Root Development Of Blue Panicgrass

Neal Wright

The root systems of perennial grasses have received less attention than the aboveground parts, for obvious reasons. Tops are exposed and form an easily available source of material for study.

The aim of the grass breeder is to develop varieties capable of sustained yields. To help achieve this, good management practices are of primary importance in evaluating the yield potential of genotypes. Therefore, information on root distribution and the effects of cultural practices on root responses are important in the interpretation of management data.

Roots Have Many Jobs

In general, the root system of blue panicgrass performs the functions of absorption, conduction, anchorage and storage, and serves as asexual reproductive structures. Perhaps the most important function of roots is absorption of water and nutrients. Once these plant foods are absorbed from the soil, the root conducts the materials to the stem. Thus water and nutrients can be distributed throughout the plant.

An Underground Profile

Root system of blue panicgrass under irrigated conditions has been studied to a depth of 12 feet. The pictures on this page show a profile of blue panicgrass roots and rhizomes to a depth of 48 inches. All the rhizomes of this grass are located near the surface, in the upper 6 inches. The study showed approximately 70 percent of the roots in the top two feet, (A). The amount of roots between two and 12 feet decreased progressively and represented approximately 30 percent of the total. Under irrigation, where soil moisture is replaced as it is used, roots in the 0-to 2-foot zone, making up to 70 percent of the total, are of major importance to growth. Also, the depth of root penetration serves an important function when soil moisture is limited.

Blue panicgrass does not exhibit visible stress until the soil moisture in the upper two-foot root zone has been depleted to the wilting point. Then the 30 percent of roots in the lower depths provide moisture when the available moisture is reduced in the upper two feet, which demonstrates the capabilities of this grass when moisture stress cannot be avoided. However, for maximum forage production, sufficient available moisture must be maintained in the upper two-foot root zone.

Since the growth of a plant depends so much on its root system, a look into the rooting habits of a crop plant may help to determine management practices for sustained forage yields. For example, the knowledge of the depth of rooting and quantity of roots at various depths is important in determining irrigation schedules. When the effective rooting depth is known, the amount of water potentially available to growing plants can be more than an estimate. Also, the amount of irrigation water needed to recharge the soil can be predicted.

This is a contribution from the Crops Research Division, Agricultural Research Service, U. S. Department of Agriculture and the Department of Agronomy, University of Arizona. Dr. Wright is a Research Agronomist, Crops Research Division, Agricultural Research Service, U. S. Department of Agriculture, Tucson, Arizona.

Trade names used in this magazine do not endorse products named nor imply criticism of similar ones not mentioned.