The Extension Publications collections in the UA Campus Repository are comprised of both current and historical agricultural extension documents from the College of Agriculture and Life Sciences at the University of Arizona.

This item is archived to preserve the historical record. This item may contain outdated information and is not intended to be used as current best practice.

Current extension publications can be found in both the UA Campus Repository, and on the CALS Publications website, [http://cals.arizona.edu/pubs/](http://cals.arizona.edu/pubs/)

If you have questions about any materials from the College of Agriculture and Life Sciences collections, please contact CALS Publications by sending an email to: [pubs@cals.arizona.edu](mailto:pubs@cals.arizona.edu)
University of Arizona
COLLEGE OF AGRICULTURE
AGRICULTURAL EXTENSION SERVICE

SPRAY COMPATIBILITY CHART OF INSECTICIDES AND FUNGICIDES

BY Fred Draper

PUBLISHED BY
University of Arizona
TUCSON, ARIZONA
GENERAL CONSIDERATIONS

Spraying to be most effective must be done thoroughly and at the proper time. Due to the size of the area to spray or because of climatic conditions, it is frequently necessary to complete spraying in a short period of time. The advantage of mixing two insecticides or an insecticide with a fungicide from the standpoint of economy of time and labor can readily be seen. There are mixtures, however, which are unsafe and positively dangerous to use.

(Cont'd. on back page)
# Spray Compatibility Chart of Insecticides and Fungicides

<table>
<thead>
<tr>
<th></th>
<th>Standard Arsenate of Lead (Acid)</th>
<th>Basic Arsenate of Lead</th>
<th>Nicotine Sulphate</th>
<th>Lime Sulphur</th>
<th>Bordeaux</th>
<th>Sulphur (Wetable)</th>
<th>Soap Oil Emulsion</th>
<th>Non-Soap Oil Emulsion</th>
<th>Soap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Arsenate</td>
<td>Safe</td>
<td>Safe</td>
<td>Safe</td>
<td>Safe</td>
<td>Safe</td>
<td>Safe</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>of Lead (Neutral)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicotine Sulphate</td>
<td>Safe</td>
<td>Safe</td>
<td>Safe</td>
<td>Safe</td>
<td>Safe</td>
<td>Safe</td>
<td>Safe</td>
<td>Safe</td>
<td>Safe</td>
</tr>
<tr>
<td>Lime Sulphur</td>
<td>No</td>
<td>Safe</td>
<td>Safe</td>
<td>Safe</td>
<td>Safe</td>
<td>Safe</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Bordeaux</td>
<td>Safe</td>
<td>Safe</td>
<td>Safe*</td>
<td>No</td>
<td>Safe</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Sulphur (Wetable)</td>
<td>Safe</td>
<td>Safe</td>
<td>Safe</td>
<td>Safe</td>
<td>Safe</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Safe</td>
</tr>
<tr>
<td>Soap Oil Emulsion</td>
<td>No</td>
<td>Safe</td>
<td>Safe</td>
<td>No</td>
<td>No</td>
<td>Safe</td>
<td>Safe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Soap Oil Emulsion</td>
<td>No</td>
<td>Safe</td>
<td>No</td>
<td>Safe</td>
<td>No</td>
<td>Safe</td>
<td>Safe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil Soap</td>
<td>No</td>
<td>Safe</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Safe</td>
<td>Safe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Without Soap.

## Key to Chart

*Safe*—Indicates that the two may be mixed.
*No*—Indicates that it is NOT SAFE to mix.

Read down the left hand column and across the top vertical column to find those combinations which are safe.

---

**University of Arizona**

College of Agriculture, Agricultural Extension Service

P. H. Ross, Director

GENERAL RULES FOR MIXING

1. In general, materials which are acid in nature (acid arsenate of lead) cannot be combined with materials which are alkaline (soap or lime).
2. Bordeaux combines well with most materials except soap or lime.
3. Oil sprays cannot be used with lime or materials containing lime.
4. Lime and arsenate of lead should be mixed only in summer strengths.
5. Black leaf 40 may be safely used with most other spray materials.

Standard or acid arsenate of lead is the form in common use. If you are not sure which you have, it will be safest to consider it the "acid form."

Use recommended formulas: Solutions too weak are ineffective; solutions made too strong are wasteful and liable to injure plants to which they are applied. The dilution or strength of each individual material in a mixture will usually be the same as if it were being used by itself. Measure or weigh each ingredient carefully and then carefully measure the water.

Choose the right material: Insecticides and fungicides are effective only when they are chosen to fit the insect or disease to be controlled.

1. Standard and basic arsenate of lead are stomach poisons for chewing insects only.
2. Nicotine sulphate, lime sulphur, soap-oil and non-soap oil emulsions and soap are contact insecticides and are effective against soft bodied and sucking insects.
3. Bordeaux, sulphur, and lime-sulphur are used chiefly as fungicides to combat fungus diseases.