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ABSTRACT 

  Coccidioidomycosis (Valley Fever) is an environmentally-mediated respiratory 

disease caused by the inhalation of airborne spores from the fungi Coccidioides spp.  The 

fungi reside in arid and semi-arid soils of the Americas. The disease has increased 

epidemically in Arizona and other areas within the last two decades.  Despite this 

increase, the ecology of the fungi remains obscure, and environmental antecedents of the 

disease are largely unstudied.  Two sources of soil disturbance, hypothesized to affect 

soil ecology and initiate spore dissemination, are investigated.  

 Nocturnal desert rodents interact substantially with the soil substrate.  Rodents are 

hypothesized to act as a reservoir of coccidioidomycosis, a mediator of soil properties, 

and a disseminator of fungal spores.  Rodent distributions are poorly mapped for the 

study area.  We build automated multi-linear regression models and decision tree models 

for ten rodent species using rodent trapping data from the Organ Pipe Cactus National 

Monument (ORPI) in southwest Arizona with a combination of surface temperature, a 

vegetation index and its texture, and a suite of topographic rasters. Surface temperature, 

derived from Landsat TM thermal images, is the most widely selected predictive variable 

in both automated methods. 

Construction-related soil disturbance (e.g. road construction, trenching, land 

stripping, and earthmoving) is a significant source of fugitive dust, which decreases air 

quality and may carry soil pathogens.  Annual differencing of Landsat Thematic Mapper 

(TM) mid-infrared images is used to create change images, and thresholded change areas 

are associated with coordinates of local dust inspections.  The output metric identifies 
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source areas of soil disturbance, and it estimates the annual amount of dust-producing 

surface area for eastern Pima County spanning 1994 through 2009.     

 Spatially explicit construction-related soil disturbance and rodent abundance data 

are compared with coccidioidomycosis incidence data using rank order correlation and 

regression methods.  Construction-related soil disturbance correlates strongly with annual 

county-wide incidence.  It also correlates with Tucson periphery incidence aggregated to 

zip codes.  Abundance values for the desert pocket mouse (Chaetodipus penicillatus), 

derived from a soil-adjusted vegetation index, aspect (northing) and thermal radiance, 

correlate with total study period incidence aggregated to zip code.   
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CHAPTER 1: INTRODUCTION 

 

1.1 Introduction 

 

1.1.1 Disciplines 

Health geography is the application of spatial information, perspectives, and 

methods to the study of health, disease and health care.  Health is defined as “a state of 

complete physical, mental, and social well-being and not merely an absence of disease” 

(WHO, 2006).  Health geography, a broad discipline, it is situated in a complex interplay 

of environmental factors, including physical, biological, economic, social and cultural 

dimensions.  Historically, health geography is considered to be divided into two streams:  

1) the geographies of health and disease, with descriptive and analytical research 

quantifying disease frequencies, distributions, and characteristics of susceptibility; and 2) 

the geography of health care, such as facility location, accessibility and utilization 

(Meade and Earickson, 2000).    

 Medical geography, as a subdiscipline, is the study of the relation between 

geographic factors and disease (Philo, 2009).  Inherent is an after-the-fact positioning for 

treatment and the study of disease.  Medical geography focuses on “who has what disease 

where” (Meade and Earickson, 2000).  Historically, it has been treated as a tool for the 

application of geographical methods to medical problems.  Litva and Eyles (1995) assert 

that its atheoretical nature is merely an appearance; it has been influenced by positivist 

philosophy, where knowledge and information is derived from logical, mathematical 

treatments and empirical evidence.  Medical geography has become increasingly 

concerned with health geography as a behavioral and social construction, and disease 
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ecology as an interface between the natural, physical world and the cultural dimension of 

existence. 

  Epidemiology, a science or discipline in its own right, focuses on the 

prevalence and spread of disease in a community and on the health of human populations.  

It is often considered the key scientific underpinning of public health.  It generally is 

concerned with strict study design and the set-up of case control and cohort frameworks.  

Spatial epidemiology, as a branch of epidemiology, is concerned with describing, 

quantifying, and explaining geographical variations in disease, especially with respect to 

variations in environmental exposures at the small-area scale (Elliot et al. 2000).  

Examples of their foci are disease mapping, comparisons of risk maps with exposure 

maps, geographical correlation studies, disease cluster detection, spatial surveillance, and 

provision of information on the health needs of a population. 

 

1.1.2 Technology 

 A geographic information system (GIS), with its ability to manage and portray 

spatial data, has become the dominant tool in geography.   A geographic information 

system (GIS) is an integrated set of tools and methodologies for collecting, storing, 

retrieving, analyzing, and displaying spatial as well as non-spatial attribute data.  It has 

transformed a variety of health analyses and the structuring of public data (Meade and 

Earickson, 2000).    

 Perhaps the most important source for the development of the GIS, and its data, is 

remote sensing (Meade and Earickson, 2000).  Satellites provide an enormous amount of 

digital data in multiple bands of the electromagnetic spectrum.  Continuous and 
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repetitious image collection allows differentiation of land cover or usage, and provides a 

platform for monitoring for change.  Methodologies for the processing of remotely-

sensed images are a source of a variety of raster data products. 

 

1.1.3 Coccidioidomycosis 

 Coccidioidomycosis (Valley Fever) is a systemic infection characterized by fever, 

respiratory infection and reddish bumps on the skin.  It is caused by inhalation of airborne 

spores from Coccidioides immitis and Coccidioides posadasii fungi, which are endemic 

in the southwestern United States, and in parts of Mexico, Central and South America.  

Coccidioidomycosis is produced in Arizona by inhalation of spores from C. posadasii 

(Fisher et al., 2002).   

 The Coccidioides spp. reside in warm, arid and semi-arid soils of the Americas.  

The fungi exist in a dimorphic life cycle consisting of saprophytic mycelial phase in the 

soil, and a parasitic spherule phase when arthroconidia are inhaled by a mammalian host 

(Cole and Sun, 1985).   Given proper conditions, slender filaments of saprophytic cells 

(hyphae) grow in the upper part of the soil (Kolivras, 2001).  After a week or more of 

growth, many of the hyphal cells mature into rectangular arthrospores. The arthrospores 

alternate with smaller, sterile cells. When the soil dries, the alternating sterile cells breach 

easily, freeing the intervening arthrospores.  The arthrospores range from 1.5 to 4.5 µm in 

width and 5.0 to 30 µm in length. 

  The parasitic stage usually initiates in the lungs, and it can spread to other parts 

of the body.  If inhaled, the arthrospores can penetrate to the smallest bronchiole or 

pulmonary alveoli of the lung.  In the parasitic phase, the arthrospore or arthroconidia 
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develops into a spherical, double-walled cell called a spherule (sporangium). Spherules 

measure from 10 to 200 µm, and they typically contain a few to several hundred 

endospores, each 2 to 5 µm in diameter. The spherule eventually ruptures, discharging 

the endospores into the neighboring tissue.  Each endospore is potentially capable of 

blooming into a new spherule.  

 Exposure usually occurs following events that disrupt the soil, resulting in 

aerosolization of the fungal arthrospores (Schneider et. al., 1997).  Both natural and 

anthropogenic or human soil disturbance can produce spore dispersion.  Hypothesized 

sources of soil disturbance include the wind, dust devils, construction-related activities, 

agriculture, archeological digs, and rodent activity. 

 

1.1.4 Study Area 

The study is situated in the Sonoran Desert, an arid region stretching from 

southeastern Arizona, across Sonora, Mexico and through most of Baja California.  The 

Sonoran Desert is characteristic for its semi-arid climate, mild winters and a bimodal 

rainfall pattern.  Mountain ranges, volcanic hills, bajadas (coalesced alluvial fans), valley 

floors, washes and arroyos (steep-sided gulches) are typical of its geomorphology 

(Hoffmeister, 1986).  The visually dominant elements of the landscape are two 

characteristic life forms:  legume trees and large columnar cacti (Arizona-Sonora Desert 

Museum, 2013).   

The Lower Sonoran Life Zone (LSLZ), based on Merriam’s elevation-

precipitation life zones for the southwest (Merriam and Steineger, 1890), further 

delineates the study area.  The LSLZ are the lower elevation parts of the desert (generally 
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< 1000 m).  The LSLZ stretches, in Pima County, Arizona, from the relatively pristine, 

sparsely-populated Organ Pipe Cactus National Monument, situated in the western half of 

the county, to the Tucson metropolitan area in the eastern half.  

A ring of communities, unincorporated urban development, and undeveloped 

areas surround the city of Tucson.  Here, thousands of acres of the Sonoran Desert are at 

the forefront of urbanization, and hundreds of acres have been bladed for the construction 

of houses and commercial strip malls (AIA, 2007).  Between 1980 and 1990, the city’s 

area increased by over 50 percent to approximately 600 km
2
 through the annexation of 

unincorporated land.  The regional population has also experienced a doubling in a 

similar time period.  The population of Pima County is approximately one million 

(Census, 2012). 

 

1.2 Explanation of the Problem 

 

1.2.1 Impacts of coccidioidomycosis 

Most cases of Coccidioides spp. infections are self-resolved.  Approximately 40% 

of infections are symptomatic, and they can result in severe complications such as 

influenza-like illnesses, community acquired pneumonia (CAP), lung cavities, and 

disseminated infections in the central nervous system, skin, bones, joints and other organs 

(Komatsu et al., 2003).  About one percent of infected individuals experience serious, life 

threatening conditions such as meningitis and organ damage.  On average, patients 

diagnosed with the disease suffer symptoms for six months.  Risk factors for severe 

infections include race, age, and immunosuppression.  The fungi also infect livestock, 

pets and wild animals. 
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Rates of coccidioidomycosis have increased epidemically in Arizona and other 

areas within the last two decades.  The Arizona Department of Health Services (ADHS) 

reported a coccidioidomycosis incidence of 43 cases per 100,000 of population in 2001, 

representing an increase of 186% since 1995 (Komatsu et al. 2003).  In 1998, 1,551 cases 

were reported to the ADHS; 5,535 were reported in 2006, and over 10,000 were reported 

in 2009 (Komatsu et al. 2003; Sunenshine et al. 2007; Hector et al. 2011).  It is the fourth 

most common disease reported to the Arizona Department of Health Services (Park et al. 

2005), and Arizona accounts for 60 percent of reported cases in the nation (Center for 

Diseases Control and Prevention, 2004).  Most (95%) of Arizona cases are in Maricopa, 

Pinal, and Pima Counties.   

Coccidioidomycosis became a nationally reportable disease in 1995 at the 

southwest regional level, at which time a case definition was adopted that required 

laboratory confirmation.  The reporting requirement is suggested to play a role, at least 

partially, in the increasing linear trend in exposure rates over the previous two decades 

(Sunenshine et al. 2007, Tamerius and Comrie, 2011).   

The consequent public health burden to affected regions is considerable.  Hospital 

charges for coccidioidomycosis in the U.S. exceeded $86 million in 2007.  Recent studies 

noted that direct hospital charges for the treatment of the disease in Arizona was 26.8 

million dollars with a median charge of $14,292 (Nguyen et al., 2013).  It is an 

increasingly important health issue due to migration into the state from other regions and 

increased numbers of immuno-suppressed patients. 
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1.2.2 Investigations of coccidioidomycosis sources 

 Environmental factors are hypothesized to explain the occurrence and distribution 

of Coccidioides spp. at all points in the disease chain.  Despite the significant increase in 

incidence of coccidioidomycosis, and the associated interest due to its economic and 

human costs, there is limited knowledge about the specific ecological niche required for 

Coccidioides spp. to flourish, the environmental antecedents of disease outbreaks, and the 

precise mechanisms of spore aerosolization and subsequent dispersion (Galgiani, 1999).   

 Coccidioidomycosis cannot be transmitted from person to person, but it is 

acquired by inhalation of the arthrospores from the environment.  Therefore it is 

reasonable to assume that the fungus should be easily isolated from endemic areas (Ajello 

et al. 1965; Lacy & Swatek 1974).  However, only a few positive isolations from 

environmental samplings have been obtained in highly endemic areas in the United States 

(Stewart and Meyer 1932; Emmons 1942; Maddy 1965). The scarce environmental 

evidence for Coccidioides spp. seems to be in disagreement with the high incidence rates 

obtained for the disease.  Detection of the fungus in the environment remains a critical 

challenge to modeling the source of disease (Barker et al., 2012). 

 On a regional scale, the major predictors of disease are climate, soil disturbance, 

and dust or wind events (Pappagianis 1994; Comrie 2005; Comrie and Glueck 2007, 

Tamerius and Comrie, 2011).  Stacy et al. (2012) used a remote sensing time series to 

relate moist soils in the early spring, resulting from antecedent winter precipitation, with 

increased coccidioidomycosis incidence up to a year later.  However, at finer scales, the 

ecology of the fungus remains obscure and largely unstudied (Cox and Magee, 2004).   
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 Infection usually occurs following activities or natural events that disrupt the soil, 

resulting in aerosolization of the fungal arthrospores (Schneider et. al., 1997).  Wind 

erosion may contribute to spore dispersion.  Evidence suggests that anthropogenic or 

human-induced soil disturbance generates dispersal of spores.  Outbreaks of the disease 

have been associated with soil disruption, archeological digs, agriculture, and 

construction (Cairns et al., 2000; Park et al. 2005, Fisher et al., 2007).  Coccidioides spp. 

is associated with alkaline soil that has a high salt content, rodents, rodent burrows and 

Amerindian middens (Swatek, 1970). 

 

1.2.3 Public health challenges 

 Due to mandatory reporting, public health agencies in the U.S. have effectively 

established a surveillance system for coccidioidomycosis in endemic areas. 

Dissemination of information, another public health mandate, on the risks and control of 

coccidioidomycosis is improving.  

 However, agencies are not in position to provide detailed exposure and control 

information.  Recommendations are limited to avoid blowing dust and activities that 

disturb soil, and to use dust masks and respirators in these situations.  Evidenced by a 

lack of risk assessments, models, vulnerability maps and early warning systems, they 

have been unable to link coccidioidomycosis surveillance data with information on 

environmental factors explaining the occurrence and distribution of the disease.   

Ultimately, improvement in the control of coccidioidomycosis incidence will 

require research into the molecular and cellular biology of Coccidioides spp., vaccine 

development, discovery of new antifungal drugs, and a better understanding of the soil 
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ecology that supports the fungus in its endemic regions and the mechanisms of spore 

dispersal (Galgiani, 1999). 

 

1. 3 Research Questions 

 The dissertation is organized around three primary research questions, 

summarized below.  Through these, the relationship between two sources of soil 

disturbance, hypothesized to affect soil ecology and initiate Coccidioides spp. spore 

dissemination, and coccidioidomycosis incidence are investigated. 

 

A.  What is the spatial distribution of burrowing desert rodent abundance in Pima County, 

Arizona?   

 What biophysical variables can be estimated by remote sensing, Geographic 

Information System (GIS), and statistical methods to estimate burrowing rodent 

abundance? 

 How can these variables be incorporated into a predictive model? 

 

B.   What are the spatial and temporal characteristics of construction-related soil 

disturbance in Pima County, Arizona? 

 Can construction-related disturbance be measured by remote sensing and GIS 

methods? 

 Is this metric related to dust generation? 
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C.  What is the spatial relationship between desert burrowing rodent abundance 

distributions  and construction-related soil disturbance metrics with coccidioidomycosis 

(Valley Fever) incidence in Pima County, Arizona? 

 What kind or type of modeling can support these data? 

 How does the relationship between coccidioidomycosis incidence and a combined 

habitat-disturbance model vary across spatial scale or size of enumeration unit?   

 

1.4 Approach 

Spatial sciences are invoked to provide a new dimension in characterizing 

coccidioidomycosis and its contributing factors.  Spatial tools available to the health 

geographer, such as Geographical Information Systems (GIS), remote sensing, 

epidemiology, and statistics, are employed to achieve these goals.   The convergence of 

geography with public health, ecology and environmental sciences are utilized to achieve 

new perspectives. 

A top-down research approach is employed.  Available data sets and techniques 

are investigated to determine what research questions can be asked of the phenomena in 

terms of their scale, and research questions were repositioned to match availability and 

scale of data.  For example, the resolution of the Landsat TM (30m pixel) is suited for the 

evaluation of rodent plots (90m) and construction disturbance (average 480m dimension).  

The extent of Landsat TM imagery (185 km scenes) is appropriate for data storage and 

processing requirements of a regional study.   As another example, coccidioidomycosis 

incidence data are available at zip code granularity; this may be a sufficient match for a 

spore dissemination model from a disturbance site.  Temporal comparison periods are 
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limited by repeat satellite visits and seasonal phenology.  These scales define, enhance 

and constrain methodological capabilities.  

Multiple data and methods are used to enhance the understanding of phenomena 

of study, triangulate research questions and validate output.  For example, fugitive dust 

inspection data and rodent abundance data are obtained from public agencies, and 

information available in previous scientific literature is collected.  These are compared 

with research output to drive model building and to validate results.  Comparisons of 

parametric and non-parametric regression techniques with identical data input are used to 

instruct rodent abundance models.  Variations in spatial and temporal scales, for example, 

county and zip code areas, and multi-year and annual periods, are used to ascertain 

relations of coccidioidomycosis incidence and soil disturbance.   

The work presented here explores the use of viable, readily available, and free 

data sources generated by remote sensing methods and GIS methods.  Satellite imagery is 

obtained from the Landsat 5 Thematic Mapper (TM) data archive.  The Landsat 5 TM 

provides data since 1984 in seven spectral regions, including the mid-infrared (NASA, 

2011).  The data is processed to a standard output, and it is freely available from USGS 

data banks.  Digital elevation models of the study area are also obtained at no cost from 

U.S. Geological Service data sources (USGS, 2013).  Other ancillary data are researched 

and explored for assistance in modeling at all study phases.  Political, census, agriculture, 

soil, and vegetation spatial data are obtained at no cost from online data sources.  

Key data sets were obtained by information request from public agencies: county 

fugitive dust inspection data, national monument nocturnal rodent trapping data, and state 

coccidioidomycosis incidence data.   Availability and access to these data were 
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instrumental for the study, and without them this research project would not have been 

accomplished.  Likewise, methods and models developed here will be reported and made 

available as tools to public health agencies charged with characterizing and preventing 

the disease.  To facilitate use by others, strategies are designed for minimal data 

processing for achievement of satisfactory results.  

 

1.5 Explanation of the Dissertation Format 

 This dissertation offers new knowledge pertaining to the environmental sources of 

Coccidioides spp. dissemination.  Three papers present important and interrelated insights 

into this problem (Figure 1). 

 Key components of this dissertation are formatted as scientific journal 

submissions.  They are presented as Appendices A through C.  The first article will be 

submitted to Ecological Modelling or a similar publication. The second article will be 

submitted to GIScience & Remote Sensing.  The third article will be submitted to 

Emerging Infectious Diseases or a similar publication.  Chapter 2 follows this 

introductory chapter with a brief summary of the three articles.   

 I am principally responsible for formulating research questions, conducting data 

analysis, and writing manuscripts.   This dissertation represents my original and 

individual efforts, and I will be the lead author on the publications arising from this work. 
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Figure 1:  Research plan 
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CHAPTER 2: PRESENT STUDY 

 

 The methods, results, and conclusions of the present study are detailed in three 

manuscripts appended to this dissertation.  A brief summary of key features and findings 

follows. 

 

2.1 Nocturnal desert rodent abundance distribution in southwestern Arizona estimated by 

regression methods with remote sensing-derived data. 

 Nocturnal rodents play a key role in the Sonoran Desert ecosystem as consumers 

and prey.  They interact substantially with the soil substrate and alter soil properties.  

They are also linked to the transmission of human diseases.  Rodent distributions are 

poorly mapped for the study area, and factors derived from remotely-sensed data that 

explain rodent biogeography are not known.  We build automated multi-linear regression 

models and decision tree models for ten rodent species using rodent trapping data from 

the Organ Pipe Cactus National Monument (ORPI) in southwest Arizona with a 

combination of surface temperature, a vegetation index and its texture, and a suite of 

topographic rasters as explanatory variables. The parametric and non-parametric models 

show remarkable congruency between themselves and with outside sources.  Surface 

temperature is the most widely selected explanatory variable in both automated methods; 

we attribute this to its integrating capabilities of multiple landscape characteristics.  

Model output is used to develop spatially explicit distribution maps.  
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2.2 Fugitive dust emission sources arising from construction:  a remote sensing 

approach. 

 Construction-related soil disturbance (e.g., road construction, trenching, land 

stripping, earthmoving and blasting), is a significant source of fugitive (airborne) dust in 

the atmosphere.  Fugitive dust is a primary cause of decreased
 
air quality and may carry 

airborne pathogens.  We use Landsat Thematic Mapper (TM) remote sensing data 

spanning 1994 through 2009 over southern Arizona to identify source areas of 

construction-related activity likely to produce fugitive dust.  We correlate temporal 

changes in the mid-infrared spectral response to dust sources from local construction.  

Image differencing of the TM band 5 (mid-infrared), with a change threshold of ± five 

standard deviations of the mean, suitably estimates the location and area affected by 

construction-related soil disturbance.  Estimated dust-producing surface area ranges from 

10.0 km
2
 (1996-1997) to 28.3 km

2
 (2004-2005), or 0.16% to 0.44% of the Pima County 

study area.  Our methods aim to automate monitoring of fugitive dust sources by 

environmental and health agencies and to provide inputs to dust transport, air quality and 

climate models. 

 

2.3 Estimating environmental sources of Valley Fever propagation in southern Arizona 

with remote sensing. 

 

 Coccidioidomycosis (Valley Fever) is an environmentally-mediated respiratory 

disease caused by the inhalation of airborne spores from the fungi Coccidioides spp.  The 

fungi reside in arid and semi-arid soils of the Americas. The disease has increased 

epidemically in Arizona and other areas within the last decade.  Despite this increase, the 
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ecology of the fungus remains obscure, and environmental antecedents of the disease are 

largely unstudied.  We investigate two sources of soil disturbance, anthropogenic 

construction and nocturnal desert rodents, which are hypothesized to affect soil ecology 

and initiate Coccidioides spp. spore dissemination.  We estimate construction-related soil 

disturbance with annual differencing of Landsat Thematic Mapper mid-infrared images.  

Source areas of soil disturbance are identified, and annual affected areas are estimated for 

eastern Pima County, Arizona and for zip code areas spanning 1994 through 2006.  We 

build rodent abundance distribution maps for the study area using regression models of 

biophysical variables derived from remotely-sensed data with comparisons to rodent 

trapping data from the Organ Pipe Cactus National Monument. The two spatially explicit 

soil disturbance sources are compared with coccidioidomycosis incidence data using rank 

order correlation and regression methods.  Construction-related soil disturbance 

correlates with annual county-wide incidence (R
2
 = 0.49, p-value 0.012), and with 

incidence of zip codes at the periphery of the city of Tucson for the total study period (R
2
 

= 0.48, p-value 0.001).  The average abundance values for the desert pocket mouse 

(Chaetodipus penicillatus), derived from a soil-adjusted vegetation index, aspect 

(northing) and thermal radiance, correlate with total study period incidence aggregated to 

zip code (R
2
 = 0.25, p-value 0.02). 

 

2.4 Future work 

 Additional investigations might be undertaken to improve and extend the results 

of this study.  Construction change pixels or data can be weighted by its corresponding 

rodent abundance to produce a combined model for incidence prediction.  Satellite 
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imagery and methods can be performed to ascertain temporal variations in rodent 

abundance distributions, such as seasonal and inter-annual, for comparisons with 

incidence data.  Data sets for the study ended at 2006; recent satellite and incidence data 

can be obtained to extend the lifespan of the study.  Masks can be applied to limit the 

analysis to the periphery of Tucson, where there is a more solid theoretical basis for 

linking construction and rodents to coccidioidomycosis incidence.  As a final example, 

the study and methods can be extended to Maricopa and Pinal counties in Arizona, which 

are experiencing similar urban growth and Valley Fever incidence dynamics.   
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ABSTRACT 

Nocturnal rodents play a key role in the Sonoran Desert ecosystem as consumers and 

prey.  They interact substantially with the soil substrate and alter soil properties.  They 

are also linked to the transmission of human diseases.  Rodent distributions are poorly 

mapped for the study area, and factors derived from remotely-sensed data that explain 

rodent biogeography are not known.  We build automated multi-linear regression models 

and decision tree models for ten rodent species using rodent trapping data from the Organ 

Pipe Cactus National Monument (ORPI) in southwest Arizona with a combination of 

surface temperature, a vegetation index and its texture, and a suite of topographic rasters 

as explanatory variables. The parametric and non-parametric models show remarkable 

congruency between themselves and with outside sources.  Surface temperature is the 

most widely selected explanatory variable in both automated methods; we attribute this to 

its integrating capabilities of multiple landscape characteristics.  Model output is used to 

develop spatially explicit distribution maps.  

 

Keywords: nocturnal rodents, desert rodents, pocket mouse, kangaroo rat, wood rat, 

cactus mouse, abundance, remotes sensing, Landsat, GIS, classification and regression 

trees, decision Trees, stepwise regression, surface temperature, thermal infrared, 

vegetation index, topography, Sonoran Desert, Organ Pipe Cactus National Monument, 

Valley Fever, biogeography, ecological modeling, species distribution. 
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1. Introduction and Background 

1.1 Introduction 

Rodents are common in almost all habitats.  They constitute a key prey base for 

carnivorous animals.  They are responsible for considerable soil excavation, soil mixing, 

predation on plants and seeds, and dispersal of seeds (Reichman and Price, 1993).  They 

thus alter the physical and chemical properties of soil.  Rodents are implicated as carriers 

or hosts of several pathogenic agents causing human disease, including hantavirus, 

plague and coccidioidomycosis (Childs et al., 1994; Boone et al., 1998; Gage and Kosoy, 

2005; Emmons, 1942; Kolivras and Comrie, 2004).   

Nocturnal desert rodents are easily captured and identified, have small home 

ranges, have high fecundity, and respond quickly to changes in primary productivity and 

disturbance (Petryszyn, 1995).  They provide a most cost-effective indicator for 

monitoring the primary consumer component of ecosystems (Holm, 2006)   

Recent decades have seen an explosion of interest in species distribution 

modeling (SDM; Franklin and Miller, 2009).  This has resulted from a confluence of the 

growing need for information on the geographical distribution of biodiversity, and of new 

and improved techniques and data suitable for addressing this information, such as 

remote sensing, global positioning system technology, geographical information systems 

(GIS) and statistical learning methods (Franklin and Miller, 2009). 

We aim to characterize and predict the spatial dimensions of nocturnal desert 

rodent species and groupings throughout the Organ Pipe Cactus National Monument 

(ORPI), in southwestern Arizona, and beyond, using statistical modeling of data derived 

from remote sensing and GIS.  In the first section of this article, we introduce the ORPI’s 
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biogeography within the greater Sonoran Desert, and we identify common nocturnal 

desert rodent species that inhabit ORPI.  We summarize current ecological modeling 

methods with a focus on stepwise regression and regression trees.       

We explore in section two a rich source of rodent trapping data that spans over 

fourteen years and thirty trapping sites throughout the monument.  We also describe 

spatial data sets, produced with remote sensing and GIS, that characterize the biophysical 

factors at play in determining rodent abundance, and we identify a concise set of these to 

build models.   

In section three, we use parametric stepwise multiple regression (SWR) and non-

parametric classification and regression tree analysis (CART), along with GIS 

techniques, to arrive at congruent, simple models to predict rodent abundance.  We 

describe results in section four in the context of variable multicollinearity and spatial 

autocorrelation.   

We conclude in section five with a comparison of model performance, and we 

address their limitations.   We also suggest interpolation and extrapolation to produce 

maps of rodent abundance in ORPI and analogous regions throughout southern Arizona 

and in the Sonoran Desert.   

 

1.2 Study Area 

1.2.1 Sonoran desert  

The Sonoran Desert stretches approximately 260,000 km
2
 in southwestern 

Arizona, southeastern California, most of Baja California, the islands of the Gulf of 

California, and the western half of the state of Sonora, Mexico. The Sonoran Desert is 
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characterized for its semi-arid climate, mild winters and a bimodal rainfall pattern.  

Mountain ranges, a few volcanic hills, bajadas (coalesced alluvial fans), valley floors, and 

drainage systems (canyons, arroyos (steep-sided gulches), washes, and sheet-flow areas) 

are typical of its geomorphology (Hoffmeister, 1986).  The visually dominant elements of 

the landscape are two characteristic life forms:  legume trees and large columnar cacti 

(Arizona-Sonora Desert Museum, 2013).     

The Lower Sonoran Life Zone (LSLZ), based on Merriam’s elevation-

precipitation life zones for the southwest, characterizes the lower elevation areas in the 

Sonoran Desert (generally > 1000m);  these correspond to the warmer areas receiving 

lower precipitation (generally < 250mm), and  populated with shrubs and succulents 

(Merriam and Steineger, 1890).  The LSLZ is distinguished from the Upper Sonoran Life 

Zone, which characterizes upper elevations including mountains in the region. 

 

1.2.2 Organ Pipe Cactus National Monument 

The Organ Pipe Cactus National Monument (ORPI) was established in 1937 

under the Antiquities Act in order to preserve a representative area of the Sonoran Desert 

(ORPI, 2006).  The monument is situated in southwestern Arizona, near the geographical 

center of the Sonoran Desert (Figure 1).  Its southern border lies along the Mexican 

border and adjacent to the Mexican state of Sonora. 

Its namesake, the organ pipe cactus (Stenocereus thurberi) is a species of 

columnar cactus with multiple stems.  The monument encompasses 133,882 hectares, and 

95% is designated as wilderness. It is one of the most biologically diverse protected areas 

within the Sonoran desert biome in either the United States or Mexico (ORPI, 2006).     
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The city of Ajo, AZ (population 3,705 in 2000; Census, 2000) is situated 

approximately 20 km north of the park boundary, and the city of Senoyta, Sonora 

(Mexico; population 16,500 in 2000; ORPI, 2006) is situated approximately 5 km south 

of the park boundary (Figure 2).  Arizona’s largest cities, Tucson and Phoenix, are 

located approximately 240 km east and 200 km north, respectively.  Arizona State Route 

85, which connects these cities to beaches and resorts of Puerto Penasco, bisects the 

monument.   

The monument is not immune to impacts from human activities.  Highway 

maintenance activities and high traffic volume affect the natural resources along the 

right-of-way.  Undocumented aliens migrating north from Mexico are deleteriously 

affecting the park resources (ORPI, 2006).  Adjacent land uses include grazing, 

agricultural and residential development, particularly around the international boundary.  

Associated threats posed by these include compaction of the soil, trampling of vegetation, 

accumulation of wastes, groundwater overdraft, spread of exotic species, wildfires, 

pesticide drift, and feral or escaped domestic animals, woodcutting, and poaching. 

 

1.3 Physiography of ORPI and the region  

1.3.1 Climate 

Summer months in the region are typically very hot with temperatures commonly 

above 100°F.  Nighttime temperatures differ greatly from daytime (Hoffmeister, 1986) 

due to, in part, lack of moisture in the air and the absence of cloud cover.  Cool summer 

evenings permit nocturnal animals in the desert to forage widely without great loss of 
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water.  Daytime winter temperatures are mild, while nighttime temperatures are much 

cooler.  Most of the area rarely experiences frost.   

The region’s precipitation regime is bimodal. The North American monsoon, 

which dominates the summer, is driven by seasonal high pressure system over the region 

with concurrent change in wind direction and advection of moisture from the Gulf of 

Mexico, the Gulf of California and the Pacific.  Diurnal heating over desert surfaces 

creates hot, rising, moist air which cools and condenses in the upper atmosphere forming 

convective clouds and precipitation.  The resultant spontaneous thunderstorms are 

accompanied heavy runoff.   

Winter conditions are dominated by high pressure where anomalous conditions 

linked to Pacific/North American teleconnection pattern (PNA) and southwest troughing 

steer storms into the area.  The resultant gentle and widespread rain may last for one or 

two days.    The fore-summer and fall are typically dry.  Arizona climate, particularly 

winter precipitation, is associated with the El Niňo Southern Oscillation, and thus linked 

to global patterns.  

Mean annual precipitation measured at a series of weather stations throughout 

ORPI is 240.5 mm (9.468 inches, 1943-2005; ORPI, 2006).   The average annual 

temperature for this period ranged from 19.8C (67.7°F) to 22.6C (72.7°F), and the 

number of days with freezing temperatures ranged from 34 occurring in 1949 to 2 

occurring in 1995. 
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1.3.2 Topography 

   Topographic features in ORPI are characteristic of the Basin and Range 

Physiographic Province (Warren et al., 1981).  Steep, rugged mountain ranges formed by 

block-faulting, trend north-south.  These are separated by broad, structural valleys.   

The Ajo Mountains form the eastern boundary, including Mount Ajo (1465 m).  

Alluvial fans spread outward from mountain canyons, coalescing to form gently sloping 

depositional aprons (bajadas).  Alluvial plains account for approximately two-thirds of 

the monument area (Warren et al., 1981). 

The desert plains (Valley of the Ajo and Senoyta Valley) to the west of the Ajo 

Mountains average approximately 485m elevation.  These plains, approximately 12 km in 

width, are gentle in slope and fan out broadly until interrupted by the Growler, Bates and 

Puerto Blanco Mountains, which rise up to 975 m in the center of the monument.  To the 

west and north of these mountains stretches the Growler Valley, with an average 

elevation of 365m.  The Cipriano and Quitobaquito Hills (450 to 600 m in elevation) are 

located in the southwestern portion of the monument.    The lowest elevations, 

approximately 300 m above sea level, are found in southwest corner of the monument.   

 

1.3.3 Geology and soils 

  The rock formations in ORPI are generally the result of volcanic activity and 

associated intrusions (Warren et al., 1981).  Faulting in the late Tertiary age led to the 

upward displacement of these materials, which have since eroded to form ORPI’s present 

day mountains.  Ancient volcanic rocks including tertiary granites, basaltic andesite, 

basalt, schists and gneisses are exposed in many of its hills and mountains.  The only 
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well-bedded sedimentary rocks, occurring along the northern portion of the monument, 

are shale, sandstone, and limestone and its metamorphosed conglomerates.  

ORPI soils are developed from the weathering of volcanic rock.  Prominent 

features of desert soils are their low organic content and poor development of soil 

horizons (Warren et al., 1981).  Soil formation is slow, as chemical decomposition is 

impeded by the lack of rainfall. Organic matter formation is minimal due to slow 

production of humus, reduced oxidation due to extreme heat, and transport of detritus to 

drainageways by occasional intense rains.   

The action of heavy rainfall through sparse vegetation and ephemeral streams 

produces a downgrade movement of alluvial material, with lighter material carried 

further.  Erosion of this kind produces bajadas with characteristic, uniform soil texture 

gradient.  Finer soil particles at edges and valleys occur as silts and clay and often 

produce loamy and sandy soils with little or no soil horizon development.  Soils on 

piedmonts typically are shallow, with bedrock protruding, and often derived from a single 

parent material.  

 Infiltration rates generally vary with particle size; lower ORPI areas with finer 

textured soils have slower infiltration rates, greater runoff and lower amounts of available 

moisture. Small differences of available moisture may have profound effects on diversity 

and density of vegetation.  Caliche (precipitated carbonates) and desert pavement 

(closely-packed pebble layer with deflocculated soil colloids), are common features of 

ORPI soils, and they also result in lower water infiltration rates and a consequent 

bareness of vegetation (Musick, 1975).  They often impede rodent burrowing. 
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All of the soils in the monument are grouped in associations of very hot arid soils 

(aridosols).  Sixteen soil series and one upland rocky association have been identified in 

the monument (Chamberlain, 1972).  Deep, gravelly, calcareous soils on upper slopes 

account for 38.8% of the ORPI area (Warren et al., 1981); very shallow soils on low hills 

and mountains comprise 21.4%; deep soils on floodplains and alluvial fans account for 

18.1%; rocky, stony, and rock outcrops comprise 17.4%; recently deposited alluvium 

along eroded stream channels comprise 3.8%, and deep soils on valley plains and terraces 

comprise 0.5% of area.  

 

1.3.4 Vegetation 

Desert scrub vegetation accounts for approximately 95% of the area (Warren et 

al., 1981).  By far, the two most dominant communities are the paloverde-mixed cacti 

community (Arizona Upland phytographic division of the Sonoran Desert); and the 

creosote-bursage community (Lower Colorado subdivision).  These two vegetation 

groups are described by Shreve and Wiggins (1964) as the only two major Sonoran 

Desert subdivisions to occur in Arizona; the other three only occur in Mexico. 

Corresponding Regional GAP (ReGAP, 2006) classes are the Sonoran Paloverde-Mixed 

Cacti Desert Scrub and Sonora-Mojave Creosotebush-White Bursage Desert Scrub 

(Figure 3).   

Creosotebush associations are found primarily on nearly-level, fine textured, silty, 

permeable, and alkaline soils of the valley bottoms.  They are distributed mainly in the 

western portions of the monument in the drainage of the lower Colorado River 
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(Steenbergh and Warren, 1977), and in the central plains.  Additional plants are bursage, 

saltbush, desert thorn, mesquite, and galleta. 

Paloverde-mixed cacti associations occupy the rolling upper bajadas and the 

lower mountain slopes where coarser soil texture and increased gravel and rock content 

provides greater available soil moisture for plants (Yank and Lowe, 1956; Bingham, 

1963).  This is a cactus desert with bursage, creosote bush and palo verde on the flanks of 

and extending over many desert ranges.  Large cacti, saguaro, and organpipe may be 

present.   

The primary environmental gradient occurring on a wide scale at ORPI progresses 

in southwest-northeast direction along the Colorado River basin, and affects a variety of 

factors including elevation, rainfall, temperature and soil characteristics.  Smaller-scale 

environmental-vegetation gradients include the transition in plant-available soil moisture 

from the species-poor creosotebush associations on the lower bajada to the floristically 

and structurally diverse paloverde-mixed cacti associations on the upper bajada (Yang 

and Lowe, 1956), and the transition associated with elevation from desert scrub to 

woodland on mountains.    

 

1.4 Nocturnal desert rodents 

1.4.1 Heteromyid and murid rodents 

Two families of rodents (Order Rodentia) dominate the nocturnal rodent 

communities of the Sonoran Desert, the Heteromyidae (heteromyids) and the Muridae 

(murids).   The heteromyids are all nocturnal, burrowing animals with external fur-lined 

cheek patches for storing and transporting their primary food source, seeds.  They are 
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well adapted to the arid environment and most do not need to drink water.  The murids, 

or “true” rats and mice, are complex grouping of rodents, and various classification 

schemes differ on their treatment.  Hoffmeister (1986) provides a thorough description of 

the classification of the rodents in Arizona, summarized here.  

Two genera, the pocket mice (Chaetodipus spp. and Perognathus spp.) and the 

kangaroo rats (Dipodomys spp.) represent the heteromyid family in Arizona.  Six 

heteromyids, including two kangaroo rats and four pocket mice, are commonly found in 

ORPI during annual trapping events (ORPI, 2006).   

The murid family includes the subfamily Cricetinae, or New World mice and rats. 

In some classification schemes, the “Cricetidae” are a distinct family.  Several members 

of the cricetids, including the genera Peromyscus (white footed mice), Neotoma (wood or 

pack rats), Onychomys (grasshopper mice), and Sigmodon (cotton rats), are commonly 

found in the trapping study.  Genera Baiomys (pygmy mice) and Reithrodontomys 

(harvest mice) are not commonly found.   

 

1.4.2 Rodent adaptation to the desert 

Small and large mammals live and do well in the arid, hot deserts of Arizona 

(Hoffmeister, 1986).  Often there is little or no free water, little or no shade, extremely 

high temperatures during the daytime, limited amount of food, and low humidity.  

Rodents overcome these problems in physiological, morphological, and behavioral 

adaptations.   

Kangaroo rats and pocket mice can exist with no free water and relatively dry 

food throughout their life.  They manufacture water from the seeds they eat by oxidation, 
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conserve water they produce, and store seeds for use throughout the year.  Efficient 

kidneys form urea four times more concentrated as humans, and waste products are 

almost dry.  They are nocturnal, and thus they are not above the ground in the heat of the 

day.   

Burrows are often one meter below the surface where daily temperature 

fluctuations are one fifth of that at the surface.  The burrows leading to nests are often 

plugged with soil much of the time to prevent influx of heat and escape of moisture.   

 Desert vegetation produces large numbers of seeds, which may number in the 

thousands per square meter at certain seasons (Hoffmeister, 1986; Dye, 1969).  Deserts 

seeds become widely distributed by wind and water, and often partially hidden by soil. 

Due to the unpredictability and the infrequent but intense production in short times, 

desert rodents store seeds for relatively long periods of times.  Also, many desert rodents 

have cheek pouches to aid in gathering large quantities of seed.  These can contain up to 

900 seeds in the kangaroo rat.   

 

1.5 Causal factors for species abundance 

Austin (2002) distinguished direct (proximal or causal) factor gradients, or those 

with direct physiological effect (water, light, nutrients, prey, and nest site availability, for 

example) on species distribution.  Indirect factor gradients, which have no direct effect, 

are always distal factors.  Latitude, longitude, elevation, slope (steepness), and aspect 

(exposure) are examples of these.  Distal factors are related to resources or regulators, 

and they can usually be correlated to species distributions (Franklin and Miller, 2009).  

They are often easier to measure or observe than direct factors. When only indirect factor 
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gradients are used, caution is advised to not extrapolate results beyond the range of 

conditions used to develop the model.  Furthermore, there is no theoretical expectation 

for the shape of a species response curve on an indirect gradient (Austin, 2007). 

 Response curves, or resource selection functions, for animals depict a function 

describing the relationship of species abundance in relation to values of environmental 

(factor) gradients (Whittaker, 1967).  Species response functions may be Gaussian, 

however unimodal, skewed responses to resource gradients are common (Franklin and 

Miller, 2009).  Resource gradients with physiological stress can result in skewing at the 

harsh end, and competition can limit the benign end.  Bimodal or multimodal model 

response curves have been hypothesized to result from competition (Whitaker, 1960).   

The true response of a species to one resource factor is detectable only when all 

other factors occur at non-limiting levels, according to Liebig’s law of minimum (Huston, 

2002).  In reality, it is not usually possible to observe this without experimental data, and 

factors tend to co vary.  Quantile regression, modeling the upper and lower bounds has 

been suggested as an alternate approach to this problem (Huston, 2002).   

Abundance is usually derived from numerical abundance, or number of 

individuals, because this is the currency in which the taxa (e.g. birds and trees) that 

predominate in such analyses are typically recorded (Henderson and Magurran, 2010).  

Biomass, as an alternative, is preferred by some ecologists (Saint-Germain et al. 2007).  

Body mass of individual can be correlated to metabolism scales, and it is assumed to 

provide a more direct measure of resource use (Kleiber 1962). 
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1.6 Ecological modeling methods 

1.6.1 Statistical modeling 

A strong distinction is made between general ecological models (conceptual or 

heuristic) and a distinct subset of these, statistical models (Guisan et al., 2002).  In most 

studies, some sort of conceptual or theoretical model (Austin, 2002) of the ecological 

system is already proposed before a statistical model is considered (Guisan & 

Zimmermann 2000).  The statistical model provides a mathematical basis for 

interpretation by examining parameters such as fit, or how well the measured predictors 

explain the response, strength of association, and the contributions and roles of the 

different variables (Zar 1999; Legendre & Legendre 1998). 

Statistical models in ecology are further distinguished by goal.  Explanatory 

models seek to provide insights into the ecological processes that produce patterns 

(Austin et al. 1990), such as to ascertain the strength of the statistical relationship 

between a response. In contrast, predictive models typically seek to provide a statistical 

relationship between the response and a series of predictor variables for use in predicting 

the probability of species occurrence or estimating numbers of an organism at new, 

unsampled locations. These models often use variable reduction techniques in order to 

predict the ecological attributes of interest from a restricted number of predictors.  The 

concept of parsimony, that the simplest explanation is best, is inherent in such modeling 

efforts.   

Numerous modeling approaches are reported for wildlife distribution modeling, 

including Generalized Linear Models (GLMs), Generalized Additive Models (GAMs), 

Multivariate Adaptive Regression Splines (MARS), Genetic Algorithm for Rule Set 
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Production (GARP), decision trees, machine learning models and model averaging 

methods such as bagged or boosted classification trees.  Franklin and Miller (2009), 

provide a summary of many of these methods.    

Inter-model comparisons have yielded conflicting results about the relative 

performances of different models (Franklin and Miller, 2009; Dormann et al. 2008).  For 

example, single CART analysis is reported to have lower accuracy and underestimates 

species distribution as it is prone to omission error; however GARP overestimates and is 

prone to commission error (Lawler et al., 2006).  One approach to study design is to use 

more than one model method; this is likely to yield insights into the underlying species 

patterns as well as model structure and assumptions (Franklin and Miller, 2009).   

 

1.6.2 Linear regression and stepwise techniques 

Linear regression is one of the oldest statistical techniques used in ecological 

research.  It is a global method, i.e. it uses all the data, to estimate a linear relationship 

(Guisan et al., 2002).  The basic linear regression model has the form: 

Y = α +X
T
β + ε, 

where Y denotes the response variable, α is a constant called the intercept, X = 

(X1 , ..., Xp ) is a vector of p predictor variables, β = {β1, ... , βp} is the vector of p 

regression coefficients, one for each predictor, and ε is the error. The error represents 

measurement error, as well as any variation unexplained by the linear model, which one 

tries to minimize when fitting the model. Implicit in the application of regression tools 

for species modeling is a pseudo-equilibrium between the organisms and their 

environments (Austin, 2002). 
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  Linear regression is limited by three main assumptions about the data: (1) the 

errors εi are assumed to be identically and independently distributed; this includes the 

assumption that the variance of Y is constant across observations; (2) the errors εi are 

assumed to follow a normal (Gaussian) distribution; and (3) the regression function is 

linear in the predictors.   The end result is typically stable but possibly inaccurate 

predictions with low variance and high bias.  Additional challenges in regression 

modeling are variable selection, multicollinearity in the response variables, and 

interactions between the predictors.   

Common ways of addressing these limitations are transformations of the response 

variable to meet the criteria of normality and constant variance, such as the Box-Cox 

approach (Mateu 1997), or augmenting the predictors with polynomial terms, interactions 

and other non-linear transformations in order to build a non-linear model in terms of the 

Xj but linear in the parameters (Guisan et al., 2002).   

Evaluation criteria, such as deviance reduction measured with the chi-statistic or 

the Akaike Information Criterion (AIC, Akaike 1973; Sakamoto et al. 1988) can assist in 

variable selection.  Collinearity can be detected with approaches such as a condition 

number and a variance inflation factor (VIF; Brauner & Schacham 1998).  The use of 

classification and regression tree (CART) as a complement to regression models is a 

promising approach to identify these limitations (Hastie et al., 2009).  Despite these 

challenges, regression analyses have been broadly applied in SDM (Guisan and 

Zimmermann 2000; Scott et al. 2002).   
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1.6.3 Automated regression techniques 

Automated model selection with linear regression can employ backwards 

elimination, forward selection, or stepwise (uses both forward and backward).  Stepwise 

regression (SWR) is a systematic method for adding and removing terms from a 

multilinear model based on their statistical significance (MATLAB, 2013).  

SWR begins with an initial model and then compares the explanatory power of 

incrementally larger and smaller models.  The method proceeds as follows: 1) fit the 

initial model; 2) if any terms not in the model have p-values less than an entrance 

tolerance (that is, if it is unlikely that they would have zero coefficient if added to the 

model), add the one with the smallest p-value and repeat this step; otherwise, go to step; 

3) if any terms in the model have p-values greater than an exit tolerance (that is, if it is 

unlikely that the hypothesis of a zero coefficient can be rejected), remove the one with 

the largest p-value and go to step 2); otherwise, end.  The method terminates when no 

single step improves the model. 

Stepwise procedures are considered to be high-variance operations because small 

perturbations of the response data can sometimes lead to vastly different subsets of the 

variables. They should be used with care (Guisan and Zimmermann 2000). They can be 

improved if selection criteria based on permutations of the data, such as 10-fold cross-

validation, are used (Hastie et.al 2009). 

 

1.6.4 Classification and Regression Trees (CART) 

 Decision trees (DT) are divisive, monothetic, supervised classifiers (Franklin et 

al. 2006).  The DT is as set of nested, binary decision rules that is used to classify data 
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into homogenous subgroups (nodes) based on threshold values of the predictors (Hastie et 

al., 2001).  The splitting rules define the branching at the internal nodes. If the dependent 

variable is categorical or ordinal, the result is a classification tree; if the dependent 

variable is continuous, the result is a regression tree.  The predicted value for the 

regression tree case is the average value of the training data in that node. 

The DT process takes place in three stages: tree growing, tree stopping and tree 

pruning.  The basic approach in DT production has been to “grow” a large DT with fairly 

liberal stopping rules and then to “prune” the tree, i.e. remove splits or collapse the 

internal nodes that add least to overall subgroup homogeneity.  The final size (number of 

terminal nodes) is usually determined by comparisons of overall tree deviance (sum of 

residual sum of squares in the nodes) or by some form of k-fold cross validation 

procedure.   

DTs often require larger samples than other methods because successive splits are 

based on fewer and fewer observations (Vayssieres et al., 2000).  Trees can be unstable.  

For example, varying the inputs, such as sampling from a different set of observations, or 

varying the set of explanatory variables, can result in very different models (Hastie et al., 

2009; Scull et al., 2005).  Also, it is difficult to interpret variable importance.  Finally, 

situations with a continuous, linear species response may not be well characterized with a 

method based on threshold rules.   

DTs often provide an alternative modeling method for comparison with traditional 

methods (Franklin and Miller, 2009).  They are particularly useful at categorical 

predictors, hierarchical interactions, and data with threshold characteristics.  They 

provide an output that is visual.  While regression examples of DTs are relatively 
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uncommon, they are expected be useful in ecology (Franklin and Miller, 2009), 

especially with continuous data sets derived from remote sensing and GIS.  One approach 

is to approximate a linear response with step functions (De’ath and Fabricious, 2000).  

New methods employing ensemble modeling (model averaging), such as bagging, 

boosting, and random forests are beginning to find success in SDM modeling (Franklin 

and Miller, 2009). 

 

1.7 Remote sensing and Geographical Information Systems in species modeling 

Remote sensing’s importance in geological and environmental sciences is 

unsurpassed (Vincent, 1997).  Remote sensing provides a synoptic view of the landscape, 

and it is a source of multispectral data.  Data is obtained at a variety of spatial resolutions 

and extents, and repeat visits provide a source of temporal assessments.  Integrated 

remotes sensing and Geographical Information System (GIS) provide a platform for 

spatial analysis. These provide alternatives to traditional ground surveys for the 

production of species distribution maps. 

 Spatial prediction in SDM is contingent upon the availability of environmental 

predictors in the form of maps, or more precisely, digital spatial data (Goodchild, 1996).  

For a growing number of places in the world, there are many available geospatial and 

remote sensing data sets, These are often obtained free from public agencies.  However, 

the suitability of spatial or (GIS) environmental data sources for analytical use in 

ecological modeling has not been given as much attention as other aspects of SDM 

(species data, modeling methods, etc.; Hunsaker et al., 1993). The challenge is to identify 

environmental maps that represent resource gradients or other factors determining species 
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distribution at the appropriate scale.  This effort involved is non-trivial, and 

comprehensive guidelines are not available (Franklin and Miller, 2009).   

 Virtually all SDM studies at global and regional scales use a climate parameter; 

modeling at smaller extents generally use topography as surrogates for temperature and 

moisture gradients (Franklin and Miller, 2009; Wilson and Gallant, 2000).  

Topographical variables used in SDM can be related to direct and resource gradients; for 

example, the effect of elevation on temperature and precipitation, of slope on radiation 

regime and moisture availability, and of landform, hillslope positions and catchment 

position on soil moisture, erosion and deposition, which in turn affect soil development 

and properties (Franklin, 1995).   

Wildlife habitat suitability models also traditionally rely on vegetation categories 

as one of their main drivers (Kochler and Zonneveld, 1998).  However, vegetation 

categories mapped for multiple land management purposes may not be a suitable match 

to describe habitat suitable for a target species (Franklin and Miller, 2009).  Some aspect 

of structure such as cover, size distribution of plants, vertical canopy structure, may be 

also related to habitat suitability.  Despite these challenges, many researchers have used 

vegetation maps, including the Normalized Difference Vegetation Index (NDVI), to 

predict species abundance and richness (Oindo and Skidmore, 2002). 

 

2. Data 

2.1 Rodent trapping data 

We obtained rodent trapping data from Organ Pipe Cactus National Monument by 

information request.  ORPI staff and associated researchers monitor rodents annually 

over two consecutive nights in the summer (June-August) at 35 trapping plots (grids) 
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since 1991.  They use a consistent field study protocol based on Petryszyn (1995).  

Trapping methods and sampling plans for this data set are described in more detail in 

ORPI (2006).   

We truncated the data set to cover the years 1993 through 2006 (fourteen years) 

and 30 trapping sites in order to provide fullest coverage of years for all sites, and we 

omitted five plots (BURN1, BURN2, CAMP1, LOST1 and LOST2) in order to remove 

data with the most gaps.  Nineteen of the 30 remaining trapping plots had complete 

coverage for truncated period.  The remaining 11 plots were missing between one to four 

years of data; we included data from these sites in order to avoid decreasing the number 

and diversity of observations. 

For each plot, we calculated a relative annual abundance index using the count 

data and adjusting for effort on (ORPI, 2006; Beauvais and Buskirk, 1999) as follows:  

Nr = [Total unique individuals caught/((traps*2 nights) – (0.5 * sprung traps))] * 100%.   

We tabulated a relative annual abundance value for each species at each plot, and 

we determined means of the annual values to represent the fourteen year study period.  

We standardized or z-scored the mean fourteen year values for each species across all 30 

sites, using z-score value = (mean – observation)/standard deviation.  Figure 4 provides 

the z-scored abundance data for the ten rodent species and their ranges. 

We also developed biomass data using log mean capture weights reported in the 

trapping data set (ORPI, 2006).  Finally, we determined diversity (Shannon's Diversity 

Index, or  

H’ = -Σpi*ln(pi)  
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where pi is the fraction of the entire population made up of species i, and richness 

(number of species) indicators using the total capture data.  Mean annual values for these 

were prepared as described above. 

 

2.2 Reflectance image processing 

The Landsat Thematic Mapper 5 (TM) provides reflective data since 1984 in six 

spectral regions, including the visible, near- and mid-infrared, at 30 meter spatial 

resolution (NASA, 2012).  The satellite also provides data in the thermal infrared with 

one band at 120m spatial resolution.  Images are available for free access from the United 

States Geological Survey (USGS) Earth Explorer (http://earthexplorer.usgs.gov). 

ORPI is located in Path 37 and Row 38 of the Landsat Worldwide Reference 

System.    Landsat Thematic Mapper 5 (TM) archive images are processed to the Level 1 

Product Generation System with precision and terrain correction (LPGS, L1T), and with 

cubic convolution resampling (USGS, 2011).   

To minimize annual phenological effects, we selected Landsat 5 TM images 

captured in June for each year of the study period (1993-2006).  June images also match 

the rodent trapping periods.  We incorporated updated radiometric calibration coefficients 

specific to the new USGS Landsat open-access archive (Chander et al, 2009) to achieve 

conversion of calibrated digital numbers to absolute units of at-sensor spectral radiance.  

We converted each image to atmospheric-corrected surface reflectance using the cosine 

approximation model (COST; Chavez, 1996).  The COST model implements an 

improved dark-object atmospheric correction for Landsat TM multispectral data (bands 

1-5 and 7).  Comparisons of random points within the area of interest showed good 
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spatial registration to within one half a pixel’s dimension (15 m) between the images, and 

therefore additional fine-tuning beyond USGS rectification was not performed.   

We composited the fourteen annual June images for each reflective band into a 

median value image for each pixel.  We subsequently applied a 5x5 median spatial filter 

(low pass) to each 14-year median band image.  The 5x5 filter window dimension was 

chosen to best capture the dimensions of a typical ORPI rodent plot (approximately 0.8 

ha as compared to 2.25 ha filter window).  A comparison of plot sizes and 5x5 filter 

windows on a vegetative index image for the LOWE1 and LOWE2 plots is shown in 

Figure 5.  Coordinates for each rodent plot’s center was used to extract the image pixel 

value for the spectral indices used in the study. 

We prepared a Soil Adjusted Vegetation Index (SAVI; Huete, 1988; Huete et al. 

1992) from the spatially-filtered annual median red and near-infrared images.  The SAVI, 

derived from the Normalized Difference Vegetation Index (NDVI), incorporates a 

canopy adjustment factor to minimize soil noise inherent in the NDVI by accounting for 

differential red and near-infrared extinction through the canopy.   The SAVI image is 

generated using the following formula: 

SAVI= (1+L)(ρnir – ρred)/ (ρnir + ρred+ L), 

where ρ is the respective spectral band reflectance, and L is the canopy background 

adjustment factor (0.5).  SAVI values were rescaled to 0-1 to remove negative numbers. 

We also generated a texture image from the SAVI using Erdas Imagine Image 

Interpreter based on a variance (2nd order) operator on a 5x5 moving window as follows:    

Variance = Σ (xij – M)
2
/(n-1), 
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where xij = DN of pixel (i,j), n = number of pixels in window, and M = mean of the 

moving window.  Texture can provide information about local variability of pixel 

intensity values pixels in an image. For example, in areas with homogenous, smooth 

texture, the range of values in the neighborhood around a pixel will be smaller, resulting 

in a low texture value; in areas of high pixel spectral diversity, or rough texture, the range 

will be larger.  Figure 6 provides statistics of the predictor variables including SAVI and 

its texture. 

 

2.3 Topographical image processing 

We prepared topographical images using Digital Elevation Model (DEM) data 

from the USGS National Elevation Dataset (NED, 2013; one arc second data, roughly 30 

meters).  We extracted and performed a mosaic image with eight DEM subpanels to 

generate elevation data covering the whole region.   

Using the ESRI ArcMap Spatial Analyst Surface toolset, we generated slope 

(gradient, or rate of maximum change in z-value), aspect (slope direction of the 

maximum rate of change in the z-value from each cell in a raster surface), and curvature 

images (the second derivative value of the input surface on a cell-by-cell basis, or degree 

of concaveness or convexness).  Mathematically, curvature is defined as the reciprocal of 

the radius of a circle that is tangent to a point on a curve. Tightly folded terrain has large 

curvature values, while flat terrain has zero curvature.  We generated a “distance to 

wash” raster using the DEM with ESRI’s ArcMAP stream network tools including Flow 

Accumulation, and we prepared easting and northing images from the aspect image using 

the functions below (Zar, 1999):   
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E = sin((A*Π)/180), 

N = cos((A*Π)/180), 

where E is easting, N is northing, and A is aspect. 

We applied a 5x5 median filter to each topographical image as described above 

for the Landsat reflective images in order to achieve effective sampling of rodent plot 

values.   

 

2.4 Surface temperature image processing 

 We prepared a surface temperature image for the study area using a radiative 

transfer model and surface emissivity estimated from a vegetation index (Sobrino et al., 

2004; Barsi et al., 2005; Jiménez-Muñoz et al., 2009). We obtained annual Landsat TM 

thermal infrared images (band 6, 10.4-12.5 µm) captured in June dates for the period of 

2000-2006.  We did not use available thermal images for the years 1993-1999 because 

atmospheric correction data were not available for earlier years.   

We rescaled the calibrated digital numbers of the L1 thermal band products to at-

sensor spectral radiance using gain and offset coefficients provided in Chander et al. 

(2009).  To estimate surface-leaving radiance for each pixel, we adjusted the at-sensor 

spectral radiance for atmospheric attenuation and enhancement using an inversion of the 

radiative transfer equation.  Atmospheric constants necessary for this were obtained for 

each scene from the Atmospheric Correction Parameter Calculator (Barsi et al. 2005; 

http://atmcorr.gsfc.nasa.gov), a web based tool which uses a MODTRAN radiative 

transfer model plus date, time and location to provide upwelling (atmospheric path) 
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radiance, downwelling (sky) radiance, and atmospheric transmission factors specific to 

Landsat systems thermal bands.  

We estimated surface temperature for each pixel using its respective surface-

leaving radiance (above) and its emissivity.  We estimated emissivity with the simplified 

normalized difference vegetation method (Jiménez-Muñoz et al., 2009; Sobrino et al., 

2008), which required preparation of a fractional vegetation component (FVC) image 

using a normalized difference vegetation image of the area.  Inputs to the FVC 

calculation are the NDVIsoil and NDVIvegetation, which we extracted from histograms of 

scene NDVI, and estimated to be 0.05 and 0.75, respectively.  We used a linear FVC 

equation, which we found, in contrast a nonlinear function used in Jiménez-Muñoz 

(2009), was a better representation of the ORPI desert landscape.  A linear function is 

supported in other literature (Montandon and Small, 2008; Xioa and Moody, 2005; Zeng 

et al., 2000).    

Additional inputs to the emissivity calculation include emissivities of vegetation 

and of soil components of any one pixel for the ORPI scene.  We estimated these at 0.982 

and 0.958, respectively for the ORPI area using the North American ASTER Land 

Surface Emissivity Database (NAALSED, 2013; Hulley and Hook, 2009) with a similar 

spectral band pass.  These estimates compared well with literature estimates of similar 

terrain (Sanchez et al. 2011; Schott; Humes et al., 1994; Sobrino et al. 2004; Jiménez-

Muñoz et al., 2009). 

We prepared a median surface temperature image, similar to the reflective 

products, using the seven annual surface temperature images in a similar manner as 
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described in the reflective image processing.  A surface temperature value for each plot 

was sampled using the plot’s center.   

A summary of surface temperature processing steps is presented in Appendix 1.  

The surface temperature image preparation entailed a significant amount of calculation 

and parameter estimation (soil and vegetation NDVI and emissivities, upwelling and 

downwelling radiances, etc.). The end result was an image with very high correlation to 

the original unprocessed Landsat TM band 6 digital number image (correlation 

coefficient of 0.979, R
2
=

 
0.959; p-val=5.71E(-21)).  We suggest that the unprocessed 

thermal image would be sufficient for use as a substitute for surface temperature in this 

Sonoran desert study. 

 

2.5 Summary of data set scale and extent 

The greater ORPI area constitutes the extent of the study area.  The sample size is 

30 rodent plots, all of which lie within ORPI boundaries.  Each rodent plot is 

approximately 8100 m
2
.  A small sample size and plot area compared to the ORPI extent 

results in a very low sample density (approximately 1.8E(-4)).  The prevalence or 

frequency of plots with a particular species, ranges from 0.057 (SIAR) to 1.00 (CHBA 

and CHPE), with an average prevalence of 0.67 for all ten species.  

Abundance modeling literature supports 50-100 observations of species presence 

to produce acceptable results (Stockwell and Peterson, 2002; Loiselle et al., 2008), 

however studies with fewer have been shown to be successful (Elith et al. 2006, Wisz et 

al., 2008).  The absolute number of observations, according to some authors (Franklin 

and Miller, 2009; Kadmon et al., 2003), may be less important than having observations 
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well distributed throughout the environmental space it occupies.  To mitigate this, the 

rodent plots represent a suitable range of diversity found in ORPI (ORPI, 2006).  This is 

further supported by histogram evaluations of exogenous variables.  In addition, 

repetitive annual sampling for over fourteen years at each of the 30 plots is likely to 

significantly improve some aspects of statistical accuracy hindered by a limited number 

of observations. 

The measurement scale in both the endogenous (abundance) and exogenous 

variables (surface temperature, vegetation index, topography) is continuous ratio type.  

Figures 7 and 8 depict histograms of DIME (kangaroo rat) and surface temperature, one 

of our exogenous variables (N=30 plots for both).  Figure 9 shows the corresponding 

scatter plot relationship between DIME and surface temperature values.  The histograms 

and scatter plots demonstrate sufficient characteristics needed to support continuous-scale 

models, such as spread and shape.  Output of continuous, ratio type can be downgraded to 

ranked or classed data as needed. 

 

3. Analysis 

3.1 Model building 

The composition of Lower Sonoran Life Zone relatively free from human 

disturbance is primarily soil, rock, and vegetation.  We initially explored MODIS images 

and associated spectral indices in mid- and thermal infrared region to characterize the 

ORPI study area based on literature suggesting a soil response in the infrared spectrum 

(OMI reference, TIR-soil references).  Despite initial success using MODIS imagery, we 
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determined that its pixel resolution of one kilometer was insufficient for the scale of 

measurement of the rodent monitoring data.   

We therefore explored Landsat thermal infrared imagery, a finer resolution data 

set.  Since ORPI is composed primarily of soil and vegetation, we added the vegetation 

index SAVI as a potential explanatory variable.   

Despite success at characterizing some species with SAVI and surface 

temperature, we looked for additional variables to improve models and characterize other 

species abundance.  Topographical data is also readily available through Digital 

Elevation Models, and it is directly associated with primary ecological resources, such as 

temperature, precipitation, and sunlight (Franklin and Miller, 2009).  We added a suite of 

topographical variables to our models.   

Adjusted coefficients of determination of various combinations of explanatory 

variables of our data set are shown in Figure 10.  Models that failed to generate 

statistically significant results or failed other diagnostics such as multicollinearity or 

heteroscedacity are represented with a dash.  The four columns on the right side show the 

progression of improvement in overall models, based on their correlation coefficients, as 

variable sets are added one at a time beginning with topographical variables.  Correlation 

coefficients improve substantially upon addition of surface temperature to the 

topographical set of variables, and improve further upon addition of a vegetation index.   

We also explored additional spectral indices generated from Landsat, including 

soil-focused ones such as a clay soils index and the iron oxide index.  While these 

improved correlations coefficients, we did not include these in the final models due to a 

small increase in multicollinearity and challenges in explaining their results.  We were 
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satisfied that the surface temperature, SAVI, texture, and topographical variables were 

sufficient to build models for most of the species.  

 

3.2 Stepwise Regression 

We applied MathWork’s MATLAB stepwise regression functions stepwise and 

stepwisefit to our data set, using default entrance and exit tolerances for the F-statistic p-

values (0.05 and 0.10, respectively).  SWR generated models for nine out of the ten 

species. SWR failed to generate a model for SIAR, which had the most rodent plots with 

zero abundance.  Figure 11 shows the SWR model for CHBA, the Bailey’s Pocket Mouse 

as an example.  In addition to models for individual species, we also estimated models for 

heteromyid and murid groupings and all species for abundance, biomass, and for 

Shannon’s Biodiversity Index (SDI, diversity) and number of species (richness). 

We applied regression diagnostics tests for multicollinearity (Variance Inflation 

Factor < 7.5), residual normality (Jarque-Bera p-value > 0.05), stationarity and residual 

homoscedasticity (Koenker’s studentized Bresch-Pagan (BP) p-value > 0.05), and 

residual spatial autocorrelation (Global Moran’s I p-value > 0.05) to the SWR models, 

and each species and groupings passed the diagnostic tests.   

Stepwise models are locally optimal, and there is no guarantee that the produced 

model is globally optimal. To assess this, we performed SWR with predictor variables 

reversed in order for each species, and no changes in variable selection occurred.  The 

data were also tested using exploratory regression for Akaike Information Criteria (AICc) 

values to check for alternative or superior models.  Exploratory regression tools check all 

possible combination of predictor variables.  In most cases, models predicted by stepwise 
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regression were those with the lowest AICc values.   The SWR models for CHBA, CHPE 

and ONTO exhibited very similar AICc values to the best performing exploratory 

regression model.  The SWR models were more parsimonious, and we present SWR 

results for all models in order to maintain consistent criteria for model selection. 

Five species, CHIN, DISP, ONTO, PEER, and SIAR, exhibited a significant 

number of rodent plots with zero abundance.  We removed the zero abundance values 

from the data sets before performing SWR for these species, and achieved improved 

statistical results.  We therefore used their reduced- plot results for final model selection.   

We tested non-linear exponential and power models for the ten species.  The 

models for CHBA, CHPE, PEAM, DIME, and ONTO showed improvement in their 

coefficient of determination values.  Other models, CHIN, NEAL, and PEER, did not.  

The average overall improvement in coefficient of determination for the ten species was 

0.05.  We report linear model results here for consistency and ease in interpretability.  We 

also tested interaction terms for the explanatory variables with the SWR models, and we 

found no significant improvement of results. 

 

3.3 Classification and Regression Tree (CART) 

We performed regression tree analysis on the data set using MathWork’s 

MATLAB classification and regression tree functions classregtree(X,y).  We adjusted 

MATLAB default parameters to account for the characteristics of the small-N data set 

(30 rodent plots). We decreased minparent, which is a number k such that impure nodes 

must have k or more observations to be split, from the default of 10 to 2.  We left the 

value for minleaf, or the minimal number of observations per tree leaf, at its default value 
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(1).  We increased qetoler, which defines the tolerance on quadratic error per node and 

determines when splitting is terminated, from 1E-6 to 1E-1.   Splitting of a node is 

terminated when the quadratic error per node drops below qetoler*qed, where qed is the 

quadratic error for the entire data computed before the decision tree is grown.  The 

adjusted parameters resulted in superior statistics, including lower deviances in terminal 

nodes and in the overall tree.   

The original CART models were also analyzed for suitability for pruning based 

on cross-validation testing results. We used 10-fold cross validation testing on expanded 

tree sizes to assess the size and reliability of the default models.  The function partitions 

the original sample into 10 subsamples, chosen randomly but with roughly equal size.  

For each subsample, the test fits a tree to the remaining data and uses it to predict the 

subsample.   It pools the information from all subsamples to compute the cost for the 

whole sample.  The cost of the tree is the sum over all terminal nodes of the estimated 

probability of a node times the cost of a node.   

Plots of cross validation costs against node size were performed, and the tree with 

lowest cost was compared with that predicted by default model input parameters.  For a 

majority of the ten species and groupings, the lowest-cost tree identified by cross-

validation testing was the same as that predicted by our original adjusted default 

parameters.  For CHIN, PEAM and DISP, pruning was performed to the smaller tree 

predicted by the cross-validation tests.  For CHBA and DIME, pruning was not 

performed, as we observed undesired increases in standard deviations of resultant 

terminal nodes, which suggests that important relationships are potentially lost by 

pruning.   
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4. Results 

4.1 SWR and CART results 

Detailed statistics for the CHBA (Bailey’s pocket mouse) SWR model are shown 

in Figure 11 as an example.  Elevation is predicted to have the most effect on CHBA 

abundance with a coefficient of +0.567 (z-scored, 564 m actual value).  Aspect-northing 

and distance to nearest wash are also positive predictors. The intercept constant is zero, 

and its p-value is one, due to z-scored input. 

Figure 12 presents a summary of SWR models for the ten rodent species, 

groupings and diversity.  Adjusted coefficient of determination and overall model F-

statistic (p-value) are shown.  Coefficient for the predictor variables are shown in order of 

magnitude, and negative coefficients are highlighted.   

Figure 13 shows the predicted CART tree for CHBA as an illustration, and Figure 

14 is a summary of CART results for CHBA.  Abundance values are listed at the each of 

the five terminal nodes of the CART tree, and the terminal node statistics are shown in 

the boxes.  A ranking of variable importance which governed CHBA’s tree formation is 

shown in Figure 15.  For CHBA, the root node or first split is based on aspect-northing, 

indicating northing is the primary exogenous variable operating at broad scales.  The 

rodent plots, or observations, with aspect northing of less than 1.14637 (z-scored, or 

+0.3311 actual aspect value) are passed to the left, and those equal or greater are passed 

to the right.  Both sides of the second-level splitting employ surface temperature.  Texture 

of the SAVI image (diversity) is used as a final third level split.  Terminal nodes are 

nodes 5 through 9.   Highest CHBA abundance is predicted to be 2.43 at node 7, 
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composed of areas with aspect northing greater than 1.144 (+0.3311) and surface 

temperature greater than -0.717 (324.6 K). 

Overall tree deviance plotted by tree size, or number of terminal nodes, for CHBA 

is shown in Figure16.   Tree deviance is calculated as the sum residual squares (sum of 

terminal node sum of squares, observed versus mean) divided by the degrees of freedom 

(number of total observations minus number of terminal nodes).  Note that the deviance 

drops drastically from a value of 1.0 in the root node (no splits) to approaching zero at 

five terminal nodes.  By deviance criteria alone, the CHBA tree pruned to five terminal 

nodes sufficiently represents the data set.  Figure 17 presents a plot of a cross-validation 

check for CHBA model reliability. Cross-validation cost testing for CHBA suggests that 

a tree pruned to four terminal nodes is best suited to minimize overall deviance, and 

larger tree sizes do not improve statistics adjusted for tree size. 

Figure 18 lists summary CART statistics and main predictors for the rodent 

species, groupings and diversity, and Appendix X displays the respective CART trees.  

 

4.2 Validation of results 

An independent data set, or other trapping data for example, is not available for 

this area.  One way to test the reliability of the SWR and CART models, without 

independent data, is by intra-data comparisons.  Common approaches to this in SDM is 

either 1) partitioning the data set in a training set and a test group, such as k-fold cross-

validating; or 2) bootstrap sampling (sampling with replacement) of the entire data set 

(Franklin and Miller, 2009; Guisan and Zimmermann, 2000; Wintle et al., 2005). 
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We tested the SWR models with a bootstrapping function based on 1000-fold 

sampling with replacement to test regression coefficient values.  The variance on the 

output for each of the ten species was very low, and ranged from (0.0100 to 0.001).  We 

therefore concluded the SWR models passed this check for validity.   

 Cross-validation testing used for tree pruning, described in Section 3.2, provide a 

means to perform inter-data validity checking for the CART models.  For most of the ten 

species and groupings, successful cross-validation tests were accomplished, and the 

models passed this check for validity.  For DISP and SIAR, the lowest cost cross-

validation model was the unsplit root node.  This is attributed to most of the observations, 

or rodent plots, for these two species were zero value, and therefore not enough diversity 

is expressed in the data set for model building. 

 

4.3 Multicollinearity in the predictors 

 Correlation existed between the individual predictors.  Correlation coefficients 

between surface temperature and the other variables are shown in Figure 19.   The highest 

positive correlation coefficient for surface temperature is with curvature (+0.54), and the 

highest negative correlation is with slope (-0.73).  Other high positive correlations 

include elevation-UTM_easting (+0.73, reflecting a general upward elevation gradient 

from the Colorado River basin), slope-elevation (+0.69), elevation-aspect_northing 

(+0.50), and SAVI-Text_SAVI (+0.50).  High negative correlations include slope-

curvature (-0.70), surface temperature-elevation (-0.48), and distance_wash-

UTM_easting (-0.48). Despite elevated correlation coefficients between some predictors, 

regression diagnostics such as Variance Inflation Factor did not flag violations for models 
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produced in SWR.  CART, a non-parametric method, is sensitive to multicollinearity 

among predictor variables.  

  

4.4 Spatial autocorrelation 

Global Moran’s I coefficients for each of the ten species, determined by sampling 

their thirty-plot values using Euclidian distance and a default neighborhood distance of 

8585 meters with no weighting, were statistically significant (except for CHIN and 

SIAR).  The values ranged from 0.412 to 0.726.  Moran’s I values were determined also 

for the predictor variables, as sampled from the thirty rodent plots, and the values for the 

non-UTM variables ranged from 0.21 to 0.65.  The highest was surface temperature 

(0.649, p-value 0.00292).   

Significant spatial autocorrelation therefore is indicated in both exogenous and 

endogenous variables.  Yet, testing with use of spatial lag and spatial error models did not 

significantly improve overall model performance based on correlation coefficients and 

statistical significance.  The non-spatial regression models for all species passed 

diagnostic test for spatial autocorrelation (including statistically insignificant Global 

Moran’s I for the model residuals, or p-value > 0.05).  

We believe the explanation for this relates to the underlying structure of the 

landscape.  Figure 20 plots the spatial autocorrelation value (Moran’s I) for DIME, the 

Merriam’s kangaroo rat, plotted as a function of neighborhood inverse weighted distance, 

and Figure 21 shows the same for surface temperature.  In both cases, the spatial 

autocorrelation maintains a nearly constant, high plateau value at small distances, and 

drops off significantly at distances larger than 10,000 meters.  Broad-scale physiography 
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of the study site matches this distance.  For example, as one travels eastward through the 

study area, elevation modulates between the low values in the west-side Growler Valley, 

increases eastward across the Growler and Bates mountain ranges, back to a low 

elevation at the central Valley of the Ajo, and finally increases again to high elevation at 

the eastern Ajo Mountains.  Dimensions of the each of the two valleys and two mountain 

ranges are approximately 10 km width.  This broad-scale physiography is manifested in 

vegetation, as seen in the ReGap vegetation map (Figure 3), which also alternates 

between the large, approximately 10km expanses of the creosote-bursage class and the 

palo verde-mixed cacti class as one traverses across the same area. 

In summary, broad-scale spatial autocorrelation is significant in both the unknown 

variable (rodent abundance) and in explanatory variables.  Building a model with spatial 

corrections in either one alone is not justified.  In fact, we suggest that one reason surface 

temperature is successful (or heavily used) in both the parametric model and non-

parametric model is that it captures the broad-scale spatial trends at work in ORPI better 

than the other explanatory variables.  

 

5. Discussion and conclusion 

5.1 Comparison of SWR and CART methods 

Surface temperature, or TSurf, was the variable with highest magnitude SWR 

coefficient (z-scored) in 4 out of the 10 species, and 8 out all 17 tests.  The vegetation 

index, SAVI, was the second most expressed:  2 out 10 species and 5 out 17 tests. 

Variables that operate at broad scales are partitioned first in CART; variables that 

act on fine scales appear near the terminal nodes.  Surface temperature was partitioned 
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first in 4 of the 10 species, and 7 out of all 17 tests.  Surface temperature was used to 

partition rodent plots in 11 of the total (38) binary splits in all ten species, more often 

than any of the other variable.  The texture feature, Text_SAVI, a measure of pixel 

heterogeneity, and the vegetation index SAVI, were used 6 and 5 times, respectively.   

Comparisons between SWR and CART results (Tables X and X1) in terms of 

selected predictor variables indicate a high level of uniformity.  For example, 16 of the 38 

variables for the ten species used in CART were also used in the corresponding species’ 

SWR model.  While SWR and CART differ in several ways, (SWR is a parametric 

regression test, while CART is a non-parametric, regressive method based on binary 

splits), similarities in variable selection indicate a convergence of models. 

 

5.2 Surface temperature-based models 

The frequent selection of surface temperature in both SW and CART, often the 

predictor with the highest coefficient magnitude in SWR and at the root node in CART, 

suggest it that it best characterizes the landscape of all the predictors.  Its placement at the 

root node, and its spatial autocorrelation characteristics, suggest that is operating at a 

broad scale in the region.   

We provide possible explanations of the success of surface temperature:  1) 

daytime surface temperature is a key factor in determining species habitat preferences or 

limits due to thermal tolerances; 2) similar tolerances of vegetation species on which 

rodent species depend for food or protection; and 3) it is an effective measure of a soil 

property, such as sand content, friability, or even amount of soil versus vegetation; and 4)  

it is an integrator of properties of several landscape components.    
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Due to the almost universal reliance upon surface temperature by all species and 

over all habitats in ORPI, we feel the evidence suggest the latter.  Our results suggest that 

surface temperature is integrating effects of several biophysical factors, including soil, 

vegetation, slope, elevation and curvature, into a temperature function.  Evidence of this 

is fairly high correlations between surface temperature and other variables at both 30-plot 

sampling and raster-wide comparisons (Figure 19).   

Surface temperature correlated positively with curvature, creosote-bursage 

vegetation class, fine soils, sandy soils, soil erodibility factors, soil available water 

factors, and overall scene brightness.  Overall scene brightness was expected to be 

negatively correlated with surface temperature (good reflectors are poor emitters of 

thermal energy, Kirchhoff’s law or thermal radiation); however, an evaluation of scene 

components indicated terrain-generated effects such as shadowing altered this response.  

Surface temperature correlated negatively with slope, elevation, a clay soil spectral index, 

and rocky soils.  Additional data sources for this table include the ReGAP vegetation 

image (ReGap, 2004), SSURGO soil table attributes (SSURGO, 2012), field data 

collected at the sites (Holm, 2006), and other spectral indices generated from the Landsat 

data set. 

 

5.3 Overall model performances 

A variety of methods are reported and available for habitat modeling (regression, 

regression tree, nonlinear, spatial, logistic, etc.), and modelers are presented with many 

choices. A first order choice may include the type of model.  We chose stepwise 

regression and regression tree methods as suitable methods for the data due to their 

simplicity and straight-forward use and interpretation.   
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The methods and appear to be sufficient for the task as evidenced by convergence 

to simple, robust models with low error. SWR resulted in models with between two to 

four variables in all species.  Likewise, CART produced models with between two and 

eight splits.  Residual tree deviances ranged between 0.0065 and 0.0931 for the models, 

which are a fraction of the original deviance of the unsplit data set (1.00).  SWR adjusted 

coefficient of determinations ranged between 0.43 and 0.83, with p-values ranging from 

2.4E-3 to 2.6E-9.  Given the constraints of a limited data set, these are small ranges 

considering such a large number and diverse set of species.   

Second order choices include selection of default parameters (SWR entrance and 

exit parameters, and CART splitting tolerances, for example) and addition of interaction 

terms and spatial corrections.  Manipulating default parameters affected the number of 

variables selected; however, by using criteria such as Akaike’s Information Criterion 

(SWR) and cross-validation costs (CART), we felt the models converged to consistent, 

logical, and simple models.  Addition of interaction terms, non-linear terms, and spatial 

autocorrelation corrections did not significantly improve the models. 

 

5.4 Summary of predictions and comparison to literature 

CHIN, or the rock pocket mouse, as its name implies, inhabits areas with rocky 

substrates or gravelly soil, and in or near rock ledges, fissures, piles, and the rocky slopes 

of mountains (Hoffmeister, 1986; Petryszyn and Cockrum, 1990; Flesch, 2008; 

Petryszyn, 1982; Lazaroff, 1998).   Surface temperature was the dominant variable in 

both SWR and CART models, with either distance-to-wash or curvature attenuating.  

Areas with lower surface temperature value exhibited higher abundance.   In separate 
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tests (Figure 19), surface temperature correlated negatively with increased slopes, and 

negatively with rocky, gravelly areas based on field and soil data. 

PEAM (the Arizona pocket mouse) inhabits the sandy, open desert with sparse 

vegetation of grasses, mesquites, creosote bushes, and a few cacti (Hoffmeister, 1986; 

Petryszyn and Cockrum, 1990; Rosenzweig and Winakur, 1969; Lazaroff, 1998).  It is 

abundant on valley floors and less as slope increases (Flesch, 2008). It is associated 

strongly with DIME in creosotebush areas with more or less level ground, and not 

common near mesquite thickets or large washes.  It occurred in occurred in 15-35% 

perennial cover (least cover class) in one study (Stamp and Ohmart, 1978).   SWR 

indicate that PEAM is found on westward facing slopes.  Both SWR and CART models 

suggest areas with low vegetation content (SAVI), and in areas with higher surface 

temperature.   

Literature suggests that DIME occupies low-lying, flat, open areas, with less 

vegetation (Stamp and Ohmart, 1978; Flesch, 2008; Petryszyn, 1982; Huggett, 1994).  It 

does not occur on rocky slopes (Petryszyn and Cockrum, 1990;  Flesch, 2008).  It is 

observed in a variety of soil strengths and composition (Rosenzweig and Winakur, 1969; 

Flesch, 2008; Lazaroff, 1998; BLM, 2013) but may favor fine, sandy soils. The species is 

associated with the creosotebush (Monson and Kessler, 1940; Schroder, 1987).  DISP, a 

larger kangaroo rat than DIME, prefers even more open, soil-exposed areas and less 

overall and shrubby vegetation (P, Hoffmeister, 1986; Rosenzweig and Winakur, 1969).  

Loose, sandy soil was not preferred as tunnels needed more support.   

Both SWR and CART suggest DIME and DISP are found in areas with higher 

surface temperature.  The DISP cutoff temperature in CART was even higher than 
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DIME.  Temperature correlated negatively with elevation, slope, and positively with the 

ReGAP vegetation class of creosote-bursage.  SWR also predicts that DIME is found in 

more southern and western facing slopes, or areas with more solar radiation and higher 

surface temperatures.  A negative, concave curvature would be consistent with valleys.  

Higher abundance was predicted by CART in areas with low vegetation (SAVI < -0.362) 

and lower texture or pixel diversity, which is consistent with homogenous expanses of 

creosote flats.   

NEAL, the wood or pack rat, and the largest murid species, is found in a variety 

of habitats.  Literature suggests that NEAL is associated with areas of high cacti such as 

prickly pear and cholla, which is used for food, a water source, and building material for 

ground surface level dens (Hoffmeister, 1986; Petryszyn and Cockrum, 1990;  Petryszyn, 

1982; Lazaroff, 1998; Monson and Kessler, 1940).  Areas with mesquite are often 

favored due to ample food from mesquite pods.  NEAL is associated with areas of higher 

slope, and not in areas of pure creosote stands (Flesch, 2008; Lazaroff, 1998).    PEER, 

the cactus mouse, is generally observed in similar habitats, and especially in rocky, 

sloped areas.. It is the most common rodent in desert areas with denser vegetation 

(Petryszyn and Cockrum, 1990;  Hardy, 1974).  In contrast to DIME, it cannot run fast, 

but is good at climbing and scrambling, and for this reason it lives in rocky terrain or 

sometimes in areas with cactus or brush, where safe havens are within clambering 

distance (Flesch, 2008; N; Rosenzweig and Winakur, 1969).   

SWR resulted in almost identical predictions for NEAL and PEER.  Both display 

similar coefficients and a negative correlation with surface temperature, and a positive 

correlation with texture (pixel or landcover diversity).  CART suggests higher NEAL 
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abundance at higher sloped areas (node 1, broad-scale differentiation), and in higher 

textured portions of areas with lower slope.  Higher PEER abundance is suggested by 

CART in lower surface temperature and areas with high pixel texture.   

Agreement between the models and literature for NEAL and PEER is suggested 

by negative correlations of surface temperature with vegetation content (SAVI) and with 

the mixed-cacti paloverde ReGAP class, and positive correlation with sloped areas.  

Higher abundance is indicated also in areas with diversity (texture) by both models, in 

agreement with literature. 

ONTO, the southern grasshopper mouse, is the southern species of grasshopper 

mice found in Arizona (Hoffmeister, 1986).  The species is noted for preferring patchy 

vegetation and more low-lying, xero-riparian areas with exposed soil (Hoffmeister, 1986; 

Flesch, 2008; Hardy, 1974).  UTM northing, an equivalent to latitude, was used in both 

SWR and CART.  Negative correlation and higher abundance with more southern 

coordinates suggest a preference by ONTO for southern areas of the study area, 

consistent with its name.  Only the ONTO models called up a UTM coordinate, northing 

in this case, as the prominent variable.   SWR also suggest higher abundance in areas 

with high texture or landscape diversity. 

SWR did not generate a statistically significant model for SIAR, the cotton rat, as 

it was captured in too few of the rodent plots.  Literature suggests SIAR is found in 

diverse habitat, and often along waterways, drainages and agriculture, and in areas with 

stands of grass (Hoffmeister, 1986; Lazaroff, 1998; Jorgensen et al., 1998). CART model 

suggests higher abundance is found on southwest slopes in the study area, especially 

areas with higher surface temperature or areas with higher vegetation.   
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5.5 Advantages and limitations of the methods 

 The predictor variable set for this study was derived from readily available, free 

data sources.  Image processing for most of the spectral and topographical data was 

minimal.  The surface temperature data necessitated substantial processing time.  

However, pixel-by-pixel comparison in the study area between the surface temperature 

image and the original Landsat band 6 image from which it was derived indicate very 

high correlation (+0.97), suggesting that the additional processing was not necessary. 

Spatial resolution is limited to 30 m pixels using Landsat images.  Finer scale 

habitat characteristics, such as a rodent burrow complex, a group of creosote bushes, an 

individual mesquite tree or boulder, will not be discernible.  However, the pixel size is 

well suited for the dimensions of the rodent plots.  In fact, we found better results using 

5x5 median low pass filter to average neighborhood pixel values.  The pixel size is also 

well-suited for data management of a regional study’s extent, such as that of ORPI. 

The models developed in this study are static temporarily, and reflect an average 

or overall abundance and biophysical conditions between the years captured by the data 

sets (1993-2006).  They do not reflect ranges or diversity of the data.  However, models 

designed to compare inter-annual differences and long term changes are possible with the 

methods and data described here. 

 Predictions based on these models are limited to the range of the individual 

predictor variables measured across the 30 plots.  Extrapolation beyond this range would 

require further testing.  Predictions based of the models are also limited to the area 

studied, western Pima County, AZ in the Sonoran Desert.  For example, a model for 

kangaroo rats built with ORPI surface temperature, aspect and curvature would not be 
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appropriate for the Mojave Desert due to different landscape characteristics and their 

spectral responses. However, the model shows promise for use in analogous regions in 

the Lower Sonoran Life Zone with similar physio-geography, such as eastern Pima 

County.   

 

5.6 Potential applications of the models 

  Coccidioidomycosis, or Valley Fever, is endemic in regions of the Lower 

Sonoran Life Zone.  Desert rodents have long been suspected as playing a role in 

coccidioidomycosis transmission via numerous pathways (Tabor, 2009).   A first step to 

shed light on this hypothesis is to determine where rodents live.   

We expect that models described here will allow us to generate rodent abundance 

maps based on value or on ranked classes for the ORPI study area.  We will test and 

extrapolate to nearby, analogous regions in the Lower Sonoran Life Zone within the 

range of the predictor variable set.  Comparisons of exogenous variable ranges between 

ORPI and the surrounding area suggest that the models calibrated to ORPI are 

representative of the regional biome.  We further aim to use rodent abundance data, 

associated with human disturbance metrics derived from dust generating construction, to 

analyze potential rodent contributions to coccidioidomycosis incidence in Pima County, 

Arizona. 

 

6. Acknowledgments 

We would like to express major appreciation to the Organ Pipe Cactus National 

Monument, and in particular, Peter Holm, for lending us their data set and providing 

input on their rodent monitoring methods.  We also would like to thank Dr. Daoquin 



74 

 

Tong at the Department of Geography and Development, University of Arizona for her 

assistance with statistical aspects of the models, and to Dr. Stuart Marsh at the School of 

Natural Resources and the Environment, University of Arizona for his assistance with 

remote sensing evaluation. 

 

  



75 

 

7.  Figures and tables 

 

Figure 1:  The Organ Pipe Cactus National Monument is situated near the geographical 

center of the Sonoran Desert (striped area).  It lies in western Pima County, Arizona, and 

it shares its southern boundary with the border with Mexico.  It lies approximately 240 

km east of the city of Tucson (yellow).  The spatial spread of the rodent plots sites is 

shown as points. 
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Figure 2.  Political map of Southwest Arizona showing major land administrational 

areas. The ORPI is located in a sparsely-inhabited region.  Arizona State Highway 85 

bisects the monument and links the state with the Gulf of California in Mexico.  Sonoyta, 

Sonora (Mexico) and Ajo, Arizona are the largest nearby cities. 
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Figure 3: Vegetation classes derived from Southwest Regional GAP data set.  Landcover 

classes in ORPI derived from the Southwest Regional GAP data set (ReGAP, 2006).  The 

ReGAP landcover maps are produced from Landsat ETM+ imagery in conjunction with a 

digital elevation model (DEM).  ReGAP landcover classes are drawn from NatureServe's 

Ecological System concept, decision tree classifiers, and other techniques. The ORPI 

consists of broad expanses of two classes:  Sonoran-Mojave creosotebush-white bursage 

desert scrub (brown or dark) and Sonoran palo verde-mixed cacti desert scrub (light 

green or light).  Significant agriculture use is located south of ORPI’s border with 

Mexico, and upland chaparral and woodland are present in the higher elevations of the 

Ajo Mountains on the east side. 
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Figure 4:  Summary of rodent abundance data for individual species and groupings.  Abundance 

data were compiled from Organ Pipe Cactus National Monument data obtained by information 

request, and represents fourteen year means of  annual capture and release trapping events from 

1993-2006. 

 

  

Code Species Common Name 
Abundance 

Range 

Abundance 

Mean 

Abundance 

Standard 

Deviation 

CHBA 
Chaetodipus 

baileyi 

Bailey's pocket 

mouse 
0.1-34.3 6.6 10.7 

CHIN 
Chaetodipus 

intermedius 
rock pocket mouse 0.0-16.4 2.1 4.5 

CHPE 
Chaetodipus 

penicillatus 

desert pocket 

mouse 
1.4-70.9 21.5 18.9 

PEAM 
Perognathus 

amplus 

Arizona pocket 

mouse 
0.0-19.9 5.8 5.4 

DIME 
Dipodomys 

merriami 

Merriam's 

kangaroo rat 
0.0-27.9 12.5 9.3 

DISP 
Dipodomys 

spectabilis 

banner-tail 

kangaroo rat 
0.0-0.6 0.1 0.2 

NEAL 
Neotoma 

albigula 

white-throated 

woodrat 
0.0-20.2 4.1 5.1 

ONTO 
Onychomys 

torridus 
grasshopper mouse 0.0-1.8 0.3 0.4 

PEER 
Peromyscus 

eremicus 
cactus mouse 0.0-12.0 1.3 2.8 

SIAR 
Sigmodon 

arizonae 
Arizona cotton rat 0.0-0.8 0.0 0.2 

Het Heteromyids 

CHBA, CHIN, 

CHPE, PEAM, 

DIME, DISP 

25.7-85.9 48.6 15.7 

Mur Murids 
NEAL, PEER, 

SIAR, ONTO 
0.0-32.2 5.8 7.6 

Total All Species  28.9-88.6 54.4 15.1 

Val Valley types 

CHPE, PEAM, 

DIME, DISP, 

ONTO 

2.6-86.2 40.2 23.6 

Roc Rocky types 

CHBA, CHIN, 

NEAL, PEER, 

SIAR 

0.1-57.9 14.2 18.2 

Total 

BM 
Total Biomass*  40.1-112.8 74.3 19.6 

SDI 
Shannon’s 

Diversity Index* 
H’ = -Σ(pi*ln(pi)) 0.6-1.3 1.0 0.2 

n Richness Number of species 2.8-5.3 4.0 0.6 
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Figure 5:  ORPI rodent monitoring plot dimensions. A comparison of the dimensions of 

two neighboring rodent plots in ORPI.  The Lower Colorado Larrea (LOWE) plots 1 and 

2, located in northwest ORPI, are shown in black outline with a black dot at their 

respective centers.  The plots are overlain the 14-year median Soil Adjusted Vegetation 

Index image (SAVI), whose pixel dimensions are 30m. Higher SAVI values are 

represented by increased lighter shades of gray.  The dimensions of the low pass spatial 

filter window (5x5 pixel median value) used to average the SAVI are shown in dotted red 

for comparison with plot dimensions (approximately 2.25 ha and 0.8 ha filter 

respectively).  The predictor variable value for each plot is sampled from the spatially-

filtered image at the center pixel of the plot.
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Figure 6:  Predictor variable ranges.  The biophysical data shown is derived from Landsat TM 

satellite imagery and digital elevation models, and it is used to build predictive models for rodent 

abundance.  Statistics are determined from 30-point sampling (rodent plots) of 5x5 median-

filtered images. 

Code Biophysical Variable 
Range 

Over 30 plots 
Mean 

Standard 

Deviation 

TSurf Surface Temperature 318.2 - 332.3 (K) 326.73 2.93 

SAVI 
Soil Adjusted Vegetation 

Index 
0.582 - 0.632 0.601 0.0132 

Text_SAVI Texture SAVI 1.60E-6 - 3.42E-4 4.54E-05 8.45E-05 

UTM_E Easting Coordinate 303548 - 339927 (m) 323516 11528 

UTM_N Northing Coordinate 3525190 - 3563822 (m) 3545986 13753 

Elev Elevation 327 - 954 (m) 482 146 

Slope Slope 0.17 - 22.70 (°) 3.24 5.02 

Asp_E Aspect Easting -0.994 - +0.966 -0.584 0.602 

Asp_N Aspect Northing -0.940 - +0.682 -0.148 0.418 

Curv Curvature -0.532 - +0.112  -0.0217 0.1075 

Dist_Wash Distance to Wash 0 - 268 (m) 84.2 63.2 
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Figure 7:  Histogram showing the frequency distribution of Merriam’s kangaroo rat (DIME) 

abundance at 30 rodent plots in ORPI.  Abundance of DIME ranges from 0 to 27.9 at thirty rodent 

trapping sites.  Abundance values are evenly distributed over the range. 

 

Figure 8:  Histogram showing the frequency of surface temperature values.  Surface temperature 

is derived from Landsat Band 6 (thermal infrared), and sampled at the 30 rodent plots in ORPI.  

Values are standardized.  Z-scored surface temperature ranges from -2.9 to 1.91, or 318.2 - 332.3 

(K).  Values are roughly normally distributed, but with a right-leaning skew. 
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Figure 9:  Scatterplot comparing the relationship between Merriam’s kangaroo rat (DIME) 

abundance and surface temperature derived from Landsat thermal infrared imagery.  The values 

are sampled from 30 rodent plots located in the Organ Pipe Cactus National Monument.  A 

statistically significant linear relationship is shown (adjusted coefficient of determination of 

0.67). 
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Figure 10:  Model building.  Adjusted coefficient of determination values for various 

combinations of predictor variables.  For example, using only surface temperature as an 

explanatory variable resulted in statistically significant (p-value < 0.05) models for only three 

species, CHIN, DIME, and NEAL.  A model composed of the suite of topographical variables 

(elevation, slope, aspect and curvature) plus latitude and longitude results in only models for only 

two of the species.  The addition of the surface temperature variable to this set results in six more 

species arriving at a statistically-significant endpoint.  We added SAVI and texture SAVI for our 

final set of variables.  The model shown in the far right column adds additional spectral indices 

and resulted in improved adjusted R
2
 values; however we did not use these due to an assessment 

of AICc comparisons and over-fitting of the data. 
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Species Adj R2 Adj R2 Adj R2 Adj R2 Adj R2 Adj R2 Adj R2 

Chba - - - 0.63 0.63 0.69 0.77 

Chin 0.56 - 0.56 - 0.56 0.56 0.79 

Chpe - - - 0.48 0.48 0.56 0.65 

Peam - - - - 0.42 0.42 0.58 

Dime 0.66 - 0.66 - 0.80 0.80 0.81 

Disp - - - - - - - 

Neal 0.51 - 0.63 - 0.56 0.63 0.77 

Onto - - - - - - - 

Peer   0.74 - - 0.74 0.88 

Siar - - - - - - - 

Het - - 0.44 - - 0.44 0.60 

Mur - - 0.69 - 0.55 0.69 0.82 

 

 

Figure 11:  Abundance model predicted by stepwise linear regression for CHBA (Bailey’s 

pocket mouse).  The overall adjusted coefficient of determination is 0.67 (p-value 1.8(E-6)).   

Elevation is predicted to have the highest impact, followed by aspect (northing) and distance from 

wash.  All have positive effect.  

Variable Coefficient Standard Error p-value 

Elevation 0.567 0.141 0.0004 

Aspect_N 0.376 0.135 0.0097 

Dist_Wash 0.272 0.123 0.0353 

Constant 0.000 0.110 1.0000 
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Figure 12:  Stepwise multiple regression summary of rodent abundance models with adjusted 

coefficient of determinations, associated p-values, predictors and their coefficients for rodent 

species.  Negative coefficients are highlighted.  Note:  CHIN, DISP, ONTO, PEER, SIAR data 

from reduced plot models. 
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Figure 13:  Regression tree for CHBA.  Statistics for five terminal nodes are shown in the boxes.  

The root node or first split calls up aspect-northing.  Those observation (rodent plots) with aspect 

northing of z-score less than 1.14637 (+0.3311 actual aspect value) are passed to the left, and 

those equal greater are passed to the right.  Both sides of the second-level splitting employ 

surface temperature.  Texture of the SAVI image (diversity) is used as the final third level split.  

Terminal nodes are nodes 5-9. 
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Figure 14:  Summary of regression tree (CART) model for the CHBA (Bailey’s pocket mouse).  

Statistics for each terminal node are shown.  The number of cases is the number of rodent plots 

out of 30 total represented by this grouping.  Deviance is a measure of heterogeneity in CHBA 

abundance amongst the rodent plots grouped into the terminal node.  The predicted values are 

standardized (z-scored) abundance for CHBA.  Node 7 showing the highest abundance, and it 

represents areas with aspect northing greater than 1.15 (z-score) and surface temperature greater 

than -0.72 (z-score). 

Node Number Number of Cases 
Deviance  

(Residual sum of Squares) 
Predicted Value 

5 21 0.1150 -0.544 

6 2 0.0458 1.179 

7 3 0.0632 2.432 

8 3 0.1915 0.740 

9 1 0.0000 -0.442 

 

Figure 15:  Variable importance in the Bailey’s pocket mouse (CHBA) regression tree.  Variable 

importance is the estimates of input feature importance for tree t by summing changes in the risk 

(node error weighted by node probability) due to splits on every feature.  Variable importance 

associated with each split is computed as the difference between the risk for the parent node and 

the total risk for the two children.  Aspect-northing is the dominant variable, followed by surface 

temperature, for the CHBA regression tree. 
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Figure 16:  Overall tree deviance as a function of number of terminal nodes for the Bailey’s 

pocket muse (CHBA).   Tree deviance is calculated as the sum residual squares (sum of squares 

of observed – mean in the terminal nodes) divided by the degrees of freedom (number of total 

observations – number of terminal nodes).  Note that the deviance drops drastically from a value 

of 1.0 in the root node (no splits) to approaching zero at five terminal nodes.  By deviance criteria 

alone, the best size tree is pruned to five terminal nodes. 

 

Figure 17:  CHBA cross-validation cost analysis. The function uses 10-fold cross-validation to 

compute the cost vector.   The cost of the tree is the sum over all terminal nodes of the estimated 

probability of a node times the cost of a node.  The function partitions the sample into 10 

subsamples, chosen randomly but with roughly equal size.  For each subsample, test fits a tree to 

the remaining data and uses it to predict the subsample.   It pools the information from all 

subsamples to compute the cost for the whole sample.  This is one way to perform validation of 

model results, particularly when no additional data sets are available for comparison.  In the 

CHBA case shown here, cross-validation cost testing suggests that a tree pruned to four or five 

terminal nodes is best suited to minimize overall deviance, and larger tree sizes do not improve 

statistics adjusted for tree size. 
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Figure 18:  Regression tree summary for ten rodent species.  Models are generated with a set of 

biophysical variables including surface temperature (TSurf), a vegetation index (SAVI), texture 

or pixel heterogeneity (Text_SAVI), topographical variables generated from a digital elevation 

model (elevation, slope, aspect, curvature, and distance from wash), and geographical coordinates 

(UTM_E and UTM_N).  The residual deviance and resubstitution costs are measures of the 

unwanted heterogeneity represented in the terminal nodes of the overall tree.  The main predictor 

is the first split in the tree, or root node, and other predictors are subsequent nodes used to divide 

and group abundance values. 

  

Rodent 

Model 

Terminal 

Nodes 

Residual 

deviance 

(tree) 

Resubstitution 

Costs 

Main 

predictor 
Other predictors 

CHBA 5 0.0166 0.0138 Asp_N TSurf, Text_SAVI 

CHIN 4 0.0365 0.0316 TSurf Curv, TSurf 

CHPE 9 0.0754 0.0528 Text_SAVI 
UTM_N, TSurf, SAVI, 

UTM_E 

PEAM 8 0.0931 0.0683 Asp_E SAVI, TSurf 

DIME 7 0.0437 0.0335 TSurf 
UTM_N, Text_SAVI, 

SAVI, ASP_N, TSurf 

DISP 6 0.0289 0.0231 TSurf SAVI, UTM_E, Elev 

NEAL 6 0.0574 0.0459 Slope 
Text_SAVI, UTM_E, 

Elev, TSurf 

ONTO 5 0.0544 0.0454 UTM_N 
Curve, Elev, 

Text_SAVI 

PEER 5 0.0065 0.0054 TSurf Text_SAVI 

SIAR 4 0.0213 0.0185 Asp_N TSurf, SAVI 
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Figure 19:  Surface temperature cross-correlations.  Comparison of surface temperature 

values with other biophysical variables sampled at 30 rodent plots, and comparisons 

between the pixels of entire images. Values are correlation coefficients with either a 

negative or positive relationship. Shown are correlations between surface temperature 

and other variables used to build models, and correlations with other data sources 

including field data, vegetation maps, soil maps and their attributes, and spectral indices.  

Correlation comparisons are useful in interpreting complexities between variable 

relationships and the sources of a variable’s predictive power.  

Variable 30 rodent plot sample ORPI area images 

TSurf 1.00 1.00 

Unprocessed Landsat Band 6 TIR 0.98 0.97 

SAVI -0.27 0.02  

Text_SAVI -0.44 -0.10 

UTM_E -0.06  

UTM_N 0.13  

Elev -0.48 -0.21 

Slope -0.73 -0.68 

Asp_E 0.07 -0.03  

Asp_N -0.07 -0.03 

Curv 0.54 -0.02 

Dist_Wash -0.06 -0.28 

Canopy Cover -0.58 -0.27* 

ReGAP Creosote-Bursage Class 0.41 0.48* 

Tasselled-Cap Brightness 0.59 0.28 

Clay Minerals (LS B5/B7) -0.59 -0.48 

Iron Oxide (LS B3/B1) 0.34 0.44 

Ferrous Minerals (LS B5/B4) -0.13 0.05 

T Factor
a
 0.82  

15 bar
a
 0.82  

Kw factor
a
 0.80  

third bar
a
 0.77  

restriction
a
 -0.65  

AWC
a
 0.73  

sandfine
a
 0.72  

topo valleyfloor
b
 0.75  

soil fine
b
 0.75  

RVSand
a
 0.74  

RVSilt
a
 -0.84  

RVClay
a
 0.11  

aridsols
a
 -0.79  

albedo dry
a
 -0.32  

wind erodibility
a
 0.89  

soil coarse
b
 -0.75  

rocky slope
b
 -0.77  

high range slope
a
 -0.80  

a
 SSURGO (2012) soil table attributes, top horizon layer. 

b
 Field observations at rodent plot (Holm, 2006). Topography classes: valley floor, bajada and 

rocky slope; soil classes: fine and coarse.  
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Figure 20:  Spatial autocorrelation as a function of neighborhood distance:  a neighborhood 

distances of up to 10km, the Global Moran’s I, a measure of spatial autocorrelation, for the 

Merriam’s Kangaroo Rat (DIME) is statistically significant, and positive, indicating spatial 

clustering of abundance values.  The spatial autocorrelation drops to almost zero at distances 

between 10 and 25km.  The pattern is informative on the response of DIME’s response to 

underlying spatial structure in the terrain. 

 
 

Figure 21:  Spatial autocorrelation as a function of neighborhood distance:  surface temperature 

exhibits a strikingly similar pattern in spatial autocorrelation as the kangaroo rat (DIME, Figure 

X-1).   The similarity is informative on the reasons for the ability of surface temperature to 

predict DIME abundance.  
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8. Appendices 

Appendix 1:  Equations for determination of the surface temperature image. 

1. NDVI = (ρnir – ρred)/ (ρnir + ρred) 
where ρ is the respective spectral band reflectance  

 

2. FVC = (NDVI – NDVIs) / (NDVIv -NDVIs) 

where  

NDVI refers to the Normalized Difference Vegetation Index 

NDVIs refers to the soil NDVI in the region (0.05) 

NDVIv refers to the vegetation NDVI in the region (0.75) 

 

3. ε = εs*(1-FVC) + εv*(FVC) 
where 

FVC refers to Fractional Vegetation Component 

εs refers to emissivity of soil in the region (0.958) 

εv refers to emissivity of vegetation in the region (0.952) 

 

4. Lλ = Grescale x Qcal + Brescale 
where  

Lλ refers to the at-sensor top of atmosphere spectral radiance (W/m
2
 sr μm) 

Qcal refers to the quantized calibrated pixel value (DN) 

Grescale refers to the band specific rescaling gain factor (0.055376 W/m
2
 sr μm/DN) 

Brescale refers to the band specific rescaling bias factor (1.18 W/m
2
 sr μm) 

 

5. LTλ = (Lλ – Lu – τ*(1-ε)*Ld) / (ε*τ) 
where  

LTλ refers to the blackbody spectral radiance of surface 

Lλ refers to at-sensor, top of atmosphere spectral 

Lu refers to upwelling, atmospheric path radiance 

Ld refers to downwelling, sky radiance 

ε refers to emissivity of the surface pixel 

τ refers to the atmospheric transmission 

 

6. T = k2 / ln((k1/LTλ) +1) 
where  

T refers to the surface temperature (Kelvin) 

k1 and k2 refer to Planck calibration constants for Landsat TM 5 band 6 (607.76 W/m
2
 sr 

μm and 1260.56 K, respectively) 

LTλ refer to the surface blackbody radiance 
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Appendix 2:  Regression trees for ten species of nocturnal desert rodents. 
 

Y1: Chaetodipus baileyi CHBA 

 
 

Y2: Chaetodipus intermedius CHIN 
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Y3: Chaetodipus penicillatus CHPE 

 
 

Y4: Perognathus amplus PEAM 
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Y5: Dipodomys merriami DIME 

 
 

Y6: Dipodomys spectabilis DISP 
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Y7: Neotoma albigula NEAL 

 
 

Y8: Onychomys torridus ONTO 
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Y9: Peromyscus eremicus PEER 

 
 

Y10: Sigmodon arizonae SIAR 
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ABSTRACT 

Construction-related soil disturbance (e.g., road construction, trenching, landstripping, 

earthmoving and blasting), is a significant source of fugitive (airborne) dust in the 

atmosphere.  Fugitive dust is a primary cause of decreased
 
air quality and may carry 

airborne pathogens.  We use Landsat Thematic Mapper (TM) remote sensing data 

spanning 1994 through 2009 over southern Arizona to identify source areas of 

construction-related activity likely to produce fugitive dust.  We correlate temporal 

changes in the mid-infrared spectral response to dust sources from local construction.  

Image differencing of the TM band 5 (mid-infrared), with a change threshold of ± five 

standard deviations of the mean, suitably estimates the location and area affected by 

construction-related soil disturbance.  Estimated dust-producing surface area ranges from 

10.0 km
2
 (1996-1997) to 28.3 km

2
 (2004-2005), or 0.16% to 0.44% of the Pima County 

study area.  Our methods aim to automate monitoring of fugitive dust sources by 

environmental and health agencies and to provide inputs to dust transport, air quality and 

climate models. 

 

Keywords:  soil disturbance, construction, fugitive dust,  Valley Fever, remote sensing, 

Landsat, image differencing. 
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1. Introduction and Background 

1.1  Introduction 

Dust can be defined  as “small solid particles, conventionally taken as those 

particles below 75 µm in diameter, which settle out under their own weight but which 

may remain suspended for some time” (ISO, 1994).  Dust is termed fugitive when it is not 

discharged to the atmosphere in a confined flow stream, not collected by a capture 

system, or not emitted from a stack, chimney, or tailpipe (EPA, 1995).  Common sources 

of fugitive dust include unpaved roads, bare ground, agricultural tilling, storage piles, and 

construction-related soil disturbance (Watson et al. 2002, Chow et al. 2003, Ho et al., 

2003, Samara, 2005).   

We aim in this paper to define space-time variations in fugitive dust, its health 

and environmental consequences and regulatory framework.   We explore remote sensing 

technology to assess fugitive dust sources, introducing a change detection model to 

identify potential sources.  Collateral dust inspection data and Geographical Information 

System (GIS) methods validate this model.   

 

1.2  Health and environmental consequences of fugitive dust 

Particles less than 10 µm are inhaled readily into the lungs where they may 

accumulate, react, be absorbed, or cleared.  Scientific studies (EPA, 2003) have linked 

particle pollution with a series of significant health problems, including irritation of the 

airways, coughing, decreased lung function, aggravated asthma, chronic bronchitis, and 

premature death in people with heart or lung disease.  Ecologists and environmental 
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scientists often overlook the importance of dust and wind-driven processes, yet these 

processes exert a fundamental influence on biogeochemical and ecological systems (Field 

et al, 2010).   

As of August 30, 2011, EPA identified over 38 National Ambient Air Quality 

Standard (NAAQS) non-attainment areas in the U.S. for PM10 (particulate matter less 

than 10 µm), and these areas affect 39 counties with a population of over 25 million 

(EPA, 2012c).  Large populations may therefore be exposed to unhealthy air, which in 

some cases is known to carry disease pathogens. 

 

1.3  Coccidioidomycosis:  A disease produced by the inhalation of airborne 

pathogens 

Coccidioidomycosis (Valley Fever) is a systemic infection caused by inhalation of 

airborne spores from Coccidioides spp, which are fungi found in the soil in the 

southwestern U.S., including Arizona and California, and parts of Mexico (Galgiani, 

1999).  Coccidioidomycosis has increased epidemically in Arizona within the last decade 

(Park et al., 2005).  The saprophytic phase of the species exists as slender filaments of 

cells that grow in the upper part of the soil (Kolivras et al., 2001).   

Infection occurs typically following disturbance activities or natural events that 

disrupt the surface soil.  This results in aerosolization of the fungal arthrospores and a 

subsequent spore source for inhalation by a host (Elconin et al., 1964, Maddy, 1957; 

Schneider et al., 1997; Swatek, 1970).  There is a remarkable association of disease cases 

with previous exposures to dust storms, archeological digs, and occupational exposure to 

agricultural and construction dust (Emmons, 1942; Kirkland and Fierer, 1996; 
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Pappagianis and Einstien, 1978; Werner, 1974).  The mechanisms of the association are 

not established.  We look now at the origins of fugitive dust as a vehicle for pathogen 

dispersal.   

 

1.4  Soil disturbance and construction-generated fugitive dust 

A disturbed surface area is any portion of land that has been moved physically, 

uncovered, destabilized, or otherwise modified from its natural condition, thereby 

increasing the potential for fugitive dust emissions (EPA, 2012a).  The dust-generation 

process during surface disturbance is caused by two basic physical phenomena: 1) 

pulverization and abrasion of surface materials by application of mechanical force 

through implements (wheels, blades, etc.), and 2) entrainment of dust particles by the 

action of turbulent air currents, such as wind erosion of an exposed surface by wind 

speeds over 19 kilometers per hour (km/hr, EPA, 1995).   

Heavy construction, such as building and road construction, consists of a series of 

operations, for example, land clearing, frilling and blasting, ground excavation, earth 

moving, and structural construction (EPA, 1995).  Each phase of the cycle exhibits its 

own duration and potential for dust generation.  Furthermore, tracked out material on 

adjacent roadways can be suspended by traffic, and high wind events can lead to 

emissions from cleared land and material stockpiles.   

 

1.5  Assessing the spatial and temporal distribution of fugitive dust sources 

Fugitive dust sources arising from construction may be underestimated in typical 

assessments and modeling.  Previous studies for fugitive dust sources focused mainly on 
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paved or unpaved road dust, soil dust and cement; source profiles for construction dust 

are limited (Kong et al., 2011).   

 Strategies for assessing
 
and monitoring fugitive dust source areas include field 

surveys,
 
collection of dust samples using various methods, census and statistical methods, 

and modeling of atmospheric circulation patterns (Stefanov et al., 2003).  The multi-stage 

construction cycle also generates changes in spectral properties as the surface is modified 

(Jensen and Toll, 1982), which may be detected by remote sensing methods.   

 

1.6  Remote sensing to detect change in surface spectral properties  

Remote sensing, a source of multispectral data, can provide fundamental, new 

scientific information, including land cover change.  The basic premise in using remote 

sensing data for change detection is that changes in land cover must result in changes in 

radiance values, and these changes must be large with respect to radiance changes caused 

by other factors such as atmospheric conditions, sun angle, and soil moisture (Ingram et 

al., 1981).  Selecting the appropriate data and change detection technique according to the 

nature of the problem under investigation is critical in any change detection study (Jensen 

and Im, 2007). 

Image differencing is the most widely applied algorithm for change detection 

(Coppin et al., 2004).  Image differencing is the subtraction of spatially co-registered 

images collected at different times, producing a ‘change’ image (Jensen, 2005).  Image 

subtraction produces positive and negative values in areas of radiance change, and values 

of zero in areas of no change.  In an 8-bit remote sensing system (where pixel values 

range from 0 to 255), the potential range of difference values is -255 to +255.  Identifying 
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appropriate spectral thresholds that discriminate “change” pixels from “no-change” pixels 

enables generation of a binary change image.  

 

1.7  Image differencing to detect change at the urban fringe 

Image differencing is known to provide superior results for identifying change 

due to natural or rural area conversion to urban land (Fung, 1990; Jensen and Toll, 1982, 

Ridd and Liu, 1998; Royal, 1980; Toll et al., 1980).  This success is attributed partly to 

enhancement of contrast between vegetated and non-vegetated surfaces due to 

chlorophyll absorption, such as in the red portion of the spectrum.   

None of the spectral band selection algorithms analyzed in these studies was 

found to be clearly superior; according to the authors, the choice depends on specific 

environmental conditions in play and application objectives (Ridd and Liu, 1998).  The 

Landsat Thematic Mapper 5 (TM), which was not available for the earlier studies, 

provides data since 1984 in seven spectral regions, including the mid-infrared, at 30 

meter spatial resolution (NASA, 2012b). 

 

1.8  Mid-infrared spectral region for surface change detection 

  The TM middle infrared band 5 (1.55-1.75 µm) is known to discriminate 

moisture content of soil and vegetation.  The spectral region is used often to monitor 

vegetation and soil, and it is used in drought and plant vigor studies (Howarth and 

Wickware, 1981; Maki, 2004; NASA, 2012a; USGS, 2010).  The TM middle infrared 

(MIR) bands have been shown to account for much of the separability between wetland 

landcover types during image classification in one study (Jensen et al., 1993).  TM band 5 
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(MIR) difference images were also used in this study to generate change/no-change 

masks of upland, non-tidal areas for use in classification preprocessing. 

Generic spectral reflectance profiles suggest that soil, vegetation, and water are 

well-distinguished in the mid-infrared region, whereas spectral confusion can occur in 

other spectral regions.  We compiled a list of soil and vegetation spectral indices which 

use the mid-infrared spectral region (Table 1).  We focus on the Landsat mid-infrared for 

dust source detection studies in southern Arizona. 

 

1.9  Southern Arizona study area 

Our study area lies within the eastern portion of Pima County, Arizona, and 

consists of approximately 13 000 km² in area (Figure 1).  Pima County is located in the 

southwestern region of the U.S and in the southern portion of Arizona.  It shares 

approximately 200 km of border with the state of Sonora, Mexico.  The population of 

Pima County is 980 263 (Census, 2012). The vast majority of the county population lies 

in and around the city of Tucson (518 956; 2006), which fills up much of the eastern part 

of the county.  Tucson is Arizona's second largest city, and it is a major commercial and 

academic center.  A ring of communities, unincorporated urban development, and 

undeveloped areas surround the city.  The western half of the county is sparsely 

populated, and it is not included in the study area. 

The Tucson region is a desert valley surrounded by five mountain ranges.  The 

study area lies within the Sonoran Desert, which is a lush desert with legume trees and 

columnar cacti as dominant flora.  Thousands of acres of the Sonoran Desert have been 

bladed for the construction of houses and commercial strip malls (AIA, 2007).  Between 
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1980 and 1990, the city’s area increased by over 50 percent through the annexation of 

unincorporated land, and currently, the total area encompassed within the city limits is 

585 km
2
.  As the city has expanded, so too has development in the immediate ‘fringe’ 

areas.   

 

2. DATA AND METHODS 

2.1  Image preprocessing 

Landsat Thematic Mapper 5 (TM) archive images are processed to the Level 1 

Product Generation System with precision and terrain correction (LPGS, L1T), and with 

cubic convolution resampling (USGS, 2011).  The eastern Pima County, AZ study area is 

located in Path 36 and Row 38 of the Landsat Worldwide Reference System.  To 

minimize annual phenological effects, we selected Landsat 5 TM mid-infrared images 

captured in May or June for each year of the study period (1984-2009). Comparisons of 

random points within the area of interest showed good spatial registration to within one 

pixel between the images, and therefore additional fine-tuning beyond USGS processing 

was not required.   

We incorporated updated radiometric calibration coefficients specific to the new 

USGS Landsat open-access archive (Chander et al, 2009) to achieve conversion of 

calibrated digital numbers to absolute units of at-sensor spectral radiance.  We converted 

each image to atmospheric-corrected surface reflectance using the cosine approximation 

model (COST; Chavez, 1996).  The COST model implements an improved dark-object 

atmospheric correction for Landsat TM multispectral data (bands 1-5 and 7). 
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2.2  Air quality dust inspection data  

The Pima County Department of Environmental Quality (PDEQ) requires entities 

or individuals conducting land stripping or earthmoving in excess of one acre, trenching 

in excess of 300 feet, road construction in excess of 50 feet, and blasting to obtain an air 

quality activity permit through the PDEQ (Pima, 2012).  In addition, the PDEQ operates 

an inspection program to monitor and regulate soil-disturbance activities likely to 

generate fugitive dust.  The dust inspections are initiated by complaints from the public, 

referrals from other public agencies, and data obtained from the county’s fugitive dust-

generating activity permit program.   

As of December of 2002, PDEQ inspectors document geographic coordinates for 

all PDEQ inspections using hand-held Global Positioning System (GPS) devices.  More 

than 90% of permits received by the department are inspected, and each permit is usually 

inspected more than once to assess progress of the specific activity.   The number of 

repeat inspections is determined by the respective activity’s duration and scope (Pima, 

2012).  

We obtained data for PDEQ fugitive dust-generating activity inspections 

occurring between January 2003 and January 2006 by public information request.  Spatial 

coordinates for each inspection point were subsetted into annual periods beginning in 

June and ending in May to match the satellite annual change detection image dates.  The 

data were entered in a GIS, and used to develop and validate the remote sensing method. 

 

 

 



114 

 

2.3  Single-band image subtraction for change detection 

  We explored several techniques to ascertain change likely to be associated with 

soil disturbance.   Based on simplicity, its association with soil properties and vegetation 

moisture (USGS, 2010; Table 1), and superior comparisons with the PDEQ dust 

inspection data set (see Discussion section 4.2), we selected single band differencing of 

the TM band 5 to perform our study.   

Full-scene TM band 5 images were subtracted from the succeeding year’s image 

to generate successive annual change images that cover the fifteen year span of the study 

(1994-2009).  Each change image was subsetted to the approximate 640 km
2 

study area.  

A mask was applied to remove areas in excess of 1000 meters elevation (generally the 

regional mountain ranges) in order to focus on the region’s urban areas and their 

periphery.  An additional mask derived the USGS Regional Southwest Gap Project 

(SWReGAP, 2004) was applied to remove agricultural and mining landcover in the 

northwest corner and south-center areas of the study area (10% of the remaining study 

area) to focus on construction-related activity.   

Figure 2 displays a TM band 5 difference image of eastern Pima County for 2003-

2004.  Areas of greatest change are indicated by pixels with increased brightness (white) 

or increased darkness (black).  Change resulting from anthropogenic disturbance is often 

identified in these images as having non-natural patterns, such as straight lines and 

rectangle, as highlighted by circles in the image. 
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2.4  Geographic information system analysis 

We added the PDEQ dust inspection coordinates, subsetted to match the temporal 

periods of the satellite change images, into a GIS layer (ESRI ArcMap 9.2 and 9.3), and 

converted them to shape files.  We applied a kernel density function to each set using 

consistent default input parameters, including a search radius (4670 meters) and an output 

grid cell size (0.220 square kilometers).  The kernel density function, based on Silverman 

(1986), fits a surface over each point, with the surface value being highest at the location 

of the point and diminishes to zero at the search radius.  The density at each output raster 

cell is calculated by adding the values of all the kernel surfaces where they overlay the 

raster cell center.  Figure 3 displays the dust inspection data points and their 

corresponding kernel density plot for the 2004-2005 annual period.   

We overlaid the satellite change images by their corresponding kernel density plot 

of dust inspection points. We are interested in the extent to which areas with high change 

detection signal (increased bright or dark pixels) are spatially consistent with areas 

showing high dust inspection density (reddish or darkish hue).  The 2003-2004 

comparison is displayed in Figure 4.  Qualitative comparisons reveal good agreement 

between the PDEQ dust inspection and the remote sensing change detection data sets.  

We developed a thresholding strategy to limit false positives derived from these change 

detection protocols. 

 

2.5  Fine-tuning the change thresholds 

We initially established a change threshold of ± 4 standard deviations from the 

mean using visual inspection and co-spectral plots of the satellite change images with 
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their corresponding PDEQ dust inspection points and kernel density plots.  Figure 5 

displays the 2005-2004 change image presented as a binary image using the ± 4 standard 

deviation criterion.  Pixels meeting the change threshold criterion are assigned black, and 

the corresponding PDEQ inspection kernel density plot overlain in grayscale.    

To fine-tune selection of the band difference change threshold and to 

quantitatively assess model performance, we compared capture rates of thresholded 

change pixels by sets of buffers around the PDEQ dust inspection points to those of 

buffers around a set of equal number of random points.  We used a 920 meter radius 

buffer size for all sets, which was derived from the average disturbance area reported in 

the PDEQ dust inspection data set (480 meters) with a factor of two in radius applied to 

ensure the inclusion of the full possible range of disturbance around any one dust 

inspection point.  Buffer sets were generated for each of the four annual periods with 

PDEQ data (2002-2006), with an example shown in Figure 6. 

We prepared a set of change images consisting of pixels thresholded from ±2.5 

through 6.0 standard deviations from the mean, in increments of 0.5, for the four annual 

periods with dust inspection data.  The capture rates or PDEQ buffers are compared with 

those of random points in Figure 7, with increasing threshold values.  

 

3. RESULTS 

3.1  Change threshold identification 

The capture rate efficiency of thresholded change pixels by the PDEQ dust 

inspection buffers, compared to random buffers of the same size, increases as the 

standard deviation threshold increases, until approximately at ± five standard deviations 
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of the mean, where it plateaus (see Figure 7).  We therefore selected ± five standard 

deviations of the mean as the optimum threshold.   

Using this criterion, we classified the four change images of the annual periods 

with matching PDEQ data, and the average percentage of change pixels captured by the 

PDEQ dust inspection buffers was 50.13%, compared to 19.33% captured by the same 

number of random point buffers.   Compared to random point buffers at 920 meters, each 

PDEQ dust inspection buffer captured statistically significantly more change pixels (p < 

0.0001, Mann-Whitney rank sum U-test, difference in medians) for each of the 

comparisons.  A summary of statistical comparisons is provided in Tables 2 and 3.   

To test our choice of change detection method, we applied the threshold criterion, 

established for TM band 5 differencing, to products of several other change detection 

methods, including differencing of other Landsat bands, spectral index differencing and 

spectral transformation approaches.  We subjected each output to the PDEQ and random 

buffer test.  Figure 8 compares TM band 5 differencing with several other change 

detection methods for one annual period (2004-2003).  At least at this criterion, TM band 

5 differencing in the MIR is among the highest performers, each within a range of 38-

42% of superior capture rate efficiency of PDEQ inspection buffers compared to random 

buffers.  

Both qualitative and quantitative accuracy assessments show good cross-

correlation between the Landsat TM change detection protocols and PDEQ dust 

inspection data.  This is an important finding:  although dust inspection permits go back 

only a few years, the Landsat TM time series extends back to the mid 1980s.  We thus 

have an excellent historical record of surface disturbance for modeling purposes.   
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3.2  Change area determination 

Change image pixels meeting the criterion of ±five standard deviations from the 

change image mean are classified as likely sources of construction-related soil 

disturbance based on their spatial and statistical association to fugitive dust inspection 

data.  We use the output as a metric to estimate spatial and temporal aspects of the data 

set.  

Using the dimensions of the TM band 5 pixel (900 square meters), we are able to 

estimate the surface area impacted by construction-related disturbance in the study area.  

The values for each annual period during the fifteen year span of the study are shown in 

Figure 9.  Estimates ranged from10.0 km
2
 (1996-1997) to 28.3 km

2
 (2004-2005), or 0.16 

- 0.44% of the masked study area, respectively.  The model estimates that construction-

related soil disturbance in eastern Pima County was fairly consistent before 2002, 

increased successively in the years 2002-2005 to a peak in 2005-2006, and decreased in 

recent years to pre-peak values.  

We enumerated the thresholded change pixels to zip code spatial units with areal 

normalization for each annual period to assess sub-regional characteristics of the data set.   

Regional maps of three annual periods covering the span to the study period, with zip 

code areas experiencing increasing soil disturbance shown in increasing gray scale, are 

shown in Figure 10.   We estimate locally high intensity of construction-related soil 

disturbance in the urban growth boundary zone of the peripheral north and northwest side 

of Tucson over the period of study, and increased local disturbance on the south side in 

the middle of the current decade. 
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4. DISCUSSION 

4.1  Interfering activities 

Surface changes generated from agriculture and mining activities such as crop 

rotation, field fallowing, and mining pond flooding, and range and forest fires, were 

outside the scope of the study.  These activities generated significant change signals in 

some portions of the study area.  Our approach was to mask out these areas; they affected 

only a small portion of study area and were easily isolated using ancillary landcover 

maps.  Accurate ground-truth data, ancillary data, and additional data processing time and 

effort may be necessary to perform masking. 

 

4.2  Comparisons to other work 

We factor out seasonality using annual-date images, and we are thus provided 

with a yearly snapshot to capture the activity of a typical residential or commercial 

construction project cycle (6 months for one single family home or 11 months for a 

commercial site, EPA 1999).  At this resolution, we are likely capturing the construction 

cycle and its dust-generating propensity as a whole, as opposed to characterizing 

individual stages.  The 16-day repeat cycle for Landsat TM images provides numerous 

opportunities for scene selection. 

Our use of image differencing to detect landcover change at the urban growth 

boundary is consistent with previous literature (Fung, 1990; Ridd and Liu, 1998; Royal, 

1980; Toll et al., 1980).  We report superior results using MIR differencing; many of the 

early studies emphasized use of the red spectral region.  In our case, the pre-change 



120 

 

landcover of the Sonoran desert is anticipated to have a much stronger soil component 

than that of the other studies (i.e. grassland in Denver, CO or agriculture fields in 

Ontario, Canada and Salt Lake City, UT).  We suggest that MIR is equally suited to 

detect the transformation of a pixel consisting of a significant soil component during 

disturbance and rearrangement, and subsequent construction. 

An additional benefit of the MIR spectral region over visible spectral regions is its 

known resistance to the affects of atmospheric scattering.  The COST model atmospheric 

adjustments we determined for the MIR images were consistently near zero; our results 

show that in the case of Landsat TM band 5, minimal preprocessing is necessary.  Image 

differencing of a single spectral band requires minimal preprocessing compared to 

differencing of spectral indices and other spectral transformations such as principal 

component analysis.  

We arrived at a rigorous image differencing change threshold (five standard 

deviations); previous work (Fung, 1990; Ridd and Liu, 1998; Quarmby and Cushnie, 

1989) arrived at less stringent thresholds (0.7-1.2 standard deviations).   We optimized 

our output to identify likely source areas of soil disturbance and fugitive dust generation; 

we can hypothesize that a more stringent criterion is needed to threshold change from a 

highly soil-dominated pixel characteristic of the Sonoran Desert to another form of soil 

(i.e., disturbed), than change from predominately agriculture or rangeland landcover.  

GIS-based modeling methods that test continuous thresholds and use genetic algorithm 

approaches to optimize moving threshold windows have been recently employed to 

automate and improve binary change detection performance (Im et al., 2008, 2009, 

2011). 
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4.3  Assessment of accuracy 

Our use of PDEQ fugitive dust inspection data with GIS techniques to guide 

development of the remote sensing method relies on its accuracy.  This appears to be a 

good choice, but assumptions are made.  Foremost is that the inspections point to the 

occurrence and location of dust generating activities.  This is a straightforward 

assumption.  In addition, we assume that the relationship between department inspections 

and dust generating activity is quantifiable.  Dust inspections by PDEQ are quantifiable, 

as supported by discussions with PDEQ staff, in terms of repeat coverage based on 

duration and scope of the project at any particular site.  Finally, we assume that the 

fugitive dust inspection program assesses all significant soil disturbance sources that 

generate dust.   In this case, remote sensing methods may serve a role in assessing and 

validating administrative programs and policy.   

Implicit in our method is that every pixel meeting threshold criteria equates to 

dust generating activity.  We validate our approach using comparisons of the capture 

rates by buffers around know dust sources to those around random points.  Based on our 

capture rates, we can say we are at least 50% accurate.  In one sense, the model will 

likely overestimate the amount of area affected by soil disturbance, as not all change 

meeting criteria is due to construction, and not all construction phases are inherently dust-

generating.  The model may also underestimate this parameter, as change signals 

occurring on a surface area less than two times the pixel size of Landsat TM (30 meters), 

may not identified.  Considering these limitations, the model may be best suited to 

compare relative change occurring year-to-year. 
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4.4  Potential applications of the output 

Recent changes in policy and technology, including open access to the Landsat 

imagery archive, web browser tools and software that enable dynamic viewing of change 

imagery, and tools that perform auto-thresholding for change detection, have brought 

remote sensing change detection functionality to a broad range of users (Exelis, 2012; 

Green, 2011; Warner et al., 2009).  Binary change images can provide information which 

is useful for planning and management purposes, especially when quick overview 

products are needed as preliminary output (Im et al., 2011).  The 30m emission source 

metric reported here is in raster format, and it is easily converted to grid or GIS-based 

output at various scales and denominational units.   

This output enables the assessment of the contribution of construction-related 

activities to total fugitive dust emissions, and it is a potential substitute or validation data 

for emission inventory data (EPA 2012b, 2012d).  The characterization of the spatial 

density of emissions sources and their respective contributions (via emission factors) to 

fugitive dust provide a means for independent assessment of the efficiency of fugitive 

dust controls, abatement strategies and regulations.  Similarly, we suggest that the output 

may also be useful for substitution and validation of methods employing source 

apportionment of PM monitoring network data.  We, in addition, plan to use the output to 

characterize source areas of Coccidioides spp. spore propagation. 
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5. CONCLUSION 

We employed remote sensing and GIS techniques to characterize construction-

related soil disturbance likely to generate fugitive dust for an arid region of the U.S.   

Image differencing of the Landsat TM band 5 (mid-infrared), with a change threshold of 

± five standard deviations of the mean, suitably estimates the location and area affected 

by construction-related soil disturbance in southern Arizona.  We validated our method 

by comparison of capture rates of change pixels by buffers around known dust sources to 

those of an equal number of random points (50.13% vs. 19.33%, respectively, statistically 

significant difference).  We estimate annual area affected by construction-related change, 

with values ranging from 10.0 km
2
 (1996-1997) to 28.3 km

2
 (2004-2005), or 0.16 to 

0.44% of the masked study area, respectively.  We aggregate this metric to zip code areas 

and identify regional hot spots and regional trends of the fifteen year study period.   

The remote sensing approach described here is simple, requires minimal image 

preprocessing and processing, and makes use of readily accessible, free data.  It locates 

areas of intense dust-generating activity for monitoring and mitigating fugitive dust.   The 

spatially explicit output may serve as input or validation of models predicting the 

construction-related fugitive dust contribution to ambient air pollution, to perform 

atmospheric dispersion modeling, and to predict the dissemination of soil-borne 

pathogens such as the Coccidioides fungus. 
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7. TABLES AND FIGURES 

Table 1:  Spectral indices emphasizing soil and vegetation moisture properties using Landsat 

TM.  Spectral regions and the corresponding Landsat TM bands are shown in the Formula block.  

Index Formula Reference 

Bare Soil Index 

(BI) 

[(SWIR + R) – (NIR + B)]/ [(SWIR + R) + (NIR +B)] 

(B5+B3)-(B4+B1)/(B5+B3)+(B4+B1) 

Roy et al. (1997) 

Chen et al. (2004) 

Normalized Difference 

Soil Index 

(NDSI) 

[SWIR – NIR]/[SWIR + NIR] 

B5-B4/B5+B4 

Rogers and 

Kearny (2004) 

Normalized Difference 

Built-up Index 

(NDBI) 

[SWIR – NIR]/[SWIR + NIR] 

B5-B4/B5+B4 

Zha et al. (2003) 

Built-Up Areas 

(BU) 

NDBI - NDVI He et al. (2010) 

Normalized Difference 

Bareness Index 

(NDBaI) 

[SWIR – TIR]/[SWIR + TIR] 

B5-B6/B5+B6 

Zhao and Chen 

(2005) 

Normalized Difference 

Water Index 

(NDWI) 

[G – NIR]/[ G + NIR] 

B2-B4/B2+B4 

McFeeters (1996) 

Normalized Difference 

Water Index 

(NDWI) 

[R – SWIR]/[R + SWIR] 

B3-B5/B3+B5 

Rogers and 

Kearny (2004) 

Normalized Difference 

Water Index 

(NDWI) 

[NIR – SWIR]/[NIR + SWIR] 

B4-B5/B4+B5 

Gao (1996) 

Jackson et al. 

(2004) 

Normalized Difference 

Moisture Index 

(NDMI) 

[NIR – SWIR]/[NIR + SWIR] 

B4-B5/B4+B5 

Wilson and Sader 

(2002) 

 

Normalized Difference 

Infrared Index 

(NDII) 

[NIR – SWIR]/[NIR + SWIR] 

B4-B5/B4+B5 

Hardisky et al. 

(1983) 
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Table 2.  Proportional comparison.  Capture rates of satellite change pixels meeting threshold 

criteria (±five standard deviation)  by 920m  buffers around the Pima County Department of 

Environmental Quality (PDEQ) permit dust inspection points, as compared to buffers around the 

same number of random points, for June through May annual periods. 

 

Year 

Total DEQ 

or Random 

Points 

Total  

Change 

Pixels 

Pixels Inside 920m 

Buffers DEQ Points 

Pixels Inside 920m 

Buffers Random Points 

2003-2002 273
a
 14449 

5148/14449            

35.63% 

1387/14449             

9.60% 

2004-2003 1043 19104 
12945/19104           

67.76% 

5469/19104            

28.63% 

2005-2004 1013 31434 
16504/31434           

52.50% 

9018/31434            

28.69% 

2006-2005 444
a
 21272 

9492/21272            

44.62% 

2216/21272           

10.42% 

Average   50.13% (CV 0.27) 19.33% (CV 0.56) 

        
a 
Partial year data sets:  six months of inspection points only. 

 

 

Table 3.  Difference of means statistical tests.  Example summary statistics for the 2005-2004 

annual period comparing change pixel inclusion rates by PDEQ inspection point buffers (Group 

A) as compared to those of random point buffers (Group B). 

 

Mann-Whitney U Test (non-

parametric) 

Unpaired t Test 

P < 0.0001  P < 0.0001 (two-tailed; extremely statistically 

significant) 

UA = 98581.5 Difference of means = 69.10 

z = 31.48 95% Confidence interval of difference:   

from 62.99 to 75.22 

Mean Ranks 1422.7 vs. 604.3 Mean:  79.96 (DEQ buffers) vs. 10.86 (random 

point buffers) 

N1 = N2 = 1013 SD: 86.55 vs. 48.19 

 SEM: 2.72 vs. 1.51 

 N: 1013 
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Figure 1.  Study area map including the southwestern United States, northwestern 

Mexico, state of Arizona, Pima County and the city of Tucson. 
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Figure 2.  A change detection image of the Tucson, Arizona metropolitan region between May 

2003 and June 2004 using band differencing in the mid-infrared spectral region (Landsat TM 

band 5).  Change of interest to this study is noted as the bright or dark polygons throughout the 

image including the circled areas.  This change is attributed primarily to human disturbance such 

as subdivision home construction. The large, bright area at the top (north) edge of the scene 

results from change induced by the Aspen fire occurring in the Santa Catalina Mountains during 

the summer of 2003.  A mask was applied to remove areas in excess of 1000 meters elevation, 

thus the fire scar area was not included in the study. 
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Figure 3.  Spatial coordinates for fugitive dust inspections performed by the Pima County 

Department of Environmental Quality to assess construction-related activity between June 2004 

and May 2005 are obtained and entered into a GIS (left).  A kernel density function is applied to 

generate a density plot (right).  A search radius of 4.67 kilometers and an output cell (grid) size of 

0.220 square kilometers are used.  Tucson city limits and the Pima county border are also shown.  
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Figure 4.  Remote sensing-derived change image with the Pima County DEQ dust inspection 

point kernel density overlay for the Tucson, Arizona metropolitan area between May 2003 and 

June 2004.  Increased dust inspection density is indicated with increased reddish-brown or 

darkish hue, and change in the satellite change image is indicated by increased bright or dark 

pixels.  We are interested in spatial alignment of dust inspection density and satellite change 

signal.  The large bright feature in the north part of the image is due to change induced by the 

Aspen fire of 2003, and the bright and dark polygons in the lower left portion of the image are 

attributed to mining activities.  Both of these areas are masked out before performing the study. 
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Figure 5.  The remote sensing-derived change layer is converted to a binary image, with pixels 

exhibiting change values beyond ± four standard deviations displayed in black, and all other 

pixels displayed in white.  The black pixels show greatest change signal between the two dates.  

The PDEQ dust inspection kernel density layer is shown in shades from white to dark gray with 

increasing density.  Both data sets cover the period between June 2004 and May 2005. 
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Figure 6.  Demonstration of the buffer technique to assess model performance using the 2004-

2003 data sets.   Pixels meeting change criteria are shown as black polygons.  980 m buffers are 

shown in red (solid) lines around PDEQ dust inspection locations, and in blue (dotted) lines for 

random points.   Capture rates of the change pixels are compared for the two buffer data sets to 

assess model performance. 
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Figure 7.   Proportion of Landsat TM band 5 image-differenced change pixels captured by 

buffers (920m) around county dust inspection points versus the proportion captured by an equal 

number of buffers around random points, compared at successively increasing standard deviation 

threshold.  Values represent the average of four annual periods from 2003-2002 through 2006-

2005. 
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Figure 8.  Comparison of change detection techniques.  All methods are image differencing of 

Landsat TM bands or spectral indices, except for the spectral transformation approaches Principal 

Component Analysis (PCA) and Kauth-Thomas transformation layers.  The difference between 

the percentage of change pixels meeting threshold criteria (± 5 standard deviation of the mean) 

that are captured by 920m buffers around a set of county dust inspection points to those captured 

by an equal number of random point buffer are shown.  Data is compiled from the 2004 -2003 

annual change image. 
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Figure 9.  The aggregated area affected by construction-related soil disturbance liky to generarate 

fugitive dust in the study area for years between 1994 and 2009 is estimated. Disturbance areas 

are determined by summing pixels meeting threshold criteria:  beyond ± five standard deviations 

of the mean in the Landsat TM band 5 difference image. 
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Figure 10.  Remote sensing pixels meeting change criteria likely to indicate fugitive dust sources 

are aggregated to zip code areal units and normalized by area for three representative annual 

periods over the span of the study.  Aggregation to smaller areal units enables locating hot spots 

of intense construction-related soil disturbance, and to monitor local trends in the region as a 

whole. 
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APPENDIX C 

 

 

ESTIMATING ENVIRONMENTAL SOURCES OF VALLEY FEVER 

PROPAGATION IN SOUTHERN ARIZONA WITH REMOTE SENSING 
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ABSTRACT 

Coccidioidomycosis (Valley Fever) is an environmentally-mediated respiratory disease 

caused by the inhalation of airborne spores from the fungi Coccidioides spp.  The fungi 

reside in arid and semi-arid soils of the Americas. The disease has increased epidemically 

in Arizona and other areas within the last decade.  Despite this increase, the ecology of 

the fungus remains obscure, and environmental antecedents of the disease are largely 

unstudied.  We investigate two sources of soil disturbance, anthropogenic construction 

and nocturnal desert rodents, which are hypothesized to affect soil ecology and initiate 

Coccidioides spp. spore dissemination.  We estimate construction-related soil disturbance 

with annual differencing of Landsat Thematic Mapper mid-infrared images.  Source areas 

of soil disturbance are identified, and annual affected areas are estimated for eastern Pima 

County, Arizona and for zip code areas spanning 1994 through 2006.  We build rodent 

abundance distribution maps for the study area using regression models of biophysical 

variables derived from remotely-sensed data with comparisons to rodent trapping data 

from the Organ Pipe Cactus National Monument. The two spatially explicit soil 

disturbance sources are compared with coccidioidomycosis incidence data using rank 

order correlation and regression methods.  Construction-related soil disturbance 

correlates with annual county-wide incidence (R
2
 = 0.49, p-value 0.012), and with 

incidence of zip codes at the periphery of the city of Tucson for the total study period (R
2
 

= 0.48, p-value 0.001).  The average abundance values for the desert pocket mouse 

(Chaetodipus penicillatus), derived from a soil-adjusted vegetation index, aspect 

(northing) and thermal radiance, correlate with total study period incidence aggregated to 

zip code (R
2
 = 0.25, p-value 0.02). 
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1. Introduction 

1.1 Coccidioidomycosis 

 Coccidioidomycosis (Valley Fever) is a systemic infection characterized by fever, 

respiratory infection and reddish bumps on the skin.  It is caused by inhalation of airborne 

spores from Coccidioides immitis and Coccidioides posadasii fungi, which are endemic 

in the southwestern United States, and in parts of Mexico, Central and South America.  

Coccidioidomycosis is produced in Arizona by inhalation of spores from C. posadasii 

(Fisher et al., 2002).   

 The Coccidioides spp. reside in warm, arid and semi-arid soils of the Americas.  

The fungi exist in a dimorphic life cycle consisting of saprophytic mycelial phase in the 

soil, and a parasitic spherule phase when arthroconidia are inhaled by a mammalian host 

(Cole and Sun, 1985).   Given proper conditions, slender filaments of saprophytic cells 

(hyphae) grow in the upper part of the soil (Kolivras, 2001).  After a week or more of 

growth, many of the hyphal cells mature into rectangular arthrospores. The arthrospores 

alternate with smaller, sterile cells. When the soil dries, the alternating sterile cells breach 

easily, freeing the intervening arthrospores.  The arthrospores range from 1.5 to 4.5 µm in 

width and 5.0 to 30 µm in length. 

  The parasitic stage usually initiates in the lungs, and it can spread to other parts 

of the body.  If inhaled, the arthrospores can penetrate to the smallest bronchiole or 

pulmonary alveoli of the lung.  In the parasitic phase, the arthrospore or arthroconidia 

develops into a spherical, double-walled cell called a spherule (sporangium). Spherules 

measure from 10 to 200 µm, and they typically contain a few to several hundred 

endospores, each 2 to 5 µm in diameter. The spherule eventually ruptures, discharging 



147 

 

the endospores into the neighboring tissue.  Each endospore is potentially capable of 

blooming into a new spherule.  

 Exposure usually occurs following events that disrupt the soil, resulting in 

aerosolization of the fungal arthrospores (Schneider et. al., 1997).  Both natural and 

anthropogenic or human soil disturbance can produce spore dispersion.  The ecology of 

the pathogen remains obscure, and there is limited knowledge of the environmental 

antecedents of disease outbreaks.  Detection of the fungus in the environment remains a 

critical challenge to modeling the source of disease (Barker et al., 2012). 

 

1.2 Impacts of coccidioidomycosis 

Most cases of Coccidioides spp. infections are self-resolved.  Approximately 40% 

of infections are symptomatic, and they can result in severe complications such as 

influenza-like illnesses, community acquired pneumonia (CAP), lung cavities, and 

disseminated infections in the central nervous system, skin, bones, joints and other organs 

(Komatsu et al., 2003).  About one percent of infected individuals experience serious, life 

threatening conditions such as meningitis and organ damage.  On average, patients 

diagnosed with the disease suffer symptoms for six months.  Risk factors for severe 

infections include race, age, and immunosuppression.  The fungi also infect livestock, 

pets and wild animals. 

Rates of coccidioidomycosis have increased epidemically in Arizona and other 

areas within the last two decades.  The Arizona Department of Health Services (ADHS) 

reported a coccidioidomycosis incidence of 43 cases per 100,000 of population in 2001, 

representing an increase of 186% since 1995 (Komatsu et al. 2003).  In 1998, 1,551 cases 
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were reported to the ADHS; 5,535 were reported in 2006, and over 10,000 were reported 

in 2009 (Komatsu et al. 2003; Sunenshine et al. 2007; Hector et al. 2011).  It is the fourth 

most common disease reported to the Arizona Department of Health Services (Park et al. 

2005), and Arizona accounts for 60 percent of reported cases in the nation (Center for 

Diseases Control and Prevention, 2004).  Most (95%) of Arizona cases are in Maricopa, 

Pinal, and Pima Counties.   

Coccidioidomycosis became a nationally reportable disease in 1995 at the 

southwest regional level, at which time a case definition was adopted that required 

laboratory confirmation.  The reporting requirement is suggested to play a role, at least 

partially, in the increasing linear trend in exposure rates over the previous two decades 

(Sunenshine et al. 2007, Tamerius and Comrie, 2011).   

The consequent public health burden to affected regions is considerable.  Hospital 

charges for coccidioidomycosis in the U.S. exceeded $86 million in 2007.  Recent studies 

noted that direct hospital charges for the treatment of the disease in Arizona was 26.8 

million dollars with a median charge of $14,292 (Nguyen et al., 2013).  It is an 

increasingly important health issue due to migration into the state from other regions and 

increased numbers of immuno-suppressed patients. 

 

1.3 Environmental origins of Coccidioides spp. 

 Environmental factors are hypothesized to explain the occurrence and distribution 

of Coccidioides spp. at all points in the disease chain.  Despite the significant increase in 

incidence of coccidioidomycosis, and the associated interest due to its economic and 

human costs, there is limited knowledge about the specific ecological niche required for 
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Coccidioides spp. to flourish, the environmental antecedents of disease outbreaks, and the 

precise mechanisms of spore aerosolization and subsequent dispersion (Galgiani, 1999).   

 Coccidioidomycosis cannot be transmitted from person to person, but it is 

acquired by inhalation of the arthrospores from the environment.  Therefore it is 

reasonable to assume that the fungus should be easily isolated from endemic areas (Ajello 

et al. 1965; Lacy & Swatek 1974).  However, only a few positive isolations from 

environmental samplings have been obtained in highly endemic areas in the United States 

(Stewart and Meyer 1932; Emmons 1942; Maddy 1965). The scarce environmental 

evidence for Coccidioides spp. seems to be in disagreement with the high incidence rates 

obtained for the disease.  Detection of the fungus in the environment remains a critical 

challenge to modeling the source of disease (Barker et al., 2012). 

 On a regional scale, the major predictors of disease are climate, soil disturbance, 

and dust or wind events (Pappagianis 1994; Comrie 2005; Comrie and Glueck 2007, 

Tamerius and Comrie, 2011).  However, at finer scales, the ecology of the fungus 

remains obscure and largely unstudied (Cox and Magee, 2004).   

 Infection usually occurs following activities or natural events that disrupt the soil, 

resulting in aerosolization of the fungal arthrospores (Schneider et. al., 1997).  Wind 

erosion may contribute to spore dispersion.  Evidence suggests that anthropogenic or 

human-induced soil disturbance generates dispersal of spores.  Outbreaks of the disease 

have been associated with soil disruption, archeological digs, agriculture, and 

construction (Cairns et al., 2000; Park et al. 2005, Fisher et al., 2007).  Coccidioides spp. 

is associated with alkaline soil that has a high salt content, rodents, rodent burrows and 

Amerindian middens (Swatek, 1970).  Figure 1 illustrates a hypothetical synoptic model 
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for coccidioidomycosis, including ecological, exposure, and epidemiological components 

(Tabor, 2009).   

 

1.4 Rodent hypothesis for coccidioidomycosis reservoir  

 Emmons (1942), a senior U.S. Public Health mycologist, proposed a rationale for 

a rodent reservoir of coccidioidomycosis.  He based the rationale on the difficulty to 

isolate Coccidioides spp. from the soil.  Further, it seemed improbable that a fungus 

which is so virulent for man and animals should have a natural habitat as a saprophyte in 

the soil.  A search for an animal reservoir was indicated, and the presence of coccidioides 

spores in wind-blown soil would therefore be due to contamination from infected 

animals.   

 Emmons and Ashburn (1942) trapped and examined 303 wild rodents obtained 

from five sites at various seasons at the San Carlos Indian Reservation in Arizona.  

Coccidioides spp. were isolated as granulomatous lesions from the lung in 15 percent of 

the pocket mice and 17 percent of kangaroo rats.  The frequency and chronic nature of 

the lesions suggested to the authors that rodents constitute a natural reservoir for the 

disease.   

 Egeberg and Ely (1956) collected over 500 soil samples in the southwestern 

sector of the San Joaquin Valley at ground surface and below ground surface, and from 

the walls of animal burrows. Overall, Coccidioides spp. were recovered in 7% of the total 

samples.  However, Coccidioides spp. was recovered in 13.6% of samples from the walls 

of animal burrows, as opposed to 3.4% positive from the random samples (statistically 

significant). For the dry season, 4.2% of samples collected were positive, compared with 
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16% in wet season.  They noted that the dry season positive samples came from 

subsurface samples, and wet season positives came from the surface samples.  They 

suggested that the surface samples were sterilized by the heat from the dry season, and 

that animal burrows offered a conducive environment to the growth and concentration of 

Coccidioides spp.  They postulated that burrows afforded protection from the very high 

summer surface temperatures, higher nitrogen content, and a collecting receptacle for 

fungi picked up from the surface by the tenant’s fur. 

 Maddy (1957) noted that most of the fungi that cause deep mycoses in man and 

animals exist in nature as saprophytes in soil, on organic debris, or on vegetation.  He and 

his co-workers isolated Coccidioides spp. from two species of rodents (P. formosus and 

Citellus leucurus) collected in the St. George area of Utah.  He also reported that dogs 

can have disseminated disease, particularly with liver involvement.  They occasionally 

shed the parasitic form of the organism in their feces.  In a few days, the saprophytic 

form propagates sufficiently to produce infective arthrospores.  

 Maddy and Creceluis (1967) conducted studies on the role of the infected animal. 

Tissues and entire carcasses of mice, dogs, and cattle, infected with Coccidioides spp., 

were buried at two sites in Arizona identified by soil sampling as Coccidioides free.  

Follow-up soil samplings, over a seven-year period, identified these sites as sometimes 

harboring Coccidioides spp., while samplings from nearby areas were essentially 

negative. The research suggested that infected animal carcasses seed small surrounding 

areas of soil with the organism. 

 Among Coccidioides animal infection, wild rodents are the most reported in 

literature (Baptista-Rosas et al., 2012).  Previous research found positive isolation in 
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several species of mice and rats.  Of these, higher prevalence was found in kangaroo rat 

(Dipodomys merriami, 17 %) and desert pocket mice (Chaetodipus penicillatus, 15 %). 

Other species reported were ground squirrels (Citellus ssp) and grasshopper mice 

(Onychomys torridus). 

 

1.5 Construction as a source of Coccidioides spp. dissemination 

 Point-source outbreaks of coccidioidomycosis are occasionally reported.  They 

are associated with soil-disturbing activities in endemic areas such as archaeological digs, 

construction, military maneuvers, and outdoor group activities (Peterson et al., 2004).  

For example, an outbreak of coccidioidomycosis in a 12- person construction crew is 

reported in Cummings et al., 2010.  Before infection, they participated in soil excavation 

for underground pipe installation on Camp Roberts Military Base, California.  Ten 

workers developed symptoms of the disease or had serologically confirmed disease.  In 

another example, Cairns et al. (2000) document a cluster of coccidioidomycosis in 

Washington state residents who had recently returned from Tecate, Mexico, where they 

assisted with construction projects including ground excavation for two swimming pools.  

Twenty-one serologically confirmed cases of the disease resulted, and C. immitis was 

subsequently isolated from soil samples in Tecate by use of the intraperitoneal mouse 

inoculation method. 

 Coccidioidomycosis is a recognized occupational illness. The Centers for Disease 

Control and Prevention considers workers engaged in soil-disrupting activities to be 

populations at risk for the disease (CDC, 2013).  The highest occupational rates of 

coccidioidomycosis are observed among agricultural, construction and mining workers, 
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who are likely to have the greatest dust exposure.  Human soil-disrupting activity, such as 

digging in endemic areas, is the most important determinant of coccidioidomycosis 

incidence in California (Das et al., 2012).   

  

1.6 Spatial technology 

 A geographic information system (GIS), with its ability to manage and portray 

spatial data, has become the dominant tool in geography.   A geographic information 

system (GIS) is an integrated set of tools and methodologies for collecting, storing, 

retrieving, analyzing, and displaying spatial as well as non-spatial attribute data.  It has 

transformed a variety of health analyses and the structuring of public data (Meade and 

Earickson, 2000).    

 Perhaps the most important source for the development of the GIS, and its data, is 

remote sensing (Meade and Earickson, 2000).  Satellites provide an enormous amount of 

digital data in multiple bands of the electromagnetic spectrum.  Continuous and 

repetitious image collection allows differentiation of land cover or usage, and provides a 

platform for monitoring for change.  Methodologies for the processing of remotely 

sensed data generate a variety of raster data products.  Figure 2 illustrates use of remote 

sensing data for studies assessing the contribution of rodents to human disease. 

 

1.7 Study area 

The study is situated in the Sonoran Desert, an arid region stretching from 

southeastern Arizona, across Sonora, Mexico and through most of Baja California.  The 

Sonoran Desert is characteristic for its semi-arid climate, mild winters and a bimodal 

rainfall pattern.  Mountain ranges, volcanic hills, bajadas (coalesced alluvial fans), valley 
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floors, washes and arroyos (steep-sided gulches) are typical of its geomorphology 

(Hoffmeister, 1986).  The visually dominant elements of the landscape are two 

characteristic life forms:  legume trees and large columnar cacti (Arizona-Sonora Desert 

Museum, 2013).   

The Lower Sonoran Life Zone (LSLZ), based on Merriam’s elevation-

precipitation life zones for the southwest (Merriam and Steineger, 1890), further 

delineates the study area.  The LSLZ are the lower elevation parts of the desert (generally 

< 1000 m).  The LSLZ stretches, in Pima County, Arizona, from the relatively pristine, 

sparsely-populated Organ Pipe Cactus National Monument, situated in the western half of 

the county, to the Tucson metropolitan area in the eastern half.  

A ring of communities, unincorporated urban development, and undeveloped 

areas surround the city of Tucson.  Here, thousands of acres of the Sonoran Desert are at 

the forefront of urbanization, and hundreds of acres have been bladed for the construction 

of houses and commercial strip malls (AIA, 2007).  Between 1980 and 1990, the city’s 

area increased by over 50 percent to approximately 600 km
2
 through the annexation of 

unincorporated land.  The regional population has also experienced a doubling in a 

similar time period.  The population of Pima County is approximately one million 

(Census, 2012). 

 

2. Data and methods 

2.1 Rodent abundance maps 

 We built spatial data sets for abundance of ten nocturnal desert rodent species and 

several rodent groupings.  The models were constructed with automated regression 
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methods using remotely-sensed terrain variables including thermal radiance, a vegetation 

index, image texture (or pixel diversity), and a suite of topographical variables (elevation, 

slope, aspect easting and northing, curvature and distance to the nearest wash).  Images 

were spatially filtered with a 5x5 low pass median window in order to simulate sampling 

from a rodent trapping plot (approximately 90m or 8100m
2
). 

 The thermal radiance, vegetation index and texture were generated from a June 

1996 Landsat Thematic Mapper (TM) image. We looked for an image early in the study 

period for characterization of the landscape in advance of spectral changes associated 

with urban growth occurring in the region as the study progressed.  The thermal radiance 

is derived from Landsat Band 6 (thermal infrared) calibrated digital numbers and rescaled 

to at-sensor spectral radiance using gain and offset coefficients provided in Chander et al. 

(2009).   

 We converted the June 1996  reflective image to atmospheric-corrected surface 

reflectance using the cosine approximation model (COST; Chavez, 1996).  The COST 

model implements an improved dark-object atmospheric correction for Landsat TM 

multispectral data (bands 1-5 and 7).  We prepared a Soil Adjusted Vegetation Index 

(SAVI; Huete, 1988) from the spatially-filtered annual median red and near-infrared 

images.  The SAVI, derived from the Normalized Difference Vegetation Index (NDVI), 

incorporates a canopy adjustment factor to minimize soil noise inherent in the NDVI by 

accounting for differential red and near-infrared extinction through the canopy.  We also 

generated a texture image from the SAVI using a variance, 2nd order operator on a 5x5 

moving window.    
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 Regression models for rodent abundance were obtained by comparisons to rodent 

trapping data from the Organ Pipe Cactus National Monument (ORPI) in southwestern 

Arizona.  Pianalto and Yool (in progress) describe image processing and model 

development in more detail.  Abundance values are based on count data for two night 

annual trapping events, and the values are adjusted for sprung traps and recaptures 

(Holm, 2006).  Areas with predictor variables beyond the ranges of the original ORPI 30-

plot data set were masked out to avoid unjustified extrapolation.   

 Models were extrapolated to from ORPI abundance and ORPI-area images 

(Landsat path 37, row 38) to eastern Pima County (Landsat path 36, row 38; NASA, 

2011).  Overlap of the two satellite paths allows comparisons of histograms for 

extrapolation (Figures 3 and 4).  An additional mask was applied to remove small 

amounts of agriculture areas northwest and south of Tucson, and mining areas south of 

Tucson. 

 The regression model for desert pocket mouse abundance, Chaetodipus 

penicillatus (CHPE), is shown in Figure 5 as an illustration.  Maps of rodent abundance 

distribution in eastern Pima County for the desert pocket mouse (CHPE), the Merriam’s 

kangaroo rat, or Dipodomys merriami (DIME), the heteromyid rodent group (CHBA, 

CHIN, CHPE, PEAM, DIME, DISP), and the murid rodent group (NEAL, ONTO, and 

PEER, SIAR)  are shown in Appendix 1 of this article.   
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2.2 Construction-related soil disturbance metric 

 We generated spatial data for construction-related soil disturbance using image 

differencing of Landsat TM band 5 (mid-infrared).  Pianalto and Yool (2013) provide 

more detail on preparation of the construction-related soil disturbance data set. 

Thresholded annual change images were generated for the period of study, 1994-2006, 

and spatial coordinates and areal amounts of disturbance were prepared for comparisons 

with rodent and coccidioidomycosis data.   

  

2.3 Coccidioidomycosis incidence data 

 Coccidioidomycosis incidence data are obtained from the Arizona Department of 

Health Services.  Processing for the incidence data is described in more detail in 

Tamerius and Comrie (2011).  Case data were processed to date of exposure based on 

symptom onset dates, diagnosis dates, and estimated coccidioidomycosis incubation 

period.  Tamerius and Comrie further prepared detrended data to remove the strong linear 

trend observed across the study period for climatic studies;  we used the non-detrended 

data since we hypothesized that construction-related soil disturbance contributes to the 

increasing linear trend.  Monthly incidence per 100,000 were estimated using population 

estimates provided by the U.S. Census Bureau.  The monthly averages were further 

aggregated to annual May-to-May averages for the period of this study to match the 

temporal period of the construction disturbance data set.  County-wide data and data 

aggregated to zip-codes were prepared. 
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2.4 Data extraction 

 The rodent abundance and construction-related soil disturbance rasters were 

entered into a GIS for comparisons and extraction to county-wide and zip-code 

aggregations.  The construction related soil disturbance metric is derived from the 

dimensions of the Landsat TM pixel, 30m or 900m
2
.  Figure 6 shows construction-related 

soil disturbance pixels, converted to points, with the Merriam’s kangaroo rat abundance 

map for the southeastern Tucson peripheral area during the 1996-1995 change period.  In 

this manner, the soil disturbance metric can be adjusted or weighted for rodent 

abundance. 

 An average rodent abundance value was extracted for each zip code.  The count 

of soil disturbance pixels was also extracted for each zip code and each annual period; 

these were normalized by zip code area.  Total disturbance counts, zip-code and county-

wide, were also determined by summing up all years.  Finally, each disturbance point was 

associated with a rodent abundance value for all species and groupings of rodents.  

 

3. Results 

3.1 Scale and extent 

 Spatial scale of the soil disturbance and rodent abundance models are defined by 

Landsat TM pixel size, 30m.  Comparisons to coccidioidomycosis incidence, at zip code 

and county level aggregation, obligate up-scaling the predictors.  Figure 7 shows Tucson-

area zip codes derived from U.S. Census Bureau shapefiles.  Temporally, the study 

period ranges 1994-2006.   Incidence data, available at monthly granularity, is upscaled 

to annual May-to-May periods to match the scale of the construction disturbance change 
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images.  This results in annual and 12-year combined study period comparisons at zip 

code and county levels of incidence with disturbance.  The rodent abundant data are 

static, as the models are based on annual averages of abundance and environmental data 

for the period between 1993 and 2007.  Figure 8 shows potential temporal and spatial 

scale variation for models. 

 

3.2 Soil disturbance comparisons with incidence 

 Figure 9 plots a bar chart comparison of annual construction-related disturbance 

values and coccidioidomycosis incidence, both county-wide, for each of the twelve years 

of the study period (Model C).  Spearman’s rank order comparison of the two data sets 

shows a statistically significant correlation of 0.81 (p-value 6.8E-4).  Figure 10 displays 

the same comparison estimated by linear regression.  A statistical significant relationship 

is also estimated (R
2
 = 0.49, p-value = 0.012), despite the small number of observations.   

Non-linear exponential and power models improve the correlation.  Statistically 

significant linear and power correlations are preserved when two potential outliers, the 

last two annual periods, are removed (R
2
 of 0.43 and 0.50 respectively, n = 10). 

 Spearman’s ranked order correlation comparison between incidence and soil 

disturbance was performed for each individual zip code (12 annual data points each, 

Model D).  Figure 11 displays the classified rank order coefficients for each zip code.  

The overall trend is for high correlation in zip codes at the periphery of Tucson, and 

neutral or no correlation at inner or core Tucson city zip codes.  The highest correlation 

coefficient was 0.818 at zip code 85746 located southwest of Tucson. 
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 Model C, or comparison of total disturbance and incidence over the 12 year study 

period with zip codes as observations, did not result in a statistically significant 

relationship.  However, if the 38 zip codes are separated into two groups, a periphery 

group and a core group, the periphery demonstrates a statistically significant relationship 

(R
2
 = 0.52; p-value 0.0012).  Figure 12 provides a summary of statistical tests. 

 

3.3 Rodent abundance comparisons with incidence 

 Average values of rodent abundance for rodent species and groupings were 

extracted for each zip code.   This is the only comparison possible with the study design, 

as the rodent abundance maps represent 12-year averages.  They are therefore static 

temporally.  Furthermore, only periphery zip codes (n=17) were used in comparisons, 

based on the success of the soil-disturbance metric described in Section 3.1.2 with this 

subset. 

 The mean abundance for the desert pocket mouse, or Chaetodipus penicillatus 

(CHPE), performed best of the rodent abundance tests, with an adjusted R
2
 of 0.25 (p-

value 0.02).  This model was derived from the SAVI vegetation index, aspect-northing, 

and thermal radiance from the scene (Figure 5).   The valley type grouping (CHPE, 

PEAM, DIME, DISP, and ONTO) and all rodent species also generated models, but these 

were barely statistically significant (0.05 criteria).   

 Similar comparisons were performed with the individual biophysical variable 

images used to build the rodent models.  The texture image derived from the SAVI and 

the curvature derived from the digital elevation model generated passing models with 

adjusted R
2
’s of 0.26 and 0.18 respectively (p-values 0.02 and 0.05).  Combining the 



161 

 

texture and curvature into a multivariate model improved the correlation to an adjusted 

R
2
 of 0.40 (p-value 0.01).   

 

3.4 Combined abundance and disturbance comparisons with incidence 

 We performed an automated stepwise regression on the periphery zip code data 

set (n=17) of the 12 year, total study period disturbance count values and the average 

abundance values in the zip code for each rodent species and grouping.  Default entrance 

and exit tolerances for the F-statistic p-values (0.05 and 0.10, respectively) were used.  

With all the possible combinations of disturbance and rodent abundance variables, the 

automated procedure resulted in a model with the construction disturbance count as a 

single variable; i.e. no rodent abundance improved the disturbance model.  Combining 

the best performing rodent abundance model, CHPE, with soil disturbance count, for the 

periphery zip code, full study period data set, slightly improved statistics above 

disturbance counts alone (Adjusted R
2
 of 0.52 and 0.48, respectively). 

 

4. Discussion 

 Spatial and temporal resolution are key components in this study’s design.  The 

resolution of the Landsat TM (30m pixel) is well-matched for the evaluation rodent plots 

(90m) and construction disturbance (average 480m dimension).  The extent of Landsat 

TM imagery (approximately 185km scenes) is appropriate for data storage and 

processing requirements of a regional study.     

 Rodent abundance comparisons, based on zip code averages,  for the most part 

did not indicate any statistical relationship with coccidioidomycosis incidence.  The 
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rodent model was static temporally. This perhaps constrained the investigation, as rodent 

populations vary significantly seasonally and inter-annually.  Whether or not improved 

temporal resolution would have affected results is untested.   Models built with applying 

a rodent abundance weighting to each construction soil disturbance pixel have yet to be 

tested. 

 Coccidioidomycosis incidence data is available at zip code granularity; this may 

be a sufficient match considering exposure models for spore dissemination from a 

disturbance site.  The pathogen can be carried or dispersed by wind, or by movement of 

equipment, vehicles, and people.   However, the zip codes in Pima County vary widely in 

size, with larger areas in the periphery of Tucson.  Although the disturbance count was 

normalized by area, the large discrepancy in size between the central and periphery zip 

codes may introduce scale issues in modeling.   

 Statistically significant relationships were observed between coccidioidomycosis 

incidence and soil disturbance at both spatial scales; this enhances the conclusion that 

construction related soil disturbance, estimated by the metric reported here, plays a direct 

relationship in dissemination of the disease.  Variations in spatial scale, in this case from 

county level to zip code level, provided a useful means to ascertain relations of 

coccidioidomycosis incidence and soil disturbance.   

 Coccidioidomycosis incidence in Arizona has seen a progressive, linear increase 

over the previous decade and a half.  This increase is often attributed to the disease 

reporting mandate.  However, the region has grown significantly in the same period, 

despite periodic booms and busts.  Results from this study suggest that construction soil 

disturbance is a factor in this trend. 
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 In summary, using satellite imagery, or a synoptic view, appears to sufficient for 

estimating soil disturbance resulting from construction projects.  However, it may be 

insufficient for assessing the hypothesis of a rodent contribution to coccidioidomycosis 

incidence.  In this case, improved theoretical development into the precise reason(s) for a 

rodent association, and/or  more mechanistic models, are expected to improve the case 

for a remote sensing role.  
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6. Figures and Tables 

 
Figure 1:  Synoptic model for coccidioidomycosis: ecology, exposure and epidemiology (Tabor, 

2009).  Hypothesized rodent and construction soil contributions to the pathway are outlined in 

circles or squares.  
 

  

 

 

 



165 

 

Figure 2:  Role of remote sensing in assessing rodent contributions to human disease (Mills and 

Childs, 1998). 
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Figure 3:  Landsat image overlap.  Rodent abundance models are generated with biophysical 

variables derived from Landsat TM 5 path 37 and row 38 imagse and compared with abundance 

data obtained from the the Organ Pipe National Monument.  Models are extrapolated to eastern 

Pima County and the Tucson metropolitan area, which are situated in Landsat path 36 and row 

38.  An area of overlap exists between both image paths.  Surface radiance images derived from 

Landsat band 6 (thermal infrared) for both paths are shown below.  The background of the path 

36 image obscures the eastern portion of the image on the path 37 image in this display.  A region 

of overlap is highlighted by the box on the images.   

 
 

 

Figure 4:  Histograms of the highlighted overlap areas of the two Landsat path images shown in 

Figure 5.  The histograms show a strong degree of correlation, and supports extrapolation from 

the ORPI scene to the eastern Pima County scene in a different Landsat image collection path. 

 



167 
 

Figure 5:  Abundance model predicted by stepwise linear regression for Chaetodipus penicillatus 

(CHPE, desert pocket mouse) from trapping data and images at the Organ Pipe Cactus National 

Monument in southwestern Arizona.  The overall adjusted coefficient of determination is 0.49 (p-

value 4.7E-4).   SAVI is the Soil-Adjusted-Vegetation Index.  Aspect is the northing ranging form 

-1 due south to +1 due north, and Thermal Radiance is derived from thermal infrared imagery.   

Variable Coefficient Standard Error p-value 

SAVI 708.5 213.0 0.0026 

Aspect_N -24.6 6.5 0.00077 

Thermal Radiance 12.3 7.1 0.092 

Constant -204.8 93.0 0.037 
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Figure 6:  Construction-related soil disturbance pixels, shown as blue/red or dark points are 

displayed on an abundance map for Merriam’s kangaroo rat (Dipodomys merriami, or DIME).  

The soil disturbance map is generated from thresholded Landsat TM band 5 (mid-infrared) 

imagery, and the DIME abundance map is generated from Landsat TM band 6 (thermal infrared) 

imagery.  GIS allows a platform to extract a rodent abundance value and weight each disturbance 

point by its abundance value to generate coccidioidomycosis predictive models using a 

combination of both environmental variables. 
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Figure 7:   Study area including eastern Pima County, Arizona and the metropolitan region of 

Tucson.  Aggregation of data to eastern county-wide and to zip codes is accomplished for 

statistical investigations.  Rodent abundance and construction soil disturbance data is derived 

from Landsat TM 5 satellite imagery, and a typical northern edge of the image is shown. 
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Figure 8:  Temporal and spatial aggregations of the data sets in multiple ways allow for 

interscale comparisons.  
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Figure 9:  Comparison of coccidioidomycosis incidence and construction-related soil disturbance 

area, both aggregated to annual May to May periods over the period of study (1994-2006).  The 

relationship is statistically significant, with a Spearman’s rank order rho of 0.81 (p-value 6.8E-4). 
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Figure 10: Comparison of coccidioidomycosis incidence and construction-related soil 

disturbance area, both aggregated to annual May to May periods over the period of study (1994-

2006).  This is the same comparison as displayed in Figure 9, but with a linear regression test.  

The relationship is statistically significant, with an adjusted coefficient of determination of 0.49 

(p-value 0.012).  A nonlinear power regression results in improved correlation. 
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Figure 11:  Independent Spearman’s rank order correlation testing is performed on each zip code, 

using its respective coccidioidomycosis incidence and soil disturbance values, both aggregated to 

12 annual observation data points.  Higher rank order correlation, shown in red and orange, is 

observed  in the periphery areas of the Tucson metropolitan area.  These areas are also 

experiencing the most change associated with urban growth, which is expected to generate more 

construction-related fugitive dust.  The core or central city zip codes,  generally show little or no 

correlation. 
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Figure 12: summary of linear and multivariate linear statistical comparisons between 

coccidioidomycosis with rodent abundance and soil disturbance metrics.  Statistically 

insignificant models are shown with a dash. 

Predictor 

Variables 

Spatial 

Aggregation 

Temporal 

Aggregation 
Observations 

Adj. 

R
2
 

p-

value 

soil disturbance county annual 12 0.49 0.012 

soil disturbance + 

precipitation 
county annual 12 0.65 0.004 

soil disturbance zips, all annual 456 - - 

soil disturbance zip, all total 12 year period 38 - - 

soil disturbance zip, periphery total 12 year period 17 0.48 0.001 

CHPE, desert 

pocket mouse 
zip, periphery total 12 year period 17 0.25 0.02 

soil disturbance + 

CHPE 
zip, periphery total 12 year period 17 0.52 0.002 

texture of SAVI zip, periphery total 12 year period 17 0.26 0.02 

texture_SAVI + 

curvature 
zip, periphery total 12 year period 17 0.40 0.01 
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Appendix 1.a  Abundance model for the desert pocket mouse (Chaetodipus penicillatus, or 

CHPE).  This model is generated with SAVI (Soil-Adjusted-Vegetation Index), Aspect northing 

(ranging form -1 due south to +1 due north), and Thermal Radiance (derived from thermal 

infrared imagery).  Masked areas, shown in gray, are areas outside the ranges of predictive 

variable in the original model, or an agriculture and mining area mask. 
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Appendix 1.b:   Abundance map for heteromyid rodent grouping, including CHBA, CHIN, 

CHPE, PEAM, DIME, DISP species of rodents.  These are the pocket mice and kangaroo rats.  

This model is generated with surface radiance and a soil adjusted vegetation index (SAVI). 
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Appendix 1.c:   Abundance map for murid rodent grouping, including NEAL, ONTO, PEER, 

SIAR species of rodents (pack rat, grasshopper mouse, cactus mouse and cotton rat).  This model 

is generated with surface radiance and a texture of the soil adjusted vegetation index (Text-

SAVI).  
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