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ABSTRACT

The paper presents a stochastic model for the prediction of sediment
yield in a semi -arid watershed based on rainfall data and watershed
characteristics. Uncertainty stems from each of the random variables used
in the model, namely, rainfall amount, storm duration, runoff, and peak
flow. Soil Conservation Service formulas are used to compute the runoff
and peak flow components of the Universal Soil Loss Equation. A transforma-
tion of random variables is used to obtain the distribution function of
sediment yield from the joint distribution of rainfall amount and storm
duration. The model has applications in the planning of reservoirs and dams
where the effective lifetime of the facility may be evaluated in terms of
storage capacity as well as the effects of land management on the watershed.
Experimental data from the Atterbury watershed is used to calibrate the
model and to evaluate uncertainties associated with our uncertain knowledge
of the parameters of the joint distribution of rainfall and storm duration.

INTRODUCTION

The purpose of this study is threefold. First, given a deterministic
model for sediment yield, appropriate random variables are defined and a
transformation which gives the distribution of sediment yield is obtained.
From this distribution function, using the definition of the derivative, the
probability density function (pdf) of sediment yield is calculated. Thirdly,
using the pdf of sediment yield and likelihood and loss functions, a
Bayesian analysis may be carried out to assess the uncertainty which arises
from our uncertain knowledge about the parameters of the distribution of
sediment yield.

The purpose of this paper is to compare the mean and variance of the
data with the mean and variance of the model. We would expect higher
values of those expectations with the model than those of the data for two
reasons. The first is the uncertainty in the parameters of the model and
the second attributable to the randomization of the deterministic model.
This randomization takes into account more of the factors involved in the
process than does the deterministic model and thus more accurate estimates
of, say, average sediment yield can be expected.

The concern here for the mean and variance is related to the fact that
in the design of dams, reservoirs, and other water storage facilities, the
mean annual sediment load is the only design parameter used in determining
the storage capacity with respect to sediment yield over the lifetime of the
project. A variety of sediment control methods exist (Task Committee on
Sedimentation, 1973); however, accurate initial planning is by far one of
the easiest.

The authors are, respectively, Graduate Research Assistant, Systems & Indus-
trial Engineering, Professors, Watershed Management and Systems & Industrial
Engineering, University of Arizona, Tucson, Arizona 85721.

258



Assessment of sediment yield, for the most part, has been on a deter-
ministic level. Extensive work has been done by Wischmeier (1958, 1959,
1960, 1965) in the area with the development of the Universal Soil -Loss
Equation. Other methods, such as the Area -Increment and Empirical Area
Reduction methods (Borland and Miller, 1958), have been proposed. However,
the Universal Equation has been used effectively to compute sediment yield
and found quite acceptable. In the area of probabilistic sediment model-
ing, Woolhiser and Todorovic (1974) have developed a stochastic model using
a counting process in which sediment yield is treated as a random number of
random events among other various approaches to this problem. This expo-
sition will take the deterministic model of Wischmeier and, using a joint
distribution of rainfall and storm duration, obtain the cumulative distri-
bution of sediment yield for a single event. A sediment event is defined
as occurring whenever there is a runoff -producing type storm. The model
takes into account, not only the probabilistic interaction between rainfall
and storm duration, but the interaction between the components of runoff and
peak flow which both depend on rainfall and duration. This work parallels
to some extent the work of Duckstein, Fogel and Kisiel (1972) in that the
seasonal sediment yield is computed as the sum of a random number of random
events mutually independent and identically distributed. From the computed
values of mean sediment yield and variance of same, along with the mean and
variance of the number of events per season, the mean and variance of the
seasonal distribution may be calculated directly. Using a seasonal approach
to naturally- occurring events is warranted whenever well- defined events,
such as sediment yield greater than some amount Z, occur relatively infre-
quently, so that their effects are separated by a time interval that con-
tains the "null event."

SEDIMENT MODEL

The Universal Equation modified by Williams and Hann (1973) to compute
the sediment yield on a per event basis is:

Z = 95 (Q q)
.56

K C P L S

where Z = Sediment yield in tons;
q = Peak flow rate in cfs;
p
Q = Runoff volume in acre -ft;
K = Soil erodibility factor;
C = Cropping -management factor;
P = Erosion control practice factor;

LS = Slope length and gradient factor

Values for K, C, P, L, and S may be computed using the algorithms outlined
by Williams and Berndt (1972). Due to the form of the data available, a
conversion constant (to be defined later) was introduced to convert Z from
tons to cubic feet and Q in inches to acre -feet. The values of Q and q
are computed from the Soil Conservation Service formulas: p

2xi
Q (x

1
S) (inches) (2)

where x1 = Effective rainfall in inches [rainfall less a constant initial
abstraction];

S = Watershed infiltration constant;
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and

Q
484ÁQ (cfs)

P (a1x2 + a2)

where A = Drainage area;

al = Constant;

x2 = Storm duration hours;

a2 = Time of concentration hours (assumed constant).

(3)

Combining (2) and (3) into (1) and defining the conversion constant men-
tioned earlier as a0 = 484 A2 (5280 ft /mi)2 / (4,356 x 104 ft2 /acre) /

(12 in /ft), we get

a0xl
4

).56

(x1 + S)
2

(alx2 + a2)

where W = 95KCPLS(2000 lb /ton /mean sediment density lb/ft3). To

obtain the distribution function of sediment yield, we need the joint
distribution of rainfall and storm duration f(xl,x2). Crovelli (1971) has

proposed a bivariate gamma pdf. This distribution possesses many of the

properties consistent with the empirical properties of certain storms.
The data from the Atterbury Experimental Watershed were used to conduct a
Kolmogorov- Smirnov Goodness of Fit test on the marginal distributions of
rainfall and storm duration. The distributions could not be rejected at

the 1% level of significance, so the bivariate gamma distribution was used.
The parameters of this distribution were estimated by the method of maximum
likelihood. However, they could have been estimated by regression, maxi-
mizing marginal likelihoods, or by Bayesian methods. The pdf of rainfall

and storm duration is:

-8 -ax-ax2
ß

aße (1 - e ) if 0 < x2 < axl

f(xl,x2) = -ax2 -ßxl
)

ßaße (1 - e if 0< á1< x2

(4)

where a, 3 > 0, 0 < xl < =, 0 < x2 < m.

To obtain F(Z), it is necessary to integrate the joint pdf in terms of the
conditional and marginal distributions.

F(Z < z) = IP(Z < z /xl = x) f(xl)dxl

0

((

4

= I P((
a2xl ).56

/xl = x) f(xl)dx1

0
(x1 + S) (alx2 + a2)

=

r cx
4

)I P(x2 > 1 - d /xl = x) f(xl)dxl
(x1 + S)

where c = 0 (W/z)1/.56 and d = a2 /al. We also let
a
1
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4
cxl

q)(xl,z) - - d,
(x

1
+ S)

and we have

F(Z < z) = J J f(xl,x2)dx2dx1

0 11l(x,z)

(5)

Since 1,(xl,z) is defined over both regions of pdf (4), (5) must be broken

into four separate regions. Figure 1 illustrates the joint pdf f(xl,x2)

and the sediment function (xl,z). Note that the curve is defined on both

sides of the line x2
= 1

so the region of integration from qi(xl,z) to

infinite must be partitioned and the boundary points x1 are obtained by

solving the equations gx,7,z) = á and 4)(xl,z) = 0 respectively. The
resulting expression is tFien:

**

(xl á 1 -ßxl -ax2
F(Z < z) = 1 J aße (1 - e )dx2dx1 +

0 0

*

x1 fa l -ßx -ax
aße 1(1 - e 2)dx2dx1 +

xl*/(xl,z)

*

r -ax2 -ßxl
fl

aße(1 - e )dx2dx1 +

0 x
1

CO CO

J*J
xl ,(x1,z)

-ax -ßx
aße

2
(1 - e 1)dx2dx1

It was not possible to obtain closed form expressions for all of the above
terms. However, the simplest form obtained was:
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i, >t ,.

-ßx1
*

-ßx1
-ßx1

F(Z < z) = 1 - e (ßx1 + 1) + (1 + ad)(e - e )

**

+ ace-ßx1 [ -(ß(x1 + S) + 1) (2S - ß) - (x1i + S)2

2

- S2(6 + )(
xl + S J

- xl
2 * 1

S)
2

+ ace [(E(x

ß

+ S) + 1) ( - 2S) + (x1 + S)

2

+ S2 (6 +
*ßS )

x1+S,

*

r + S k

+ acS3(ES + 4)e" ln

x
( ** + E k k; (xl + S)k
L x1 + S k=1

k- (xl
**
+ S)

ß e

-a(xl,z)

dx - I
e -ßx1+ dx

1 1 '

xl xl

The parocedure to compute F(Z) is to first calculate the constant

c = 0 (W /z)1
.56,

then calculate the roots xl
*
and x2

**
; evaluate the constantal'

terms, the series term, and finally, the integral terms. Convergence of the
series term to 20 decimal places was obtained within 60 to 70 terms. The two
integrals were evaluated using Simpson's Rule in which the upper bound on the
absolute error between successive iterations was arbitrarily preset at

10
-8

. The two integrands are highly asymptotic and converge so rapidly that
the contribution of both was less than 10-2.

Data from the Atterbury Experimental watershed were used to compute F(Z).
Mean rainfall and storm duration values were available for individual rain-
fall events over a period of 14 years. These values were used to compute
the maximum likelihood estimates of a and E. Figure 2a illustrates the dis-
tribution function obtained. Computations for 30 values consumed 60 seconds
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of computer time on the CDC 6400 computer. Figure 2b was calculated from

the values of F(Z) using the definition of the derivative.

The mean and variance of the pdf was calculated using the Reimann-
Stieltjes integral:

E(z) =
Jzf(z)dz

= Jzdf(z)

n

= E z.f(z.) and
i =1

i i

n

E((z-u)2) = E zi f(zi) u2
i=1

The values obtained from f(z) model were

E(Zm) = 8722

var(Zm) = 1.2377 x 108.

Defining a random variable U = Z1 + Z2 + ... + Zm as the total sediment

yield for a season, where the Z. are mutually independent and identically

distributed random variables representing the m sediment events and their

yield. The mean and variance of the seasonal distribution fz(Z) may be

computed directly without explicitly computing f(Z). Evaluating the rainfall

and duration data in the Universal Soil Loss Equation, a set of sediment
yields were obtained from which the sample mean and variance were calculated.
These values were E(Zdata) = 5055 and var(Zdata) = .127 x 108. As in

Duckstein et al. (1972), the distribution of the number of events per sea-
son was distributed Poisson and the mean number of events was found from
the data to be E(N) = 9,5. Since we are only concerned with the mean and
variance of the seasonal distribution, it is possible to obtain these
values without actually knowing the pdf of seasonal sediment yield. From

Benjamin and Cornell (1970):

Model

Data

E(Zs) = E(N)E(Zm) = (9.5)(8722) = 82,859 ft3

var(Zs) = var(N)(E(Zm))2 + E(N)var(Zm) = 1.8985 x 109

E(Zs) = E(N)E(Zd) = (9.5)(5055) = 48,022 ft3

var(Zs) = var(N)(E(Zd))2 + E(N)var(Zd) = .3634 x 109
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A difference of 34,837 cubic feet over a single season illustrates how
the larger mean value of the model, when taken over several seasons, adds
up rapidly. For example, in designing a water storage facility, the dif-
ferences in total sediment yield over a 50 -year period based on annual mean
values would be (using the above) 1.7 million cubic feet.

From this point a Bayesian analysis could be carried out using the pdf
of z and the likelihood function (Crovelli, 1971) of the parameters a and 8.
A loss function could be defined and a measure of the uncertainty in the
model could be ascertained in an attempt to see if the uncertainty in using
the model was less than that of the deterministic equation and whether the
uncertainty of the deterministic model causes a smaller set of values.

DISCUSSION AND CONCLUSIONS

The disadvantages of using the above model are centered about the pdf
of rainfall and storm duration. If the data for a watershed does not ex-
hibit the bivariate gamma characteristics, the model is undefined. Not
enough work has been done using this pdf to establish whether or not it is
an accurate descriptor of the interaction between rainfall and duration.
Also, there is uncertainty in what the actual values of a and ß are. As

the estimates of the watershed constants K, C, P, L, and S are also highly
uncertain, some inaccuracies will appear here. The model has the advantage
of taking into account the actual behavior of rainfall and storm duration
in a probabilistic sense, whereas the deterministic model only depends on
the individual values of rainfall and duration. Since the randomization
takes into account the random characteristics of rainfall and duration, it
is expected that the mean value of seasonal sediment yield would be more
accurate than that obtained from the deterministic equation.

In conclusion, the following points have been demonstrated:

1. For the Tucson data, the bivariate gamma distribution cannot be
rejected for summer -type rainfall.

2. The distribution function for sediment yield is obtained by ran-
domizing the nonlinear relationship between rainfall and storm
duration in the Universal Soil Loss Equation, using the Soil
Conservation Service formulas for runoff and peak flow rate.

3. The total seasonal sediment yield may be estimating using formulas
based on the assumption of Poisson numbers of events.
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NOTATION

A Drainage area of watershed;

al Formula constant ( =.5);

a2 Time of concentration of storm ( 1.44 hrs);

a,b Parameters of bivariate gamma distribution;

C Cropping -management factor;

LS Slope length and gradient factor;

K Soil erodibility factor;

P Erosion control practice factor;

Q Runoff volume acre -ft;

q Peak flow rate cfs;
p

S :
Watershed infiltration constant (= 3.75);

Z Sediment yield in ft3 for a single event;

f(xl,x2): Bivariate gamma pdf of rainfall amount and storm duration
(in hrs.);

f(Z) Pdf of sediment yield for individual event;

fz(Z) Seasonal probability density function of sediment yield;

F(Z < z): Distribution function of sediment yield;

: Sediment yield function.

Random variables:

N Number of events per season;

U Total seasonal sediment yield;

x1 Mean rainfall amount;

x2 Storm duration;

Z Amount of sediment yield from single event.
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f (xl,xZ)

Bivariate gamma distribution of rainfall

amount (x1) and storm duration (x2).

Note the sediment yield function 11)(xl,z).

Fig. 1
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