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ABSTRACT

The purpose of a water distribution system (WDS) is to deliver the required amount of water
to the customer under the desired pressure and qudbiyever, demand changad component
failure result in low pressures at customer tapg make it difficult to achieve the godlo mitigate the
impact of the disturbancesystem performance measwach as robustness and resilierman be
considered in the WDS design and operati®obustnss is generally defined as an ability of the systems
to maintain its function under a defined set of disturba@ethe other handResi | i ence i s a
ability to prepare andecover from a failureThe goal of this dissertation is to develop methodies to

enhancaVDS robustness and resilience.

In robustnes$ased design, reliability has been considered. Reliability is generally defined as the
systembébs ability to provide an adeguate service
measuredoy the probability that stochastic nodal pressures are greater than or equal to a prescribed
minimum pressuredowever, although improvingeliability will improve system robstness, the question
is how the reliability indexwill improve system robustnesfRobustness incorporates the variation of

system performance; an additional aspect of system performance that reliability does not encompass.

Pipe burss are the most common failure in WDS. Therefore, promptly detecting and locating
bursts will decreas¢he failure duration and increase system resilience. While many burst detection
methods are availahldédentifying the method with thehighest detectability is importarib system
owners/operatorsHowever, b date no cross comparisons of these methbdge been completed for
burst detetion using a common data set. In additiomstrtraditional burst detection methods do not have

a mechanism to include system operational changes.

This dissertation is composed of three journal manuscripts that addesssthree key issues on
WDS robustness and resilienéar WDS robustness improvemeatyew robustness index is developed

and used for muHbbjective robustnedsased design. The robustndmsed design is compared to



conventional reliabilitybased degn. For WDSresilience improvement, the bestethod among six
Statistical Process Control (SPC) methad&lentified in terms of detection effectiveness and efficiency.

Finally, a burst detection method applicable under system opeabationditionchangds posed



1. INTRODUCTION

The purpose of a ater distribution system (WDS3 to deliver the required amount of water to
the customer under the desired pressure and qualit/DS consists of nodes, pipes, pumps, tanks,
reservoir, and valve#\ node epresents pipe junction and acts as the lumped demand poira fpoup
of individual house and building in its vicinity. Pumpslift wateragainst gravity and frictioand tanks

store water to be used in future. Vawentrol the open/closure of pipad change the flow direction.

Operators generally control pumps and tasksthat systemwvide pressures and tank water level
are maintained within acceptable limits. Acceptable range of pressure is between 30 psi (21 m) and 100
psi (70 m).Systemwide pressurevaries as demand at nodes changesmeet igh demandmore water
is delivered from sourcesesulting highpipe flows.The high pipe flowsncrease head loss in the pipes.

Therefore, pressure at nodes decrease when high demand tinpedékipus).

Failures such as pipe bumstresult in the degradation of pressure at nodes. Pipe bursts are a
common failure mechanism in WDS and occur when a pipe ruptures from pipe deterioration, excessive
pressure, and ground shifts caused by temperature changagthquakes. A pipe burst results in water
loss out of the system to the surrounding soil through the break in the pipe. Except in unusual cases, the

water loss from the system increases pipe flow rates and head losses.

Demand increaseand pipe burstresult in the degradation of system functionality with lower
pressures at customer taps. To mitigate the degradation of system functionality, system performance
measure can be considered in the WDS design and operation. Robustness and resiliencended\been
usedassystem performance measures in disciplines from environmental research to materials science and

engineering, sociology, and economics. Robustness is generally defined as an ability of the systems to

maintain its function under a defined sétdisturbancéLansey, 2012) Resi |l i ence i s a SYys

gracefully degrade and subsequently recover from a fqllamesey, 2012)



Figures 1 and 2 describe robust and resilient systensizma time series of system functionality
of two differernt systemsFunctionality is the system performance level. Assume Heasame demand
changes occurred in the two systedmsFigure 1, thefunctionality is more stable and failures are less
severethus Network 1is described as beingore robusthan Network 2 Network 2 has failed more

frequently with more variation in system functionality comparedatwvork 1 that avoids failures

On the other hand, resiliencescribessystem performancduring failure conditiors. Figure 2
shows two systems with diffent level of resilience. The sarfelure occurred in théwo systens at the
time an arrow is indicating (Figure 2Z)he consequenceof failurein Network A are lesthanNetwork B
The failureis lesssevee and the time to recover to normal conditianshorter inNetwork A than

Network B. ThereforeNetwork Ais described as beingore resilient thaietwork B
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This dissertation proposes approaches to efficiently improve WDS robustness and resilience. To
improve WDS robustness, a new WDS design model is developed. To improve WDS resilience, an
effective and efficient bt methodology is proposed for pipe burst detection. Further, traditional burst
detection methods are compared using a common datadentify the best method for system resilience

improvement
1.1. Hydraulics Background

Hydraulic relationships in a W® under steady conditions are defined by conservations of mass and
energy.Conservation of mass can be written by using the nodal flow continuity, which must be satisfied

at each node:

aQ- aqQ (1)

it 3in 13 ot

where Q; are the pipe flows ang, is the nodal demand; a positive value of the pipe flow means that the

flow is entering a nodeJ;;, and J, ,, are the sets of pipes supplying flow to and carryfilogv from

iout

nodei, respectively.

The conservation of energy can be written by using a pipe headloss equation. The equationifor pipe

connecting node& andB is given as

Ha- Hg :hL,j 2)

where H,, and H are the total eneygin the fluid at nodes A and B, respectively, athj is the head
loss in pipg. The HazenWilliams equation is commonly used to estimate the head loss in WDS pipes:

R =K ) @)
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where K, is a unit constant anb, L, Q, andC,,, are the diameter, length, flow, and Ha2éfilliams

roughness coefficient, respectively, of the pipe. The WDS modeling software EP@EFImMan, 2000)
iteratively solves this set of nonlinear equations (Equatiorig3}))using the gradient method (Todini

andPilati 1987).

Steady state simulation provides a snhapshot of the system under time invariant condition.
However, in practice, thpressure and flow vary over time in response to changing demaadtank
conditiors. These temporal variations can be modeled in unsteady analys€ANEHE, a quasdynamic
analysis in a sa@alledextended period simulation (ER® performedAn EPS $ a series of steady state
simulations in which nodal demands are assumed to vary through the analysis period in a series of

discrete time steps.
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1.2. Problem Statement

WDS Robustness

Cost is generally the mostportant criterion considereduring WDS design. Generally, WDS
design minimizes system costs while satisfying pressure requiremeahisso-called leastost design.
However, the leastost design des not provide redundancy or robustness in the system design when
system demands vary from thesign conditions. To overcome this shortcomang,indicatorof system

performance that addressscertaintiesn system parameters often considered

For example, Figure 3 shows two different cost desigihi&ker link indicates bigger pip&oth
designs satisfy the required minimum pressure requirement at all nahelshave a reservoir with the
same fixed headHowever, system costs are different. Desigs less expensive than Desigrn($3M)
since the pipe sizes are larger in the laitéith respetto cost, Design 1 is the better solution. However
under uncertain futurdemandsDesign 1mayfail to meet the pressure requiremrswhile Design 2has

moreability to withstand the changes

+ +
Q O O O
Q O O
O O O O O
(a) Designl (cost:$2M) (b) Design2 (cost:$3M)

Figure3, Two designs of different system cost
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Reliability has been considered in thebustnesdhasedWDS design Reliability is generally
defined as the systemdés ability to provide an ac
condition and measured by the probability that stochastic nodal pressures are greater than or equal to a
prescribed minimum pressuresually through chance constraints in an optimization mddielvever,
although improving reliability will improve system robustness, the question is how the reliability index
will improve system robustness. Robustness incorporates the variation of gystlarmance; an
additional aspect of system performance that reliability does not encompass. In addition, rediadeiity
designrequires the modeler to know or assume the probability distribution of demand and pipe roughness

coefficients.Therefore, iis necessary to develop a better index for robustbased design.

WDS Resilience

As mentioned earlier, pipe bussare the most common failure in WDS. Therefore, promptly

detecting and locating bursts will decrease the failure duration and increase sgsilience. While

many burst detection methods are availablentifying that method with théighest detectability is
important to system owners/operator§o date no cross comparisons of these methods have been
completed for burst detection using amamon data set. Further, although detection probability (i.e.,
percentage of actual bursts that were identified) is an important metric, other measures such as time to
detect and the false alarm rdtave notbeen examined Finetuning a method for deteon probability

may have negative consequences on those indicators. Therefore, comparing burst detection methods using

a common data set and the detectability indicators is essential

Most burst detection method methods utilize system output measuremgntpifee flows and
pressure heads) that can be affected by system operational condition chfatigesystem condition

differs from the state under whichethodsvas developethlse alarmsvill be sounded

14



In Figure 4, one of the two source pipasa systems closed at 7:20 am from an unexpected
event; as a result pipe flow rates change relative to the historic record. The black solid line is the historic
mean of pipe flow rates undéne conditiontwo source pipes are operated and the daslhedidi the
statistical limitsof the pipe flow ratesMost burst detection methodsill consider this change as an
anomalybecause they do not have a mechanism to consider system operational .cBahtes more
common operational changes such as the mumboperating pumps similarly alter the pressure and flow
distribution. Without inclusion of information on regarding those changes, false detections will result or
methods will be limited to evaluating bulk flow measurements that are less sensitivstt Wherefore,
an important prerequisite for burst detection method is the consideration of system operational change

Such amethodis currently not available

250
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Source pipe 2 is closed
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-50
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Figure 4.False alarm due to flow ratdhange caused by a pipe closure
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1.3.Literature Review

Previous studies related to the topic of this dissertation are classified into three categories and
reviewed in following sections: (1) Optim&V/DS design; (2) traditional burst detection methods; (3)

burst detection method applicable endystem operational change.

(1) OptimalWDS design

Early studies of optimalWDS design minimized system costs while satisfying the minimum
allowable nodal pressure requiremertr leastcost desiga (Schaake and Lai, 1969; Alperovits and
Shamir, 1977; Bnsey and Mays, 1989; Simpson et al., 1994; Savic and Walters, 1997). However, these
formulations do not provide redundancy or robustness in the system design when system demands vary
from the design conditions. To overcome this shortcoming, later optiarizacork considered broader
indicators of system performance that addressed uncertainties to system parameters (Lansey et al., 1989;

Xu and Goulter, 1999; Todin2000).

Reliability has been the most popular measure for system performance. Systenityeigbil
generally defined as the ability of the network to provide an adequate service to customers under
uncertain system conditions (Goulter, 1995) and measured by the probability that the stochastic nodal
pressures are greater than or equal to a prescmbinimum pressure. Reliability indices have been
included in an optimization framework: (1) as a constraint in the-t@astdesign problem to meet an
allowable minimum reliability value (Lansey et al., 1989; Xu and Goulter, 1999; Babayan et al.pR005)

(2) as a second objective competing with cost in a robjtective optimization formulation (e.g., Kapelan

et al., 2005).

Lansey et al. (1989) were the first to develop a feast design methodology by assuming that

the nodal demands, pressure hesglirements, and pipe roughness coefficients are variable in a chance

16



constraint model formulation. Xu and Goulter (1999) introduced -l@sit design with reliability
constraint and used the fistder reliabilitymethod to quantify the uncertaintiestie nodal pressure.
Babayan et al. (2005) suggested a chance conshaed least cost design of WDS under demand
uncertainty using the integratidrased approach to overcome the time requirements of Monte Carlo

Simulation.

The transition to mukobjedive frameworks followed the development of efficient multi
objective optimization algorithms such as Ndmminated Sorting Genetic Algorithih (NSGA-II, Deb
et al., 2002). The tradeff between total cost and reliability was investigated in Pareto olpsiohations.
Kapelan et al. (2005) first implemented a muolijective optimal model using the robust NSGAo
minimize total cost and maximize reliability considering uncertainties in water demand and pipe

roughness coefficients. Latin hypercube samgplims used to quantify uncertainties in nodal pressure.

Giustolisi et al. (2009) proposed an alternatimedex in multiple objective formulations to
improve WDS robustness. While minimizing total costytheal s o maxi mi zethatis he par
equivalem to the standard normal deviate relating the mean pressure, its standard deviation and the
minimum pressure requirement. The measure is an indicator of the difference between the mean pressure
and the allowable minimum pressure (i.e., it has negativeeilmean pressure is below the minimum
requirement). Theoretically, to maximize this robustness index, the mean pressure should be increased

while its standard deviation is decreased, resulting in the network with low relative pressure variations.

(2) Traditional burst detection methods

Over the last decade, many methods have been examined to detect bursts: artificial neural
networks (Mounce et al., 2002; Mounce et al. 2003; Mounce and Machell, 2006; Mounce et al., 2010),
state estimation (Andersen andwedl, 2000; Ye and Fenner, 2011 and 2013), Bayesian approach

(Poulakis et al., 2003), Statistical Process Control (SPC) methods (Misiunas et al., 2006; Romano et al.,

17



2010; Palau et al., 2012; Romano et al., 2012; Jung et al., 2013), and time seriesg{Quevedo et al.,
2010). All of these methods use measurements of system output parameters (e.g. pipe flow rate and

pressure) that are collected by supervisory control and data acquisition (SCADA) monitoring systems.

SPC methods are the most widely ugllisiunas et al., 2006; Romano et al., 2010; Palau et al.,
2012; Romano et al., 2012). SPC methods apply statistical theory to the system output parameters to
identify nonrandom patterns that may be caused by bursts. SPC methods have been used iitythe qual
control of manufacturing processes to detect defects in products, since early twentieth century

(Montgomery, 2010).

Romano et al. (2010) used the Western Electronic Company rules (WEC, 1958) iftimeeal
leakage detection model using the measuredsure data. The WEC method plots the measured pressure
values on a Shewart control chart to determine whether a single value or a series of values represents an
anomaly based on several identification rules. To test the method, Romano et al. used gats$umne

13 sensors for five burst events induced by opening hydrants at different locations and times.

Misiunas et al. (2006) used the cumulative sum (CUSUM) method to detect and locate WDS
bursts. They applied CUSUM to a continuous flow record agtitey point of a relatively small network.

Five different bursts were generated to test the method.

Analyzing DMA inflow rates, Palau et al. (2012) applied the Hotellifigmethod for burst
detection. Here, the Mahalanobis distan®é) (vas calculated aft performing principal component
analysis (PCA) to decrease data dimensionality. Afterppoeessing to remove outliers, six months of

hourly flow data was used as a test set.

Robinson et al. (2005) applied two univariate and two multivariate methods to detect outliers in
water quality data from a wastewater treatment plant. An outlier is a data point measured in random
patterns (i.e., an tnontrol system) that is statisticalway from the rest of the data and needs to be
removed to obtain sound data for monitoring and modeling a system. Therefore, the outlier is often

18



caused by measurement error while an anomaly can be a signal of either the outlieramdioom pattern

(i.e., an out of control system).

The univariatemethodswerethezs c or e appr oach an dscoMaabpohoch s met h

guite similar tothe WEC rulesappliedby Romano et alin that it useghethree sigma contrdimit (CL)

to identify an outlier. WA s h 6 s me fortuerpected gas sn thie data. Huatelling T2 method and

its modified version suggested Hadi (1992 and 1994) and Hadi and Son (1988 multivariate
methodsappliedfor outlier detection in watequality data The modified Hotelhg T2 differs from the

standard method bgxcludng outliersin the test statistivhenexamining if they are outlier®obinson et

al. (2005) came to the general conclusions that multivariate methods are more effective in identifying
outliers while univaiate methods have more chance of erroneous deletion of valid data. However, it is not

clear that water quality and hydraulic conditions behave similarly.

(3) Burst detection method applicable under system operational change

No methods have beegpublished forWDS burst detection undevariable system operation.
McKenna et al. (2012) studied the impact of hydraulic operational changes in water quality event
detection. To avoid false alarms resulting from operational changes, they supplementegialityedata
with multivariate change patterns of hydraulic operation such as releases of fresh water from a treatment
plant. The multivariate water quality signals are fit with a polynomial regression model and the resulting
regression coefficients wereonsidered as a pattern. The multivariate pattern recognition through
trajectory clustering reduced the number of false alarms by 68% in the observed water quality data
(McKenna et al.2012. However, there is not a unique and monotonic pattern in thaljcparameters.

Therefore, it is not clear that the methodology is also a good solution for hydraulic conditions.

19



1.4. Summary of Literature

For robustnesbased WDS design, reliabildyasedor chance constraint modi¢las been widely
used. Howeverrobustness incorporates the variation of system performance; an additional aspect of
system performance that reliability does not encompass. Thus, the reliability index may not be the best
formulation for obtaining a robust design. For example, the twtesys of the same level of reliability
can have different variations in system performance (Table 1). Although the reliability level in each
design is the same, the degree of urmmformance in the failure case is significantly more severe in
Network 2. Thus, a reliability formulation does not possess all desired explanatory characteristics and an

alternative (robustnedsased) formulation may be useful for effective WDS design.

Table 1. Critical nodeds pr es s wechdisturbarfce hasddferenges t e ms
type and magnitude)

. Pressure (m)
Disturbances Network 1 Network 2
1 31 34
2 28 28
3 29 31
4 27 22
5 28 29
Probability of meeting a 28.12 m pressu 80% 80%
requirement
Variance ofPressure 2 14

With rare exceptiors, burst detection methods have been applied independently to different case
networks. While many different types of SPC methods have been examined for burst detection, no cross
comparisons of these methods have been completed for burst detection usmganatata set. Further,
although detectability (i.e., percentage of actual bursts that were identified) is an important metric, other
measures such as time to detect and the false alarm xeg@ditabeen considered for evaluating burst

detection methaosl

20



Finally and most importantly, no approach hesnsidered burst detection under system
operational change Without inclusion of information regarding those changes, false detections will

result or methods will be limited to evaluating bulk flow measuresidt are less sensitive to bursts.

21



2. PRESENT STUDY

2.1. Dissertation Outline

The primary goal of this dissertation is to develop methodeddg enhanc&VDS robustness and
resilience. For WDS robustness improvementew robustness index is deveéa and used for multi
objective robustnedsased design. The robustnéssed design is compared to conventional reliability
based design. For WD@silience improvement, the besethodamong six SPC methodsidentified in
terms of detection effectivess and efficiency. Finally, a burst detection method applicable under system

operatioml conditionchange iposed

This dissertation is comprised of three journal articles in Appendices A to C. The goal is to
examine the three main issues shown in the Figure 5. In the first papdnstness index proposedo
take into account the variation of WDS performancenoettain conditions. The proposed index uses the
coefficient of variation (CV) of stochastic pressures; avoiding the need to define the probability
distribution. The robustnedsased designs are compared to the traditional reliabitised design. Pest
optimization analyses were performed to examine the WDS resilience of the optimal systems by
calculating system hydraulic availabilit$§lA considering pipe breaks and fire flow conditigrggure

5 Thi s manuscript has been ater Resamds @ldnnimngrand M&n@&derbent. J o u r

In the second articlehree univariate and three multivariate SPC methods are compared with
respect to three performance metrics: detection probability, false alarm rate (first two are detection
effectiveness), antime to detect (detection efficiency). The univariate SPC methods are the WEC rules,
the CUSUM and the Exponentially Weighted Moving Average (EWMA) method. The three multivariate
methods are the Hotellin®? method and the multivariate versions of CUSUMI &\WMA. This work
was presented &013 World Environmental & Water Resources CongiesSincinnatiand is being

extended in a publication submitted to Journal of Hydroinformatics.
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The thrd paperdevelopsa methodology to consider system operational change and detect bursts
usinga nolinearKalman filter NKF) to identify the system operational condition, estimate nodal group
demands, and detect bursts. Several supporting efforts are reported firstKTFhand linear Kalman
filter (LKF) performances are compared on their ability to estimate distribution system demands. The
most informative measurement types for demand estimation and burst detagetsane also documented.

As a base comparison, tINKF is compared to two conventional SPC methods (CUSUM method and
Hotelling T?> method) with respect to several indicators under consistent operation conditions. Finally, the
NKF is applied © general operation conditions. This work was presented at Aitg&Bnational
Conference on Computing and Control for the Water IndustBerugia, Ithy and will be submitted to

ASCE6s Journal of Hydraulic Engineering.

These three studies make a unified dissertation that guides the ways to achieve a robust and

resilient WDSs with respect to its design and management.

ROBUST SYSTEM RESLIENT SYSTEM

GComparing six SPCburst detection
methods (Appendix B)

Developing a robustness-based >
design formulation (Appendix A) ¢

Developing a burst detection
method for system operational
condition changes (Appendix O

Figure 5. Sequence of study
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Robustnessbased Design of Water Distribution Systems (Appendix A)

Leastcost design approach results in a network vulnerable to uncertain future cond@dion.
overcomethis shortcomingbroader indicators of system performamesre been considergtansey et

al., 1989; Xu and Goulter, 1999; Todini 2000).

Reliability has been the most popular measure for system performance. System reliability is
generally defined as the ility of the network to provide an adequate service to customers under
uncertain system conditions (Goulter, 1995) and measured by the probability that the stochastic nodal

pressures are greater than or equal to a prescribed minimum pressure.

Although impoving reliability will improve system robustness, the question is how the reliability
index will improve system robustnedobustnesss generally defined as an ability of the systems to
maintain its function under a defined set of disturbance (Jen,, 2@@3ey, 2012andincorporates the
variation of system performance; an additional aspect of system performance that reliability does not

encompass.

In addition, he eliability-based desigmethods (i.e., chance constraintejjuire modelex to
know or assume the probability distribution of demand and pipe roughness coefficients. These probability
distributions are generally not known and little data has been published to support their definition. In the
previous reliabilitybased model formations, the normal distribution was often assumed for demand,
roughness, and the resulting pressures. However, the probability distribution can be an atypical shape
(e.g., a bimodal distribution), making reliability estimation difficult. Predicting thgutinparameter

distributions for some future state becomes more problematic.

In this study, a alternativerobustness index is proposed to take into account the variation of
WDS performance to uncertain conditions. The proposed index uses the CV of gtoghesstures;
avoiding the need to define the probability distribution. Forster secongnoment (FOSM) approach is

used for uncertainty quantification and NS®AIs used to solve the multibjective optimization

24



problem. Structural differences are idéat in optimal designs using this new index and those
determined from the conventional reliabilinased design formulation for the Anytown network. Post
optimization analyses were performed to examine the WDS resilience of the optimal systems by

calculding SHAconsidering pipe breaks and fire flow conditions.

The following results are observed in this study:

(1) The reliabilitybased design emphasized increasing the mean pressure to increase system
reliability while the robustnedsased design simultaously standard deviation of pressure and
increases the mean pressure. As a result, robudiased design is more effective in introducing

the system robustness than the reliablligged method.

(2) In the example considered, robustness constrainedicgt contain larger pipes in the main
lines to the multiple pressure zones while reliabitigsed design is dominated by large pipes

along the path leading to the node with lowest pressure.

(3) Postoptimization analyss were completed to compute th8HA for the optimal solution
obtained from two design approach&1Ai s a resilience indicator
ability to supply adequate service during the abnormal conditions, i.e., pipe break dialfire
conditions. Overall, robustnesssel optimal designs have higher hydraulic availability and are

less vulnerable to the two failure conditions.

(4) Therefore, the robustnebased designs appear preferable to reliabiéged design with

respect to system resilience in a mobijective WDSdesign model.
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Improving Resilience of Water Distribution Systems through Burst Detection (Appendix B)

Resilience is a systembébs ability to Agracefull
event Lansey, 201R Pipe bursts are the most comnfailure mechanism in WDS and occur when a
pipe ruptures from pipe deterioration, excessive pressure, and ground shifts caused by temperature
changes or earthquakes. Thus, promptly detecting and locating bursts will decrease the failure duration

and increae system resilience.

Pipe bursts cause a change in the signal in pressures and flow rates that are observable by
SCADA monitoring systemsAmong many SCADAbased burst detection methods, SPC method have
been widely used and investigated how many bursts are detected among totaFtamstan operatdr s
standpoint, burst detection is not the only indicator that is important and the objactivasre precisely
stated as maximizing burst detection in the shortest time while avoiding identifying false alarms. This

study focusson comparing detection methodologies considering those three criteria.

While many SPC methadave been examined foulst detection, no cross comparisons of these
methods have been completed for burst detection using a common data set. Further, although detectability
(i.e., percentage of actual bursts that were identified) is an important metric, other measuresisigch as t
to detect and the false alarm rate should also be examined sint¢eniimg a method for detectability

may have negative consequences on those indicators.

This study compares three univariate and three multivariate SPC methods with respect to three
perfformance metrics: detection probabil{P), false alarm ratéRF), and averagéme to detectADT).
The univariate SPC methods are the WEC rules, the CUSUM and the EWMA method. The three
multivariate methods are the Hotelliig method and the multiveate versions of CUSUM and EWMA
(MCUSUM and MEWMA, respectively)To test the methods, nodal pressures and pipe flow rates were
randomly generated wusing a real net workés hydraul

for alternative flow and presire meters configurations for conditions with and without simulated bursts.
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The following results are observed in this study:

(1) Results indicate that system pressures are more sensitive to disturbances and provided higher
detectability compared to flometers because of more consistent-raomdom pressure patterns

that occur after a burst.

(2) However, in multivariate schemes pressure measurements caused relativeRFhigh to

the thin control ellipse resulting from high measurement correlation.

(3) Univariate methods that incorporate past and present data performed better than univariate
techniques that only consider short measurement histories and multivariate methods. In particular,

the latter methods did not recognize small bursts that wereelieg CUSUM and EWMA.

(4) While a long record length helps in detecting small bursts and avoiding false detections in
univariate methods, their value is not exploited in multivariate methods (Hot&fimgethod vs
MCUSUM and MEWMA) because the method® ausceptibleéo natural outliers in thd?

statistic

(5) Adjustments in the MCUSUM and MEWMA model parameters to be less sensitive to the
outliers reduce their sensitive to identifying bursts and satisfactory balances could not be

determined.

(6) Overall, the univariate EWMA had the best efficiency and shortest average detection time
(ADT) among the six SPC methods. Therefore, based on the network considered in this study,
EWMA is the preferred burst detection method and pressure measurementseakalmable for

identifying bursts compared to flow meter data.
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Water Distribution System Burst Detection usinga Nonlinear Kalman Filter (Appendix C)

Most burst detection methods use measurements of system output parameters (e.g. pipe flow rate
and pessurehead$ that are collected by SCADA monitoring systenBecausethe system output
measurements can be affected by system operational condition changes, it will result in many false alarms
if the system condition differs from the state under wimekhodswas developed. Without inclusion of
information on regarding those changes, false detections will result or methods will be limited to

evaluating bulk flow measurements that are less sensitive to bursts.

Modetbased approaches, such MKF, have proven useful in anomaly detection in auto
correlated data (Montgomery, 2009\KF has the advantage of representintpe full nonlinear
relationship between state and measurement variables compared to LKF. However, to the best of the

aut hor sdgeNKRaswnotdeen applied for WDS demand estimation or burst detection.

This study employs thBIKF to identify the system operational condition, estimate nodal group
demands, and detect bursts. Several supporting efforts are reported filNKH laed LKF performances
are compared on their ability to estimate distribution system demands. The most informative
measurement types for demand estimation and burst detection are also documented. As a base comparison,
the NKF is compared to two conventional SPnethods (CUSUM method and Hotellilgmethod) with
respect to the detectability indicators under consistent operation conditions. FindNiKRhs applied to

general operation conditions.

The following results are observed in this study:

(1) Incorpaating pressure head measurements in the approximation causes the Jacobian matrix to
approach singularity; resulting poor demand estimation. Thus, only pipe flow measurements are

provided to theNKF.

(2) In the single source system, LKF aN&KF had similaraccuracy with respect to demand
estimation. HoweverNKF had a smallerootmeansquareerror RMSE) than LKF in the dual
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source system because MKF6 s f ul | nonlinear hydraulic repr

linearization in LKF.

(3) NKF using nodalgroup estimates resulted in a highBP than using astandardized
innovation processhat compared pipe flow rates while both methods dakeclose to zero.
However, a standardized innovation process detected bursts immediately while the demand

estimatesequired a longer detection time.

(4) An NKF-based algorithm that combinedandardized innovation proceaad nodal group
demand estimates merged the strengths of the two methods and gives the b&d®-fiit

results comparable to the SBUSUM method ér consistent operations.

(5) The combined detection algorithms also maintained high detectability/short detection times

whenoperational changewere introduced
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2.2. Uniqueness dghe Study

The unique contributions achieved from this study for WbDISustness and resilience are highlighted in

following section.

(1) A betterrobustness index was proposed

A new robustness index that can consider the variation of the stochastic nodal pressures has
developedand proven tdimit the range of vdability of system functionTo date, no one has considered
the coefficient of variation of the stochastic nodal pressures for estimating WDS robustness. WDS design
using this robustness index simultaneously decreases standard deviation of pressure and irereases th

mean pressure.

(2) The variation of stochastic nodal pressures of reliakilityed design

Thest ochasti ¢ wadahadhangewithshe syst@rscost increasses first identified
for reliability-based designThe decrease of the variance itialeility-based design was not effective

compared to the robustnelsased design.

(3) Reliability and robustnessased designomparisorwith respect to a resilience measure

This study investigated the impact of the two objectives on the network desiggsiliénce
measure, SHA of two optimal solutionsvas calculated for single pipe break conditions and for an
extreme fire flow condition. This comprehensive comparison between reliability and robtsiseds
design using a resilience indicator has notnbeerformedin any previous worksThe robustnesbased

design witharobustness formulation improves resilience relative to the reliability formulation

(4) Design difference comparison of reliability and robustiresed design
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The resulting designs frorthe two models in terms of the spatial pipe size distributions and
pump/pipe sizes was compared. The design different indicates the differing influence of the two measures.

This unique difference in designs has not hiegastigated before

(5) First appication that consider pipe/pump desigmshe robustnesbased design

This study identified thatht range of robustness values in the pipe only design and that in
pipe/pump design are different while the ranges of reliability values are same. Becamgephstation
in pipe/pump design has larger pressure variations and lower pressures at increasing demands, the
pipe/pump designs are less robust compared to the pipe only design that is supplied by a fixed elevated

reservoir.This contrast was not idenigfl earlier since no other application considered pipe/pump designs.

(6) Six SPC methods comparisasing detectability indexes and common data set.

In the previous works, each of SPC methbds been applied wetect different bursts occurred
in different systems.No cross comparisons of these methods have been completed for burst detection
using a common data sém. addition, this study is the first to consider false negative (type Il error) and

positive (type | error) rate for the burst detection performance comparison.

(7) First application of multivariate methods with long system memory

The MCUSUM and MEWMAmMethodhave not been applied for burst detection. This study is the

first paper that presents the detectability of MCUSUM and MEWMA.

(8) The indicators of detection effectiveness and efficiency

The indicators of detectioaeffectiveness®P and RF) and efficieicy (ADT) aredeveloped To
date, no one proposed any index to measure the detection effective and efficiency of a burst detection
method. Individual burst detection method has been appliech tmdependent case study without

comparing between methottais no need for the indicators
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(9) The type of meter resulting in high detectability

Most previous works have applied either of pipe flow or pressure meters. Therefore, the most
informative meteitype was not identifiedThis study identified that pressuneeter is more informative
for burst detection compared to flow meter. The same number of pressure meter detected more events
with fewer false alarms compared to flow metensesBuremeasurements are more consistent and less

sensitive to demand variabilippmpared to flow meters.

(10) Burst detection under system operational condition change

A methodology for hrst detection under system operational condition change has not been
developed Therefore, applications weomly applicable specific networks or network conditions such as
networks supplied by gravitylhis study propose®lKF to identify the system operational condition,

estimate nodal group demands, and detect bursts.

(11) Comparison the performance of LKF ad#F on demand estimation

BecauseNKF has not been applidukfore no comparison of LKF andNKF was performed with
respect to their ability talemand estimatioin WDS. NKF performance on demand estimation is

compared to LKF for single and dual sousgstems that represent varying levels of nonlinearity.

(12) Impact of including pressure heads measurement on demand estimation

To examine the impact of including pressure head measurements on demand estimation, four
different measurement sets are provided NKF and the RMSE was calculated for each case.
Measurement sets with more pressure measurements had higher RMSEs with the 14 flow measurements

(no pressure heads measuremhbat)ing the lowest RMSE
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2.3. Conclusions and Future Work

In the first study an alternative robustness index is proposed to consider system robustness. As a
constraint in an optimal design model, the robustness index limits the range of variability of system
function by constraining the CV of stochastic pressures due to demdnpiproughness variability.
The robustnesbased design with a robustness formulation improves resilience relative to the reliability

formulation(Figure 5).

This study has several limitations that future research must address. First, large networks with
varying configurations should be examined to conf
a single source, the robustndmsed design included relatively large and consistent pipes in the main
lines to the pressure zones. Thus, the robastmased design performed better than the reliakil#ged
design during failure events. However, if the network has multiple sources, the superiority of the
robustnes$ased design could diminish due to the proximity of the source to demand pointkiliBelia
and robustness indices should be extended to unsteady conditions and results for two design approaches
compared when designing valves, pumps, and tanks. Finally, rigorous analysis should be completed to

provide guidance on selecting threshold robess valugto support engineering decision making.

The second studgompares the ability of six SPC methods to identify bucstsnd a best method
for system resilienceSynthetic flow and pressure sequences were used to develop and calibrate the
method. DP andADT were then calculated from a random set of burst eventRBEmehsestimated from
natural random variability. Results indicate that system pressures are more sensitive to disturbances and
provided higher detectability compared to flow metezsduse of more consistent A@amdom pressure
pattens that occur after a burst. Univariate methods that incorporate past and present data performed
better than univariate techniques that only consider short measurement histories and multivariate methods.

Overall, the univariate EWMAad the best efficiency and shortA&T among the six SPC methods.
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This study utilizes flow and pressure meters independently. Since pressure values from multiple
locations may be correlated, the combination of flow and pressure data should be assessed. In addition, a
multiple objective optimal meter location problem sklobe formally posed to maximizBP and

minimize RFandADT.

Finally, the third study employed tiNKF for burst detection under system operational condition
change.NKF identifies the system operational condition, estimates nodal group demands, ansl detect
bursts.NKF using nodal group demand estimate and standardized innovation process results in high

detectability/short detection times regardless of operational condition changes.

Additional investigation is needed to assess other types of operatiomgleshsuch as complex
combinations of tank open/closure and pump operation NKfe performance on burst detection should
be confirmed with real system data. In actual applications, a mechanism to introduce system knowledge
or modify control limits during Rown extreme events should be added to avoid false alarms when big
sportng events and extreme weather condisioiddition of a pressure head test may also prove fruitful

for rapid detection of large bursts.
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RobustnessbasedDesign ofWater Distribution Systens

Donghwi Jung', Doosun Kand, Joong Hoon Kim?, and Kevin Lansey

Abstract

Robustnesss generally defined as an ability of the systems to maintain its function under a defined set of
disturbances.To introduce robustness to theater distribution systems (WDSgjesign, chance
constraned or secalled reliabilitybased models have been formulated. Under variations in system
parameters, such as nodal demaand pipe roughnessystem reliability is generally measured as the
probability that the stochastic nodal pressures will be higier an allowable minimum pressure limit.
However, chance constraints may not be the best formulation to improve system robustness because it
focuses on the likelihood of failure under a specified set of conditions rather than developing a solution
that cansistently provides adequate service. In addition, the reliabitised design requires defining the

demand condition, its probability distribution and its statistics, which are not straight forward in practice

To address these difficultiea,robustnesidex that limits the range of the system function variabigity
posed herend incorporatedn a two objective optimization problenResulting designs are compared
with those from the reliability constraint formulatioWe demonstrate thahe robustnesbaseddesign

improvesresiliencerelative to the reliabilitybased design.
Keywords: WDS design; Reliability; Robustness; Resilience; System hydraulic availaBitig) (
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Early studies of optimal water distribution systems (WD8e¥sign minimized system costs while
satisfying the minimum allowable pressure requirement at nodesillsa leastost design (Schaake and

Lai, 1969; Alperovits and Shamir, 1977; Lansey and Mays, 1989; Simpson et al., 1994; Savic and Walters,
1997). However, theseleastcost desigrformulations do nbprovide redundancyr robustness in the
system designmhen system demands vary from the design conditions. To overcome this shortcoming,
later optimization work considered broader indicators of system peafure that addressed uncertainties

to system parameters (Lansey et al., 1989; Xu and Goulter, 1999; Todini 2000).

Reliability has been the most popular measure for system performance. System reliability is generally
defined as the ability of the network poovide an adequate service to customers under uncertain system
conditions (Goulter, 1995) and measured by the probability that the stochastic nodal pressures are greater
than or equal to a prescribed minimum pressure. Reliability indices have beerdnicluh optimization
framework: (1) as a constraint in the leasst design problem to meet an allowable minimum reliability
value (Lansey et al., 1989; Xu and Goulter, 1999; Babayan et al., 2005) or (2) as a second objective

competing with cost in a miidobjective optimization formulation (e.g., Kapelan et al., 2005).

Lansey et al. (1989) were the first to develop a least desigh methodology by assuming thatribeal
demands, pressure head requirements, and pipe roughness coetiiggatgable in achance constrain
model formulation Xu and Goulter (1999) introduced leasist design with reliability constraint and
used the firsbrder reliabilitymethod to quantify the uncertainties in the nodal pres®abayan et al.
(2005)suggestd a chanceonstrairtbased least cost design of WDS under demand uncertainty using the

integrationbased approach to overcome tinee requirements d¥lonte Carlo Simulation (MCS)

The transition to muhobjective frameworls followed the development ddfficient multiobjective
optimization algorithms such as Ndominated Sorting Genetic Algorithth (NSGA-Il, Deb et al.,
2002). The tradeff between total cost and reliability was investigated in Pareto optimal solutions.

Kapelan et al. (2005jirst implemened a multirobjective optimal model using the robust NSBGA
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(RNSGAII) to minimize total cost and maximize reliability considerimgcertaintiesn waterdemand
and pipe roughness coefficientsatin hypercube sampling (LHS) was usedquantify unertainties in

nodal pressute

Robustness generally defined as an ability of the systems to maintain its function under a defined set of
disturbance (Jen, 2003; Lansey, 2012) therefore, can be measured by the variation of system performance.
In this conext, reliability-based design fits within the domain of robustneShough improving
reliability will improve system robustness, the question is how the reliability index will improve system
robustness. Robustness incorporates the variation of systéonnpeance; an additional aspect of system
performance that reliability does not encompass. Thus, the reliability index may not be the best
formulation for obtaining a robust design. For example, the two systems of the same level of reliability
can have di#rent variatios in system performance (Table.1Although the reliability level in each

design is the same, the degree of uymlformance in the failure case is significantly more severe in
Network 1. Thus, a reliability formulation does not possess all desired explanatory characterisdits and

alternative ¢obustnes-based¥formulationmay be usefulor effectiveWDS design.

Giustolisi et al. (2009) proposed such an alternative in multiple objective formulations to improve WDS
robustness. While minimizing total cost, they also maximized the paamethat is equivalent to the
standard normal deviate relating the mean pressure, its standard deviation and the minimum pressure
requirement. The measure is an indicator of the difference between the mean pressure and the allowable
minimum pressure (i.eit has negative value if mean pressure is below the minimum requirement).
Theoretically, to maximize this robustness index, the mean pressure should be increased while its
standard deviation is decreased, resulting in the network with low relativaigresgiations. Here, a

robustness alternative indicator is introduced.

Robustnesbased design avoids or minimizes failure severity rather than focusing on the probability of

successful operation. Reducing severity is advantageous when pressurernterearabe considered as
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soft limits and pressure slightly below the minimum are acceptable in extreme conditialss. will
provide solutions that function properly under a broader set of conditions that may not be explicitly

defined as design conditie.

The eliability-based design requires the modeler to know or assume the probability distribution of
demand and pipe roughness coefficients. These probability distributions are generally not known (e.g.,
distribution A in Figure 1 is unknown) andtl data has been published to support their definition. In the
previous reliabilitybased model formulations, the normal distribution was often assumed for demand,
roughness, and the resulting pressures. However, the probability distribution can bpieal ahape

(e.g., a bimodal distribution), making reliability estimation difficult. Predicting the input parameter

distributions for some future state becomes more problematic.

Finally and most importantly for practical applications, the definition ofddmand conditions used in a
chance constraint formulation have not been defined explicitly. For example, typically it is not clearly
stated if the demand is the peak demand with its associated variability (Figus&ifiution B) or the
average demand thi its variability (Figure ADistribution A). As shown, the distributions for the demand
are related but they imply very different conditions. A peak demand distribution is particularly difficult to

assess since they occur quite rarely.

In this study, we mpose a robustness index to take into account the variation of WDS performance to
uncertain conditions. The proposed index uses the coefficient of variation (CV) of stochastic pressures;
avoiding the need to define the probability distributiomstrorder secondmoment (FOSM) approach is

used for uncertainty quantification and NS®AIs used to solve the multbjective optimization
problem Structural differences are identified in optimaesiyrs using this new index and those
determined from the convgaonal reliability-based desigfiormulation for the Anytown network. d3t
optimization analysesvere performed to examine the WDSsilience of the optimal systems by

calculating system hydraulic availabilit@lA) considering pipe breaks and fire flow ditions.
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WATER DISTRIBUTION SYSTEM RELIABILITY AND ROBUSTNESS

Reliability

WDS reliability is generally defined as the syste

customers under varying system conditions including normal and abnoomditions (Goulter, 1995).
Reliability can be measured in terms of the quantity and quality of delivered water. Water quality
reliability is beyond the scope of this study. In terms of water quantity, reliability is generally related to
the flow to be suplied (Su et al., 1987; Goulter and Coals, 1986; Cullinane et al., 1992) and the range of
pressures at which those flows must be provided (Lansey et al., 1989; Goulter, 1995; Xu and Goulter,

1999).

Hydraulic reliability (Xu and Goulter, 1999) is used hared defined as the probability that the nodal
demand is met with pressure greater than or equal to the allowable minimum pressure. The pipe network
has a fixed configuration and uncertainties are introduced in the system parameters (demands and pipe
roughress). Therefore, the nodal hydraulic reliability is equal to the area under the probability density
function to the right of the minimum required press&#®]. The probability of hydraulic failure at node

can be expressed by:
00 01 ¢l O 1)

whered "Os the probability of nodal hydraulic failure at naglé is the random nodal pressure at ngde

andd is the allowable minimum pressure.
The hydraulic reliability at nodieis then:
YQap 00 (2)

An exact hydraulic reliability can be obtained by integrating the pdf or:
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YQa . Q0 Q0 (3)
where’ QU s the probability density function of pressuret node.

The system reliability of a given network can be an average or Weighted average of the nodal
reliabilities (Su et al, 1987; Bao and Mays, 1990) or the minimum value of the nodal hydraulic reliability

as used here:
[ i YOEINQa Q pBlR (4)

where¢ is the number of the nodes in the netivoAssuming that the nodal pressure is normally

distributed, the pdf is defined by the mean and standard deviation of the nodal pressure.

Robustness

Robustness is the ability of a fixed system to avoid or minimize the severity of a failure when under a
defined set of stresses. The system robustness can be assessed using the variation of nodal pressure under
system parameter uncertainties. Here, a robustness index is proposed using the coefficient of variation

(CV) of the stochastic nodal pressure.

TheCVof a nodeds pressure is:

86 — (5)

whered wis the coefficient of variation of pressure at nodé is mean of stochastic nodal pressures at
nodei; and, is standard deviation of random nodal pressure at node

The robustness index for nodis defined as:

Yéwp 6w (6)

The system robustness is defined as the minimum nodal robustness:
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[ i YEIGETYE D "Q pMB R (7)

METHODOLOGY

Two optimization model formulations, reliaiyl-based and robustnebased, are posed and resulting
designs are compared. The objectives of the former model are to minimize total cost and to maximize
system reliability while the latter one's second objective is to maximize the system robustness. The
reliability and robustness indices (eqgs. 4 and 7, respectively) are estimated using mean and standard
deviation of stochastic nodal pressures at nodes and the statistics are obtained using the FOSM
uncertainty approximation method. NS@IAs used for sylem optimization. Pogbptimization analyses

using SHA compare the solutions from two design approaches. The following subsections describe the

details of the objective functions, optimization approach, andquishization analyses.

EconomicCost Function

Total system cost consists of capital costs of pipe and pump construction and O&M (operation and
management) costs for pumping stations. For pipeline construction, pipe material and installation costs
are included. All costs in this paper are updatédguthe Engineering NewRecord (ENR) construction

cost index for 2005 and expressed in US dollars. The O&M costs are calculated on annual basis and

converted to a presemtorth for the system planning time and annual discount rate.

Pipe construction costPipeCC)

Clark et al. (2002)fit general pipe construction cost functions accounting for pipe material and

installation:
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wherewis unit pipecost ($/ff 1 ft=0.3048 m)wis pipe diameterin inches (1 inch=2.54 cmo is

indicator variable; and, @, @ Q, 'Q and"Qare componenspecific parametervalues estimaed using
regression analyse®ipe construction costare the sum of théase installation costrenching and
excavation, embedment, backfdind @mpactioncosts and as well asalves, fittings, and hydrants cest

Detailed information for the pipe cost function can be found in Clark et al. (2002).

Pump construction cosfPumpCC)

The pump construction cost (Walski et al., 1987) is:

Doanodnmo® O | A@OR D 9)

where0 is rated discharge in gprgallons per minute, 1 gal=0.00378%)mOis rated head in f(1
ft=0.3048 m) and() U and() U are the numbers of pumps operating for average and peakndema

conditiors, respectivelyFor the sake of simplicityf is assumed that individual pumps in a pump station

are identical.

The ated headChin ft is formulated as:

0 — (10)

where/ is specific weight of watein Ib/ft3 (62.4 Ibft3=1000 kg/me); "O0is pump horsepower (hp);
- is motor efficiencyD Dis pump discharge in¥fsec (1 f/sec=0.0283 ffs); andi Ois the number
of pumps that are operating (average or peak demand condi@@@nd NP are decision variables. The

rated head/Chis calculated based 380 NP and0 0depending on demand condition.

48



Pump operation cosfPumpOC)

The present value of the pump operation cost is given by:
0o6ani®O —>— O0 ® CcT 0Ll ®O (11)

where— is pumpefficiency; O 6is pump energy cost ($/kWhandd & ®the present value factor.
The energy consumption is estimated from the average demand condition for the entire planning period

assuming constant pump energy cost.

The presenvalue factor is:

00— (12)

whered "® annual discount rate argdis planning perioddurationin years.

Multi -Objective Optimization

System reliability and robustness are inversely related to system cost. Understanding the tradeoff between
system indices and costs will allow decision makers to make better decisionthatTend, two

formulations, reliability and robustness based design, are posed and solved.

Objectives and constraints

In both models, the first objective function is to minimize the total system @)sfThe second objective

("O) is to maximize theystem reliability indexgysRél or the robustness indegyRob.

Minimize™O 0 QR 'Q8066 6/ 66661706 (13)
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Maximize™O | wi "BrlydRob (24)

Pressure constraints are included in both design problems, that is, th@msdale should be within the

allowable pressure limits for each demand conditions:

0p 0 (15)

| CA

where0 and0 are the lower and upper allowable pressure limits for demand conkjtiespectively,

and0 j, is the pressure head node for demand conditiok.

Uncertainty Quantification Method

WDS uncertainty has been assessed using M®SM analysis, andHS. MCS is a random
enumeration technigue in which a large setealflizations areleveloped and evaluated. MCS is assumed
to be correctf a sufficient sample sizés usedbut it is often too time consumintp be used iman
optimization framework. FOSM is a variance approximation methased on araylorserieslinear
approximation LHS is a quasMCS using stratified sampling. FOSM and LHS are often used as
alternative approaches to MCS to reduce the computational effort. In this B@8}y)is employed since

it significantly reduceshe number of function evaluati@nd has been proved beacceptablyaccurate

for WDS uncertainty estimates (Kang et al., 2009).

First-Order SeconeMoment

FOSM, also called the variance propagation method (Berthouex, ,183thates the variance by
approximating a function with a Taylor series expamsioound the mean parameter value and dropping
the higher order term@ung and Yen, 2005)f a model outputv is related t@) model parameters, the

covariance matrix of the model predictigns, can be shown to be:
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wherer  QQ&"®, Mh isad U diagonal matrix of variance of theodel parameters and

v n o H is a0-dimensional vector of the sensitivity coefficients evaluated at mean of parameters,
H . The sensitivity matrix is the gradient tie model output with respect to a model parameter.
Therefore, for a system with parameters using a finite difference approximation of the derivatives,

FOSM require®  p function evaluations for theé perturbations plus the analysis of the base ¢mmdi

Post Optimization Analysis

To compare the impact of the two objectives on the network deSldAof their optimal solutions are
calculated for single pipbreak conditios and for an extremgre flow conditionin postoptimization
analysesResi |l i ence is a systemds ability to figracef ul
event(Lansey, 201Rand thus, is a function of failure severity and recovery tigt¢Ais defined as the
availability of the desired quantity of water andhifirst estimate for system resilience. It is influenced by

the nodal pressure under pipe break and fire flow conditidris.analysis follows the Scholz et(20D12)

definition of specified resiliencef the nodal pressure does not meet allowable mimnpuressure
requirement, a partial demand is considered to be delivered to cust@hisdoes not address a

syst emdbds a ldiolthe evgnt (Zhoang et )fB8onor does it assess extreme conditions such as

earthquake events described by Schokll.ets generalized resilience.

SHA during pipe breaks

The minimum cuset method (Su et al. 1987) is employed to estimateStiv& Following Su et al.
(1987), only single pipe failures are considered in calculatin@th® For a given optimal design, one of

the pipes is closed in the hydraulic model representing a pipe failure and nodal pressures are calculated. If
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a nodal pressure does not meet the minimum pressure requirement, the hydraulic avadiabifiy that
node is calculated using the function given in Figure 2 (Cullinane et al 1992). System hydraulic
unavailability SHUA under a pipg failure is computed using a demand weighted average of nodal

unavailabilities p "O0y,) or:

B i

"Y'OYO a7

where"YY'Ods system hydraulic unavailability during pipé §j= 1 , ¢ ¥ break condition‘00y, is
hydraulic availability for node (i= 1, € ¢ in pipej6 ®reak conditionr] is nodal demand for node

i; € is the number of nodes; aadis the number of pipes.

The closed pipe is then opened and another one is closed and the above calculations are repeated. This

process continues until breaks in all pipes have been evaluate8HHRie then calcwdted as.

Y06 p — (18)

where"Y"0O0is system hydraulic availability of the given optimal design.

SHA under fire flow candition

Fires result in unexpected and abnormal system stress conditions. The procedure for estirvating
under fire flow conditions uses the availability function in Figure 2. For a given optimal design, a location
near one of the nodes is assumed to have affidea corresponding increase in flow is required. Nodal
pressures are calculated for the network under that condition. As in the minimset coéthod, if the
nodal pressure does not meet the minimum pressure requiremert) titethe node is calculataging

the availability function.SHUA under fire flow for node is calculated as a demand weighted nodal

unavailabilities ¢ "O0f) where'O0, is hydraulic availability for node(i= 1 , & & with the fire flow
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occurring at nodé. The fire fow is then moved from nodeto nodei +1 and theSHA procedure is
repeated. This process continues until fire flows are simulated at all the nodes. The system Sr¢4low

is then calculated by:
e 8 B
YO8 p —— (19)

where"Y'O"Y @s theSHUA with the fire flow at nodeé ( i = 1% ). €,

STUDY NETWORK

The analyses outlined above are completed for the Anytown network (Walski et al., 1987) with several
modifications to the original system. Optimal reliabdiigsed and rolsnessbased designs are
determined for (1) pipes only and (2) pipes and pumps as decision variables. For the pipe only design, the
elevated source reservoir head is assigned an elevation of 73.2 m (240 ft) while for the pipe and pump
design, the originaAnytown reservoir head of 3.0 m (10 ft) is applied. Peak and average demand
conditions are included in the optimal design modéle average demand conditig®m assumed to
continue constantly during planning periods aimibe pump operatia The peak dema condition is

thedominant factodetermining pipe sizes and the humber of pumping units and their sizes.

Several other modifications to the original Anytown system were also introduced. First, this study
optimizes new pipe and pump station sizagguming thathere areno existing pips and pumgin the
system Next, two tanks and two riser pipes are eliminated from the network. Therefore, the modified
system consists of 19 nodes, one source, and 38 pipes as shown in Figure 3. Th&/iHazen
roughness coefficient is 130 for all pip@fie minimum pessure requirements &8.1 m (40 ps) for the
average and peak demand conditions and i (20 ps) for the fire flow condition.The maximum
allowable pressure is 77.3 m (110 psi) for all demamntlitions. Cosparameters are listed in Tabl2

and 3
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A peaking factor of 1.8 is applied to given average base de@@&@®b average daily us&) createthe
daily peak conditiomndthefire flow condition isassumed to occur at the peak plus the 0rg3%& (4®0

gpm 22.7% of total system peak demand) ndidaldemand

Nodal demands and pipe roughness coefficients are considered as uaceltaia assumed tollow the

normal distributionwith a CV of 0.1 (i.e.,, 1@ ‘) for both parametersThe same optimization
parameters and functions applied to the NSGAre used for both formulations. The population of 100

was evolved over 10,000 generations with crossover rate of 95% and mutation rate of 10%. The solutions
that enhance their nesiominationrank through selection, crossover, and mutation were survived to next
generation. Hydraulic simulations are performed using EPANet (Rossman, 2000) for both design and
SHAevaluation. A pressurériven model can be used f8HAevaluation (Wu et al., 2009; Giustolisi and

Walski, 2012).

A number of assumptions and simplification are made inaghjgication; (1) the base nodal demand and

pipe roughness coefficients are known with certai(@y average base demand is withdrawnstantly

during planning periods; (3) Peak demands and pipe roughness variations are considered for the
robustness index estimation although multiple demand conditions can be considered; (4) pump and motor
efficiency are constant and independent of fldw; e likelihood of pipe breaks and fire are the same at
everylocation (6) valves are located at each end of all pipes allowing the pipe to be isolated without
affecting the attached nodes; and (7) pipes are installed now and the improvement actiencteaing

and rehabilitation does not occur.

These assumptions above are consistently applied to both reliability and robbsisegsdesign to
maintain consistency the comparison between methods. All can be relaxed in further studies using the

techrques adopted here.

RESULTS
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Verification of Statistical Assumptions

Nodal and systemeliabilities were estimatedassuming that nodal pressures followde normal
distribution This assumptiorwas confirmed to be true for pipe and pump designs by visspéction

(Figure 4b) Chisquared goodnesgs-fit test, and Kolmogorossmirnov tes(results not presented)

However,the hypothesis of normality was rejected for pipdy designs by the two statistical &sThe
coefficiens of skewness and kurtosi$ the stochastic pressuregre very close taero and the histogram

of pressures visually appears to be a normal distribution (Figure 4a). The slightly negatively skewed
distributions results from the fixed supply reservoir elevation that bounds tred thg high pressures

and causes the failure of the hypotheses test. The low pressure tail is of primary concern here and visually
appears to be consistent with the normal distribution so the normal distribution assumption for pressures

is also maintainetbr the pipe only design.

Optimization Results

Optimal results for the chance constraint and robustness problems are presented in a series of figures and
tables. Figures 5a and 5b show robustness and reliability values, respectively, of optimal solutions from
the two formulations for the pipe only dgsi Figure 6a and 6b show results for the pipe/pump design.
Minimum mean pressure and the maximum standard deviations of pressure of the optimal solutions are
plotted in Figures 5c, 5d, 6¢, and 6d to show how the two design approaches change the minimum
pressure and maximum standard deviation with increasing total cost. Solutions with similar costs from the
two design approaches were selected and are summarized in Tables 4 and 5. Least cost solutions for each
design problem with reliability equal to 1 (bysangle precision expression) are also summarized in the
tablesPdf 6s of the minimum pressures node are shown

4 and5 assuming pressures are normally distributed.
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As expected, the robustndsased design have higher system robustness than coabjErcosting
reliability-based designs (Figure 5a and 6a). Similarly, reliakildgged designs have higher system
reliability than robustneslsased designs (Figure 5b and 6b). The Pareto fronts in Figure 5tbaaré 6
guite steep slope indicating a rapid increase of system reliability with a small increase of total cost;

whereas, relatively, system robustness increases more gradually (Figure 5a and 6a).

The reliability increases result from higher mean minimuessgure rather than reductions in the pressure
headds standard deviation (Figures 5c, 5d, 6c, an
design that has lower minimum pressures and smaller maximum variances (Figures 5c, 5d, 6¢, and 6d).
Although the reliabilitypased design decreases the maximum standard deviation of pressure, reductions

were not as significant as in the robustAeased design.

The difference between the two design approaches is more clearly seen in the pdfs of thessesnatr

the minimum pressure node and its standard deviation (Figure 7 and 8). Both relsiéty and
robustnesdased designs begin from solution #1 that are similar in pdf shape and location. As the total
solution cost increases (from Solution M4t Figure 7 and to 5 in Figure 8), the robustrAzssed design
reduces the variability as seen by -bageddesignetendand m

to shift the distribution to the right by increasing the mean pressure.

The robustass of reliabilitybased designs increases with reliability nearly linearly (Figures 5e and 6e).

The change in reliability of the robustndsssed designs, on the other hand, does not change uniformly.

For example, in the pipe/pump design, until the toimal design cost reaches $30.58M (Solution 2 in

the robustnesbased design in Table 5), the reliability values remain at 0.5 as seen in the vertical lines of
points in Figure 6e (the vertical lines of points are more apparently seen in Figure 3ehisJobst is

reached, the mean pressure at critical nodes does not change but the standard deviation decreases as

shown in the pdfés transition from Solution 1 to
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reliability-based design in whictme mean pressure increases at the critical node without a corresponding

decrease in the standard deviation (Solution 1 to 2 in Figure 8b).

For costs above $30.58M, the reliability increases with robustness until the reliability value reaches 1.
The standrd deviation of pressure decreases with increasing cost in the robidsisedsdesign until it
becomes too costly relative to changes in the mean pressure then the mean pressure at the critical node is

raised.

Note that the range of robustness valuahinpipe only design (Figure 5a) and that in pipe/pump design
(Figure 6a) are different while the ranges of reliability values are same (Figure 5b and 6b). The robustness
values are between 0.936 and 0.991 in the pipe only designs and between 0.8833Zmd @&/pump
designs, indicating that the proposed robustness index reflects the components in the system. Because the
pump station in pipe/pump design has larger pressure variations and lower pressures at increasing
demands, the pipe/pump designs a&ssIrobust compared to the pipe only design that is supplied by a
fixed elevated reservoiOn the other hand, the reliability values are between 0.5 and 1.0 for both pipe
only and pipe/pump designs because the reliability value was measured by the liprotbaibi the
stochastic nodal pressures are equal to or greater than the minimum required pE8sksuneather than

the consistency in the pressuFer the solutions with similar cosggven in Table 4 and 5, the reliability

based designs has miaximum 8.2% higher mean pressure at the critical node in pipe only design and
11.2% in pipe/pump design, compared to the robustpa@ssd designsThus, the robustness index is

more indicative of different configurations althouglkloes not have clear gimeering interpretatianT his

contrast was not identified earlier since no other application considered pipe/pump designs.

Design Differences usinghlternative Measures

Both formulations recognize that r olveuosredua@ng ss i s i m
variance. Higher mean pressures allow for more variability in stresses as they are farther from the failure
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condition while designs with mean pressures nearer the threshold with low variability can also be
considered robust against fausince a consistent pressure is delivered. However, the resulting designs
from the two models in terms of the spatial pipe size distributions and pump/pipe sizes differ suggesting a

the differing influence of the two measures.

Figure 9 shows pipe diameseof the selected solutions summarized in Table 4. Regardless of total cost of
the designs, the robustndsased design always has larger and more uniformly sized pipes along Pipe 6,
50, 62, and 68 or 70 (Route 1) and along Route 2 (Pipe 4, 34, andipeh.viere increased on these
routes to obtain robust pressures in the zones A and B (Figure 9a) because the critical node is shifted

between the two zones as the robustness requirement increased.

The reliabilitybased design, on the other hand, primairilyproved Route 2 and links 52 and 56 that
branch off Route 1 to supply water to the zone A (Figure 9b). These pipes insure reliability in the zone A
that is at the highest elevations in the system. The different spatial distribution of larger pipesvin the
design approaches was similar in the pipe/pump solutions. Consistent with the behavior of selecting pipes
to increase the mean pressure, pump sizes selected in the relizsiy design were larger than those in

robustnes$ased design (Table 5).

Post-optimization Analysis Results

The robustness and charmenstraint based models applied here smltlistnesgo the system against
extreme demand conditions in different ways. A question of interest that follows is: what is the robustness

of those systas under peak demand and pipe failure conditions outside of the design states? To that end,

apostopti mi zation anal ysis was PplAudder twmmildire tonditian® mp ut e

pipe break and firdlow conditions (Figures 10 and 11).
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SHA andSHA measur e t he tepavitleadedquate sartce turing yhe abnormal conditions
Overall, the optimal solutims obtained from robustnebased desigmad higherSHA s and ar e mo
robust against the two abnormal conditions. As expected, the source pipe failure (e.g., pipe 4 and 6) is the
most critical in determiningHA, while fire flow at the nodes in the zone B and nodds4fevere. As

noted, in the example consiad, chance constraints tend to focus design decisions on one path whereas
robustness appears to have a broader sysfdm influence. Thus, larger pipes are sized rfartiple

locations reducing the impact of pipe failures and fires at locations that vaérconsidered as design
loads.For exampl e, when fire flow occurred at node 7
was 15.3 m (21.7 psi) in the robustnéssed design while that of the reliabitlhpsed design was

computed in the hydraulimodel as-9.8 m ¢14.0 psi). Thus, this preliminary result suggests that the
hydraulically based robustness design provides a broader system robustness compared to the reliability

based design.

SUMMARY AND CONCLUSIONS

Early optimal desigmesearch oVDS focused on minimizing economic costiile meeting the pressure
requirement. In last two decades, studies have movedutb-objective problems that maximize the
systemrobustness while minimizing total cost. The reliability/chance constrained formuta®ieen
used for identifying robust designslowever, our contention is that robustness is redtectively
introduced bythe reliabilitybased desigmethodsbecausehey focus on the probability of successful
system performance rather than minimizing failure severity. In addition and equally important, reliability
based desigmethodologiegequire defining the demand condition, its probability distribution and its

statisticsthat are not generally available.

An alternative robustness index is proposeddosidersystem robustness. As a constraint in an optimal

design model, the robustness indiexits the range of wdability of system function byonstraining the
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coefficientof variation (CV) of stochastic pressardue b demand and pipe roughness variabilitye
comparé the robustnesbased and reliabilithased designdVe also demonstrated that the robustness
based design with mbustness formulation improvessiliencerelative tothereliability formulation. The

main drawback of the robustness measure is defining an acceptable robustness level since, unlike

reliability in a chance constraint, it does not have clear engineering interpretation.

From numerical results, theliability-based design emphasized increasing the mean pressure to increase
system reliability while the robustnebased design simultaneously standard deviation of pressure and
increases the mean pressure. As a result, robudiasesd design is mordfective in introducing the
system robustness than the reliabiligsed method. In the example considered, robustness constrained
solutions contain larger pipes in the main lines to the multiple pressure zones while relalsity

design is dominatedyldarge pipes along the path leading to the node with lowest pressure.

Postoptimization analysis was completed to computeSHéfor the optimal solution obtained from two

design approache§HAi s a resilience indicatityto suppyaatequate nsi d e |
service during the abnormal conditions, i.e., pipe break andldire conditions.Overall, robustness
basedoptimal designshave higher hydraulic aiability and are less vulnerable to th&o failure

conditions. Therefore, the ralistnesdased designs appear preferable to reliaHigged design with

respect to system resilience in a mobijective WDS design model.

This study has several limitations that future research must address. First, large networks with varying
configurat ons shoul d be examined to confirm this study
source, the robustnebsised design included relatively large and consistent pipes in the main lines to the
pressure zones. Thus, the robustidessed design permed better than the reliabildyased design

during failure events. However, if the network has multiple sources, the superiority of the robustness
based design could diminish due to the proximity of the source to demand points. Second, the risk type

robustness index can be considered as a design objective by weighting the proposed robustness index by
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the proportion of demand at a failed node (Kapelan et al., 2006). Third, reliability and robustness indices
should be extended to unsteady conditions a®llts for two design approaches compared when
designing valves, pumps, and tanks. Finally, rigorous analysis should be completed to provide guidance

on selecting threshold robustness value to support engineering decision making.

ACKNOWLEDGMENT

This material is based in part upon work supported by thi#ooha Science Foundation und&rant No.
083590. Any opinions, findings, and conclusions @oremendations expressed in thiaterial are those

of the author(s) and do not necessarily refleetviens of the National Sciendeoundation.

REFERENCE

Alperovits, E., and Shamir, U1(9 7 7Design ¢f optimal water distribution system$Vater Resour.

Res, 13(6), 885900.

Babayan, A. V., Kapelan, 2Z., Savi c, D. A., and Wa

di stribution net wor kg.Watardesour. Blanm Mandga3(5), 876382. ai nt y . 0

Berthouex, P. M. (1975) ring prodtesd eearforinanae, variability, eapd s co
uncertainty. o | n: Keinat h, T. M. , Wanielista, M.

control process. Ann Arbor ScienBeiblishers, Ann Arbor, MI.

61



Beyer, H. and Sendhanfizhtion-B. c ¢ BP0 & H e n €dRpueuMethodD @Y . 0

in Applied Mechanics and EngineerintP6(3334). 31903218.

Bruneau, M. Chang, S., Eqguchi, R. , Lee, G. , 006 R«
Wallace, W., and von Winterfeldt, D. @20 3 ) . AA framework to quantitatdi
seismic resil i ebarthquake Speatradd@nia3B752. i es . 0

Bruneau, M. and Reinhornn, A. (2007) . AExXpl oring

f a c i |Earthquake Sgcira 23(1), 4162.

Clar k, R. M. , Sivaganesan, M. , Sel vakumar , AL, a

di stri but 0 @Water Rgsaut RIng.sanddVigmt28(5), 312321.

Cullinane, M. J., Lansey, K E. , and Ma yQptmizdtion avallabilifydaSe8 dejignfavater

di stri but i DHydrnEagrgMAd8(3k 420441.

De b, K., Pratap, AL, Agrawal , S. , and Meyarivan,

algorithm: NSGAI | IEEE Trans. Evol. Compuyi6(4), 182197.

Far mani , R. , Wal t er s, G. Aoff between tbtal $astvandcreliability for A . (2

Anyt own wat er diJsWater ResotiriP@am. Mamay&’lg3), k61131.

62



Giustolisi, O., Laucelli, D., and Colombo, AR.. (2009). @dADeterministic ver s

di stri but i XbWatenResowoRing. and Mgnit35(2), 117127.

Giustolisi, O.and Walski, T.M. (2012). "Demanmbmponents irwaterdistribution network analysis."J.

Water Resour. Rin. Manage.138(4), 356367.

Goul t er , Aralytical abhdsBn&lation middels for reliability analysis in water distribusions t e ms . 0
Improving efficiency and reliability in water distribution systems, E.Cabrera and A. F. Vela, eds., Kluwer

Academic, London, 23%266.

Goul ter, . and Coal s, A. (1986) . AQuanti tdative a

Transp. Engrg 112(3), 104113.

Jen, E. (2003). fStabl e ComplexiyBif3) $21® What's the dif

Kang, D. S. , Pasha, M. F. K., and Lansey, K. E.

of water di st Urbab\Waterdoumal §(8)283248s . 0

63



Kapel an, Z . S. , Savi c, D. A. and Walters, G. A.

systems undeWatenResoerrResdl(1h)t\Wi1146711 W1140%15.

Kapelan, Z. S., Savic, D. A., Waters, G. A., andbBay a n , A. V - and rBblidinéspased i Ri s k
solutonstoamutb bj ecti ve water distribution sysWaem r ehab

Science & Technolog¥3(1), pp. 6475.

Lansey, K. E., Duan, N., Mays, L. W., and Tung;KY.(1989) fiwater distribution system design under

uncertaintyd J. Water Resour. PIng. and Mgnit15(5), 630645.

Lansey, K E. , and May Optimidation mddel férIM@ e ) di dit ri but J.on syst

Hydr. Engrg, 115(10), 14011418.

Lansey, K. 2 0 1 2Sustainafile robust resilient wat e r di st r i Proceedimga of $Vgtert e ms . ¢

Distribution System Analysis 201&delaide, Australia.

Rossman, L. (2000).FANeR usefs manual, US EPA, Washington, USA.

Savig D. , and Wal Genetis algoriBims for ledsbst designagt water distribution

net wo J. Water Resour. PIng. and Mgnt23(2), 6777.

64



Schaake, J. ., and Lai, D. (1969) . ALi near progr amn
di stribution npeNodl6kDepd efsCivid EngioeeriRge Massachusetts Institute of

Technology, Cambridge, Mass.

Schol z, R. , Bl umer , Ri, vulnerahility, roBustaess] gnd résiliende 2rdmla2 ) . 0

decisiontheoretic perspectived. of Risk Resear¢cii5@3), 313330.

Simpson, A. R., Dandy, GC. , and Mur ph yGenetic .algodthms ¢om@a@d! tp .other

techniques for pipe optimizatianJ. Water Resour. PIng. and Mgnt20(4), 428443.

Su, Y. , May s, L. W. | D u a n ljabiliy -basedaoptichizatioa madel for, watér . E.

di stri but I sydrad. £t 144(1R), 1639556.

Tung, Y. K. and Yen, B. C. (2005). Hydrosystems Engineering Uncertainty Analysis. New York:

McGraw-Hill.

Wal ski, T. M., et al. (1987) . J Waa ResdurePIng.fandtMbreg net w

113(2), 191203.

65



Wu, Z. Y., Wang, R. H., Walski, T. M., Yang, S. Y., Bowdler,D., & dd gget t , C. C. (20009
globalgradient algorithm fopressured e pendent wat er d.iWaterrRedouwr.tPlamnn an al

Manage, 135(1), 1822.

Xu, C. and Goulter-pbagfed (dpPO9mMal ARedsi gmi bf I.wat er

Water Resour. PIng. and Mgmt.25(6), 352362.

Zhuang, B. , Lansey, Resilience/Avdilabiktya Anglysis d Muni€igalOViager) . i

Distribution System Incorporating Adaptive Pump OperatidnHydraul. Eng. 139(5), 527537.

66



Tablel.Cri ti cal nodeds pr es s udistuhanoet (edchwdisturbancehasms under
difference type and magnitude)

: Pressure (m)
Disturbances Network 1 Network 2
1 34 31
2 28 28
3 31 29
4 22 27
5 29 28
Probability of meeting a 28.12 m pressu 80% 80%
requirement
Variance ofPressure 14 2
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Table 2. Pipe construction cost parameters after Clark et al (2002) used in eq. 8

Descriotion Tvpe Parameter values Indicator
P yp + F 7T X7 ™[ 2 W | variable (u)
Base . 150
. . PVC pressure pipe| -1.0 | 0.0008| 3.59| 0.011| 1.0 | 0.0067| (Pressure
installation :
class rating)
Sandy gravel soll 4
with 1:1 side slope | -24 0.32 |0.67| 16.7 | 0.38| 0.0 (Trenching
Trenching and (4-8 inch) depth)
excavation Sandy gravel soll 4
with 1:1 side slope | 2.9 | 0.0018| 1.9 | 0.13 | 1.77| 0.0 (Trenching
(8-144 inch) depth)
0
Embedment | Ordinary embedmen| 1.6 | 0.0062| 1.83| -0.2 | 1.0 | 0.07 (Ordinary
bedding)

, . 4
Backfill and Sandy gravel soil - .
compaction with 1:1 side slope | 0.094 -0.06210.73) 0.18 | 2.03) 0.02 (T:jeer;El)ng

\;ar:l(\j/eﬁ;gtrler\]r?t Medium spacing | 9.8 | 0.02 | 1.8 | 0.0 | 00| 00 Nf/’a'pigéjztsor
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Table 3. Pump construction and operation cost parameters used in egs.-1@

Parameter Value

Pump efficiency € ) 0.75

Motor efficiency ¢ ) 0.75

Pump energy tariff ($/kWh) 0.12
Amortizationperiod €, year) 20
Interest rated 06) 3
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Table 4. Selected pipe only design solutions (Rdbrobustness, Rel reliability)

Min nodal pressure

Sol:ttion Total Robustnes | Reliabilit SHA, | SHA( m) Max nodal stdv Remarks
cost S y (stdv) (m)
1 15.08M 0.936 0.507 0.946 | 0.958 28.13(0.81) 1.87 Least cost Rob design
2 15.62M 0.971 0.507 | 0.971| 0.992 28.13(0.81) 1.05 XgSte xpensive solu
Rob Design 3 16.28M 0.975 0.749 | 0.981| 0.994 28.59(0.70) 0.93 -
4 17.31M 0.980 0.908 0.990 | 0.996 28.90(0.59) 0.78 Comparable to Rel Design sol #4
5 18.76M 0.984 1.000 0.993 | 1.000 30.97(0.51) 0.66 Least cost design w/ Rel =1
0 14.76M 0.934 0.504 0.938| 0.961 28.14(1.86) 1.86 Least cost Rel design
1 15.08M 0.941 0.718 0.950| 0.971 28.58(0.80) 1.73 Comparable to Rob Design sol #1
Rel Design 2 15.61M 0.949 0.972 0.953| 0.975 29.49(0.70) 1.61 Comparable to Rob Design sol #2
3 16.29M 0.956 1.000 0.966 | 0.988 30.24(0.63) 1.44 Comparable to Rob Design sol #3
4 17.34M 0.966 1.000 0.972| 0.993 31.28(0.57) 1.19 Least cost design w/ Rel =1
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Table 5. Selected pipe/pump design solutions (Rdbrobustness, Rel reliability)

Solution# | Total cost | Robustness| Reliability | SHA, | SHAs plr\glgs%cr)éjg:\) Max nodal stdv (m) Pump Size HP), NP, NP;, Remarks
stdv
1 30.13M 0.882 0.503 0.932| 0.827 | 28.14(2.87) 3.50 750,2,1, Least cost Rob design
2 30.58M 0.911 0.505 0.949 | 0.909| 28.16(2.50) 3.06 720,2,1, Most expens
3 31.17M 0.920 0.738 0.961 | 0.950| 29.64(2.38) 291 720,2,1
Rob Design
4 32.45M 0.932 0.995 0.970| 0.970| 34.20(2.33) 2.71 750,2,1
5 34.71M 0.941 1.000 0.990| 0.990| 38.96(2.28) 2.63 780,2,1, Comparable to Rel Design sol #5
6 35.36M 0.944 1.000 0.992| 0.991| 40.56(2.31) 2.75 790,2,1, Least cost design w/ Rel = 1
0 30.08M 0.871 0.505 0.921| 0.776 | 28.16(3.03) 3.75 770,2,1, Least cost Rel design
1 30.13M 0.871 0.562 0.922| 0.786 | 28.58(2.97) 3.73 770,2,1, Comparable to Rob Design sol #1
Rel Design 2 30.59M 0.883 0.830 0.934| 0.840| 31.00(2.99) 3.74 790,2,1, Comparable to Rob Design sol #2
3 31.18M 0.896 0.953 0.946 | 0.894| 32.97(2.89) 3.56 790,2,1, Comparable to Rob Design sol #3
4 32.46M 0.919 1.000 0.962 | 0.957| 37.18(2.43) 3.23 790,2,1, Comparable to Rob Design sol #4
5 34.80M 0.935 1.000 0.974 | 0.973| 40.56(2.28) 2.85 790,2,1, Least cost design w/ Rel =1
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A
Probability

Figure 1. Distribution of demand (A: distribution of average demand, B: distribution of the peak)
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Figure 2. Hydraulic availability (HA) versus pressure for pipe break and fire flow conditions
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(a) Robustnesbased design

(b) Reliability-based design

Figure7.Tr ansitions in pdf for most <critical nodeds
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