TESTING TENSILE STRENGTH of cotton fibers is Miss Ruth Allen, chairman of the Division of Clothing, Textiles and Related Arts.

(Continued from Previous Page)

Future workshops will be on specific phases of resource development, such as Recreation, Industry, etc.

Start Was Slow

Resource Development work in Arizona began slowly. A shortage of funds, and slow awareness of some local people and educational institutions to the great need for this type of work have hindered progress. But the “barnacles” of tradition, distrust, jealousies, and empire builders are slowly giving way to the sharp abrasives of needs of people and their communities, and the logic of meeting these needs as straightforwardly and as simply as possible.

The area approach seems especially valuable in coordinating local needs with available help. However, for it to be successful, people must be consulted and must take part in the programs for development. But help from the total University system and from many agencies is essential if area resource development work is to move forward at a satisfactory pace.

SPECIALIZATION IN HOME ECONOMICS

By Ruth C. Hall

Probably because home economics has been known generally by that one title, the layman has not been aware of the subject matter specializations within the field.

Yet, for many years the American Home Economics Association has recognized eight different subject matter areas and the largest universities have done so, too. Art, Family Economics-Home Management, Family Relations and Child Development, Food and Nutrition, Home Economics Teacher Education, Housing Furnishings and Equipment, Institution Administration, and Textiles and Clothing are the subject matter areas set up by the American Home Economics Association.

Some May Combine

Some universities, in order to facilitate administrative activities, may combine one or more of these fields. However, the subject matter dealt with by each is unique unto itself, and in many cases quite different from others.

At The University of Arizona we have established five subject matter divisions: Child Development and Family Relations, Clothing Textiles and Related Art, Family Economics-Home Management, Food and Nutrition, and Home Economics Education. Each division has a chairman and various professors who are specialists in a given field which is a part of the

(Continued on Next Page)

TWO STAFF MEMBERS in the Division of Family Economics and Home Management examine foods stored in a home freezer.
GAS CHROMATOGRAPHY is used as a tool by the Division of Food and Nutrition. Here Student Martina Cooper injects fatty acid methyl extract into the chromatograph.

subject matter division.

For example, Dr. Victor Christopherson is chairman and a member of the Division of Child Development and Family Relations. However, his major field is in work in the family. He is not a specialist in child development. Yet Dr. Jean Ruley, also a member of the Division of Child Development and Family Relations, is a specialist in child development. She does not consider her field to be that of the family.

Accelerated Specialization

Specialization in each of the subject matter divisions of home economics is rapidly accelerating, as it is in every other discipline. For this reason the education of home economists who will be employed in the general areas, not as specialists in a subject matter field, is constantly under review. We must be sure that certain materials from each field are included in their education. But we still are committed to education of the specialists who probably cannot be labeled as home economists.

Interior design majors, in my opinion, are a representation of a specialization in home economics who have much home economics work but who are not really home economists. These majors will take classes in an explicit, specialized field and, because of their concentration in this field, will not be able to work as home economists.

Home economics has a unique role to play in the education of certain of these related fields, like interior design, for example. Because we offer courses in housing, child development, food, household equipment, interior design majors who take this work, we believe, are better able to develop designs for people who will be using kitchens, nurseries, and laundries. Our role is interpretation and application of needs of home and families to the specific specialty under consideration. If an interior designer has never had contact with children and knows little about their needs, he will most likely experience difficulty in designing interiors for children. Home economics subject matter helps correct this situation.

Great Variability

Because of these specializations, a great many different kinds of activities go on simultaneously in home economics. For example, last year one of our graduate students majoring in Family Economics - Home Management received a grant from the J. C. Penney Company for research related to catalog buying. Another concerned herself with the comparison of two types of permanent press men’s shirts. The latter student took the Master of Science degree with a major in Clothing, Textiles, and Related Art. Still another graduate student majoring in Child Development - Family Relations investigated the effect of reinforcement upon the questioning activity of two culturally deprived children.
These represent only three of the many graduate students studying in home economics at The University of Arizona.

The faculty is engaged in a great number of different activities too. Dr. Victor Christopherson has just published a book entitled COMPARATIVE MARRIAGE AND THE FAMILY, a book dealing with family structure in different countries of the world. This, of course, is quite different from the work of Dr. Mary Ann Kight. She has been working with local hospitals and one in Nogales in the development of a program designed to provide new and realistic experiences to freshmen and sophomore dietetic students. At the other extreme is Mrs. Mildred Jensen's work with local interior designers in the establishment of actual on-the-job work experiences for students.

Like all other disciplines, home economics is becoming more and more specialized. Recognition of the areas in which the specialization occurs helps point to the broad base upon which home economics rests, and helps understanding of the total field.

Suction - Controlled

Plastic Grain Storage

By W. T. Welchert and James W. Little

Materials Needed

1. Two large polyethylene plastic sheets of 6 mil thickness. A sheet 32' x 100' is suggested for the base (4 mil is OK for the base). A sheet 40' x 100' is suggested for the cover. Cost estimated at one cent per square foot.
2. A used evap-cooler package unit, with fan and motor in good working order. A fan capable of developing at least 1/4 inch of static water suction at either full capacity or zero air delivery and operating continuously without harm is required.
3. A one-inch by about 3' x 6' solid wood panel or equivalent to form the top of duct between the grain and fan. Side panels are also suggested to reduce the stress on the plastic.
4. A roll of 2" plastic tape. Cost less than $4.00.

Procedure

1. Select and clear a good ground storage site with drainage in all directions or build a ground storage pad.
2. Spread the bottom 32' x 100' sheet of 6 mil plastic on the cleared ground pad. Use some temporary weights to hold the film in place.
3. Unload the grain directly on the sheet. Set the auger to unload on the centerline of the sheet and as high as necessary or permissible so that the grain seeks its own level of repose and is centered on the 32 foot wide sheet. The angle of repose for sorghum and barley is about 30 degrees from the horizontal. Hence, a pile 7 1/2 feet high will result in a base covering about 30 feet and the top cover distance required is about 35 feet. Keep grain at least 5 feet from both ends of plastic sheet and 2 feet from the edges. It is easier to unload with the elevator located in the middle of the width of the sheet, rather than from the side. In this case, spread the bottom of the sheet and then roll it up about 40' of the length. Set the elevator over the rolled up section. As the pile progresses, move the elevator forward and unroll the sheet forward.
4. Set a used evap-cooler at one end of the pile. A 4000 CFM forward-curved centrifugal fan evap-cooler package unit with a 1/2 horsepower motor has been used successfully on a 130 ton pile of sorghum by Willis Combs at Queen Creek. It's probable that 200 tons might have been stored with this same material and equipment.
5. Place a wood panel about the width of the cooler frame on top of the cooler and push it into the grain pile to form the top of the fan duct inlet. Handle side panels in the same way to form duct.
6. Cover the grain pile and fan frame with the 40' x 100' plastic sheet. The edges of the top sheet should be tucked under the edges of the bottom sheet. Roll the grain at the edge of the pile out slightly to anchor the plastic edges and form a seal. At the exhaust fan end, tape the plastic around the fan exhaust outlet. Mr. Combs simply rolled the excess plastic edges together and

Suction - Controlled

Plastic Grain Storage

By W. T. Welchert and James W. Little

Materials Needed

1. Two large polyethylene plastic sheets of 6 mil thickness. A sheet 32' x 100' is suggested for the base (4 mil is OK for the base). A sheet 40' x 100' is suggested for the cover. Cost estimated at one cent per square foot.
2. A used evap-cooler package unit, with fan and motor in good working order. A fan capable of developing at least 1/4 inch of static water suction at either full capacity or zero air delivery and operating continuously without harm is required.
3. A one-inch by about 3' x 6' solid wood panel or equivalent to form the top of duct between the grain and fan. Side panels are also suggested to reduce the stress on the plastic.
4. A roll of 2" plastic tape. Cost less than $4.00.

Procedure

1. Select and clear a good ground storage site with drainage in all directions or build a ground storage pad.
2. Spread the bottom 32' x 100' sheet of 6 mil plastic on the cleared ground pad. Use some temporary weights to hold the film in place.
3. Unload the grain directly on the sheet. Set the auger to unload on the centerline of the sheet and as high as necessary or permissible so that the grain seeks its own level of repose and is centered on the 32 foot wide sheet. The angle of repose for sorghum and barley is about 30 degrees from the horizontal. Hence, a pile 7 1/2 feet high will result in a base covering about 30 feet and the top cover distance required is about 35 feet. Keep grain at least 5 feet from both ends of plastic sheet and 2 feet from the edges. It is easier to unload with the elevator located in the middle of the width of the sheet, rather than from the side. In this case, spread the bottom of the sheet and then roll it up about 40' of the length. Set the elevator over the rolled up section. As the pile progresses, move the elevator forward and unroll the sheet forward.
4. Set a used evap-cooler at one end of the pile. A 4000 CFM forward-curved centrifugal fan evap-cooler package unit with a 1/2 horsepower motor has been used successfully on a 130 ton pile of sorghum by Willis Combs at Queen Creek. It's probable that 200 tons might have been stored with this same material and equipment.
5. Place a wood panel about the width of the cooler frame on top of the cooler and push it into the grain pile to form the top of the fan duct inlet. Handle side panels in the same way to form duct.
6. Cover the grain pile and fan frame with the 40' x 100' plastic sheet. The edges of the top sheet should be tucked under the edges of the bottom sheet. Roll the grain at the edge of the pile out slightly to anchor the plastic edges and form a seal. At the exhaust fan end, tape the plastic around the fan exhaust outlet. Mr. Combs simply rolled the excess plastic edges together and

Suction - Controlled

Plastic Grain Storage

By W. T. Welchert and James W. Little

Materials Needed

1. Two large polyethylene plastic sheets of 6 mil thickness. A sheet 32' x 100' is suggested for the base (4 mil is OK for the base). A sheet 40' x 100' is suggested for the cover. Cost estimated at one cent per square foot.
2. A used evap-cooler package unit, with fan and motor in good working order. A fan capable of developing at least 1/4 inch of static water suction at either full capacity or zero air delivery and operating continuously without harm is required.
3. A one-inch by about 3' x 6' solid wood panel or equivalent to form the top of duct between the grain and fan. Side panels are also suggested to reduce the stress on the plastic.
4. A roll of 2" plastic tape. Cost less than $4.00.

Procedure

1. Select and clear a good ground storage site with drainage in all directions or build a ground storage pad.
2. Spread the bottom 32' x 100' sheet of 6 mil plastic on the cleared ground pad. Use some temporary weights to hold the film in place.
3. Unload the grain directly on the sheet. Set the auger to unload on the centerline of the sheet and as high as necessary or permissible so that the grain seeks its own level of repose and is centered on the 32 foot wide sheet. The angle of repose for sorghum and barley is about 30 degrees from the horizontal. Hence, a pile 7 1/2 feet high will result in