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ABSTRACT 

The purpose of a water distribution system (WDS) is to deliver the required amount of water 

to the customer under the desired pressure and quality. However, demand change and component 

failure result in low pressures at customer taps and make it difficult to achieve the goal. To mitigate the 

impact of the disturbances, system performance measure such as robustness and resilience can be 

considered in the WDS design and operation. Robustness is generally defined as an ability of the systems 

to maintain its function under a defined set of disturbance. On the other hand, Resilience is a systemôs 

ability to prepare and recover from a failure. The goal of this dissertation is to develop methodologies to 

enhance WDS robustness and resilience. 

In robustness-based design, reliability has been considered. Reliability is generally defined as the 

systemôs ability to provide an adequate service to customers under uncertain system condition and 

measured by the probability that stochastic nodal pressures are greater than or equal to a prescribed 

minimum pressure. However, although improving reliability will improve system robustness, the question 

is how the reliability index will improve system robustness. Robustness incorporates the variation of 

system performance; an additional aspect of system performance that reliability does not encompass.  

Pipe bursts are the most common failure in WDS. Therefore, promptly detecting and locating 

bursts will decrease the failure duration and increase system resilience. While many burst detection 

methods are available, identifying the method with the highest detectability is important to system 

owners/operators. However, to date, no cross comparisons of these methods have been completed for 

burst detection using a common data set. In addition, most traditional burst detection methods do not have 

a mechanism to include system operational changes.  

This dissertation is composed of three journal manuscripts that address these three key issues on 

WDS robustness and resilience. For WDS robustness improvement, a new robustness index is developed 

and used for multi-objective robustness-based design. The robustness-based design is compared to 
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conventional reliability-based design. For WDS resilience improvement, the best method among six 

Statistical Process Control (SPC) methods is identified in terms of detection effectiveness and efficiency. 

Finally, a burst detection method applicable under system operational condition change is posed.  
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1. INTRODUCTION 

The purpose of a water distribution system (WDS) is to deliver the required amount of water to 

the customer under the desired pressure and quality. A WDS consists of nodes, pipes, pumps, tanks, 

reservoir, and valves. A node represents a pipe junction and acts as the lumped demand point for a group 

of individual houses and buildings in its vicinity. Pumps lift water against gravity and friction and tanks 

store water to be used in future. Valves control the open/closure of pipe and change the flow direction. 

Operators generally control pumps and tanks so that system-wide pressures and tank water level 

are maintained within acceptable limits. Acceptable range of pressure is between 30 psi (21 m) and 100 

psi (70 m). System-wide pressure varies as demand at nodes changes. To meet high demand, more water 

is delivered from sources resulting high pipe flows. The high pipe flows increase head loss in the pipes. 

Therefore, pressure at nodes decrease when high demand time (e.g. peak hours). 

 Failures such as pipe bursts result in the degradation of pressure at nodes. Pipe bursts are a 

common failure mechanism in WDS and occur when a pipe ruptures from pipe deterioration, excessive 

pressure, and ground shifts caused by temperature changes or earthquakes. A pipe burst results in water 

loss out of the system to the surrounding soil through the break in the pipe. Except in unusual cases, the 

water loss from the system increases pipe flow rates and head losses. 

 Demand increases and pipe bursts result in the degradation of system functionality with lower 

pressures at customer taps. To mitigate the degradation of system functionality, system performance 

measure can be considered in the WDS design and operation. Robustness and resilience has been widely 

used as system performance measures in disciplines from environmental research to materials science and 

engineering, sociology, and economics. Robustness is generally defined as an ability of the systems to 

maintain its function under a defined set of disturbance (Lansey, 2012). Resilience is a systemôs ability to 

gracefully degrade and subsequently recover from a failure (Lansey, 2012). 
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Figures 1 and 2 describe robust and resilient system and show time series of system functionality 

of two different systems. Functionality is the system performance level. Assume that the same demand 

changes occurred in the two systems. In Figure 1, the functionality is more stable and failures are less 

severe thus Network 1 is described as being more robust than Network 2. Network 2 has failed more 

frequently with more variation in system functionality compared to Network 1 that avoids failures.  

On the other hand, resilience describes system performance during failure conditions. Figure 2 

shows two systems with different level of resilience. The same failure occurred in the two systems at the 

time an arrow is indicating (Figure 2). The consequences of failure in Network A are less than Network B. 

The failure is less severe and the time to recover to normal condition is shorter in Network A than 

Network B. Therefore, Network A is described as being more resilient than Network B.  

 
(a) Network 1 

 
(b) Network 2 

Figure 1. Two systems with different level of robustness 

 
(a) Network A 

 
(b) Network B 

Figure 2. Two systems with different level of resilience 
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This dissertation proposes approaches to efficiently improve WDS robustness and resilience. To 

improve WDS robustness, a new WDS design model is developed. To improve WDS resilience, an 

effective and efficient burst methodology is proposed for pipe burst detection. Further, traditional burst 

detection methods are compared using a common dataset to identify the best method for system resilience 

improvement.  

1.1. Hydraulics Background 

Hydraulic relationships in a WDS under steady conditions are defined by conservations of mass and 

energy. Conservation of mass can be written by using the nodal flow continuity, which must be satisfied 

at each node: 

, ,i in i out

j j i

j J j J

Q Q q
Í Í

- =ä ä         (1) 

where jQ  are the pipe flows and iq  is the nodal demand; a positive value of the pipe flow means that the 

flow is entering a node. ,i inJ  and ,i outJ  are the sets of pipes supplying flow to and carrying flow from 

node i, respectively. 

The conservation of energy can be written by using a pipe headloss equation. The equation for pipe i 

connecting nodes A and B is given as  

,A B L jH H h- =          (2) 

where AH  and BH  are the total energy in the fluid at nodes A and B, respectively, and ,L jh  is the head 

loss in pipe j. The HazenïWilliams equation is commonly used to estimate the head loss in WDS pipes: 
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where uK  is a unit constant and D, L, Q, and HWC  are the diameter, length, flow, and HazenïWilliams 

roughness coefficient, respectively, of the pipe. The WDS modeling software EPANET (Rossman, 2000) 

iteratively solves this set of nonlinear equations (Equations (1)ï(3)) using the gradient method (Todini 

and Pilati 1987). 

 Steady state simulation provides a snapshot of the system under time invariant condition. 

However, in practice, the pressure and flow vary over time in response to changing demands and tank 

conditions. These temporal variations can be modeled in unsteady analyses. In EPANET, a quasi-dynamic 

analysis in a so-called extended period simulation (EPS), is performed. An EPS is a series of steady state 

simulations in which nodal demands are assumed to vary through the analysis period in a series of 

discrete time steps.  



13 
 

1.2. Problem Statement 

WDS Robustness 

Cost is generally the most important criterion considered during WDS design. Generally, WDS 

design minimizes system costs while satisfying pressure requirements in the so-called least-cost design. 

However, the least-cost design does not provide redundancy or robustness in the system design when 

system demands vary from the design conditions. To overcome this shortcoming, an indicator of system 

performance that addresses uncertainties in system parameters is often considered. 

For example, Figure 3 shows two different cost designs. Thicker link indicates bigger pipe. Both 

designs satisfy the required minimum pressure requirement at all nodes and have a reservoir with the 

same fixed head. However, system costs are different. Design 1 is less expensive than Design 2 ($3M) 

since the pipe sizes are larger in the latter. With respect to cost, Design 1 is the better solution. However, 

under uncertain future demands, Design 1 may fail to meet the pressure requirements while Design 2 has 

more ability to withstand the changes. 

 

(a) Design 1 (cost: $2M) 

 

(b) Design 2 (cost: $3M) 

Figure 3, Two designs of different system cost 
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Reliability has been considered in the robustness-based WDS design. Reliability is generally 

defined as the systemôs ability to provide an adequate service to customers under uncertain system 

condition and measured by the probability that stochastic nodal pressures are greater than or equal to a 

prescribed minimum pressure usually through chance constraints in an optimization model. However, 

although improving reliability will improve system robustness, the question is how the reliability index 

will improve system robustness. Robustness incorporates the variation of system performance; an 

additional aspect of system performance that reliability does not encompass. In addition, reliability-based 

design requires the modeler to know or assume the probability distribution of demand and pipe roughness 

coefficients. Therefore, it is necessary to develop a better index for robustness-based design. 

 

WDS Resilience 

As mentioned earlier, pipe bursts are the most common failure in WDS. Therefore, promptly 

detecting and locating bursts will decrease the failure duration and increase system resilience. While 

many burst detection methods are available identifying that method with the highest detectability is 

important to system owners/operators. To date, no cross comparisons of these methods have been 

completed for burst detection using a common data set. Further, although detection probability (i.e., 

percentage of actual bursts that were identified) is an important metric, other measures such as time to 

detect and the false alarm rate have not been examined. Fine-tuning a method for detection probability 

may have negative consequences on those indicators. Therefore, comparing burst detection methods using 

a common data set and the detectability indicators is essential. 

Most burst detection method methods utilize system output measurements (e.g., pipe flows and 

pressure heads) that can be affected by system operational condition changes. If the system condition 

differs from the state under which methods was developed false alarms will be sounded.  
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In Figure 4, one of the two source pipes of a system is closed at 7:20 am from an unexpected 

event; as a result pipe flow rates change relative to the historic record. The black solid line is the historic 

mean of pipe flow rates under the condition two source pipes are operated and the dashed line is the 

statistical limits of the pipe flow rates. Most burst detection methods will consider this change as an 

anomaly because they do not have a mechanism to consider system operational changes. Subtler, more 

common operational changes such as the number of operating pumps similarly alter the pressure and flow 

distribution. Without inclusion of information on regarding those changes, false detections will result or 

methods will be limited to evaluating bulk flow measurements that are less sensitive to bursts.  Therefore, 

an important prerequisite for burst detection method is the consideration of system operational changes. 

Such a method is currently not available. 

 

Figure 4. False alarm due to flow rate change caused by a pipe closure 
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1.3. Literature Review 

Previous studies related to the topic of this dissertation are classified into three categories and 

reviewed in following sections: (1) Optimal WDS design; (2) traditional burst detection methods; (3) 

burst detection method applicable under system operational change. 

 

(1) Optimal WDS design  

Early studies of optimal WDS design minimized system costs while satisfying the minimum 

allowable nodal pressure requirement or least-cost designs (Schaake and Lai, 1969; Alperovits and 

Shamir, 1977; Lansey and Mays, 1989; Simpson et al., 1994; Savic and Walters, 1997). However, these 

formulations do not provide redundancy or robustness in the system design when system demands vary 

from the design conditions. To overcome this shortcoming, later optimization work considered broader 

indicators of system performance that addressed uncertainties to system parameters (Lansey et al., 1989; 

Xu and Goulter, 1999; Todini, 2000). 

Reliability has been the most popular measure for system performance. System reliability is 

generally defined as the ability of the network to provide an adequate service to customers under 

uncertain system conditions (Goulter, 1995) and measured by the probability that the stochastic nodal 

pressures are greater than or equal to a prescribed minimum pressure. Reliability indices have been 

included in an optimization framework: (1) as a constraint in the least-cost design problem to meet an 

allowable minimum reliability value (Lansey et al., 1989; Xu and Goulter, 1999; Babayan et al., 2005) or 

(2) as a second objective competing with cost in a multi-objective optimization formulation (e.g., Kapelan 

et al., 2005).  

Lansey et al. (1989) were the first to develop a least-cost design methodology by assuming that 

the nodal demands, pressure head requirements, and pipe roughness coefficients are variable in a chance 
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constraint model formulation. Xu and Goulter (1999) introduced least-cost design with reliability 

constraint and used the first-order reliability-method to quantify the uncertainties in the nodal pressure. 

Babayan et al. (2005) suggested a chance constraint-based least cost design of WDS under demand 

uncertainty using the integration-based approach to overcome the time requirements of Monte Carlo 

Simulation.  

The transition to multi-objective frameworks followed the development of efficient multi-

objective optimization algorithms such as Non-dominated Sorting Genetic Algorithm-II (NSGA-II, Deb 

et al., 2002). The trade-off between total cost and reliability was investigated in Pareto optimal solutions. 

Kapelan et al. (2005) first implemented a multi-objective optimal model using the robust NSGA-II to 

minimize total cost and maximize reliability considering uncertainties in water demand and pipe 

roughness coefficients. Latin hypercube sampling was used to quantify uncertainties in nodal pressure. 

Giustolisi et al. (2009) proposed an alternative index in multiple objective formulations to 

improve WDS robustness. While minimizing total cost, they also maximized the parameter Ŭ, that is 

equivalent to the standard normal deviate relating the mean pressure, its standard deviation and the 

minimum pressure requirement. The measure is an indicator of the difference between the mean pressure 

and the allowable minimum pressure (i.e., it has negative value if mean pressure is below the minimum 

requirement). Theoretically, to maximize this robustness index, the mean pressure should be increased 

while its standard deviation is decreased, resulting in the network with low relative pressure variations. 

 

(2) Traditional burst detection methods 

Over the last decade, many methods have been examined to detect bursts: artificial neural 

networks (Mounce et al., 2002; Mounce et al. 2003; Mounce and Machell, 2006; Mounce et al., 2010), 

state estimation (Andersen and Powell, 2000; Ye and Fenner, 2011 and 2013), Bayesian approach 

(Poulakis et al., 2003), Statistical Process Control (SPC) methods (Misiunas et al., 2006; Romano et al., 
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2010; Palau et al., 2012; Romano et al., 2012; Jung et al., 2013), and time series modeling (Quevedo et al., 

2010). All of these methods use measurements of system output parameters (e.g. pipe flow rate and 

pressure) that are collected by supervisory control and data acquisition (SCADA) monitoring systems. 

SPC methods are the most widely used (Misiunas et al., 2006; Romano et al., 2010; Palau et al., 

2012; Romano et al., 2012). SPC methods apply statistical theory to the system output parameters to 

identify non-random patterns that may be caused by bursts. SPC methods have been used in the quality 

control of manufacturing processes to detect defects in products, since early twentieth century 

(Montgomery, 2010).  

Romano et al. (2010) used the Western Electronic Company rules (WEC, 1958) in a real-time 

leakage detection model using the measured pressure data. The WEC method plots the measured pressure 

values on a Shewart control chart to determine whether a single value or a series of values represents an 

anomaly based on several identification rules. To test the method, Romano et al. used pressure data from 

13 sensors for five burst events induced by opening hydrants at different locations and times.  

Misiunas et al. (2006) used the cumulative sum (CUSUM) method to detect and locate WDS 

bursts. They applied CUSUM to a continuous flow record at the entry point of a relatively small network. 

Five different bursts were generated to test the method.  

Analyzing DMA inflow rates, Palau et al. (2012) applied the Hotelling T2 method for burst 

detection. Here, the Mahalanobis distance (T2) was calculated after performing principal component 

analysis (PCA) to decrease data dimensionality. After pre-processing to remove outliers, six months of 

hourly flow data was used as a test set. 

Robinson et al. (2005) applied two univariate and two multivariate methods to detect outliers in 

water quality data from a wastewater treatment plant. An outlier is a data point measured in random 

patterns (i.e., an in-control system) that is statistically away from the rest of the data and needs to be 

removed to obtain sound data for monitoring and modeling a system. Therefore, the outlier is often 
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caused by measurement error while an anomaly can be a signal of either the outlier or non-random pattern 

(i.e., an out of control system). 

The univariate methods were the z-score approach and Walshôs method. The z-score approach is 

quite similar to the WEC rules applied by Romano et al. in that it uses the three sigma control limit (CL) 

to identify an outlier. Walshôs method looks for unexpected gaps in the data. The Hotelling T2 method and 

its modified version suggested in Hadi (1992 and 1994) and Hadi and Son (1998) are multivariate 

methods applied for outlier detection in water quality data. The modified Hotelling T2 differs from the 

standard method by excluding outliers in the test statistic when examining if they are outliers. Robinson et 

al. (2005) came to the general conclusions that multivariate methods are more effective in identifying 

outliers while univariate methods have more chance of erroneous deletion of valid data. However, it is not 

clear that water quality and hydraulic conditions behave similarly.   

 

(3) Burst detection method applicable under system operational change 

No methods have been published for WDS burst detection under variable system operation. 

McKenna et al. (2012) studied the impact of hydraulic operational changes in water quality event 

detection. To avoid false alarms resulting from operational changes, they supplemented water quality data 

with multivariate change patterns of hydraulic operation such as releases of fresh water from a treatment 

plant. The multivariate water quality signals are fit with a polynomial regression model and the resulting 

regression coefficients were considered as a pattern. The multivariate pattern recognition through 

trajectory clustering reduced the number of false alarms by 68% in the observed water quality data 

(McKenna et al., 2012). However, there is not a unique and monotonic pattern in the hydraulic parameters. 

Therefore, it is not clear that the methodology is also a good solution for hydraulic conditions. 
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1.4. Summary of Literature 

For robustness-based WDS design, reliability-based (or chance constraint model) has been widely 

used. However, robustness incorporates the variation of system performance; an additional aspect of 

system performance that reliability does not encompass. Thus, the reliability index may not be the best 

formulation for obtaining a robust design. For example, the two systems of the same level of reliability 

can have different variations in system performance (Table 1). Although the reliability level in each 

design is the same, the degree of under-performance in the failure case is significantly more severe in 

Network 2. Thus, a reliability formulation does not possess all desired explanatory characteristics and an 

alternative (robustness-based) formulation may be useful for effective WDS design. 

 

Table 1. Critical nodeôs pressures of two systems under five disturbances (each disturbance has difference 

type and magnitude) 

Disturbances 
Pressure (m) 

Network 1 Network 2 

1 31 34 

2 28 28 

3 29 31 

4 27 22 

5 28 29 

Probability of meeting a 28.12 m pressure 

requirement 
80% 80% 

Variance of Pressure 2 14 

 

With rare exceptions, burst detection methods have been applied independently to different case 

networks. While many different types of SPC methods have been examined for burst detection, no cross 

comparisons of these methods have been completed for burst detection using a common data set. Further, 

although detectability (i.e., percentage of actual bursts that were identified) is an important metric, other 

measures such as time to detect and the false alarm rate have not been considered for evaluating burst 

detection methods. 
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Finally and most importantly, no approach has considered burst detection under system 

operational changes. Without inclusion of information regarding those changes, false detections will 

result or methods will be limited to evaluating bulk flow measurements that are less sensitive to bursts.   
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2. PRESENT STUDY 

2.1. Dissertation Outline 

The primary goal of this dissertation is to develop methodologies to enhance WDS robustness and 

resilience. For WDS robustness improvement, a new robustness index is developed and used for multi-

objective robustness-based design. The robustness-based design is compared to conventional reliability-

based design. For WDS resilience improvement, the best method among six SPC methods is identified in 

terms of detection effectiveness and efficiency. Finally, a burst detection method applicable under system 

operational condition change is posed. 

This dissertation is comprised of three journal articles in Appendices A to C. The goal is to 

examine the three main issues shown in the Figure 5. In the first paper, a robustness index is proposed to 

take into account the variation of WDS performance to uncertain conditions. The proposed index uses the 

coefficient of variation (CV) of stochastic pressures; avoiding the need to define the probability 

distribution. The robustness-based designs are compared to the traditional reliability-based design. Post-

optimization analyses were performed to examine the WDS resilience of the optimal systems by 

calculating system hydraulic availability (SHA) considering pipe breaks and fire flow conditions (Figure 

5). This manuscript has been accepted in ASCEôs Journal of Water Resources Planning and Management. 

In the second article, three univariate and three multivariate SPC methods are compared with 

respect to three performance metrics: detection probability, false alarm rate (first two are detection 

effectiveness), and time to detect (detection efficiency). The univariate SPC methods are the WEC rules, 

the CUSUM and the Exponentially Weighted Moving Average (EWMA) method. The three multivariate 

methods are the Hotelling T2 method and the multivariate versions of CUSUM and EWMA. This work 

was presented at 2013 World Environmental & Water Resources Congress in Cincinnati and is being 

extended in a publication submitted to Journal of Hydroinformatics. 
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The third paper develops a methodology to consider system operational change and detect bursts 

using a nolinear Kalman filter (NKF) to identify the system operational condition, estimate nodal group 

demands, and detect bursts. Several supporting efforts are reported first. The NKF and linear Kalman 

filter (LKF) performances are compared on their ability to estimate distribution system demands. The 

most informative measurement types for demand estimation and burst detection rates are also documented. 

As a base comparison, the NKF is compared to two conventional SPC methods (CUSUM method and 

Hotelling T2 method) with respect to several indicators under consistent operation conditions. Finally, the 

NKF is applied to general operation conditions. This work was presented at 2013 International 

Conference on Computing and Control for the Water Industry in Perugia, Italy and will be submitted to 

ASCEôs Journal of Hydraulic Engineering. 

These three studies make a unified dissertation that guides the ways to achieve a robust and 

resilient WDSs with respect to its design and management. 

 

 

Figure 5. Sequence of study 

 

  

ROBUST SYSTEM

Developing a robustness-based 
design formulation (Appendix A)

RESILIENT SYSTEM

Comparing six SPC burst detection 
methods (Appendix B)

Developing a burst detection 
method for system operational 
condition changes (Appendix C)
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Robustness-based Design of Water Distribution Systems (Appendix A) 

Least-cost design approach results in a network vulnerable to uncertain future condition. To 

overcome this shortcoming, broader indicators of system performance have been considered (Lansey et 

al., 1989; Xu and Goulter, 1999; Todini 2000). 

Reliability has been the most popular measure for system performance. System reliability is 

generally defined as the ability of the network to provide an adequate service to customers under 

uncertain system conditions (Goulter, 1995) and measured by the probability that the stochastic nodal 

pressures are greater than or equal to a prescribed minimum pressure.  

Although improving reliability will improve system robustness, the question is how the reliability 

index will improve system robustness. Robustness is generally defined as an ability of the systems to 

maintain its function under a defined set of disturbance (Jen, 2003; Lansey, 2012) and incorporates the 

variation of system performance; an additional aspect of system performance that reliability does not 

encompass. 

In addition, the reliability-based design methods (i.e., chance constraints) require modelers to 

know or assume the probability distribution of demand and pipe roughness coefficients. These probability 

distributions are generally not known and little data has been published to support their definition. In the 

previous reliability-based model formulations, the normal distribution was often assumed for demand, 

roughness, and the resulting pressures. However, the probability distribution can be an atypical shape 

(e.g., a bimodal distribution), making reliability estimation difficult. Predicting the input parameter 

distributions for some future state becomes more problematic. 

In this study, an alternative robustness index is proposed to take into account the variation of 

WDS performance to uncertain conditions. The proposed index uses the CV of stochastic pressures; 

avoiding the need to define the probability distribution. First-order second-moment (FOSM) approach is 

used for uncertainty quantification and NSGA-II is used to solve the multi-objective optimization 
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problem. Structural differences are identified in optimal designs using this new index and those 

determined from the conventional reliability-based design formulation for the Anytown network. Post-

optimization analyses were performed to examine the WDS resilience of the optimal systems by 

calculating SHA considering pipe breaks and fire flow conditions. 

 The following results are observed in this study: 

(1) The reliability-based design emphasized increasing the mean pressure to increase system 

reliability while the robustness-based design simultaneously standard deviation of pressure and 

increases the mean pressure. As a result, robustness-based design is more effective in introducing 

the system robustness than the reliability-based method.  

(2) In the example considered, robustness constrained solutions contain larger pipes in the main 

lines to the multiple pressure zones while reliability-based design is dominated by large pipes 

along the path leading to the node with lowest pressure. 

(3) Post-optimization analyses were completed to compute the SHA for the optimal solution 

obtained from two design approaches. SHA is a resilience indicator that considers the systemôs 

ability to supply adequate service during the abnormal conditions, i.e., pipe break and fire-flow 

conditions. Overall, robustness-based optimal designs have higher hydraulic availability and are 

less vulnerable to the two failure conditions. 

(4) Therefore, the robustness-based designs appear preferable to reliability-based design with 

respect to system resilience in a multi-objective WDS design model. 
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Improving Resilience of Water Distribution Systems through Burst Detection (Appendix B) 

Resilience is a systemôs ability to ñgracefully degrade and subsequently recover fromò a failure 

event (Lansey, 2012). Pipe bursts are the most common failure mechanism in WDS and occur when a 

pipe ruptures from pipe deterioration, excessive pressure, and ground shifts caused by temperature 

changes or earthquakes. Thus, promptly detecting and locating bursts will decrease the failure duration 

and increase system resilience. 

Pipe bursts cause a change in the signal in pressures and flow rates that are observable by 

SCADA monitoring systems. Among many SCADA-based burst detection methods, SPC method have 

been widely used and investigated how many bursts are detected among total bursts. From an operatorôs 

standpoint, burst detection is not the only indicator that is important and the objectives are more precisely 

stated as maximizing burst detection in the shortest time while avoiding identifying false alarms. This 

study focuses on comparing detection methodologies considering those three criteria. 

While many SPC methods have been examined for burst detection, no cross comparisons of these 

methods have been completed for burst detection using a common data set. Further, although detectability 

(i.e., percentage of actual bursts that were identified) is an important metric, other measures such as time 

to detect and the false alarm rate should also be examined since fine-tuning a method for detectability 

may have negative consequences on those indicators. 

This study compares three univariate and three multivariate SPC methods with respect to three 

performance metrics: detection probability (DP), false alarm rate (RF), and average time to detect (ADT). 

The univariate SPC methods are the WEC rules, the CUSUM and the EWMA method. The three 

multivariate methods are the Hotelling T2 method and the multivariate versions of CUSUM and EWMA 

(MCUSUM and MEWMA, respectively). To test the methods, nodal pressures and pipe flow rates were 

randomly generated using a real networkôs hydraulic model and the performance metrics are computed 

for alternative flow and pressure meters configurations for conditions with and without simulated bursts.  
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The following results are observed in this study: 

(1) Results indicate that system pressures are more sensitive to disturbances and provided higher 

detectability compared to flow meters because of more consistent non-random pressure patterns 

that occur after a burst.  

(2) However, in multivariate schemes pressure measurements caused relatively high RF due to 

the thin control ellipse resulting from high measurement correlation. 

(3) Univariate methods that incorporate past and present data performed better than univariate 

techniques that only consider short measurement histories and multivariate methods. In particular, 

the latter methods did not recognize small bursts that were detected by CUSUM and EWMA. 

(4) While a long record length helps in detecting small bursts and avoiding false detections in 

univariate methods, their value is not exploited in multivariate methods (Hotelling T2 method vs 

MCUSUM and MEWMA) because the methods are susceptible to natural outliers in the T2 

statistic. 

(5) Adjustments in the MCUSUM and MEWMA model parameters to be less sensitive to the 

outliers reduce their sensitive to identifying bursts and satisfactory balances could not be 

determined. 

(6) Overall, the univariate EWMA had the best efficiency and shortest average detection time 

(ADT) among the six SPC methods. Therefore, based on the network considered in this study, 

EWMA is the preferred burst detection method and pressure measurements are more valuable for 

identifying bursts compared to flow meter data. 
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Water Distribution System Burst Detection using a Nonlinear Kalman Filter (Appendix C)  

Most burst detection methods use measurements of system output parameters (e.g. pipe flow rate 

and pressure heads) that are collected by SCADA monitoring systems. Because the system output 

measurements can be affected by system operational condition changes, it will result in many false alarms 

if the system condition differs from the state under which methods was developed. Without inclusion of 

information on regarding those changes, false detections will result or methods will be limited to 

evaluating bulk flow measurements that are less sensitive to bursts.  

Model-based approaches, such as NKF, have proven useful in anomaly detection in auto-

correlated data (Montgomery, 2009). NKF has the advantage of representing the full nonlinear 

relationship between state and measurement variables compared to LKF. However, to the best of the 

authorsô knowledge, NKF has not been applied for WDS demand estimation or burst detection.  

This study employs the NKF to identify the system operational condition, estimate nodal group 

demands, and detect bursts. Several supporting efforts are reported first. The NKF and LKF performances 

are compared on their ability to estimate distribution system demands. The most informative 

measurement types for demand estimation and burst detection are also documented. As a base comparison, 

the NKF is compared to two conventional SPC methods (CUSUM method and Hotelling T2 method) with 

respect to the detectability indicators under consistent operation conditions. Finally, the NKF is applied to 

general operation conditions.  

The following results are observed in this study: 

(1) Incorporating pressure head measurements in the approximation causes the Jacobian matrix to 

approach singularity; resulting poor demand estimation. Thus, only pipe flow measurements are 

provided to the NKF. 

(2) In the single source system, LKF and NKF had similar accuracy with respect to demand 

estimation. However, NKF had a smaller root-mean-square-error (RMSE) than LKF in the dual 
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source system because of NKFôs full nonlinear hydraulic representation compared to a single 

linearization in LKF. 

(3) NKF using nodal group estimates resulted in a higher DP than using a standardized 

innovation process that compared pipe flow rates while both methods gave RF close to zero. 

However, a standardized innovation process detected bursts immediately while the demand 

estimates required a longer detection time. 

(4) An NKF-based algorithm that combined standardized innovation process and nodal group 

demand estimates merged the strengths of the two methods and gives the best joint DP-ADT 

results comparable to the SPC CUSUM method for consistent operations. 

(5) The combined detection algorithms also maintained high detectability/short detection times 

when operational changes were introduced. 
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2.2. Uniqueness of the Study 

The unique contributions achieved from this study for WDS robustness and resilience are highlighted in 

following section. 

 

(1) A better robustness index was proposed 

A new robustness index that can consider the variation of the stochastic nodal pressures has 

developed and proven to limit the range of variability of system function. To date, no one has considered 

the coefficient of variation of the stochastic nodal pressures for estimating WDS robustness. WDS design 

using this robustness index simultaneously decreases standard deviation of pressure and increases the 

mean pressure. 

(2) The variation of stochastic nodal pressures of reliability-based design 

The stochastic nodal pressuresô variance change with the system cost increase was first identified 

for reliability-based design. The decrease of the variance in reliability-based design was not effective 

compared to the robustness-based design. 

(3) Reliability and robustness-based design comparison with respect to a resilience measure 

This study investigated the impact of the two objectives on the network design. A resilience 

measure, SHA, of two optimal solutions was calculated for single pipe break conditions and for an 

extreme fire flow condition. This comprehensive comparison between reliability and robustness-based 

design using a resilience indicator has not been performed in any previous works. The robustness-based 

design with a robustness formulation improves resilience relative to the reliability formulation. 

(4) Design difference comparison of reliability and robustness-based design 
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The resulting designs from the two models in terms of the spatial pipe size distributions and 

pump/pipe sizes was compared. The design different indicates the differing influence of the two measures. 

This unique difference in designs has not been investigated before. 

(5) First application that consider pipe/pump designs in the robustness-based design 

This study identified that the range of robustness values in the pipe only design and that in 

pipe/pump design are different while the ranges of reliability values are same. Because the pump station 

in pipe/pump design has larger pressure variations and lower pressures at increasing demands, the 

pipe/pump designs are less robust compared to the pipe only design that is supplied by a fixed elevated 

reservoir. This contrast was not identified earlier since no other application considered pipe/pump designs. 

(6) Six SPC methods comparison using detectability indexes and common data set. 

In the previous works, each of SPC methods has been applied to detect different bursts occurred 

in different systems. No cross comparisons of these methods have been completed for burst detection 

using a common data set. In addition, this study is the first to consider false negative (type II error) and 

positive (type I error) rate for the burst detection performance comparison. 

(7) First application of multivariate methods with long system memory 

The MCUSUM and MEWMA method have not been applied for burst detection. This study is the 

first paper that presents the detectability of MCUSUM and MEWMA. 

(8) The indicators of detection effectiveness and efficiency 

The indicators of detection effectiveness (DP and RF) and efficiency (ADT) are developed. To 

date, no one proposed any index to measure the detection effective and efficiency of a burst detection 

method. Individual burst detection method has been applied to an independent case study without 

comparing between methods thus no need for the indicators. 
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(9) The type of meter resulting in high detectability 

Most previous works have applied either of pipe flow or pressure meters. Therefore, the most 

informative meter type was not identified. This study identified that pressure meter is more informative 

for burst detection compared to flow meter. The same number of pressure meter detected more events 

with fewer false alarms compared to flow meters. Pressure measurements are more consistent and less 

sensitive to demand variability compared to flow meters. 

(10) Burst detection under system operational condition change 

A methodology for burst detection under system operational condition change has not been 

developed. Therefore, applications were only applicable specific networks or network conditions such as 

networks supplied by gravity. This study proposed NKF to identify the system operational condition, 

estimate nodal group demands, and detect bursts. 

(11) Comparison the performance of LKF and NKF on demand estimation 

Because NKF has not been applied before, no comparison of LKF and NKF was performed with 

respect to their ability to demand estimation in WDS. NKF performance on demand estimation is 

compared to LKF for single and dual source systems that represent varying levels of nonlinearity. 

(12) Impact of including pressure heads measurement on demand estimation 

To examine the impact of including pressure head measurements on demand estimation, four 

different measurement sets are provided to NKF and the RMSE was calculated for each case. 

Measurement sets with more pressure measurements had higher RMSEs with the 14 flow measurements 

(no pressure heads measurement) having the lowest RMSE. 
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2.3. Conclusions and Future Work 

In the first study, an alternative robustness index is proposed to consider system robustness. As a 

constraint in an optimal design model, the robustness index limits the range of variability of system 

function by constraining the CV of stochastic pressures due to demand and pipe roughness variability. 

The robustness-based design with a robustness formulation improves resilience relative to the reliability 

formulation (Figure 5). 

This study has several limitations that future research must address. First, large networks with 

varying configurations should be examined to confirm this studyôs conclusions. Here, for a network with 

a single source, the robustness-based design included relatively large and consistent pipes in the main 

lines to the pressure zones. Thus, the robustness-based design performed better than the reliability-based 

design during failure events. However, if the network has multiple sources, the superiority of the 

robustness-based design could diminish due to the proximity of the source to demand points. Reliability 

and robustness indices should be extended to unsteady conditions and results for two design approaches 

compared when designing valves, pumps, and tanks. Finally, rigorous analysis should be completed to 

provide guidance on selecting threshold robustness values to support engineering decision making. 

The second study compares the ability of six SPC methods to identify bursts to find a best method 

for system resilience. Synthetic flow and pressure sequences were used to develop and calibrate the 

methods. DP and ADT were then calculated from a random set of burst events and RF was estimated from 

natural random variability. Results indicate that system pressures are more sensitive to disturbances and 

provided higher detectability compared to flow meters because of more consistent non-random pressure 

patterns that occur after a burst. Univariate methods that incorporate past and present data performed 

better than univariate techniques that only consider short measurement histories and multivariate methods. 

Overall, the univariate EWMA had the best efficiency and shortest ADT among the six SPC methods. 
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This study utilizes flow and pressure meters independently. Since pressure values from multiple 

locations may be correlated, the combination of flow and pressure data should be assessed. In addition, a 

multiple objective optimal meter location problem should be formally posed to maximize DP and 

minimize RF and ADT. 

Finally, the third study employed the NKF for burst detection under system operational condition 

change. NKF identifies the system operational condition, estimates nodal group demands, and detects 

bursts. NKF using nodal group demand estimate and standardized innovation process results in high 

detectability/short detection times regardless of operational condition changes. 

Additional investigation is needed to assess other types of operational changes such as complex 

combinations of tank open/closure and pump operation. The NKF performance on burst detection should 

be confirmed with real system data. In actual applications, a mechanism to introduce system knowledge 

or modify control limits during known extreme events should be added to avoid false alarms when big 

sporting events and extreme weather conditions. Addition of a pressure head test may also prove fruitful 

for rapid detection of large bursts. 
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Robustness-based Design of Water Distribution Systems 

Donghwi Jung1, Doosun Kang2, Joong Hoon Kim3, and Kevin Lansey4 

Abstract 

Robustness is generally defined as an ability of the systems to maintain its function under a defined set of 

disturbances. To introduce robustness to the water distribution systems (WDSs) design, chance 

constrained or so-called reliability-based models have been formulated. Under variations in system 

parameters, such as nodal demands and pipe roughness, system reliability is generally measured as the 

probability that the stochastic nodal pressures will be higher than an allowable minimum pressure limit. 

However, chance constraints may not be the best formulation to improve system robustness because it 

focuses on the likelihood of failure under a specified set of conditions rather than developing a solution 

that consistently provides adequate service. In addition, the reliability-based design requires defining the 

demand condition, its probability distribution and its statistics, which are not straight forward in practice  

To address these difficulties, a robustness index that limits the range of the system function variability is 

posed here and incorporated in a two objective optimization problem. Resulting designs are compared 

with those from the reliability constraint formulation. We demonstrate that the robustness-based design 

improves resilience relative to the reliability-based design. 

Keywords: WDS design; Reliability; Robustness; Resilience; System hydraulic availability (SHA) 
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Early studies of optimal water distribution systems (WDSs) design minimized system costs while 

satisfying the minimum allowable pressure requirement at nodes; so-called least-cost design (Schaake and 

Lai, 1969; Alperovits and Shamir, 1977; Lansey and Mays, 1989; Simpson et al., 1994; Savic and Walters, 

1997). However, these least-cost design formulations do not provide redundancy or robustness in the 

system design when system demands vary from the design conditions. To overcome this shortcoming, 

later optimization work considered broader indicators of system performance that addressed uncertainties 

to system parameters (Lansey et al., 1989; Xu and Goulter, 1999; Todini 2000). 

Reliability has been the most popular measure for system performance. System reliability is generally 

defined as the ability of the network to provide an adequate service to customers under uncertain system 

conditions (Goulter, 1995) and measured by the probability that the stochastic nodal pressures are greater 

than or equal to a prescribed minimum pressure. Reliability indices have been included in an optimization 

framework: (1) as a constraint in the least-cost design problem to meet an allowable minimum reliability 

value (Lansey et al., 1989; Xu and Goulter, 1999; Babayan et al., 2005) or (2) as a second objective 

competing with cost in a multi-objective optimization formulation (e.g., Kapelan et al., 2005).  

Lansey et al. (1989) were the first to develop a least-cost design methodology by assuming that the nodal 

demands, pressure head requirements, and pipe roughness coefficients are variable in a chance constraint 

model formulation. Xu and Goulter (1999) introduced least-cost design with reliability constraint and 

used the first-order reliability-method to quantify the uncertainties in the nodal pressure. Babayan et al. 

(2005) suggested a chance constraint-based least cost design of WDS under demand uncertainty using the 

integration-based approach to overcome the time requirements of Monte Carlo Simulation (MCS).  

The transition to multi-objective frameworks followed the development of efficient multi-objective 

optimization algorithms such as Non-dominated Sorting Genetic Algorithm-II (NSGA-II, Deb et al., 

2002). The trade-off between total cost and reliability was investigated in Pareto optimal solutions. 

Kapelan et al. (2005) first implemented a multi-objective optimal model using the robust NSGA-II 
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(RNSGA-II) to minimize total cost and maximize reliability considering uncertainties in water demand 

and pipe roughness coefficients. Latin hypercube sampling (LHS) was used to quantify uncertainties in 

nodal pressure. 

Robustness is generally defined as an ability of the systems to maintain its function under a defined set of 

disturbance (Jen, 2003; Lansey, 2012) therefore, can be measured by the variation of system performance. 

In this context, reliability-based design fits within the domain of robustness. Although improving 

reliability will improve system robustness, the question is how the reliability index will improve system 

robustness. Robustness incorporates the variation of system performance; an additional aspect of system 

performance that reliability does not encompass. Thus, the reliability index may not be the best 

formulation for obtaining a robust design. For example, the two systems of the same level of reliability 

can have different variations in system performance (Table 1). Although the reliability level in each 

design is the same, the degree of under-performance in the failure case is significantly more severe in 

Network 1. Thus, a reliability formulation does not possess all desired explanatory characteristics and an 

alternative (robustness-based) formulation may be useful for effective WDS design.  

Giustolisi et al. (2009) proposed such an alternative in multiple objective formulations to improve WDS 

robustness. While minimizing total cost, they also maximized the parameter a, that is equivalent to the 

standard normal deviate relating the mean pressure, its standard deviation and the minimum pressure 

requirement. The measure is an indicator of the difference between the mean pressure and the allowable 

minimum pressure (i.e., it has negative value if mean pressure is below the minimum requirement). 

Theoretically, to maximize this robustness index, the mean pressure should be increased while its 

standard deviation is decreased, resulting in the network with low relative pressure variations. Here, a 

robustness alternative indicator is introduced.   

Robustness-based design avoids or minimizes failure severity rather than focusing on the probability of 

successful operation. Reducing severity is advantageous when pressure constraints can be considered as 
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soft limits and pressure slightly below the minimum are acceptable in extreme conditions. It also will 

provide solutions that function properly under a broader set of conditions that may not be explicitly 

defined as design conditions.    

The reliability-based design requires the modeler to know or assume the probability distribution of 

demand and pipe roughness coefficients. These probability distributions are generally not known (e.g., 

distribution A in Figure 1 is unknown) and little data has been published to support their definition. In the 

previous reliability-based model formulations, the normal distribution was often assumed for demand, 

roughness, and the resulting pressures. However, the probability distribution can be an atypical shape 

(e.g., a bimodal distribution), making reliability estimation difficult. Predicting the input parameter 

distributions for some future state becomes more problematic. 

Finally and most importantly for practical applications, the definition of the demand conditions used in a 

chance constraint formulation have not been defined explicitly. For example, typically it is not clearly 

stated if the demand is the peak demand with its associated variability (Figure 1-Distribution B) or the 

average demand with its variability (Figure 1-Distribution A). As shown, the distributions for the demand 

are related but they imply very different conditions. A peak demand distribution is particularly difficult to 

assess since they occur quite rarely. 

In this study, we propose a robustness index to take into account the variation of WDS performance to 

uncertain conditions. The proposed index uses the coefficient of variation (CV) of stochastic pressures; 

avoiding the need to define the probability distribution. First-order second-moment (FOSM) approach is 

used for uncertainty quantification and NSGA-II is used to solve the multi-objective optimization 

problem. Structural differences are identified in optimal designs using this new index and those 

determined from the conventional reliability-based design formulation for the Anytown network. Post-

optimization analyses were performed to examine the WDS resilience of the optimal systems by 

calculating system hydraulic availability (SHA) considering pipe breaks and fire flow conditions. 
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WATER DISTRIBUTION SYSTEM RELIABILITY AND ROBUSTNESS  

Reliability  

WDS reliability is generally defined as the systemôs ability to provide an acceptable supply of water to 

customers under varying system conditions including normal and abnormal conditions (Goulter, 1995). 

Reliability can be measured in terms of the quantity and quality of delivered water. Water quality 

reliability is beyond the scope of this study. In terms of water quantity, reliability is generally related to 

the flow to be supplied (Su et al., 1987; Goulter and Coals, 1986; Cullinane et al., 1992) and the range of 

pressures at which those flows must be provided (Lansey et al., 1989; Goulter, 1995; Xu and Goulter, 

1999). 

Hydraulic reliability (Xu and Goulter, 1999) is used here and defined as the probability that the nodal 

demand is met with pressure greater than or equal to the allowable minimum pressure. The pipe network 

has a fixed configuration and uncertainties are introduced in the system parameters (demands and pipe 

roughness). Therefore, the nodal hydraulic reliability is equal to the area under the probability density 

function to the right of the minimum required pressure, Pmin. The probability of hydraulic failure at node i 

can be expressed by: 

ὖὊ ὖὶέὦὖ ὖ         (1) 

where ὖὊ is the probability of nodal hydraulic failure at node i; ὖ is the random nodal pressure at node i; 

and ὖ  is the allowable minimum pressure. 

The hydraulic reliability at node i is then: 

ὙὩὰρ ὖὊ          (2) 

An exact hydraulic reliability can be obtained by integrating the pdf or: 
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ὙὩὰ᷿ ὪὖὨὖ         (3) 

where Ὢὖ is the probability density function of pressure ὖ at node i. 

The system reliability of a given network can be an average or flow weighted average of the nodal 

reliabilities (Su et al, 1987; Bao and Mays, 1990) or the minimum value of the nodal hydraulic reliability 

as used here: 

ίώίὙὩὰÍÉÎὙὩὰ       Ὥ ρȟȣȟὲ        (4) 

where ὲ  is the number of the nodes in the network. Assuming that the nodal pressure is normally 

distributed, the pdf is defined by the mean and standard deviation of the nodal pressure. 

Robustness 

Robustness is the ability of a fixed system to avoid or minimize the severity of a failure when under a 

defined set of stresses. The system robustness can be assessed using the variation of nodal pressure under 

system parameter uncertainties. Here, a robustness index is proposed using the coefficient of variation 

(CV) of the stochastic nodal pressure. 

The CV of a nodeôs pressure is: 

ὅὠ           (5) 

where ὅὠ is the coefficient of variation of pressure at node i; ὖ is mean of stochastic nodal pressures at 

node i; and „  is standard deviation of random nodal pressure at node i. 

The robustness index for node i is defined as: 

Ὑέὦ ρ ὅὠ          (6) 

The system robustness is defined as the minimum nodal robustness: 
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ίώίὙέὦÍÉÎὙέὦ       Ὥ ρȟȣȟὲ        (7) 

 

METHODOLOGY  

Two optimization model formulations, reliability-based and robustness-based, are posed and resulting 

designs are compared. The objectives of the former model are to minimize total cost and to maximize 

system reliability while the latter one's second objective is to maximize the system robustness. The 

reliability and robustness indices (eqs. 4 and 7, respectively) are estimated using mean and standard 

deviation of stochastic nodal pressures at nodes and the statistics are obtained using the FOSM 

uncertainty approximation method. NSGA-II is used for system optimization. Post-optimization analyses 

using SHA compare the solutions from two design approaches. The following subsections describe the 

details of the objective functions, optimization approach, and post-optimization analyses. 

 

Economic Cost Function 

Total system cost consists of capital costs of pipe and pump construction and O&M (operation and 

management) costs for pumping stations. For pipeline construction, pipe material and installation costs 

are included. All costs in this paper are updated using the Engineering News-Record (ENR) construction 

cost index for 2005 and expressed in US dollars. The O&M costs are calculated on annual basis and 

converted to a present-worth for the system planning time and annual discount rate. 

 

Pipe construction cost (PipeCC) 

Clark et al. (2002) fit general pipe construction cost functions accounting for pipe material and 

installation: 
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ώ ὥ ὦὼ Ὠό Ὢὼό       (8) 

where ώ is unit pipe cost ($/ft, 1 ft=0.3048 m); ὼ is pipe diameter in inches (1 inch=2.54 cm); ό is 

indicator variable; and ὥ, ὦ, ὧ, Ὠ, Ὡ, and Ὢ are component-specific parameter values estimated using 

regression analyses. Pipe construction costs are the sum of the base installation cost, trenching and 

excavation, embedment, backfill, and compaction costs, and as well as valves, fittings, and hydrants costs. 

Detailed information for the pipe cost function can be found in Clark et al. (2002). 

 

Pump construction cost (PumpCC) 

The pump construction cost (Walski et al., 1987) is: 

ὖόάὴὅὅυππὗȢ ὌȢ ÍÁØ ὔὖȟὔὖ     (9) 

where ὗ is rated discharge in gpm (gallons per minute, 1 gal=0.003785 m3); Ὄ is rated head in ft (1 

ft=0.3048 m); and ὔὖ and ὔὖ are the numbers of pumps operating for average and peak demand 

conditions, respectively. For the sake of simplicity, it is assumed that individual pumps in a pump station 

are identical. 

The rated head, Ὄȟ in ft is formulated as: 

Ὄ          (10) 

where  is specific weight of water in lb/ft3 (62.4 lb/ft3=1000 kg/m3); Ὄὖ is pump horsepower (hp);  

–  is motor efficiency; ὗὖ is pump discharge in ft3/sec (1 ft3/sec=0.0283 m3/s); and ὔὖ is the number 

of pumps that are operating (average or peak demand condition). Ὄὖ and NP are decision variables. The 

rated head, Ὄȟ is calculated based on Ὄὖ, NP and ὗὖ depending on demand condition. 
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Pump operation cost (PumpOC) 

The present value of the pump operation cost is given by: 

ὖόάὴὕὅὔὖ
Ȣ

Ὄὖ Ὁὅ ςτσφυὖὠὊ    (11) 

where –  is pump efficiency; Ὁὅ is pump energy cost ($/kWh); and ὖὠὊ is the present value factor. 

The energy consumption is estimated from the average demand condition for the entire planning period 

assuming constant pump energy cost. 

The present value factor is: 

ὖὠὊ          (12) 

where ὃὍ is annual discount rate and ὲ is planning period duration in years. 

 

Multi -Objective Optimization 

System reliability and robustness are inversely related to system cost. Understanding the tradeoff between 

system indices and costs will allow decision makers to make better decisions. To that end, two 

formulations, reliability and robustness based design, are posed and solved. 

 

Objectives and constraints 

In both models, the first objective function is to minimize the total system cost (Ὂ). The second objective 

(Ὂ) is to maximize the system reliability index (sysRel) or the robustness index (sysRob). 

Minimize Ὂ ὖὭὴὩὅὅὖόάὴὅὅὖόάὴὕὅ     (13) 
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Maximize Ὂ ίώίὙὩὰ or sysRob       (14) 

Pressure constraints are included in both design problems, that is, the nodal pressure should be within the 

allowable pressure limits for each demand conditions: 

ὖ ὖȟ ὖ          (15) 

where ὖ and ὖ are the lower and upper allowable pressure limits for demand condition k, respectively, 

and ὖȟ is the pressure head at node i for demand condition k. 

 

Uncertainty Quantification Method 

WDS uncertainty has been assessed using MCS, FOSM analysis, and LHS. MCS is a random 

enumeration technique in which a large set of realizations are developed and evaluated. MCS is assumed 

to be correct if a sufficient sample size is used but it is often too time consuming to be used in an 

optimization framework. FOSM is a variance approximation method based on a Taylor-series linear 

approximation. LHS is a quasi-MCS using stratified sampling. FOSM and LHS are often used as 

alternative approaches to MCS to reduce the computational effort. In this study, FOSM is employed since 

it significantly reduces the number of function evaluation and has been proved to be acceptably accurate 

for WDS uncertainty estimates (Kang et al., 2009).  

 

First-Order Second-Moment  

FOSM, also called the variance propagation method (Berthouex, 1975), estimates the variance by 

approximating a function with a Taylor series expansion around the mean parameter value and dropping 

the higher order terms (Tung and Yen, 2005). If a model output ὡ is related to ὑ model parameters, the 

covariance matrix of the model predictions,„ , can be shown to be: 
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„ ▼╓▼          (16) 

where ╓ ὨὭὥὫ„ȟ„ȟȣȟ„  is a ὑ ὑ diagonal matrix of variance of the model parameters and 

▼ ᶯὡ Ⱨ  is a ὑ-dimensional vector of the sensitivity coefficients evaluated at mean of parameters, 

Ⱨ . The sensitivity matrix is the gradient of the model output with respect to a model parameter. 

Therefore, for a system with ὑ parameters using a finite difference approximation of the derivatives, 

FOSM requires ὑ ρ function evaluations for the ὑ perturbations plus the analysis of the base condition. 

 

Post Optimization Analysis  

To compare the impact of the two objectives on the network design, SHA of their optimal solutions are 

calculated for single pipe break conditions and for an extreme fire flow condition in post-optimization 

analyses. Resilience is a systemôs ability to ñgracefully degrade and subsequently recover fromò a failure 

event (Lansey, 2012) and thus, is a function of failure severity and recovery time. SHA is defined as the 

availability of the desired quantity of water and is a first estimate for system resilience. It is influenced by 

the nodal pressure under pipe break and fire flow conditions. This analysis follows the Scholz et al (2012) 

definition of specified resilience. If the nodal pressure does not meet allowable minimum pressure 

requirement, a partial demand is considered to be delivered to customers. SHA does not address a 

systemôs ability to respond to the event (Zhuang et al, 2013) nor does it assess extreme conditions such as 

earthquake events described by Scholz et al. as generalized resilience. 

 

SHA during pipe breaks  

The minimum cut-set method (Su et al. 1987) is employed to estimate the SHA. Following Su et al. 

(1987), only single pipe failures are considered in calculating the SHA. For a given optimal design, one of 

the pipes is closed in the hydraulic model representing a pipe failure and nodal pressures are calculated. If 
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a nodal pressure does not meet the minimum pressure requirement, the hydraulic availability (HA) for that 

node is calculated using the function given in Figure 2 (Cullinane et al 1992). System hydraulic 

unavailability (SHUA) under a pipe j failure is computed using a demand weighted average of nodal 

unavailabilities (ρ Ὄὃȟ) or: 

ὛὌὟὃ
В ȟ

В
        (17) 

where ὛὟὌὃ is system hydraulic unavailability during pipe jôs (j=1, é, ὲ) break condition; Ὄὃȟ is 

hydraulic availability for node i (i=1, é, ὲ) in pipe jôs break condition; ή is nodal demand for node 

i; ὲ  is the number of nodes; and ὲ is the number of pipes. 

The closed pipe is then opened and another one is closed and the above calculations are repeated. This 

process continues until breaks in all pipes have been evaluated. The SHA is then calculated as. 

ὛὌὃ ρ
В

         (18) 

where ὛὌὃ is system hydraulic availability of the given optimal design. 

 

SHA under fire flow condition 

Fires result in unexpected and abnormal system stress conditions. The procedure for estimating SHA 

under fire flow conditions uses the availability function in Figure 2. For a given optimal design, a location 

near one of the nodes is assumed to have a fire and a corresponding increase in flow is required. Nodal 

pressures are calculated for the network under that condition. As in the minimum cut-set method, if the 

nodal pressure does not meet the minimum pressure requirement, the HA at the node is calculated using 

the availability function. SHUA under fire flow for node i is calculated as a demand weighted nodal 

unavailabilities (ρ Ὄὃȟ) where Ὄὃȟ is hydraulic availability for node i (i=1, é, ὲ) with the fire flow 
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occurring at node i. The fire flow is then moved from node i to node i +1 and the SHA procedure is 

repeated. This process continues until fire flows are simulated at all the nodes. The system fire flow SHAf  

is then calculated by: 

ὛὌὃ ρ
В

         (19) 

where ὛὌὟὃ is the SHUA with the fire flow at node i (i=1, é, ὲ). 

 

STUDY NETWORK  

The analyses outlined above are completed for the Anytown network (Walski et al., 1987) with several 

modifications to the original system. Optimal reliability-based and robustness-based designs are 

determined for (1) pipes only and (2) pipes and pumps as decision variables. For the pipe only design, the 

elevated source reservoir head is assigned an elevation of 73.2 m (240 ft) while for the pipe and pump 

design, the original Anytown reservoir head of 3.0 m (10 ft) is applied. Peak and average demand 

conditions are included in the optimal design model. The average demand condition is assumed to 

continue constantly during planning periods and drive pump operations. The peak demand condition is 

the dominant factor determining pipe sizes and the number of pumping units and their sizes. 

Several other modifications to the original Anytown system were also introduced. First, this study 

optimizes new pipe and pump station sizing assuming that there are no existing pipes and pumps in the 

system. Next, two tanks and two riser pipes are eliminated from the network. Therefore, the modified 

system consists of 19 nodes, one source, and 38 pipes as shown in Figure 3. The Hazen-Williams 

roughness coefficient is 130 for all pipes. The minimum pressure requirements are 28.1 m (40 psi) for the 

average and peak demand conditions and 14.1 m (20 psi) for the fire flow condition. The maximum 

allowable pressure is 77.3 m (110 psi) for all demand conditions. Cost parameters are listed in Tables 2 

and 3. 
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A peaking factor of 1.8 is applied to given average base demand (2005 average daily use) to create the 

daily peak condition and the fire flow condition is assumed to occur at the peak plus the 0.252 m3/s (4000 

gpm, 22.7% of total system peak demand) nodal fire demand.  

Nodal demands and pipe roughness coefficients are considered as uncertain and are assumed to follow the 

normal distribution with a CV of 0.1 (i.e., „ πȢρ ‘) for both parameters. The same optimization 

parameters and functions applied to the NSGA-II are used for both formulations. The population of 100 

was evolved over 10,000 generations with crossover rate of 95% and mutation rate of 10%. The solutions 

that enhance their non-domination rank through selection, crossover, and mutation were survived to next 

generation. Hydraulic simulations are performed using EPANet (Rossman, 2000) for both design and 

SHA evaluation. A pressure-driven model can be used for SHA evaluation (Wu et al., 2009; Giustolisi and 

Walski, 2012). 

A number of assumptions and simplification are made in this application; (1) the base nodal demand and 

pipe roughness coefficients are known with certainty; (2) average base demand is withdrawn constantly 

during planning periods; (3) Peak demands and pipe roughness variations are considered for the 

robustness index estimation although multiple demand conditions can be considered; (4) pump and motor 

efficiency are constant and independent of flow; (5) the likelihood of pipe breaks and fire are the same at 

every location; (6) valves are located at each end of all pipes allowing the pipe to be isolated without 

affecting the attached nodes; and (7) pipes are installed now and the improvement action such as cleaning 

and rehabilitation does not occur.   

These assumptions above are consistently applied to both reliability and robustness-based design to 

maintain consistency the comparison between methods. All can be relaxed in further studies using the 

techniques adopted here. 

 

RESULTS 
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Verification of Statistical Assumptions 

Nodal and system reliabilities were estimated assuming that nodal pressures followed the normal 

distribution. This assumption was confirmed to be true for pipe and pump designs by visual inspection 

(Figure 4b), Chi-squared goodness-of-fit test, and Kolmogorov-Smirnov test (results not presented).  

However, the hypothesis of normality was rejected for pipe only designs by the two statistical tests. The 

coefficients of skewness and kurtosis of the stochastic pressures were very close to zero and the histogram 

of pressures visually appears to be a normal distribution (Figure 4a). The slightly negatively skewed 

distributions results from the fixed supply reservoir elevation that bounds the tail of the high pressures 

and causes the failure of the hypotheses test. The low pressure tail is of primary concern here and visually 

appears to be consistent with the normal distribution so the normal distribution assumption for pressures 

is also maintained for the pipe only design.   

 

Optimization Results 

Optimal results for the chance constraint and robustness problems are presented in a series of figures and 

tables. Figures 5a and 5b show robustness and reliability values, respectively, of optimal solutions from 

the two formulations for the pipe only design. Figure 6a and 6b show results for the pipe/pump design. 

Minimum mean pressure and the maximum standard deviations of pressure of the optimal solutions are 

plotted in Figures 5c, 5d, 6c, and 6d to show how the two design approaches change the minimum 

pressure and maximum standard deviation with increasing total cost. Solutions with similar costs from the 

two design approaches were selected and are summarized in Tables 4 and 5. Least cost solutions for each 

design problem with reliability equal to 1 (by a single precision expression) are also summarized in the 

tables. Pdfôs of the minimum pressures node are shown in Figures 7 and 8 using statistics given in Tables 

4 and 5 assuming pressures are normally distributed. 
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As expected, the robustness-based designs have higher system robustness than comparable costing 

reliability-based designs (Figure 5a and 6a). Similarly, reliability-based designs have higher system 

reliability than robustness-based designs (Figure 5b and 6b). The Pareto fronts in Figure 5b and 6b are 

quite steep slope indicating a rapid increase of system reliability with a small increase of total cost; 

whereas, relatively, system robustness increases more gradually (Figure 5a and 6a).  

The reliability increases result from higher mean minimum pressure rather than reductions in the pressure 

headôs standard deviation (Figures 5c, 5d, 6c, and 6d). This result is in contrast to the robustness based 

design that has lower minimum pressures and smaller maximum variances (Figures 5c, 5d, 6c, and 6d).  

Al though the reliability-based design decreases the maximum standard deviation of pressure, reductions 

were not as significant as in the robustness-based design. 

The difference between the two design approaches is more clearly seen in the pdfs of the mean pressure at 

the minimum pressure node and its standard deviation (Figure 7 and 8). Both reliability-based and 

robustness-based designs begin from solution #1 that are similar in pdf shape and location. As the total 

solution cost increases (from Solution 1 to 4 in Figure 7 and to 5 in Figure 8), the robustness-based design 

reduces the variability as seen by narrower and more peaked pdfôs while the reliability-based designs tend 

to shift the distribution to the right by increasing the mean pressure. 

The robustness of reliability-based designs increases with reliability nearly linearly (Figures 5e and 6e).  

The change in reliability of the robustness-based designs, on the other hand, does not change uniformly. 

For example, in the pipe/pump design, until the total optimal design cost reaches $30.58M (Solution 2 in 

the robustness-based design in Table 5), the reliability values remain at 0.5 as seen in the vertical lines of 

points in Figure 6e (the vertical lines of points are more apparently seen in Figure 5e). Until this cost is 

reached, the mean pressure at critical nodes does not change but the standard deviation decreases as 

shown in the pdfôs transition from Solution 1 to 2 (Figure 8a). This pattern is quite different from the 
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reliability-based design in which the mean pressure increases at the critical node without a corresponding 

decrease in the standard deviation (Solution 1 to 2 in Figure 8b).  

For costs above $30.58M, the reliability increases with robustness until the reliability value reaches 1. 

The standard deviation of pressure decreases with increasing cost in the robustness-based design until it 

becomes too costly relative to changes in the mean pressure then the mean pressure at the critical node is 

raised. 

Note that the range of robustness values in the pipe only design (Figure 5a) and that in pipe/pump design 

(Figure 6a) are different while the ranges of reliability values are same (Figure 5b and 6b). The robustness 

values are between 0.936 and 0.991 in the pipe only designs and between 0.882 and 0.953 in pipe/pump 

designs, indicating that the proposed robustness index reflects the components in the system. Because the 

pump station in pipe/pump design has larger pressure variations and lower pressures at increasing 

demands, the pipe/pump designs are less robust compared to the pipe only design that is supplied by a 

fixed elevated reservoir. On the other hand, the reliability values are between 0.5 and 1.0 for both pipe 

only and pipe/pump designs because the reliability value was measured by the probability that the 

stochastic nodal pressures are equal to or greater than the minimum required pressure, 28.1 m rather than 

the consistency in the pressure. For the solutions with similar costs given in Table 4 and 5, the reliability-

based designs has at maximum 8.2% higher mean pressure at the critical node in pipe only design and 

11.2% in pipe/pump design, compared to the robustness-based designs. Thus, the robustness index is 

more indicative of different configurations although it does not have clear engineering interpretation. This 

contrast was not identified earlier since no other application considered pipe/pump designs. 

 

Design Differences using Alternative Measures 

Both formulations recognize that robustness is improved by increasing a nodeôs pressure or reducing its 

variance. Higher mean pressures allow for more variability in stresses as they are farther from the failure 
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condition while designs with mean pressures nearer the threshold with low variability can also be 

considered robust against failure since a consistent pressure is delivered. However, the resulting designs 

from the two models in terms of the spatial pipe size distributions and pump/pipe sizes differ suggesting a 

the differing influence of the two measures. 

Figure 9 shows pipe diameters of the selected solutions summarized in Table 4. Regardless of total cost of 

the designs, the robustness-based design always has larger and more uniformly sized pipes along Pipe 6, 

50, 62, and 68 or 70 (Route 1) and along Route 2 (Pipe 4, 34, and 74). Pipes were increased on these 

routes to obtain robust pressures in the zones A and B (Figure 9a) because the critical node is shifted 

between the two zones as the robustness requirement increased.  

The reliability-based design, on the other hand, primarily improved Route 2 and links 52 and 56 that 

branch off Route 1 to supply water to the zone A (Figure 9b). These pipes insure reliability in the zone A 

that is at the highest elevations in the system. The different spatial distribution of larger pipes in the two 

design approaches was similar in the pipe/pump solutions. Consistent with the behavior of selecting pipes 

to increase the mean pressure, pump sizes selected in the reliability-based design were larger than those in 

robustness-based design (Table 5). 

 

Post-optimization Analysis Results 

The robustness and chance-constraint based models applied here add robustness to the system against 

extreme demand conditions in different ways. A question of interest that follows is: what is the robustness 

of those systems under peak demand and pipe failure conditions outside of the design states? To that end, 

a post-optimization analysis was performed to compute each solutionôs SHA under two failure conditions, 

pipe break and fire-flow conditions (Figures 10 and 11). 
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SHAp and SHAf  measure the systemôs ability to provide adequate service during the abnormal conditions.  

Overall, the optimal solutions obtained from robustness-based design had higher SHAôs and are more 

robust against the two abnormal conditions. As expected, the source pipe failure (e.g., pipe 4 and 6) is the 

most critical in determining SHAp while fire flow at the nodes in the zone B and node 40 is severe. As 

noted, in the example considered, chance constraints tend to focus design decisions on one path whereas 

robustness appears to have a broader system-wide influence. Thus, larger pipes are sized for multiple 

locations reducing the impact of pipe failures and fires at locations that were not considered as design 

loads. For example, when fire flow occurred at node 75 (Figure 12b), the most critical nodeôs pressure 

was 15.3 m (21.7 psi) in the robustness-based design while that of the reliability-based design was 

computed in the hydraulic model as -9.8 m (-14.0 psi). Thus, this preliminary result suggests that the 

hydraulically based robustness design provides a broader system robustness compared to the reliability 

based design. 

 

SUMMARY AND CONCLUSIONS  

Early optimal design research on WDS focused on minimizing economic costs while meeting the pressure 

requirement. In last two decades, studies have moved to multi-objective problems that maximize the 

system robustness while minimizing total cost. The reliability/chance constrained formulation has been 

used for identifying robust designs. However, our contention is that robustness is not effectively 

introduced by the reliability-based design methods because they focus on the probability of successful 

system performance rather than minimizing failure severity. In addition and equally important, reliability-

based design methodologies require defining the demand condition, its probability distribution and its 

statistics that are not generally available. 

An alternative robustness index is proposed to consider system robustness. As a constraint in an optimal 

design model, the robustness index limits the range of variability of system function by constraining the 
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coefficient of variation (CV) of stochastic pressures due to demand and pipe roughness variability. We 

compared the robustness-based and reliability-based designs. We also demonstrated that the robustness-

based design with a robustness formulation improves resilience relative to the reliability formulation. The 

main drawback of the robustness measure is defining an acceptable robustness level since, unlike 

reliability in a chance constraint, it does not have clear engineering interpretation. 

From numerical results, the reliability-based design emphasized increasing the mean pressure to increase 

system reliability while the robustness-based design simultaneously standard deviation of pressure and 

increases the mean pressure. As a result, robustness-based design is more effective in introducing the 

system robustness than the reliability-based method. In the example considered, robustness constrained 

solutions contain larger pipes in the main lines to the multiple pressure zones while reliability-based 

design is dominated by large pipes along the path leading to the node with lowest pressure.  

Post-optimization analysis was completed to compute the SHA for the optimal solution obtained from two 

design approaches. SHA is a resilience indicator that considers the systemôs ability to supply adequate 

service during the abnormal conditions, i.e., pipe break and fire-flow conditions. Overall, robustness-

based optimal designs have higher hydraulic availability and are less vulnerable to the two failure 

conditions. Therefore, the robustness-based designs appear preferable to reliability-based design with 

respect to system resilience in a multi-objective WDS design model. 

This study has several limitations that future research must address. First, large networks with varying 

configurations should be examined to confirm this studyôs conclusions. Here, for a network with a single 

source, the robustness-based design included relatively large and consistent pipes in the main lines to the 

pressure zones. Thus, the robustness-based design performed better than the reliability-based design 

during failure events. However, if the network has multiple sources, the superiority of the robustness-

based design could diminish due to the proximity of the source to demand points. Second, the risk type 

robustness index can be considered as a design objective by weighting the proposed robustness index by 
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the proportion of demand at a failed node (Kapelan et al., 2006). Third, reliability and robustness indices 

should be extended to unsteady conditions and results for two design approaches compared when 

designing valves, pumps, and tanks. Finally, rigorous analysis should be completed to provide guidance 

on selecting threshold robustness value to support engineering decision making. 
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Table 1. Critical nodeôs pressures of two systems under five disturbances (each disturbance has 

difference type and magnitude) 

Disturbances 
Pressure (m) 

Network 1 Network 2 

1 34 31 

2 28 28 

3 31 29 

4 22 27 

5 29 28 

Probability of meeting a 28.12 m pressure 

requirement 
80% 80% 

Variance of Pressure 14 2 
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Table 2. Pipe construction cost parameters after Clark et al (2002) used in eq. 8 

Description Type 
Parameter values Indicator 

variable (u) ╪ ╫ ╬ ▀ ▄ █ 

Base 

installation 
PVC pressure pipe -1.0 0.0008 3.59 0.011 1.0 0.0067 

150 

(Pressure 

class rating) 

Trenching and 

excavation 

Sandy gravel soil 

with 1:1 side slope 

(4-8 inch) 

-24 0.32 0.67 16.7 0.38 0.0 

4 

(Trenching 

depth) 

Sandy gravel soil 

with 1:1 side slope 

(8-144 inch) 

2.9 0.0018 1.9 0.13 1.77 0.0 

4 

(Trenching 

depth) 

Embedment Ordinary embedment 1.6 0.0062 1.83 -0.2 1.0 0.07 

0 

(Ordinary 

bedding) 

Backfill and 

compaction 

Sandy gravel soil 

with 1:1 side slope 

-

0.094 
-0.062 0.73 0.18 2.03 0.02 

4 

(Trenching 

depth) 

Valve, fitting 

and hydrant 
Medium spacing 9.8 0.02 1.8 0.0 0.0 0.0 

No indicator 

variables 
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Table 3. Pump construction and operation cost parameters used in eqs. 10-12 

Parameter Value 

Pump efficiency (– ) 0.75 

Motor efficiency (– ) 0.75 

Pump energy tariff ($/kWh) 0.12 

Amortization period (ὲ, year) 20 

Interest rate (ὃὍ, %) 3 
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Table 4. Selected pipe only design solutions (Rob ï robustness, Rel ï reliability)  

 

Solution

# 

Total 

cost 

Robustnes

s 

Reliabilit

y 
SHAp SHAf 

Min nodal pressure 

(m) 

(stdv) 

Max nodal stdv 

(m) 
Remarks 

Rob Design 

1 15.08M 0.936 0.507 0.946 0.958 28.13 (0.81) 1.87 Least cost Rob design 

2 15.62M 0.971 0.507 0.971 0.992 28.13 (0.81) 1.05 
Most expensive solution with Rel å 

0.5 

3 16.28M 0.975 0.749 0.981 0.994 28.59 (0.70) 0.93 - 

4 17.31M 0.980 0.908 0.990 0.996 28.90 (0.59) 0.78 Comparable to Rel Design sol #4 

5 18.76M 0.984 1.000 0.993 1.000 30.97 (0.51) 0.66 Least cost design w/ Rel = 1 

Rel Design 

0 14.76M 0.934 0.504 0.938 0.961 28.14 (1.86) 1.86 Least cost Rel design 

1 15.08M 0.941 0.718 0.950 0.971 28.58 (0.80) 1.73 Comparable to Rob Design sol #1 

2 15.61M 0.949 0.972 0.953 0.975 29.49 (0.70) 1.61 Comparable to Rob Design sol #2 

3 16.29M 0.956 1.000 0.966 0.988 30.24 (0.63) 1.44 Comparable to Rob Design sol #3 

4 17.34M 0.966 1.000 0.972 0.993 31.28 (0.57) 1.19 Least cost design w/ Rel =1 
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Table 5. Selected pipe/pump design solutions (Rob ï robustness, Rel ï reliability)  

 
Solution# Total cost Robustness Reliability  SHAp SHAf 

Min nodal  

pressure (m) 

(stdv) 

Max nodal stdv (m) Pump Size (HP), NPp, NPa, Remarks 

Rob Design 

1 30.13M 0.882 0.503 0.932 0.827 28.14 (2.87) 3.50 750,2,1, Least cost Rob design 

2 30.58M 0.911 0.505 0.949 0.909 28.16 (2.50) 3.06 720,2,1, Most expensive solution with Rel å 0.5 

3 31.17M 0.920 0.738 0.961 0.950 29.64 (2.38) 2.91 720,2,1 

4 32.45M 0.932 0.995 0.970 0.970 34.20 (2.33) 2.71 750,2,1 

5 34.71M 0.941 1.000 0.990 0.990 38.96 (2.28) 2.63 780,2,1, Comparable to Rel Design sol #5 

6 35.36M 0.944 1.000 0.992 0.991 40.56 (2.31) 2.75 790,2,1, Least cost design w/ Rel = 1 

Rel Design 

0 30.08M 0.871 0.505 0.921 0.776 28.16 (3.03) 3.75 770,2,1, Least cost Rel design 

1 30.13M 0.871 0.562 0.922 0.786 28.58 (2.97) 3.73 770,2,1, Comparable to Rob Design sol #1 

2 30.59M 0.883 0.830 0.934 0.840 31.00 (2.99) 3.74 790,2,1, Comparable to Rob Design sol #2 

3 31.18M 0.896 0.953 0.946 0.894 32.97 (2.89) 3.56 790,2,1, Comparable to Rob Design sol #3 

4 32.46M 0.919 1.000 0.962 0.957 37.18 (2.43) 3.23 790,2,1, Comparable to Rob Design sol #4 

5 34.80M 0.935 1.000 0.974 0.973 40.56 (2.28) 2.85 790,2,1, Least cost design w/ Rel =1 
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Figure 1.   Distribution of demand (A: distribution of average demand, B: distribution of the peak) 
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Figure 2. Hydraulic availability (HA) versus pressure for pipe break and fire flow conditions 
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Figure 3. Network layout and three elevation zones. Zone A are at 36.6 m (120 ft) and zone B are 

the most distal nodes at an elevation of 24.4 m (80 ft). Elevation zone C includes node 20 at 6.1 m 

(20 ft) and the rest of the nodes at 15.2 m (50 ft). The networkôs EPANet input file is found at the 

link https://www.dropbox.com/sh/6idcjhfkekhfflp/W1Nd_uY_CG. 
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Node 55 (Skewness: -0.295, Kurtosis: 0.173) 

 
Node 55 (Skewness: 0.035, Kurtosis: 0.047) 

 
Node 170 (Skewness: -0.414, Kurtosis: 0.356) 

 
Node 170 (Skewness: 0.048, Kurtosis: 0.128) 

(a) Pipe only design (b) Pipe/pump design 

Figure 4. Nodal pressure histograms from 10,000 randomly generated conditions for robustness-

based design solution 3 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5. Alternative robustness/reliability measures for Pareto optimal solutions from pipe only 

design (robustness-based design (open blue circle) versus reliability-based design (open red 

diamond)) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 6. Alternative robustness/reliability measures for Pareto optimal solutions from pipe/pump 

design (robustness-based design (open blue circle) versus reliability-based design (open red 

diamond)) 
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(a) Robustness-based design 

 

(b) Reliability-based design 

Figure 7. Transitions in pdf for most critical nodeôs pressure for selected pipe only designs 

  


