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ABSTRACT

A raingage reading is a sample from the point rainfall population

of an area. The actual average rainfall on the area (watershed) is

a conditional probability distribution. For the case of thunderstorm

rainfall this distribution is simulated by looking at all storms that

could have produced the raingage reading. The likelihood of each storm

is a function of its center depth. The amount of rain dumped on the

watershed by each storm is weighted by the likelihood of its occurence

and the totality of such calculations is used to produce a probability

distribution of rainfall on the watershed. Examples are given to

illustrate the versatility of the program and its possible use in

decision analysis.

TNTRRÚDUCF ION

Areal rainfall, average rainfall over a watershed, is the

consequence of a rainfall event and is estimated from raingage

readings. In this paper we shall describe how simulation may he used

to conduct experiments on a model of a watershed in lieu of direct
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experimentation with the system itself. Such experiments will he used

to construct an empirical probability distribution function (p.d.f.) on

a watershed.

When the number of raingages on or near a watershed is small the

estimate of areal rainfall may be in considerable error, especially if the

rainfall event is a thunderstorm. Watershed models such as the Kentucky

model (James, 1970) and the U.S. Geological Survey's flood discharge model

(Dawdy and Bergman, 1969) give runoff predictions that become increasingly

uncertain as the number of raingages on a watershed declines and as the

location of the raingage moves away from the approximate center of the

watershed.

A raingage reading may be viewed as a sample of the rainfall on the

watershed. The amount of areal rainfall on a watershed can vary between

extremely wide limits while the point rainfall over a single gage remains

constant. Given a rainfall model this variability in the areal rainfall

for a given raingage reading and location may be quantified as a p.d.f.,

by simulation. The quantification of the uncertainty in areal rainfall

enables the use of decision theoretic methods (Davis et al, 1972) in the

solution of water resource problems where areal rainfall, as estimated by

a small number of raingages, is a factor.

In this model, we are going to determine the areal rainfall over

a watershed by simulating the interaction among the variables of raingage

reading, raingage location, and storm location.

The nractice of simulation is rapidly growing and yet many people

who rely on the results of simulation studies are not aware of exactly what
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is involved. For this reason, we are going to describe the simulation

approach to this model in same detail so that it may be seen how the

individual equations and operations are built into a simulation model.

This procedure must be understood to insure groper use of simulation

results and is of course necessary if one wants to define their own

model. Once the concept is understood, it mayte readily applied to a

system of most any complexity.

THE MODEL ENVIRONMENT

We will consider the relations between a raingage reading and

its location, the storm location and height, and the areal rain on the

watershed. The objective in doing so might be to most accurately determine

runoff, determine peak flows, to minimize some economic criteria, or many

other possibilities. The objective for this paper is to determine a

probability distribution for the areal rainfall on the watershed, given

the raingage reading at a particular location.

If this were to be done in the field first the watershed would have

to be densely gaged in order to determine the areal rainfall from each storm.

Then we would have to wait until a storm came along, take measurements and

record the raingage reading and the areal rainfall. When we had enough data

to represent all possible storms for all possible raingage readings an

empirical p.d.f. of areal rainfall conditioned on raingage reading could

be calculated. If this information was desired for a location that was not

gaged the study would have to he repeated. Such an approach is clearly horrendus

so we turn to the technique of simulation to approximate the watershed system.
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At this point it must be stressed that simulation is only as good- -

meaning accurate, reliable, and useful - -as the model and program behind it.

Too many people are mislead into believing that the techniques of simulation

coupled with a large computer will somehow validate the results. The model

andresultant simulation is only a conception of how the system behaves.

In our simulation we could have mimicked reality directly and allowed

the simulation to proceed as follows:

1. Choose a random location and random height
for a storm from some probability density
function.

2. Determine the raingage reading given the distance

from raingage to storm center.

3. Determine the average raingall on the watershed.

As in the field situation, we might repeat the process an indefinite number

of times until the required statistics stabilized. Then we could move

the raingage in our model and repeat the sequence. All that we would gain

is the ability to examine one storm after another while remaining dry in

the computer lab.

This approach is called Monte Carlo Simulation (Fmshoff and Sisson,

1970). Values are chosen from probability density functions and are entered

into the model. Repeated runs are analagous to repeated sampling in an

experimental situation.

To save computer time and to make the problem more tractable, we

have constrained the simulation to perform in a predefined manner. Given

the same parameters, equations, and criteria, the simulation will always
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give the same output. This is not Monte Carlo Simulation but what is

sometimes referred to as deterministic simulation.

THE SIIVULATION

We examined a rectangular watershed of dimensions one mile by

five miles. First the raingage was located on the bng axis of the

watershed at its western boundary. Storms were allowed to occur in a

square 22 miles on a side centered on the raingage.

To reduce the effort involved we constrained the sampling. First

we arbitrarily chose a raingage reading. For this reading there are an

infinite number of storm heights and locations that may produce the raingage

reading, each of which has its own effect on the watershed of interest.

To keep calculating time under control we reduced the number of allowable

storm locations. The 22 mile square was divided into a grid of 64 units

on a side, as shown in Figure 1. For calculating purposes storm centers

were located only on grid points. It was now easy to calculate the distance

from the raingage to the storm center, the height of the storm at the

center and the areal rainfall on the watershed. The first calculations

were made for an 8 x 8 grid. Second calculations were made for a 16 x 16

grid. The number of equally distant grid lines on the side of the 22 mile

square was doubled until the variance of the empirical p.d.f. obtained from

the calculations had a variance within one percent of the variance calculated

with the previous grid, or until a 64 x 64 grid was used.

For each grid point we calculated the height of the storm necessary to

p roduce the raingage reading. The areal rainfall on the watershed was also
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calculated. The empirical p.d.f. of areal rainfall is nota histogram of

the areal rainfalls so calculated, because each storm is not equally likely.

The empirical p.d.f. is a histogram of areal rainfalls weighted by the

likelihood of storm from which they came.

In the calculations presented here we have assumed the watershed to

increase in height from 2,500 feet of the western end to 7,500 feet at

eastern. The surrounding area in the east -west and north -south directions is

level with the watershed.

We have used the Fogel- Dockstein (1969) model of thunderstorm rainfall:

R = R _-b [x - x0) 2 + (y - y0)2] ]

where R is the rainfall amount at the raingage
coordinates (x,y) and R0 is the rainfall at the
storm center (x0,y0) and b = 0.27 e-.67R0

The model is modified to reflect the higher relative likelihood of

storm occuring above the base level of the watershed. Assuming a hase

level of 2500 feet, the likelihood previously calculated was multiplied

by the factor

1.0 + 0.0002727(h - 2500)

where h is the height as defined by a function intersecting

the western boundary at 2500 feet and the eastern boundary
at 7500 feet.

Otherwise, the depth of storm centers was assumed to he Gumbel distributed

with a mode at 0.9 inches. Rainfall at the raingage ass'imed to be distributed

exponentially with a mean of 0.25 inches.

These assumptions are made to model a typical small watershed in

the foothills of Tucson, Arizona.
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For the raingage reading, the height of a storm on the grid

point is determined by the numerical analysis technique of Newton -Raphson.

Double integration with Simpson's Rule is used to establish '1'e area

rainfall. The rainfall at each point within the watershed is calculated

by substituting the distance to the storm center in the rain equation.

A schematic representation of this sequence is shown in Figure 2. Two

additional steps which are discussed later are also shown.

DATA DISPLAYS

For each point on the grid that is processed, we can record and

plot the storm height, the likelihood, and the areal rainfall on the

watershed. This is for a single reading on the raingage at a specific

location.

We arbitrarily limited the maximum storm height to 4.0 inches.

riven a raingage indicating 0.4 inches located at the western boundary

of the watershed a plot of the storm heights would produce a convex surface

with the raingage in the center. The maximum height of 4.0 inches occurs

at a distance of just under six miles from the gage.

Figure 3 shows a topographical map of the areal rainfall of the

watershed for this example. The countour lines represent lines of

equal average rainfall over the watershed. The large circular shape to the

left represents an average rainfall of 0.1 inches. Although the storms

along this line grow larger as they move away from the raingage, they have

a decreasing effect on the watershed. The converse effect occurs over the

watershed. Near the right boundary, a storm must be quite large to produce

a raingage of 0.4 inches and the effect of such a storm on the watershed is seve
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A plot of the likelihoods is more complex. A "crater" effect is

seen where the most likely values are located at approximately 1.30 miles

from the raingage. The likelihood falls off in both directions away from

this radius. This is slightly biased over the watershed due to the adjustment

for elevation.

Areal rainfall, given a raingage reading, is a conditional probability

distribution function. Figure 4 presents the p.d.f. for the average rain

on the watershed in the example.

EXTENSIONS

The empirical p.d.f. we have obtained may he used in conjunction with other

techniques, such as watershed models, to evaluate the results of the rainfall

( Farmele et al, 1972, for a closely related example). It is desired to locate

the raingage so as to minimize the uncertainty in this evaluation (uncer-

tain rainfall implies uncertain runoff). Since the variance of the p.d.f.

is a crude but easily calculated indicator of the uncertainty we have calculated

the variance of the p.d.f. obtained at various locations on the watershed

assuming 0.4 inches in the raingage. The results are in Table 1.

We have found the optimum location for the raingage assuming the raingage

reading. In reality we don't know what the raingage will read. However

we usually have enough information to infer a probability distribution for

the raingage reading. We have used an exponential with mean of 0.25 inches,

with mean increasing for altitude in the same manner as the likelihood of

a storm. Using this distribution we calculate the expected variance at

each location. The expectation is calculated by Gaus- LeGuerre integration.
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When this integration is performed, weave a single value for some

location of the raingage. Now we move the raingage to a new location and

repeat the simulation in its entirety to obtain a new value. Using a

Fibonacci search, we can find the location of the logitudal axis where the

variance is a minimum. This is shown in the scheme presented in Figure 2.

For the watershed that has been previously described, this location

of minimum average variance is 2.66 miles from the western boundary. This

result is hardly surprising because of the altitude correction factor. But

our primary purpose was not to find this location, but to develop the single

gage watershed model. With very little effort, we can define watersheds of

different and possibly irregular shapes, different elevation factors including

a contour way if necessary, and any storm model that we chose. Somewhat more

difficult modifications would include multiple gaging and allowing the storm

to move over some trajectory. Various objective functions might also he

expected.

Distance from
Western Edge

TABLE, 1

mean Variance

0 .43 .230

1.23 .44 .n93

2.5n .40 .018

2.75 .39 .017

3.00 .37 .020

3.75 .33 .050

5.00 .27 .120

Mean and Variance of Simulated p.d.f.'s with raingage reading of 0.4.
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CONCLUSIONS

We have shown how a rainfall model may he broken into segments and

implemented on a computer. In doing so we developed probability density

functions for areal rainfall given the raingage reading and storm location.

The criteria of minimum expected variance was then used to find the optimum

raingage location.

This simulation was designed to provide information needed for a decision

theoretic analysis. From a sample, a raingage reading, we developed a

p.d.f. representing the possible amounts of areal rainfall on a watershed.

We then found the optimum location to minimize the expected variance of this

p.d.f. The raingage location could have been chosen to minimize other functions

cf the p.d.f.

Simulation is an extremely evaluable tool, especially when other

methods of analysis fail. The process must he understood to insure that

a model is defined and implemented correctly.

Acknowledgment. The results of this research were partially supported by

a Title II grant on Use of Models in Validation of Hydrologic and

Related Data" from the Office of Water Resources Research, U.S. Department

of the Interior, under grant No. 14- 31- 0001 -3708.

382



Davis, D.R., C.C. Kisiel and L. Dockstein, "Bayesian Decision Theory
Applied to Design in Hydrology ", Water Resources Research, No. 1. 8,
pp. 33 -41, 1972.

Dawdy, D.R. and J.M. Bergmann, "Effect of Rainfall Variability on Streamflow
Simulation', Water Resources Research, No. 5, 5, pp. 958 -966, 1969.

Enshoff, J.R. and R.L. Sisson, Design and Use of Computer Simulation Models,
McMillian C., New York, 1970.

Fogel,M. and L. Duckstein, "Point Rainfall Frequencies in Convective Storms ",
Water Resources Research, No. 6, 5, pp. 1229 -1237, 1969

James, L.D. "An Evaluation of Relationships Between Streamflow Patterns and
Watershed Characteristics;Through the Use of OPSET (A self -calibrating
version of the Stanford Watershed Model), Research Report No. 36, Water
Resources Institute, University of Kentucky, Lexington, Kentucky, 117 pp.
1970.

Parmele, L.H., E.T. Euyman and R.L. Hendrick, Proceedings, Second Symposium
of Meteor Observations and Instrumentation, American Meteor, Society,
San Diego, March 1972.

383


