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INTRODUCTION

In hydrological design, the problems encountered often have sub-
stantial political, social, and economic effects, thus the importance of
making a good decision is great. Relevant data are often used by the
dec'l,eion maker to obtain a more knowledgable decision. However, sufficient
data immediately relevant to the problem is not always available, but often
other related data is available and is used to improve the design. For
example, in flood levee and bridge design the most relevant data is annual
peak flow. If only a short record exists, other data sources could be
locked at, such as, annual peak flow in a tributary, rainfall, or tree
ring width. The second data source can be used to augment the first so
that a better design results. Use of the second source of data has been
investigated by others (Fiering, 1963; Matalas and Jacobs, 1964; and Gilroy,
1970) for the specific case of multivariate normally distributed data and a
linear model relating the two sources. The conclusions are that the cor-
relation coefficient must exceed a critical value if the use of the second
source of data is to yield better estimates of the state variables. The
critical values were determined by requiring the variances of the estim-
ated mean and variance using the augmented data be reduced. Rather than
be concerned with the estimates of the state variables, this study focuses
on the decision itself and the possible decisions are ranked using the
associated expected losses or gains. This technique, Bayesian decision
theory, has been used by Davis, Kisiel and Duckstein (1972) using only the
data from the first source. The technique is extended by this study to
include the use of data from the second source. The method is valid for
values of the correlation coefficient which do not exceed the critical value
as well as those which do.

THE MATHEMATICS

There are a number of initial requirements before the problem can be
tackled. Two definitions are given for convenience. A data source is
primary if the probability density function, pdf, is expressible in the
state variables of the problem. A data source is secondary if the func-
tional relation that would permit its pdf to be expressed in terms of the
state variables is unknown, but a relation to the primary data exists.
Note that these definitions can depend on the problem definition and the
knowledge of the decision makers.

Let y denote the primary data and x denote the secondary data. The
observed primary data are denoted yl, . . . . . . .a n dnd the corresponding

observed secondary data are denoted xi, x2, ..., xN, N an integer. The xi
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are vectors of observations, such as rainfall for the ith year on the day
of peak flow and the day prior to peak flow, two days prior, etc. Thus,

x. = [1,
x.l, xí2' .. ' x.

], m an integer. Denote the state variables

of the problem 0, where 0 is a vector. The initial information needed is
the pdf of the primary data, i(yI0), given the state variables; the loss or
gain function associated with the decision d and state variables, g(d10);
the prior distribution of the state variables, P(0); the N sets of observed
data; and the additional observation of the secondary data to be used in the
decision making process, x.i

+1.

THE LINEAR MODEL

Since the relation between the secondary data and the state vari-
ables is unknown, a linear model is assumed to be the relation between
the primary and secondary data. The noise term, e, of the linear model re-
presents the portion of the relation between primary and secondary data
which is not linear.

Let X be a matrix, Xt = [xl, x2, .. , x.N], and Y be a vector,

Yt = [yl' y2, ..., yN], then the linear model may be written as

Y = Xß+e (1)

where ß is an m by 1 vector of unknown coefficients and et = [el, e2,...,eN]

with the ei's being random variables which are independent identically

distributed with mean zero and variance a2. Making the assumption that the
e

conditional distribution of y given x is normal, the maximum likelihood

estimate of S is found and is B; B
t., -1

_ [X ] X
t
Y. Since e = Y - Xß, the un-

biased estimate of a2 s2, is (Y - XB)t (Y - XB) /(N- m- 1)(Graybill, 1961).
Thus,

e x

t
y - Bxr:+l

sxN+l[XtX]
lxN+1 + 1

is distributed students -t with N -in -1 degree of freedom (Draper and Smith,
1966). Denote this distribution tr(YlxS +l)'

BAYhSIAN MI'.T}LOl1S

The use of primary data in Bayesian procedures will be given first so
that a background will be layed for the discussion of the use of secondary
data.

Primary data. In Bayesian procedures whore only the primary source is
used, a decision d is chosen which minimizes (maximizes) the expected risk
(gain),
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min Bayes Risk = min J(dIO) P(OIyN
+1)d0

d
A

(2)

where P(OIyN+l) is the pdf of the state variables o given the new piece of

data YN+1 and A is the domain of P(OIyN +1)' The pdf P(0 the(the poster-

ior distribution of the state variables) is found using Bayes rule,

P(OIYN+1)
P(°) 2 (YNi-1 I 0 )

JP(0) Q(YN+lI0)d0
(3)

A

This calculation is often simplified by using the natural conjugage distri-
bution of 2,(yj0) (Raiffa and Schlaifer, 1961).

Having made the Bayesian decision, d *, the uncertainty of the decision
is measured by the expected opportunity loss, XOL:

XOLY = f[g(d*IO) - g(dt10)] P(OIYN+1) d0

A

where dt is the decision which minimizes the loss function for a fixed

vector O. A more informative form of the expected opportunity loss is
given:

(4)

XOL = min Bayes Risk - J min [g(dIO)]P(OIYN +1) d0.

A d

When comparing two decisions based on different sets of data, the
decision with the lower XOL has less uncertainty associated with it. This
property leads to ascertaining the worth of an additional piece of data.

Let h(y) be the predictive distribution of y, thus:

h(y) = 1 t(y10) P(0) de.

A

Define the expected, expected opportunity loss as:

(5)

XXOLy =
J

J [g(d`I0) - g(dt10)] P(OIy) d0 h(y) dy (6)

B A

where B is the domain of h(y), and thus, if the decision based on N pieces
of data has associated with it NOL , the worth of obtaining an additional
piece of information is the expectéd reduction in XOL and has been labeled
the expected value of sample information: XVSIy = XOLN - XXOL . Thus, the
XVSI is a measure of the worth of data. y

A more complete discussion of the use of Bayesian techniques with pri-
mary data is given by Davis, Kisiel and Duckstein (1972).
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Secondary data. When using secondary data in Bayesian procedures, the
distribution of the secondary data in terms of the state variables is
needed. If it were known, the posterior distribution of the state variables
given the secondary data could be obtained by Bayes rule:

P(OixN+1)
P(0) f(xN+11G)

JP(0) f(xN+110)d0
(8)

A
The distribution f(xN +110) could be found by the equation

f(xN +110)
= Jt(YI0) t(xN+1IY) dY. (9)

However, the distribution t(xN +lly)is not known, but from the development

of the linear model the distribution of the primary data given the second-
ary data was shown to be tr(y1xN ±_1), and thus by Bayes rule,

tr(Y1xN+l) D(xN+l)
t(xN+1IY)

= ¡

tr(ylx) D(x) dx

C

where D(x) is the multivariate distribution of the secondary data and C
is the domain of D(x).

(10)

Now Equation (10) may be substituted into Equation (9) and the result
may be substituted into Equation (8). Notice that D(xN +l) will cancel

in the numerator and denominator of Equation (8).

The Bayesian decision for the use of secondary data is the d which
minimizes the Bayes Risk

jg(dIO) P(OxN +1) dO,

A

and the expected opportunity loss Is:

XoLx = j[g(d*O) - g(dt1°)] P(GlxN-i1) dG (12)

and the expected, expected opportunity loss is

XXOLx = J[g(ddb3) - g(dtI0)] P(OIx) dO D(x) dx (13)

C A

and the expected value of secondary sample information is

XVSIx = .l'OLN - XXOLx.
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When the point is reached such that the XXOL and the XXOL are known, a
x y

comparison of the worth of primary data to the worth of secondary data can
be made.

EXAMPLE PROBLEM

The problem considered is the determination of the depth to which piles
are to be driven in bridge construction. The bridge to be constructed is on
the Rillito Creek on the north edge of Tucson, Arizona. The bridge spans
500 feet and rests on 100 piles placed in four piers of 25 piles each. The
cost incurred if the piers are washed out is $150,000, and the cost of
sinking one pile one foot is four dollars (Laursen, 1969). The useful life
of the bridge is assumed to be 25 years. If a flow in the river occurs
such that the river bed is scoured to a depth greater than the pile depth,
then the bridge is damaged. Thus the loss function g(d10) is the cost of
the damage to the bridge times the probability of the damage occurring once
in 25 years plus the cost of driving the piles to a depth d (Davis and
Dvoranchik, 1971).

The distribution of the primary data is assumed to be a log- normal
distribution; thus, the state variables, 0, are the mean p and the variance

a2 of y, the log of the peak annual flow. The sample mean and variance are

joint sufficient statistics for u and o2 (Hogg and Craig, 1970). The dis-

tribution of the state variables is an independent normal-gamma, P(p,o2),
because the distribution of the mean of a sample of size N is normal with

mean p and variance a2 /N, while NS2 /a2 is independent of the sample mean
and is distributed Chi- square with N -1 degrees of freedom (Hogg and Craig,
1970). The normal -gamma is the conjugate distribution of the normal dis-

tribution, i(ylp,a2), (Raiffa and Schlaifer, 1961).

The secondary data used is the rainfall measured at the N Lazy H
Ranch on the day of peak flow and the day prior to peak flow, thus m = 2.
The distribution of the rainfall which was used is empirical and was ob-
tained from 31 years of record.

The distribution of the log of the peak annual flow given the rainfall
tr(yIx) was obtained using 10 years of paired data, N = 10.

Using the Bayesian techniques presented, the decision depth of the
piles is the depth which yields the minimum Bayes Risk:

Bayes Risk =
J J

g(dlu,o2) P(u,a2lxN +1) dude2. (15)

The limits of the outer integration are zero to infinity, and the limit, of
the inner integration are minus infinity to plus infinity. Equation (8) for
the example becomes
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P(p,02
JP(Pa)

P(u,o29.(x1u,a2)
)

R(xlp,o2) dpda2
,

where the limits of integration are as in Equation (15). Equation (9)
becomes

f(xN+l1p,o2) -
J

Q(Yu,o2) t(x,I+1IY) dy,

(16)

(17)

where the limits of integration are zero to infinity and, since the distri-
bution of the rainfall is empirical, Equation (10) becomes

2 tr(YIXN +l) D(xN +1)

t(xN +llp,o ) - tr(Ylxi) D(xi) (18)

The prior distribution of the state variables, P(p,a
2
), is found

through Bayes rule using the N primary data points of the log of peak annual
flow; the conjugacy of the normal -gamma distribution to the normal distri-
bution greatly simplifies this procedure. Equation (16) may be used in
Equation (15) to find the pile depth which minimizes the Bayes Risk. The
measure of regret for perhaps having made an incorrect decision is

XOL = I J [g(d;:!11>(32) -g(djp,o2)] P(p>o2IxN+1) dpda2> (19)

where d* is the Bayes decision and d is the decision made when the state
variables are known; the limits of integration are as in Equation (15).
Again, since the distribution of the secondary data is empirical, the
expected, expected opportunity loss due to secondary data is

XXOLx = i
1 J

[g(d*Ip,o2) -g(d1u>o2)] P(p,a2lxi) dpdo2 D(xi) (20)

where the limits of integration are as in Equation (15). The expected,
expected opportunity loss due to primary data is

XXOLy -
1 1 Jtg(d;,lp,a2)

-g(dlp,a2)] P(p,a2IY)dpda2 T(y)dy (21)

where the limits of the outter and middle integrations are zero to infinity,
and the limits of the inner integration are minus infinite to plus infinity
and

T(Y) =
I J P(p,o2) R(YIp9a2) d;ida2, (22)

where the limits of integration are as in Equation (15) and is students -t
with N -1 degrees of freedom.
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Given the XOL of the 10 -year decision, the XVSI
x

and XVSIy can be

found and the comparative worth of additional data, primary and secondary,
can be established.

Implementation. The procedure was implemented on a CDC 6400 computer.
The integrations were done with Gaussian quadrature schemes and a quad-
ratic search was used for the minimizations. The time used for one calcu-
lation of the minimum Bayes Risk and the XOL using secondary data is less
than 15 seconds, including six seconds compiling time.

RESULTS

In Tables 1 and 2, the first line is the decision made for the 10 base
years of data without using an additional data point. The second line is
the decision made using the eleventh year of historical information of the
peak annual flow. The third line is the decision made using the methodology
presented in this paper for the rainfall on the day of and day prior to
peak flow. The fourth line is the decision made when using the prediction
from the linear regression model as certain information (ignoring the noise
term, e, in the linear model). Since the day of peak annual flow for the
additional year is not usually known so that the appropriate historical
rainfall can be found, lines five and six correspond to lines three and four
for the two consecutive days of rainfall that yield the annual maximum pre-
dicted flow.

Table 1

RESULTS OF SECONDARY DATA WITH AND WITHOUT UNCERTAINTY FOR RILLITO CREEK

Additional rain-
fall observation

x1;x2 (in.)

Flow observation (cfs) Bayes
XOL

Regression Historical risk
($)prediction record ($)

Pile

depth
(ft.)

Base primary
data only 6076 1650 13.19

11 years
primary data 3610 5600 1366 12.20

0.10;0.791 Bayes
procedure

5905 1516 12.79

0.10;0.791 4856 5540 1344 12.11

1.15;0.02 Bayes
procedure

5814 1474 12.74

1.15;0.02 5659 5549 1345 12.15

Base data years: 1950 -59 Observations from: 1960
Residual variance: .091 Correlation coefficient: .26

Rain Gauge Site: N Lazy H Ranch

1. The historical rainfall for day of and day prior to peak annual flow.
2. The two consecutive days of rain giving maximum regression prediction.
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Table 2

RESULTS OF SECONDARY DATA WITH AND WITHOUT UNCERTAINTY FOR RILLITO CREEK

Additional rain- Flow observation (cfs) Bayes

fall observation Regression Historical risk
xl;x2 (in.) prediction record ($)

XOL

($)

Pile
depth
(ft.)

Base primary
data only 5850 1600 12.71

11 years
primary data 8930 5600 1366 12.20

0.46;0.031 Bayes 5609 1405 12.19
procedure

0.46;0.031 3936 5351 1311 11.74

0.96;0.02 Bayes 5589 1395 12.15

procedure

0.96;0.02 4812 5340 1308 11.72

Base data years: 1950 -57; 59 -60 Observations from: 1958

Residual variance: .078 Correlation coefficient: .42

Rain Gauge Site: N Lazy H Ranch
In Tables 1 and 2, the use of secondary data is compared to the use

of an additional piece of primary data. When the eleven year historical log
flow is not very different from the ten year mean, as in Table 1, the use
of the regression prediction as if it were actual log flow data is close to
the eleven year primary decision. Although the use of secondary information
in Bayesian procedures is an improvement over the use of the ten year pri-
mary information, it does not improve the design as much as primary infor-
mation does. In Table 2, where the eleventh year of log flow is more ex-
tremal, the use of the regression prediction as though it were actual log
flow results in an optimistic design; its decision depth is less than the
historical decision depth, as are its Bayes Risk and XOL. The decision ob-
tained when using the Bayesian procedures is closer to the eleven year pri-
mary data decision, although the XOL's of the secondary data situation are
greater than those of the eleven year primary data situation. The higher
XOL's of the Bayesian procedures in both Tables 1 and 2 are due to the con-
sideration of the uncertainty in the linear model. In the case where the
eleventh year of primary data is significantly different from the ten year
mean (.95e), the Bayes Risks and NOL's for both rainfall sets are lower than

the Bayes Risk and XOL of the eleven. year primary situation. This supports

the assertion that using the regression prediction as certain information
is assuming more knowledge of the relation between the primary and secon-

dary data Limn is warranted. Since the eleventh year of primary data is

not known in an actual decision problem for which the methodology of this
paper is used, these extremal events are the ones of most interest in eval-

uating the design.

The ten year decision of the two cases presented in Tables 1 and 2 are
again given, along with the statistics of primary data for the ten base
years, residual variances and correlation coefficients, in Table 3. The
values of interest are the relative worths of oie additional piece of data,
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primary and secondary. It can be seen that the rainfall data improves the
bridge design by less than half the improvement due to the log of peak
flow data, but the use of the secondary data contributes substantially to
an improved bridge design. The improvement due to the secondary data for
case 2, which has the lower residual variance, is greater than the im-
provement due to secondary data in case 1. Also, it is noted that the
improved bridge design results even though the correlation values do not
meet the critical values as given by previous investigators (Gilroy, 1970).

Table 3

Relative Worth of Primary and Secondary Data

Base
years

Bayes($)
Risk

XOL ($)

d*(ft)

Mean of
log of peak
flow

Variance of
log of peak
flow

Residual
variance, s2

Correlation
coefficient,
R

XVSIy ($)

XVSIX ($)

XVSI
x

XVSI
y

Case 1 Case 2

1950 -59
1950 -57

1959 -60

6076 5850

1650 1600

13.19 12.71

3.7470 3.7077

.0683 .0662

.091 .078

.2635 .4217

408 387

174 184

.426 .475

The decision resulting from this methodology is not only dependent on
the predicted value of flow, but also on the values of the rainfall which
yield the prediction, i.e., a predicted value of 4400 cubic feet per second
might be obtained by rainfalls of (1.0 .25)t and (.75 .60)t but these dif-
ferent rainfalls will give different decisions because their associated un-certainties as given by the distribution tr are different.
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DISCUSSION AND CONCLUSIONS

It has been demonstrated that the use of secondary data when insuf-
ficient primary data is available yields an improved design. Although the
Bayes Risk, XOL and XXOL depend on the correlation coefficient (the
dependence is indirect through the residual variance), the use of secondary
data is not restricted to certain values of the correlation coefficient,
nor is there a decision necessary whether to use the secondary data in mar-
ginal cases where the correlation coefficient is close to the critical value.

The methodology presented has the appealing virtue of giving a measure
of the expected loss due to the decision made (Bayes Risk) and a measure
of the uncertainty of the decision, XOL. The previous investigators
(Fiering, 1963; Matalas and Jacobs, 1964; Gilroy, 1970) have presented
methods which augment the statistics of the primary data. The design would
be done with these fixed statistics with, perhaps, confidence intervals
being used to measure the uncertainty. With the procedures of the paper, no
fixed statistics are needed; all possible values are considered, the loss
function for each value of the state variable and a single decision is
weighted by the probability of occurrence. The uncertainty in the state
variables is considered and a measure of the uncertainty is given.

The numerical procedures of the methodology presented here are non-
trivial. When augmenting the primary data with one additional piece of
secondary data, the technique requires triple integration. Each additional
piece of secondary data requires that at least one additional integration
be added; with each additional integration, the numerical procedures become
more difficult and greatly increase the time required to implement the pro-
cedure. The procedures devised by Matalas and Jacobs (1964) and Gilroy
(1970), on the other hand, augment the statistics of the primary data with
more than one additional piece of secondary data with comparative ease.

When using Bayesian procedures, the decision maker is willing to take
the risk of damage occurring. If the decision maker is unwilling to take
a risk then other methods should be used. For instance, in the example,
if the bridge were necessary for a defence route or the only route to a
highly populated arca, the bridge might be designed to withstand the
500 -year flood.
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