styles that might 

introduce additional length can be reduced. Finally, in a mixed-signal environment, the 

router could consider digital and analog routes simultaneously, rather than rely on an area 

router for analog circuit portions, and a separate detailed router for digital portions. 

A general area router that can handle forbidden areas can be used as a standard 

cell router simply by defining the keepout areas as the locations of the cells. Algorithms 

for area routing, however are, in general, unable to take advantage of these geometric 

simplifications. 

Although full-chip area routers are not unheard of [Liu99], most research focuses 

either on finding exact minimal solutions on grid-graphs for local routing, or global or 

detailed solutions on terminal graphs [Liu99]. In fact, few global routers have been 

constructed with the ability to handle more than two routing layers, a common 

requirement in modern IC's. 

Figure 2. Reserved Layers 

Two layers are shown, with a via 

connecting between them. The route on the 

lower layer is now electrically connected to 

the upper layer's route. 
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D. THE RESERVED LAYER MODEL 

When faced with routing on multiple layers, most routers use the reserved layer 

model for routing, also known as x-y routing. That is, each layer in the set of layers is 

assigned a preferred routing direction. This is in contrast to an x-y free or free-hand layer 

model, where any routing direction can exist on the same layer. In the case of a pure 

Manhattan router (discussed below), layers are assigned to be either horizontal layers or 

vertical layers. Given many layers, the pattern of horizontal and vertical layers can 

repeat. Routes generally travel horizontally only on horizontal layers, and vertically on 

vertical layers. Any routing that does not follow the preferred direction is known as 

wrong-way routing. When a route changes direction, it also changes layers, so a net may 

exist on multiple layers and on the same layer in several locations. The routes on 

separate layers are connected by a conductive plug filling a hole in the insulator that 

separates the layers, known as a via. A via can add significant parasitic delays and power 

consumption to a route. The via introduces metallurgical contacts, which can create an 

impedance mismatch between the conducting layers resulting in non-Ohmic power 

reflections. Methods for reducing via count are discussed later. 

In octilinear routing (discussed below), routes may extend not only horizontally 

and vertically, but also in a northeast-southwest direction, known as a 45° route, and in a 

northwest-southeast direction, known as a 135° route. With four possible routing 

directions, four layers could be reserved, before cycling layers. While this model 

simplifies routing, modern IC processes rarely have more than 6 routing layers. Further, 



octilinear routing may be desired in a process with fewer than 4 layers. Fewer layers 

may be utilized by sharing layers. For example, 45-degree and horizontal routes may 

reserve one layer, and 135-degree and vertical routes another. A savings in via count is 

also possible with this model, as intersection between routes on a single layer will result 

in a 45-degree bend in the wire [KumarOS]. Here the route has changed direction, 

without changing routing layer. 

As a route reserves the locations in which it exists, routing in multiple directions 

on one layer can greatly reduce density of the routes, by effectively blocking off sections 

of the routing plane. In general, the highest route density is achieved with a reserved 

model that allows a small amount of wrong-way wiring [Enbody86]. While too much 

wrong-way wiring can greatly reduce density, it also reduces the number of vias by 

allowing staircase vias or knock-knees, which are 90-degree bends in the wire, without a 

layer change. 

In general, a free-hand layer model will use fewer vias and consume less area and 

fewer layers than a reserved layer model [Sarrafzadeh96]. However, the complexity is 

greatly increased in using the given area efficiently. Thus, almost all routing is done in a 

reserved layer model, with some wrong-way wiring. 

E. MODERN INTERCONNECT 

Modern VLSI or ULSI paradigms have been achieved via reductions in 

manufacturing geometries (balanced by increased doping concentrations, and reduced 
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operating voltages), known as device scaling. Device scaling allows both greater 

integration and higher device switching speeds; mainly due to reductions in device 

capacitances. In scaling interconnects, the width and thickness of the routes are 

decreased by the same factor as other circuit components. Historically, interconnection 

delay was seen as electrically negligible [Sherwani99]. For local runs of conductors, 

such as connections between two nearby gates, the overall RC time delay remains 

negligible, even for modern processes. With the commonly applied form of device 

scaling between generations, the wire capacitance per unit length remains the same as the 

previous generation, but the resistance per unit length increases by the scaling factor 

squared [Taur98]. However, the average length of the local interconnect decreases by 

this same factor squared from the smaller devices, so overall local RC delay remains 

approximately constant. For a 50|im aluminum wire in a 0.09|am process, the delay is 

approximately 0.25ps, which still remains small compared to the intrinsic device delay, 

which is about 30 ps in a 0.10|jm process. Additionally, this delay reduces more slowly 

with device scaling due to velocity saturation of carriers. 

Global device interconnection speed does not scale at the same rate as device 

speed with smaller device generations. Although increased integration is possible, circuit 

die sizes are not shrinking at the same rate, thus the length of global interconnects is not 

shrinking at the same rate as local interconnects. In fact, the global delay increases as the 

square of the scaling factor, if the die size does not reduce. As feature sizes continue to 

shrink, the overall circuit performance becomes dominated by the global device 



interconnects. Interconnection delay in state of the art circuit designs in 1996 reached 

70% of the total delay [Sarrafzadeh96], and 75% of the total delay for a 90nm process 

[Lev02]. Not only do interconnect timing delays lag behind device reductions, but 

techniques to limit process delay used in scaling tend to also increase interconnection 

power consumption and erode noise margins. One obvious way to alleviate these delay 

issues is to avoid global interconnects wherever possible. When a global interconnect is 

unavoidable, routing that net with the minimum amount of wire possible is highly 

desirable. Any savings in wirelength will aid the global delay. 

F. MIXED SIGNAL INTERCONNECT 

Much of the classical routing problem has focused on finding a solution with what 

is believed to be a lesser amount of wire. Originally, preference was given to shorter 

routes in order to aid routability—a smaller amount of wire meant a smaller amount of 

reserved area. This work involves much more recent routing goals, which have focused 

on finding a solution that must satisfy a number of constraints, including minimal 

wirelength, but also mixed-signal requirements such as noise tolerance, coupling, and 

route matching. 

A mixed-signal design is one that mixes analog and digital circuitry on the same 

substrate, which introduces additional objectives. Interestingly, digital designs in deep 

submicron processes, as well as processes with very high clock rates, share many of the 

same concepts and characteristics as a mixed-signal design. Thus, it is advantageous to 
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apply a mixed-signal solution to cutting-edge circuitry in order to better characterize the 

interactions between the routes and between the routes and the devices. Further 

discussion will use the term mixed-signal, when dealing with both mixed analog and 

digital circuitry, as well as any circuit design in which these circuit parameters are 

important. 

Traditional digital device interconnect has been viewed as a set of lossless, 

insulated conductors, with no delay. Modern and mixed-signal routing can no longer be 

accurately characterized by simple models. Parasitic routing elements, such as a non-zero 

resistivity, capacitance between the route and other elements in the IC, and the inductance 

of the net must all be considered. These elements not only introduce RC (or RLC) delay, 

but can even keep a circuit from operating correctly. 

G. COUPLING OF ROUTES 

One major problem with modern routes is cross-coupling. Cross coupling is the 

capacitive coupling between adjacent routes. The electrical connection between these 

routes can add delay, as well as channel noise transitions in other lines. It is greatest in 

long parallel interconnects. As process sizes shrink, the fringing capacitance between 

routes sees a marked increase, which increases the overall capacitance. At 0.25 micron 

feature sizes and above, the primary source of wire capacitance is the coupling to ground, 

which is linearly proportional to wire length. Below 0.18 micron, primary capacitance in 

wires is coupling to neighboring wires [Lev02]. The cross-coupling is proportional to 
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many factors, including linearly to distance at which wires run in parallel, and to the 

square of wire density. 

The coupling adds a parasitic capacitance to each wire. This capacitance may be 

statically calculated from a parasitic extraction tool that handles cross-coupling. 

However, the capacitance is a time-varying quantity; its true value depends on the signals 

running in each of the coupled routes. The capacitance is always a positive quantity, and 

thus acts to increase the RC time constant for the wire, which increases power 

consumption, and increases the delay seen through the wire. 

Aside from delay concerns, coupling between two adjacent nets gives rise to 

crosstalk. Signal transitions on one line, known as an aggressor net, will be seen on 

nearby coupled lines, known as victim nets, albeit in an attenuated manner. This 

crosstalk erodes noise margins, increases power necessary to drive a line, since some is 

lost to drive the noise signal on nearby lines, and in extreme cases, can cause glitching 

errors in the circuit. 

Coupling may also occur between a route and the circuit substrate. Again, the 

fringing electric fields emanating from the sides of an interconnect also substantially 

increase with process generation [SajidOl]. This coupling can give rise to substrate 

currents, biasing the circuitry. One effect is to greatly depress current drives, which will 

also decrease circuit performance. 

While parasitic capacitance still remains the primary source of interconnect 

crosstalk, inductance also becomes a consideration with the scaling of feature sizes and 
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increase in frequency [BeattieOl]. Routing tools which model inductance as well as 

capacitance have only recently been explored. 

The interconnect coupling and crosstalk worsens with each process generation. In 

addition to the wire scaling increasing the global delay per unit length, increased density 

reduces spacing between routes, greatly increasing the capacitance between them. Higher 

switching speeds also increase the amount of energy lost to these capacitances. It is 

therefore becoming increasingly important to account for coupling during routing. 

All circuit designs, once completed, go through a full-chip parasitic extraction and 

modeling in order to determine noise limits and reliability. Without prior cross-talk 

planning, smaller devices can result in considerable time being spent on the rip-up and 

reroute of the circuit in order to alleviate noise concerns. 

— 0 

Figure 3. Coupled Nets. 

/ 
1 . A 
• L2 

0 

Two coupled lines are shown on the left. On the right, a transition on one line can cause a short

lived transition to appear on the coupled line (shown as a bi-color dotted line). This noise waveform can 

degrade timing, increase power, and possibly cause spurious device switching. 

H. ANALOG ROUTING 

Analog integrated circuitry adds additional design requirements, due to the 

additional circuit sensitivities. Many analog circuits are routed manually by the circuit 



designer, mostly due to a lack of powerful routing tools for analog circuitry. While this 

does give the designer complete control over the geometries, it is also time consuming, 

especially for larger designs. The manual design process often has to iterate several 

times, over routing, characterization and extraction, and simulation. A circuit simulation 

of the completed routing may not give the desired results, requiring changes to the 

manually implemented routing. This process must then repeat. 

Classical digital interconnect tries to be a short as possible. This goal is replicated 

in analog routing, for the slight resistances in routing wire can degrade the sensitive 

analog circuitry, though it must trade off with other, possibly conflicting, goals. 

The matching of interconnects is also a major feature of analog routing. Analog 

circuit designers often wish to duplicate circuit elements exactly in a design, in order to 

design around process variations. These circuit elements must be exactly alike for many 

analog design techniques to work properly. This includes the device interconnect. Exact 

mirroring between these nets actually leads to matching of the parasitics between them. 

Poor matching between nets in differential pairs and current mirrors may induce large 

signal offsets, leading to poor performance [SajidOl]. Finally, even minor unmatched 

coupling greatly impacts analog circuit performance. For example, it will degrade the 

frequency response due to the Miller effect in op-amp circuits, and the ratio accuracy of 

precision capacitors [SajidOl], 

It is also imperative that certain areas of the design be blocked out from the router, 

so that no changes can be made in these locations. For example, the routing might have 



already been done by hand, or the area might house an analog capacitor. Commonly, 

routing over sensitive devices is also forbidden, to remove the possibility of impacting 

their performance. These forbidden zones are known as keep-out areas. 

I. MIXED ANALOG AND DIGITAL CIRCUITRY 

The coupling sensitivity of analog circuitry is worsened when analog and digital 

circuits exist on the same die. Digital circuitry by definition has only two states, a high 

and low state. It rapidly switches back and forth between these states, creating a large 

amount of high frequency noise in areas coupled to it, such as nearby routes, and the chip 

substrate. A digital gate has a comparatively high noise margin; the noise signal often 

will not spuriously switch the gate. An analog gate does not have a high noise margin, if 

any at all, as many analog gates operate continuously. A spurious spike in the line can 

have dire consequences. A common method to alleviate the problem is to keep analog 

and digital nets segregated on the chip. Circuit elements and routes are kept as far away 

from each other as possible. Keep-out zones are a useful way to keep digital and analog 

routes from nearing each other. 

J. EUCLIDEAN, RECTILINEAR, AND OCTILINEAR ROUTING 

Classical IC routing has involved the use of rectilinear or Manhattan geometries— 

interconnections running only in horizontal and vertical paths, such as the streets of 

Manhattan island. The lower bound for the length of a net in a Manhattan geometry 
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(sometimes known as the Li metric) is the length of that net's bounding box. The 

bounding box is a rectangle defined as the largest enclosed polygon formed from 

horizontal and vertical lines projecting from each terminal in the net. The distance 

between two points mi ={xuyi) and m2=(x2,y2) in the Manhattan or Li metric, is \xi - X2I + 

ly/ - y2\. In Figure 4, the Manhattan route is tracing one side of the bounding box. Any 

route that always moves towards the target terminal from the source terminal is 

constrained to move only inside the bounding box, and will have the same minimal 

length as a number of additional routes in the Manhattan geometry. 

P 
Rectilinear 

\ • i 

•%N 

• 

Figure 4. Rectilinear, Octilinear, and Euclidean Paths. 

Three methods for measuring traveling distance between two 

points. Rectilinear is always at least as long as octilinear, which is 

always at least as long as Euclidean distance. 

Routes that can also cut across the diagonals of square sections of these 

rectangles, making connection angles of i-TT/4 for any integer i, are known as octilinear or 

45-degree routes. It is important to note that an octilinear geometry encompasses the 



Manhattan geometry. As the angled segments traverse a Manhattan distance of 2 using a 

V2 length segment, shorter routes can be attained by maximizing the length of the 

octilinear segment. Thus, not all routes inside the bounding box are the same length in an 

octilinear geometry. The minimal distance between two points mi =ixi,yi) and m2 =(jc2,>'2) 

here is MAX(x; - ̂2 ,yi - yi) - MIN(a:/ - X2 ,y; - yi) + V(2*MIN(x; - X2 ,y; - ̂2)). This 

expression simplifies to MAX(j:; - X2 ,y; - >>2) + 0.414*MIN(x; - X2 ,y/ - ̂2). In geometric 

terms, if the length of a rectangle is taken to be the longer side, the distance is the length 

plus 0.414 times the width. 

Euclidean routes are the most general form of a geometry, and encompass all 

other geometries. They are not constrained in location, and may form any angle in their 

intersections. The distance between two points here is the vector length between the two, 

V((x7 - X2f+{yi - yzY)- Euclidean routes are rarely used in design automation, as 

manufacturing constrains routes to certain types of layout geometries. 

Even though printed circuit boards have made extensive use of 45-degree routes, 

it is only recent advances in circuit fabrication technology that has renewed interest in 

octilinear routes for IC's. As octilinear routes can traverse the same separation as 

Manhattan routes using up to 1.414 times less wire, theoretical gains of 20% in total 

wirelength are possible with octilinear routing [Teig02]. However, numerous changes are 

required in electronic design automation (EDA) tools in order to take full advantage of 

reduced wirelength that octilinear routing promises, which has been the major obstacle to 

adoption of this new scheme. If both octilinear and Manhattan routes can be used 



efficiently in a routing tool, great gains in total wirelength may be achieved. The 

software tool chain presented here can generate routes in Manhattan and octilinear 

segments for a net with any number of terminals with no time penalty over Manhattan-

only routes. Without obstacles, each route is guaranteed to be shorter than, or as short as, 

the Manhattan distance between the terminals. 

K. ROUTING CONGESTION 

The maximum number of routing lines that can be manufactured in an area is 

known as the capacity of the area. When the number of lines placed in that area 

approaches the capacity, the area is said to be congested. A congested area has few 

available places for nets. It may not be possible to find a route through a congested area 

at all. Even before this limit is reached, congested areas bring undesirable effects to the 

circuit. 

Obviously, a congested area has routes densely placed, often as dense as the 

manufacturing process allows. Since the distance between nets is small, coupling 

between nets is high. Each net can be coupled to several other nets, yielding several 

victims for each aggressor. The overall effect is to increase the noise sensitivity, and 

decrease the performance of the circuit. 
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Figure 5. Congestion. 

A small netlist, with several areas 

of congestion highlighted with a dark grey 

background. 

When an integrated circuit is manufactured, reliability becomes a concern. Point 

defects in the manufacturing process are uniformly distributed throughout the die. A 

location in the routing layers of the IC which is filled with routes will have approximately 

the same number of defects as one which is empty of routes. Thus, defects in the 

populated regions might keep a device from working, while defects in a sparse region are 

less likely to cause problems. 

After initial testing, thermal stresses are a primary factor in IC failure. As routes 

carry current, some is lost to resistive heating. As devices switch states, energy is lost as 

heat as well. The heating and cooling of the substrate and routing layers cause them to 

expand and contract. As both aluminum and copper expand much more than silicon or 

silicon dioxide for the same change in temperature, metal expansion and contraction 

stresses are most important. Nets in thermally "hot" regions in the IC will expand and 



contract with device operation. When metal expansion is not even across the die, it puts 

stresses on the die, which can cause device failure through either electrical or physical 

means [Cadence04]. 

In fact, in modern nanometer designs a large current in an area, such as from 

many dense routes carrying current, can cause electromigration [Lev02]. 

Electromigration is the physical movement of the conductor ions. Thus the physical 

structure of the route moves, which not only degrades the route, but can cause short and 

open circuits, rendering the device inoperative. 

It thus behooves the circuit designer to not only keep the amount of routing metal 

uniform across the planar surface, but also to avoid densely packing nets when not 

necessary. Avoiding a congested area will be discussed later, but almost always involves 

a distance penalty. 

L. LAYER BALANCING 

As previously discussed, an imbalance in metal densities can cause device 

thermal reliability and manufacturing defect problems. This problem exists not only in 

the planar routing surface, but also across different routing layers. Thermal expansion 

occurs all three directions. Expansion of lower routing layers without approximately 

equivalent expansion of higher layers will also put thermal stresses on the chip. 

The cost for running a net in a higher layer is the associated cost for using 

additional vias, usually an RC penalty from the via itself. There is no additional 



manufacturing cost for the layers; as the same process always uses a set number of 

routing layers, whether populated or not. If the benefits of reliability and crosstalk 

outweigh the additional RC time delay and current power penalty, it would aid the design 

to evenly distribute routes amongst the layers, known as layer balancing. 

M. A MODERN INTEGRATED CIRCUIT ROUTER 

It is the goal of this work to use a new approach to construct a modern IC router. 

The router must be able to handle a large number of nets, from hundreds of thousands 

upwards through millions. It therefore must not only route quickly, but scale well in 

terms of both execution speed and memory footprint for future designs. 

A fast router is useless if the solution found, though electrically correct, will not 

function within the design criteria. Therefore, crosstalk noise estimation could be 

incorporated to save iterations in design cycle. That is, the router should avoid situations 

which might bring coupling violations. These violations must be removed before 

manufacture, classically by hand. Including crosstalk avoidance in the automated routing 

process will not only speed design time, but may also increase the quality of the solution 

found. In order to be able to handle mixed signal, or deep submicron digital designs, 

analog constraints should be incorporated. As reliability and defect management is 

pushed in deep submicron structures, the ability to build a more reliable device without 

process changes would be a powerful benefit. A router that can balance the penalties 

associated with avoiding congested areas, as well as evenly distributing nets amongst 



available layers, can improve reliability while minimizing performance loss. 

Furthermore, route congestion can affect noise margins and the ability to completely 

route a design. Congestion should be detected and minimized if possible. Each of these 

constraints will often have conflicting optimal solutions. 

As the overall goal of minimizing wirelength still remains even in light of 

additional routing criteria, the router's solution should try to keep wirelengths as short as 

possible. The use of Steiner trees, discussed next, can reduce the wirelength from a 

spanning tree routing. Finally, the introduction of manufacturing processes that can 

allow octilinear routing presents a great opportunity to reduce route length. A routing 

tool that can more fully take advantage of this new geometry to save wire will be a great 

advantage. The use of both Steiner trees and an octilinear geometry is a novel method for 

reducing wirelength, and is one of the main results of this work. 

The quality of a routing solution can be classically measured in criteria such as 

layer density, the number of vias, total wire-length, or sometimes variance of wire-length. 

More modern criteria often cannot be measured but only estimated until physical 

manufacture of the circuit, or completion of the routing phase, such as a number of 

electrical constraints. Crosstalk susceptibility, noise tolerance, and timing delay are such 

constraints. Finally, benefits in some measures, especially congestion, can have an 

adverse affects on other measures, such as route length. A measure of a good router will 

be in its solution, but may be hard to quantify from the solution. 
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CHAPTER II. STEINER'S PROBLEM 

A. PROBLEM FORMULATION 

Given a set of points M = (mi, m2, mj, the shortest tree interconnecting all the 

points in M is known as the minimum spanning tree (MST). By definition, the tree 

contains the minimum number of edges necessary to ensure a path between all points. 

The length of the tree, the quantity to be minimized, is the sum of the distances or 

weights of each edge in the tree. In the Manhattan geometry, the tree is known as the 

minimal rectilinear spanning tree (MRST). In the octilinear geometry, it is referred to as 

the minimal octilinear spanning tree (MOST). The task of finding a MRST, MOST, or a 

minimum spanning tree in general, on a weighted or length-weighted graph is simple, and 

the classical Dijkstra's [Dijkstra59] or Prim's [Prim57] algorithms may be used in O(n^) 

time, or 0(n log(n)) time with a heap structure. 

Given a set of points P = Mu S, where S is the set of points {si, S2,..., Skj and M 

is the set of points {rrii, mJ, each tree connecting all the points in M and any of the 

points in S is known as a Steiner tree upon the set M. The tree connecting all the points in 

M is known as the spanning tree. These points S2,..., si^in S are known as Steiner 

points. The Steiner tree is commonly defined in the Cartesian plane. This plane is the set 

C  =  { c u  C 2 , . . . ,  c j ,  w h e r e  e a c h  c j  G  C  i s  d e f i n e d  b y  t h e  p a i r  ( j c j ,  j j ) .  T h u s ,  M Q C  a n d  S ^ C .  

Steiner points that exist in the same (x,}') locations as elements of M may be disregarded. 

Therefore, Mf\S=4>. The weight of the tree is the sum of the weights upon each of its 
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edges. The tree with the smallest total weight, no matter the geometry, is the Steiner 

minimal tree (SMT). Classically, the distance measure used with SMT's is the 

Manhattan distance, and these SMT's are known as rectilinear Steiner minimal trees (R-

SMT's). In general, the R-SMT is smaller than the MRST, for the same set M and length 

metric. Finding the SMT, though, has been proved to be NP-hard [Garey77]. Hanan 

showed [Hanan66] that there exists an R-SMT that can be constructed using only the set 

of points S that occur in G=(V,E), the graph constructed by drawing horizontal and 

vertical hnes through each point in M embedded in a Cartesian plane. This graph G is 

often known as a Hanan grid. It is thus possible to construct an R-SMT by exhaustively 

searching every subset of the points in P which occur on the graph G. This exhaustive 

search, however, does not complete in polynomial time, but in exponential time. It has 

also been shown to be NP-hard [Hwang76],[Garey77]. 
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Figure 6. Steiner and Spanning Trees 

The element of set C are shown as circles. The elements ofM are 

shown in light grey, and are labeled. The element(s) ofS are shown in dark 

grey. A tree defined only on the elements ofM is shown in dashed lines, and is 

a spanning tree. A tree defined on both the elements ofS and M is shown in 

dotted lines, and is a Steiner tree. 
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Figure 7. The Hanan Grid 

Two identical graphs on 5 vertices. The Hanan graph for each is shown in dotted lines, 

with squares marking possible Steiner points. The minimal Steiner Tree for each is shown in solid 

lines. The graph on the left is bound to a rectilinear routing style, and the minimal Steiner tree uses 

Steiner points from the Hanan grid. The graph on the right is bound to an octilinear routing style. 

The point marked with a star is a Steiner points for the minimal Steiner tree, but does not occur on 

the Hanan grid. 

In this work, we are interested in octilinear geometry as well as rectilinear or 

Manhattan geometry. As previously noted, an octilinear geometry allows 45° and 135° 

traversals of a Cartesian plane. The notion of an R-MST translates directly into this 

geometry as an octilinear minimal Steiner tree (0-MST) with a simple change of minimal 

length calculation functions. However, the notion of the Hanan grid construction does 

not generalize to non-Manhattan geometries [Sarrafzadeh92], as noted in Figure 7. This 

discussion can be extended to any geometry desired. In fact, the original Steiner problem 

was formulated in a Euclidean geometry. The minimal Steiner tree problem, in any 

geometry, is NP-complete [Sarrafzadeh92]. 

Certain restrictive cases of the Steiner tree problem can be solved optimally in 
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polynomial time. For instance, constructing a Steiner tree between a set of points defined 

on two parallel lines may be solved in linear 0(n) time by simply considering the vertices 

from left to right [Aho77]. This is applicable for channel routing in an IC. A second 

case, of a switch box, may also be solved in linear time [Agarwal90],[Ganley94]. A 

switch box has vertices only defined on the boundary of a rectangle, with tree edges 

inside the rectangle. Here, Steiner trees only use a limited set of five topologies, each of 

which may be constructed in linear time. These topologies have recently been extended 

[Chiang02] to handle obstacles in the routing process, while remaining in polynomial 

time. 
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Figure 8. Graph Using Weighted Regions. 

The cost of the tree interconnecting these 

points is based on the length measure of each edge, 

as well as the weight, marked by W„ of each region 

through which the edge passes. 

Finally, all the Steiner tree geometries discussed thus far had an equal cost for an 

equal distance between points, regardless of the locations traversed between the points. 

In order to preferentially route in one orientation, or to avoid certain locations, as 



discussed below, a notion of a weighted Steiner tree may be introduced. The routing 

plane is partitioned into a collection of weighted regions. The cost function for an edge 

of length I is now l*w, where w is the weight associated with the region through which 

the edge passes. Should an edge pass through more than one region, each portion of the 

edge would be weighted by the weighting of that region. Figure 8 shows one possible set 

of weighting regions. Depending upon the weighting in each region, the minimal cost 

weighted Steiner tree may not be the one with minimal length. 

B. STEINERIZATION OF NETS 

The minimal Steiner tree problem occurs often in VLSI CAD. In IC routing, nets 

have at least two terminals. Often, a large portion of those nets have more than two 

terminals, referred to as multi-terminal nets, all of which must be connected together. 

Special nets, such as power, clocking, and ground nets have additional requirements, such 

as equivalent length in each branch. Special algorithms not discussed here are often 

applied to these few specialized nets. This work will deal with nets with at least two 

terminals, but not these specialized nets. 

A simple and often applied solution to routing multi-terminal nets is to break an 

n-terminal net into (n-1) two-terminal nets. If a MST on the n-terminal net is used to 

select the (n-1) two terminal nets out of the possible n^/2 two terminal nets, a routing 

equivalent of the MST will be formed. However, the resultant routing will be at least as 

long, if not longer, than the routing for the entire Steiner tree, as there is no interaction 
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between the newly-segmented nets which are electrically equivalent. Furthermore, as 

electrical equivalences between nets have been removed, each will be seen as an obstacle 

to each other net, including nets that are electrically equivalent. In a Steiner tree, a net 

may share routing space with an equivalent net. The additional obstacles will create 

additional wirelength in the solution, and may even preclude finding a solution. 

Therefore, it is beneficial to try to route multi-terminal nets with Steiner trees. In 

a few restrictive cases, such as aforementioned channel [Aho77] and switch box 

[Chiang92] routing, minimum-length Steiner trees can be found in polynomial time. 

However, for the more general Steiner tree routing problem, many heuristic algorithms 

have been instead developed that approach but can not guarantee minimal length. 

C. OBSTACLES IN STEINER NETS 

In the physical routing problem, it is not sufficient to find a short path between all 

terminals. The path must also be physically and electrically realizable. One such barrier 

is the presence of obstacles to a route, which effectively preclude a route from using a 

certain set of locations. Obstacles may arise from locations reserved by other nets, or 

forbidden "keep-out" zones which do not allow routing paths. These obstacles reduce the 

available routing space, and may increase the length of the true minimal length route. 

There is no known method for determining performance bounds for Steiner trees in the 

presence of obstacles. 

In [Ganley94], the authors present the first algorithm for attempting to solve the 



obstacle-avoiding rectilinear Steiner tree (OARST) problem by decomposing each net 

into smaller Steiner nets. These smaller nets can be handled more easily, as polynomial 

time solutions are known for up to 5 terminal nets. A solution to the OARST problem is 

in general longer than the Steiner tree without obstacles. The OARST problem has been 

studied several times now [Liu02], though the obstacle-avoiding octilinear Steiner tree 

(OAOST) problem has remained unstudied until this work. 
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CHAPTER III. PREVIOUS STEINER TREE HEURISTICS FOR ROUTING 

A. RECTILINEAR STEINER TREES 

The minimal Steiner tree problem is possibly the most oft studied problem in 

electronic design automation (EDA). Almost all work has focused on rectilinear Steiner 

trees without the presence of obstacles. It is also important to remark that unless 

otherwise noted, each of these heuristics solves a Steiner tree in a planar terminal graph 

problem. That is, no layer, obstacle, or geometric location information is involved in the 

solution. This makes the solutions appropriate for a single layer global router, without 

modern routing constraints or multiple layer routing handled by the algorithm. 

Most rectilinear Steiner tree heuristics rely on a result by Hwang [Hwang?6] that 

the upper bound on the length of a rectilinear spanning tree is 3/2 the length of the 

minimal rectilinear Steiner tree. Many heuristics begin with a minimum spanning tree, 

and then try to refine the paths using Steiner points to reduce the total length. As the 

minimal Steiner tree length is not easily determined for larger numbers of vertices, results 

are usually reported in percent improvement over the MST length. It has been observed 

[Salowe93] that on average, the R-SMT is 11% shorter than the rectilinear MST. The 

introduction of octilinear routes actually decreases this upper bound of routing lengths to 

5/4 [Sarrafzadeh92]. 

For small numbers of terminals, optimal length rectilinear Steiner trees may be 



constructed using publicly-available GeoSteiner code [Warme99], which will create the 

optimal Steiner tree in this geometry [Warme98]. The run-time is obviously exponential; 

thus only a small number of terminals can be connected in a reasonable amount of time. 

Furthermore, it will only solve a single tree at a time; each net must be considered 

independently from any other net to preclude the existence of obstacles. Comparisons 

between the results of this tool and an IC routing tool are thus not appropriate, except in 

the case of a single unobstacled net. 

Early work has included using a modified version of Kruskal's or Prim's 

[Richards89] spanning tree generation algorithms, or modifying the resultant Dalauney 

triangulation [SmithSO] of the MST. This class of algorithms begins with a randomly 

selected vertex in the net, and adds the closest unselected vertex to the pool of selected 

vertices, incorporating the path between them. This process repeats until all terminals 

have been selected. These algorithms have attained a maximum of about 9.0% 

improvement over the MST, varying widely over test cases. 

One of the most successful algorithms that utilize MST-improvement [Ho90] can 

construct optimal rectilinear Steiner trees using L or Z-shaped routes for a set of spanning 

trees with the property that the bounding boxes of the non-adjacent spanning tree edges 

do not touch or overlap. Almost 10% improvement over the MST was seen in test cases. 

The main drawback to this heuristic is that it must construct specialized spanning trees, 

which are at least as long, if not longer, as the minimum spanning tree upon which to 

improve. The most interesting result from this work is that in the case of a set of 



separable edges composing a spanning tree, it is sufficient to maximize the overlap of 

routes between adjacent edges in order to find the minimal Steiner tree, for a rectilinear 

geometry. A separable edge's bounding box only contacts another edge's bounding box if 

and only if both edges are incident upon the same vertex. This property is discussed 

more fully later, as it is used in this work. Obviously, not every spanning tree is 

separable, otherwise an optimal Steiner tree could be found in polynomial time either by 

using this work, or the L and Z-shaped embedding of [Ho90]. 

An optimal Steiner tree could be found by enumerating all possible choices on the 

Hanan grid, which takes exponential time. [Salowe93] used simplifying arguments to 

reduce this search space. While some tests reduce the search space without introducing 

additional length, in order to stay within a desired O(n^) run time, additional 

simplifications had to be introduced which might remove the optimal solution from the 

search space. In order to enter a polynomial run-time, at least one test that might remove 

the optimal solution must be used. This approach can be thought of as a modified version 

of a branch-and-bound solution search. Another approach using simplifying arguments is 

from [Mandoiu99]. In this work, a linear programming solution was constructed on a 

simplified version of the Steiner routing tree problem. This kept the run-time in O(n^) as 

well, and gave similar results as the batched 1-Steiner algorithm, discussed next. 

The most promising heuristic reported thus far has been that of the Iterated 1-

Steiner approach [Kahng90], [Griffith94], where the algorithm adds the Steiner point that 

most reduces the overall net length per iteration, until no more gain is possible. In each 
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iteration, the Hanan grid of the terminals is searched. The vertex in the grid graph which 

would result in the greatest gain (decrease) in wirelength is then selected. This process 

terminates when no vertex in the Hanan grid may be found that will shorten the tree. The 

results attained were close 11% improvement for larger test-cases, and averaged 10.25% 

over all reported instances [Kahng90]. The algorithm runs in O(n^), though is readily 

parallelized. This algorithm remains the most popular in research for comparisons of 

heuristics. One straightforward extension is to generate multiple spanning trees for a set 

of nets, and use this heuristic on each [AreibiOl]. 

A commonly applied MST improvement scheme was introduced by [Borah94]. A 

spanning tree is constructed on the set of vertices, which will then be improved. The 

heuristic operates by adding an edge between a vertex and a location on an edge. This 

creates a cycle, which is broken by removing the highest cost edge involved in the cycle. 

In each iteration, the process must search the entire tree for possible locations for new 

edges, as well as identify the associated edge that can be removed when each specific 

edge can be inserted. Each iteration may involve several edges being added and 

removed. The iteration stops when no more gain is possible. The algorithm then 

recalculates a new set of possible choices, and begins anew. By using interval graphs and 

quite involved data structures and algorithms for reduced search spaces, it runs in 0(n log 

(n)) time, and reports strong results, approximately those of the Iterated 1-Steiner 

heuristic. 

Other work which does not include a spanning tree has included bounding box 



"shrinking" [Kahng91], which repeatedly compresses the net bounding box, until a 

proper tree has been obtained. That is, a rubber-band box is encircled around all the 

terminals in a net. A shrinking operation that reduces the encircled volume continues 

until no parallel edges exist. Averaged over 10,000 nets, a maximum of about 10% 

improvement over the MST was seen, running in 0(n^ log (n)) time. 

Very recent work presented in [Kahng03] has focused on the ability to do very 

large Steiner trees, with up to 500,000 terminals. Each tree is converted to the full 

Steiner tree equivalent. A full Steiner tree [Lu03] has every terminal as a leaf in the tree. 

A simple full Steiner tree and a non-full Steiner tree are shown in Figure 9. Once the tree 

is full, it is decomposed into tuples, sets of three terminals. The exact minimal Steiner 

tree can be constructed on these subsets of terminals using Hanan's original methods 

[Hanan66]. The collection of routed tuples forms the full routed tree. The results 

reported were in line with edge-based heuristic of [Borah94]. 

Figure 9. Full Steiner Tree. 

A full Steiner tree is shown on the left. Each vertex is a leaf in the final tree. A non-full Steiner 

tree is shown on the right. Here, vertex P3 is not a leaf in the tree. 
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B. OBSTACLE AVOIDING STEINER TREES 

None of these previous algorithms have handled obstacles in the routing process. 

These algorithms are thus suited only for the global routing problem, where a detailed 

router can later modify the routes to bypass obstacles and place routes into a physical 

plane. Unfortunately, a minimal Steiner tree in the presence of obstacles can be quite 

different from a minimal Steiner tree created without regard to obstacles. While a 

process could be created to modify a short Steiner tree in order to avoid obstacles with 

which it conflicts, there is no guarantee that a short obstacle-free tree can be transformed 

into a short obstacle-avoiding tree. 

Although much work has been done in Steiner tree generation, relatively few 

algorithms can handle obstacles to the Steiner tree construction. One notable exception is 

that of the exact switch box Steiner tree router [Chiang92], which can find an optimal 

solution for this limited case even in the presence of obstacles. 

Another previous work in rectilinear Steiner trees with obstacles [Ganley94] has 

employed the method of decomposing Steiner trees into 3 or 4 terminal Steiner trees, 

which may be solved optimally via an escape graph. This escape graph is essentially a 

Hanan grid on both the terminals and the obstacles. The decomposition of the tree, 

however, would no longer guarantee the solution found would be minimal over the whole 

tree. These results were applied to optimally solve the problem for any number of 

terminals in [Liu02], but the run-time was no longer bound by any polynomial. 



All three of these works have focused on generating rectilinear Steiner trees with 

obstacles. The author is unaware of any previously published methods for generating 

octilinear Steiner trees, as discussed next, in the presence of obstacles. 

C. OCTILINEAR STEINER TREES 

Recent advances in manufacturing technology have spawned interest in non-

Manhattan interconnects for IC's. Allowing 45 and 135-degree routes in addition to 

Manhattan geometries can increase routing density and decrease interconnect length, 

reducing interconnect delays. In the terminology of [Sarrafzadeh92], these 90 and 45-

degree routing paths are a A= 4 geometry, allowing connection angles of i-jxIA for any 

integer i. In this work the term octilinear will be used for such a geometry. In a study of 

Steiner tree properties in any geometry, the upper bound of the length of a 4-A based 

spanning tree over a Steiner tree in the same geometry was fixed at 1.25 [Sarrafzadeh92]. 

For small trees (n=3,4), this ratio was revised to 1.17 [Lee95]. Octilinear routes can 

reduce the overall wirelength from 10% [Sherwani99] to 20% [Teig02] over the same set 

of terminals in a rectilinear space, depending on how the full design process adapts to 

octilinear routing. In [CoulsonOB], the geometric properties of octilinear Steiner trees 

were presented, in a hope to quantify the bounds on minimal lengths. For small numbers 

of terminals, the minimal octilinear Steiner tree was on average 10% smaller than the 

minimal rectilinear Steiner tree on the same set of points. Results were not reported for 

larger Steiner trees. 



These advantages, however, require great changes in geometric assumptions in 

routing tools. Thus, httle work has been done on the minimum octilinear Steiner tree 

problem. In [Chiang02], the 4-A or octilinear problem was converted to the classical 2-A 

or rectilinear problem during routing. Once completed, the rectilinear Steiner trees were 

converted to octilinear Steiner trees by re-routing each edge with an octilinear geometry. 

Results showed an average of 6.6% improvement in wirelength over the rectilinear 

solution. The solutions, however, are conversions of a non-minimal rectihnear solution. 

The distance between these solutions and a true octilinear minimal Steiner tree was not 

studied. 

In [Kahng03], the previously discussed algorithm of partitioning a full Steiner tree 

was also applied to an octilinear geometry. Results showed an average of 4.3% 

improvement over the octilinear minimum spanning tree. 

D. WEIGHTED STEINER TREES 

One way in which to quantify routing constraints such as congestion, layer costs, 

and delay is to modify the weighting factor on edges in the tree. Heuristics thus far have 

used the length of the edge as its cost value. It is a simple extension to additionally 

weight edges via any of these new cost factors. 

In [Yildiz02], the authors modify the edge-refinement technique of [Borah94] to 

account for different preferences of direction in multi-layer routing, called a preferred-

direction Steiner tree. This algorithm can include the increased costs of vias for 



switching layers, and decreased costs for routing in higher layers. One benefit is that this 

technique can adapt to the reserved layer model, yet also allows wrong-way wiring. 

Wrong-way wiring simply incurs additional cost penalty or weighting on edges that do 

not follow the preferred direction. 

[Chiang94] uses a net-by-net approach using weighted Steiner trees. A set of area 

weights for the entire routing area is maintained. A weighted Steiner tree is constructed 

for each net. After each construction, the weights are updated to reflect the new routes. 

This approach therefore is relevant for congestion minimization, discussed next. 

E. CONGESTED STEINER TREES 

As most Steiner tree heuristics are formulated to be used as global routers, some 

interest has recently been sparked in finding ways to construct Steiner trees that can avoid 

route congestion. Congestion is a term given to an area of the routing space where many 

nets exist. Congestion is sometimes measured as the number of routing locations used 

out of the total number possible in an area, referred to as the capacity of the area. 

In [Behjat03], the authors acknowledge the net ordering problem, especially in 

relation to route congestion, as nets routed earlier cause congestion for nets routed later. 

Their solution is to formulate a Linear Programming (LP) problem, which is later 

rounded to be a simpler Integer Linear Programming (ILP) problem. An ILP solution 

maximizes a global objective function, taking into account every variable in the function. 

Via counts and congestion information are incorporated as penalties to the objective 



function. Pre-generated rectilinear Steiner trees and the capacities of the routing regions 

are the variables in the objective function. The penalties are used to keep the number of 

RST's generated small. However, ILP problems are computationally expensive, and 

mapping additional constraints into the objective functions is not straightforward. 

Another congestion-driven router was presented in [Cong02]. This was a 

modification of a previous work involving variable sized tile-based global routing. The 

routing area is broken into tiles. Initially, each tile is large, and thus few tiles exist. Tiles 

are repeatedly shrunk through the routing process. Congestion-based Steiner tree routing 

occurs during each tile sizing stage. Any routes which cross multiple tiles are "visible" in 

each stage. These routes are then routed via a maze router. Steiner tree formation comes 

as newly visible routes are allowed to join any edge or vertex in the equivalent net. Thus 

longer routes in a net are routed first, with shorter routes joining on to the longer routes. 

Congestion is handled in an iterative manner. Tiles grow and shrink, and routes are 

continually refined to avoid congestion. As the router runs on a net-by-net basis, the 

routes must be iterated upon in order to alleviate the congestion built by the previous 

stage. Each iteration rips up no-longer valid or congested routes, and tries to build new, 

valid routes. The cost for replacing edges grows with each iteration, so fewer and fewer 

routes will be replaced as the process continues. Each iteration runs in O(n^). 

A novel approach for avoiding route congestion is presented in 

[Bozorgzadeh03]. The algorithm can exploit what is referred to as flexibility in a Steiner 

trees to avoid congestion. After Steiner trees are constructed for the full set of nets, 
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congested areas are identified. Geometric tests are applied to the trees which run through 

the congested areas, identifying places where the tree could be changed, without 

introducing additional length, or only introducing a small amount of additional wire. The 

trees are then modified to travel through less-congested areas, with little or no length 

penalty. This algorithm is a post-processing stage. Thus, the initial Steiner trees could be 

generated from any Steiner tree heuristic, and refined via this method to avoid 

congestion. 

Figure 10. Flexibility in a Steiner Tree. 

Two Steiner trees that are flexible. The tree on the left has a flexible corner, that may be flipped 

without introducing additional length. The tree on the right has two Steiner points adjacent, which defines 

a flexible segment. The segment may move along the parallel routes without introducing additional length. 

Here, moving this particular segment also creates a flexible corner. This comer may be flipped, which is 

shown for the case where the segmen t is moved as far left as possible. 

Every Steiner tree heuristic presented thus far has used planar graphs for classical 

global routing. One notable exception is the congestion driven global router of [Liu99]. 

The authors use a 3D routing graph to find global routing paths. As the system routes 



sequentially, a net ordering problem exists, precluding the use of congestion metrics in 

the initial routing stage [Liu99]. Instead, a second stage involving massive rip-up and 

rerouting of congested areas is performed. 
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CHAPTER IV. MULTIPLE COMPATIBILITY GRAPH REDUCTION 

A. FORMULATION 

Multiple compatibility graph (MCG) reduction routing is a graph-based technique 

[Li99] originally formulated for use in an O(n^) router for multi-chip modules (MCM's). 

The algorithm constructs an n-partite graph representing the n nets to be routed, followed 

by a graph reduction stage, which performs the actual routing. This approach allows the 

entire set of possible routing nets to be considered simultaneously, rather than 

incrementally extending routes or routing one net at a time [Carothers95]. Almost all 

other approaches to routing perform the task one net at a time. As previously discussed, 

the selection of locations for one route influences the possible locations for other routes. 

Thus, the quality of routes chosen later in the process is influenced by the choices of 

previous routes. The quality of the entire routing solution is dependent upon the ordering 

of the nets, that is, the order in which nets are routed. Unfortunately, there is no known 

effective algorithm for ordering nets for routing [Groenveld89]. Other methodologies for 

simultaneously considering every net such as integer linear programming [BehjatOS] 

suffer from extremely large search spaces and long run-times. The graph-based 

approach also gives the user flexibility in determining the nets' topologies, and extends 

well for modern routing constraints [Li95]. 

The algorithm operates by constructing candidate routes, or possible ways to route 

a net, for every net. Each net may have several candidate routes. A compatibility graph 



is then constructed. Each candidate route for a net is represented by a vertex. An edge is 

placed between candidate routes from different nets where the routes are not compatible. 

Routes can be deemed incompatible for a variety of reasons, including physical overlap 

between routes which are to remain electrically isolated, or modern constraints such as 

crosstalk between two routes that is higher than a predetermined threshold. 

More formally, for the set = fni,n2,...,nm} nets, n = {(xi,yi),(x2,y2),—,(xj,yj)}, lA^I = 

m, an m-way partite graph Gc=(V,E) is constructed. Each partition of Gc, Pi, P2,...,Pm is 

a collection of vertices, V(p,c) e V, p < m, C < \ Pp \ . The vertices in graph G are 

represented by an ordered pair, (P,C), where P is the net partition number, and C is the 

net candidate number. As a candidate is a possible way to route a net, in each of these m 

partitions, Pk consists of the set of the possible ways currently being considered to route 

net k. Routing incompatibihties, such as overlap between possible routes, are represented 

by an edge. Undirected, weighted edge E, e E= {(Vi,V2)} represents an incompatibility 

between net candidates Vi and V2. 

B. GRAPH CONSTRUCTION 

For each of the m nets, a partition set must be created containing an arbitrary 

number of vertices. Since no interactions between candidate routes for the same net can 

occur, the graph constructed can be immediately separated into m partitions. Once all 

partitions have been created, interactions between vertices in different partitions must be 

considered. As each pairwise collection of partitions must be examined, this graph G 



may be constructively generated in 0(n-log(nj) time [Carothers99]. Should the 

interaction between any two candidate routes from different nets be deemed 

incompatible, an edge is added between the vertices representing each of the candidate 

routes. 

C. GRAPH REDUCTION 

Once constructed, the graph must be reduced. That is, every edge from the graph 

must be eliminated, as each edge represents a constraint on the final solution. An edge is 

removed by having one of its incident vertices removed. Since vertices are removed, for 

each vertex removal a possible way to route a net is removed. The ultimate goal is to end 

with a graph with no edges, a null graph. In order to be able to route as many nets as 

possible, a maximum number of vertices in the null graph is desired. It is shown in 

[Li95] that this problem is equivalent to the maximum clique problem, and thus is NP-

complete. 

A heuristic algorithm must be chosen instead for reducing the graph. Simple 

reduction, removing any vertices with positive edges, could be performed in linear time. 

However, removing vertices affects the degree of other vertices. Thus a degree-search is 

employed, to remove the most incompatible candidates before more-compatible 

candidates, and updating the remaining fitness values. 
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One simple technique can be applied that runs in O(n^) time is illustrated next 

[Carothers96]. The graph is searched for the vertex with the largest degree. A vertex 

with a high degree of edges conflicts greatly with other nets. Routing this net would 

2 

Figure 11. Compatibility Graph Construction and Reduction. 

a) Four partially overlapping net bounding-boxes, where candidate 

routes exist only inside the bounding box of the net. b) One possible 

resultant compatibility graph for a subset of candidates for each net. c) Fully 

reduced maximal matching on the graph. 

invalidate many possibilities of routing other nets. This vertex is chosen for elimination, 

as its removal eliminates the largest number of edges. This process is repeated until no 

edges remain. A simpler version of the previous routine was used as the basis for graph 

reduction in MCG autorouter for multi-chip modules (MCM's) [Li99]. 

As graph reduction remained the slowest stage in the routing, and an IC router 

must handle orders of magnitude more nets, efforts were made to increase the reduction 

speed via advanced data structures. The graph reduction stage employs an array of hash 

tables to speed searching and updating each net candidate. Each candidate route's 



hashing key is its position in a theoretical 1-D array of candidates, easily computed as 

(netnumber*number_of_cands)+candidate_number, returning a stored value of a pointer 

to the candidate. Hash tables are maintained as buckets in an array, organized by 

candidate degree. The hash tables are constructed initially, requiring 0(n) time to 

complete. The maximum degree can be found in 0(log(n)) time, as each bucket's hash 

table is queried for an element, starting from the highest degree bucket currently known. 

An empty hash table is detected by the algorithm without time penalty, and the next hash 

table will be consulted. Once found, the maximum degree candidate's edges are known, 

and for each edge to be removed, the corresponding incident vertices are updated. The 

update requires one hash table lookup, removal, and insertion into the next lower hash 

table bucket, each of which requires constant 0(1) time, due to the chosen hashing 

function's lack of key collisions. As the reduction is run while edges exist, this entire 

process is run in 0(e log(n)), where e is the number of edges, and e » n. The entire 

routing process is no longer bounded by O(n^), but 0(n log(n)). 



As certain problematic nets are more likely to have all candidates removed, an 

additional selection criteria was added for the integrated circuit routing. Removing the 

last remaining vertex from any partition results in the net remaining unrouted after the 

current iteration of the procedure. Thus, a penalty was introduced for removal of the final 

vertex in a partition. A single vertex in a partition is forgiven a single edge, and the other 

vertex on the edge is removed instead. If both vertices are the final in each partition, the 

one with the smaller degree is retained. If both have the same degree, one is removed at 

random. 

By representing routing incompatibilities as edges in an m-partite graph, and 

considering all vertices before invalidating any, the full set of these incompatibilities may 

be considered with respect to one another before any routing decision is made. 

Once the graph has been reduced to a null graph, some partitions will have no 

vertices, and some may have several vertices. Vertices from partitions with several 

possible routes have the minimum weighted vertex, discussed below, chosen for routing. 

If all weights are the same, the first candidate is used, as it is usually the simplest 

geometric route. Partitions with no remaining vertices will be routed in later iterations. 

As a heuristic algorithm is employed, the remaining vertices are not guaranteed to 

be the maximal set of compatible routes. Further, as not all candidates are enumerated, 

additional compatible routes may exist. Thus, large designs are rarely routed in a single 

stage. Instead, the procedure is run several times, as discussed below. 



D. ROUTING PHASES AND ITERATIONS 

As a heuristic algorithm is used to select a large set of compatible routes, only a 

subset of the total possible compatible routes is routed in a single instance. That is, while 

a maximal matching is found on the partite graph, it may not be the maximum matching. 

Therefore, routing takes place in phases and iterations, each generating a maximal 

matching that builds upon the previous matching, attempting to approach a maximum 

matching. Each routing phase consists of one or more iterations. Each iteration is a 

complete graph construction, reduction, and route selection, using only a specific 

geometry of candidates. The entire routing process consists of repeated applications of a 

routing phase, with different route shapes, until no unrouted nets remain. 

E. OBSTACLES TO THE ROUTING PROCESS 

As previously noted, the layout area in which the routes may be placed can be 

formulated as a three dimensional grid graph. The layout is assumed to be a height by 

width by depth rectangular array, where only one route can exist at a single location. Any 

routing in the grid graph finds an exact route, and thus is an area route, rather than a 

global or local route. Thus, it is necessary to both define points in the route using a 

coordinate system, as well as reserve those coordinates in the graph for that net. 

Memory requirements for storing the full graph grow quickly; even at one bit per 

location, a 100,000 by 100,000 die routing in 4 layers, small by today's standards, would 

require 5 gigabytes of storage. Storing an array that grids every location in a modern. 



multi-layer die is unwieldy; thus, this array is never stored. Routes do have associated 

gridded locations, yet the full matrix is never formed. It is important to the router, 

however, to be able to find obstacles to possible routes as quickly as possible. Storing the 

full graph would allow 0(1) obstacle lookup, at the cost of memory space. 

Instead, a checkerboard layout with corner stitches [Ousterhout84] is used. The 

full routing area is broken into layers, with each layer broken into rectangular bins. 

Inside each bin, tiles of obstacles are formed, maintaining corner-pointer rules with each 

update [Irby04]. This allows 0(log(n)) fast obstacle seeking without a large memory 

footprint. At each tile location, information about the next obstacle in any of the four 

cardinal directions is already stored. Thus, a range-finding operation, of finding the 

largest obstacle-free space in one of these directions, requires only a single obstacle 

lookup. This range-finding operation is common with the graph-based candidate 

generation routines, discussed next. 

F. CANDIDATES AND CANDIDATE SEQUENCES 

Thus far, no discussion has been made about the shapes or actual paths of the 

candidate routes. Nets in this discussion are assumed to have two terminals, or are split 

into nets having only two terminals. Later discussion extends these shapes into Steiner 

trees. Candidate routes are then generated from graph-based techniques inside and 

outside the bounding box, possibly followed by line probing and maze routing. 

As the addition of routing vias incurs a performance penalty, it is desirable to 
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minimize the number of vias. The via minimization problem in itself is NP-complete 

[Naclerio89]. Thus, a heuristic algorithm must be employed. By structuring the routing 

phases appropriately, an approximation to a minimum number of vias is possible. This 
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Figure 12. Rectilinear Candidate Routes 

N 

Sample candidates from inside the bounding box in a rectilinear geometry. For each 

category ofzero-via, one-via, two-via, and three-via, a selection of routing shapes are shown. 

While exhaustive for smaller numbers ofvias, not all candidates are shown for more vias. Four-via, 

five-via and six-via candidate route shapes are not shown for brevity. 

process attempts to generate candidates with as few vias as possible first, before moving 

on to higher via count routes [Li96]. 

Initially, routes inside the bounding box of the terminals are explored, as 

these will be shorter than those running outside the bounding box. Route shapes are 

attempted from the source terminal to the target terminal. An obstacle, such as another 


