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CHAPTER 1

INTRODUCTION
1.1 - Introduction
In the analysis of beams, the first stép is to determine the
shear and bending moment at any point along the beam, then the
maximum value of bending moment can be determined, Imn calculating-
bending deflections,; it is necessary to derive an equation or
equations for the.bending moment'at any point of the beam or to

have a plot of the bending moment,

The theory of bending developed in most text books, suchvas
strength of materials and applied mechanics, is applicable when the
relationship between the stress and strain is linear. For materials
which are strained beyond the proportional range, however, the stress-
strain relation is no longer 1ineaf; In this thesis a methed is
developed to analyze beams whose material‘is‘stréssed beyond the

proportional 1imit.

1,2 = The Problem Defined

The object of the research presented in this thesis is to
determine the.momentaourvature relation for a beam of nonlinear
material subjected t§ increasing, then decreasing bending moment.
Three types of cross section, that is; rectangular, eircular, and

wide flange c¢ross sections, are treated.



- The momenfmcuPVature relation is very useful as a basis for
determining deflections of a beam of nonlinear matefial and for the

advanced analysis of frame structures,

1.3 = Method of Treatment

The assumption that the cross section of the beams remains
plane during bending is used, The formulas for moment-curvature that

are derived here are obtained by a method of mumerical integration,



CHAPTER 2

GOVERNING EQUATION OF THE RELATION

BETWEEN STRESS AND STRAIN

The beams which will be considered here are made of nonlinear
material, having the relation between stress and strain as shown in
Figure 1, in which ay.p. is yleld point stress. The curve consists
of two straight line segments and a parabolic curve between them.

The parabolic segment is tangent to the two straight lines at

g= gl- a and El+ a as shown in Figure 1,

The equation of the parabolic curve is

O=A82+ B+ C

where A, B, C are real constants,

The boundary conditions are

QQ’ = E = —LeBe
de|g=g;-a € .
dg =0
de a=81+a
Now dg
dE ZAS* B * L] * * L] L] L ] [ ] L ] [ ] L ] L] [ ] L ] (1)
- do _ -
at E—El-a a—a— El =2A(81 8.)+B .....(2&)
dg
= —_—= = Z-A + a + B L'} e @ L] ¢ e o 2b
at =g +a e 0 (€q+ a) (2v)
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Figpure 1 Stress-strajn diagpram

Subtracting (2b) from (2a)

g (*]
YePe = - 4ha or A= - pPe

From Equation (2b) B

ag.
= —LtPs
-ZA(81+ a) 2at, (81+ a)

therefore g= - o 82 + y.p. (el-o- a)E+ C
81 2881
at €= €1+ ay g = ay.p provided
; REGLEY
= Oy p.tT kaey
(&-E1- a)°
Hence g=0a [1"—-—-—‘1;—8—100.0000(3)
y.p' 48.81

This is the relation between stress and strain between E= 81- a

and €= €1+ a,



CHAPTER 3

MOMENT-CURVATURE RELATION FOR

A BEAM OF NONLINEAR MATERIAL

3.1 - Introduction

The theory of the bending of beams is based upon the assumption
that cross sections of the beam remain plane during bending, and hence
longitudinal strains are proportional to the distance from the neutral
axis, With this assumption, the strain for the fiber at a distance =z

from the neutral surface is

e W

m
L}
o

If d2 and d1 are the distances from the neutral axis to the
lower and upper surfaces of the beam, respectively, as shown in

Figure 2, then the strains for the outer fibers are

8=_d;1- H 63-2 00000-100(5)

o8
|
2
|

3
—-}—|h— N.A.

|

Figure 2 Bending of member of rectangular cross section




The equations of equilibrium are

J &
OdA=bS odz = 0 000000'00(6)
A

dz

dy
J‘ Osz = b 5 owz = M L ] [ ] [ ] [ ] L ] L ] [ 2 L] (7 )
A d2

From Equation 1, z=rg and dz=rde, therefors

€t
0d2=0 ooo.lotnanoooo(ea)
Ec
et Ec
or joae:-j OdE olooo-ooooo(gb)
0 0

if there is symmetry.

To determine the neutral axis, the strain A= 8t+E% must be
selected so that the shaded areas of Figure 3 which represent the

integrals in BEquation 8b are equal.

o]

&}\\\ e ~©

A=g 4+ g

Figure 3 Stress-strain relatjon



In this way the values g,  and Ec are obtained.

t
Since 4 = dl+ dz,

91223——d-L— .009000001(9)
d, g d=-d

Equation 9 can now be used to define the neutral axis,
From Equation 7

€y

2 gede = M

br
€0
(Té-)(_d%)J.ecoedEBM 0000000000(10)

For & = _SI,;_EZ__ = €4+ €, = A, therefore d=ra.
r

Placing this value in Equation 8, for a rectangular cross section,

€t
I. (-r%)j OSda = M o o L L] * ® ® L d Ll [ ] L ] (ll)
ec

EI

To compare this with the formula = M for bending of beams

following Hooke's law, set

E I
12 r
M= I =
I ;;aiI gedg -
80
where . €
Er = —AB—J\ gedg
EO

is called the reduced modulus for a rectangular cross section,



If the tension and compression portions of the stress-strain
diagram are the same, the neutral axis passes through the centroid
of the ecross section and the following simplified expressions are

obtained,

=d, = -3+
dy =dp = 5

For any given curvature ‘}:, g= "zl:, from Equation 4 and the strain at

any distance z from the neutral axis can be obtained, From a

stress-strain diagram, the value of stress, g, corresponding to each

strain may be found. Then by the equation

jAOZdA=M 00000000-000(12)

the bending moment M can be obtained.

For any given value of r, and by the diagram of Figure 1,
every bending moment M corresponding to every given value of r may
be determined, Thus the curve representing M as a function of %

is Obtained .

3.2 - Moment-Curvature Relation for a Beam with Rectangular

Cross Section

The first example beam treated here is a beam with a
rectangular cross section. For a rectangular cross section
dA = bedz

therefore Equation 12 becomes

Z2
M= j bozdz
s |



or

%2
M=bj gzdz .000-0000001(13)
71

The relation between stress and strain are shown in Figure 4.

Case 1. When g <€ 8y Hooke's law is valid and Equation 13 becomes

Z
2
- 2z z
M-bj (Er)zdz for o= 2E
%

i.e.
M= g—:-(zza'zla) ooo.ococo..(la)

Since the cross section has symmetry, i.e., the neutral axis

passes through the centroid of the cross section, -z, = z, = % ’
hence Equation 14 becomes
_ 2Eb 3 _ _2Eb,h,3
M= 3¢ 22 T Tip (2)
or
Ebh’  EI
M= =
r r
Case 2, When el- ageE sel+ a or h h s then

r
2(e-a)? " P (e war
the Hooke's law is no longer valid. For this case, the stress

and strain diagrams are shown in Figure 4b and its corresponding



cross section strain diagram stress diagram

T

€< €, ~a

N
I

o [ rer

N.A.
() &- agE<era
8“81" a ag
Ry
- ' T
_I’z ‘1 ! E(eq-a) ’
—_—f— — . : — L, S =N A,
(c) €>€,- a
g
I Y-P-l
ity » :. . N.A.

(d) perfect plastic

Figure 4 Stress and strain diagrams for the different cases
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stresses are

= €} = -
o E for <2, (c-::L a)r
(e ~-c¢ 8)2
= - - &1~
0 =0y, (1 ——— ] for z>12,
1
Hence Bjuation 13 becomeS
Z 2z Z 2
0 2 (== ¢4~
M =20 [ Elezdz +2b o, . [ 1- Ll L) ] zdz
r YePo La e 1
0 Zq
After carrying out the integration and replacing Zye 290 and E
by ..2}3. (61- a)r, and OY- « yrespectively, the following formula

€1

for computing the bending moment results,

384%ar

Y= .ggx:gjl[ 16r*(e,- o) 24rPh%(e - )24 216 (¢ + a)

- 3" ] T e 0D

z
Case 3. When ¢ 3 61+ a or rg.__.e 0 X the stress and strain diagrams
1-

are shown in Figure l4c, The stresses are

0 = €E = emmul2le for zgz

(__z € a)Z
5 -
o=0,. . [ 1 _—l——ael ] for zogzgzl

0 =0 for z>z1=(el+ a)r
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Equation 13 becomes

2
z
(-—r - 81- a)

z Z

0 1

M=2bj —-z-zdz-bef o

T Y.
4] zo

After carrying ' out the integration and simplifying, the equation

becomes

2
br~a
yoPe 2 2, bn?
M=-_—3—_-(€l+a)+_£—o 0-000(16)

Case &, - Perfect Plastic Case

When the M increases, the corresponding stress diagram
(Figure 4c) becomes steeper as the depth e of penetration of plastie
deformation approaches the value %, and the stress distribution
approaches that shown in Figure 4d. Such a material follows Hooke's
law up to the proportional 1imit and begins to yield under constant
stress.

In this case, the bending moment approaches its maximum value

(or ultimate value) which is

2
xbxg=—-a, ... (17)

Y2

Mmax= cy.p.x

Using Equations 14, 15, and 16, the relation between bending
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moment and curvature % can be represented., Using Equation 14 and 17

other curves for a perfect plastic case can be obtained, graphically,
as shown in Figure 5, for a rectangular cross section with b= 1.5 in,
and h= 2.0 in.. From Figure 5, it can be seen that up to the value

M= Melea (M= Mg, in perfect plastic case) the deformation is elastic

1
and the curvature of the beam increases in proportion to the bending
moment. When M increases beyond Melaa the relation between M and %
becomes nonlinear. The value of Miax defines the position of the
horizontal asymptote to the curve. As M approaches Mﬁax a small

~ increment in Mvproduces a large increase in curvature, so that at

M . the extreme fiber strains are infinite.

Unloading and Reloading Effects

If a tensile specimen is loaded until the stress has entered
the inelastic range and then is unloaded (before failure occurs), the
unloading curve will‘not coincide with the loading curve., Experiments
show that the unloading line is parallel with the straight (elastic)
portion of the,lpading curve as shown in Figure 6a, When the stress
has returned to éerog there will remain a parmanent strain. This
phenomenon occurs both in tension and compression.
| Jf the specimen is 1oaded.aé§in in the same direction to a
 higher load than that reached in the former test, the behavior will
usually be as shown by the dashed line 6f Figure 6a, The loading curve
will practically coincide with the unloading curve up to the load

reached in the formexr loading, after which it will tend to follow



b =1.5 in.
h =2.,0 in.

0. = 53000 psi
yop.” 200 P

€= 0.0031 in.
a = 0.0019 in.
8 =F ¥ e -
Mmaximum bending moment”’“—_,——::::::_f ;;,
0 4////’/ﬂ
1 1
5° 4
2
o
—
=K
Q
§ 1| nonlinear case
!
//// 2 perfect plastic case
2
0
2 4 6 8 10 12 14
curvature % (10'-3 in.-l)

Figure 5 Relation between bending moment and curvature

for a rectangular cross section

14
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________ > /
- //6eloadin/g/
laa;;;_-—_—_/ /7 //

& N7 Y

permanent strain(first loading)

total permanent: 'strain

(a). Residual strain-stress

i T AT 7

(b). Unloading strain-stress diagram

Figure 6
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the diagram obtained in a single loading. For a nonlinear material
the unloading curve will not coincide with the original loading curve,
but is parallel with the straight elastic portion of the loading
curve as shown in Figure 6b.

To determine the equations of residual strain-stress ourve,
the curve was broken into three parts., If

do _
dE—EﬂconStant c.-occoooo(le)

then g = €E + Ci’ where Ci is a real constant.
(1). If e <€1~ 2
°=8E ...o......--‘..-.(l9)

(2). if €~ aCE<SEFa

2
(Ei- el - a)

at = &1 o= oi = o}’.p.[ 1 - 4&61 ]
%.p. 2
therefore Ci = - RaLeiL [(Ei' El) + a ]
hence G «Pe 2
g = %Ei— [4851- (Ei- 81"' a ) J e o o o o (20)

(3). if €= gl+ a, then o= oy

*}
0'—'_2—;R:'(8+a) -.........-.(21)
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(4). if g €+ a, then o =0

(o]
= —YePete.
o Y (e ej+el) e s o o e o s s s (22)

where €4 in Equation 20 ard 8j in Equation 22 are the values of

strain which were found from the loading curve.

3.3 = Moment-Curvature Relation for a Beam with Circular
Cross Section

The next example beam treated here is a beam with circular

oross section. In Figure 7, b= 2(R?- 22)% and dA = bdz,

therefore

Equation 13 becomes
R
M= J. oz-Z(R?- zz)édz
-R
R

= 2 5 oz(R?- zz)édz
=R



18

The cross section is symmetric about the neutral axis, therefore

R 2

M=4‘[ GZ(R-zz)%dz ovoooooo(zu)
0

Case 1. If E<E- a, then the Hooke's law is valid and Equation 24

becomes

R
M= uf—ffx'-&z(R-z)%d

40
= yeme (M2 28, L. L. (25)
re; 0

R
The value of the integral / zz(Rz-zz)%dz is
0 :

R 3 2
/ zz(Rz-zz)%dz [~ %(Rz_ 22)2 & %&(Rz‘ zz)é . % -1 z]
0

4
0+0+%-sin-1(1)+0+0+0

Y

=16

Hence Equation 25 becomes
_h&-n‘R oo-ooco'.(26)
Lgr

When the upper limit of the integral is different from R, for
convenience, the Simpson's %-law is applied, that is

b
f f(x)dz = % [ £+ 4f + 2t + UEgh coss + 26, o+ U o4 £1..(27)

a

where h = and n is an even integer.
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In this problem, the radius R is divided into six equal parts,
i.e., seven stations, therefore n= 6 and h= %.

Set
° F(z) = zz(Rz- zz)é

and use the following table to compute the value of this integral.

24 F(zi) = 2%(R%- 22)% N C;=Nx F(zi)
0 g 1 Co':..- (0] N
R (35) (35)2
g 3% ® b o= B
8)t 3 2t 3
253 —(2-%-— R 2 Cp= "5 R
ra ‘%ﬁ‘ R b Cy= in R
%
1363 L;gi R3 2 C,= 9_(2.;_)_ R
% 2
5(11)° =3 _25(11)° 3
56§ 221161 R 4 o= = R
R 0 1 C6=

Hence
B ooz 2% &
foz(R-z)dz:: 3 x(C‘1+Cz+CB+Cu+CS)=C

and Equation 25 can be represented by

Lg
M=—&&XC co.o--cc-oo"(zs)
rel

Case 2, If {_-‘l- ageg El+ ay then the stresses are
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z0
o =€E = __J:P- for e-a3e¢
I‘6l
g=0 1- = f -
y.p.[ u—aGl ] or 61 ag €

= 0o . . )
1 20 4ael

(Rz-zz)%zdz N ¢-1°))

Now by setting

fozz(Rz-Zz)%dz=/zof(Z)dZ 00000.00000(30)
0 Y0

3 1
Ji': F(z)dz = f: [..-:‘? +.2_(5}i'_a_). 22_ (ep a)zz](RZ- zz)?dz. (31)
0 0

By Simpson's % law, the radius R is divided into six equal parts,

hence n= 6 and hy= z'6Qf'or the first integration and h2= i’z@ for

the second integration.

Setting
Bi= Nix f(zi) where 1 is indexed from 0 to 6

Iy

1.9,
BO=1x 0=0

%0
B1= L4 x f(—é-)
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then Ejuation 30 can be represented by

20,2 2.2 _ h -
fo (R°= 2°)2%2°dz = 3_(814- BZ+BB+BU’+BS+ 86) =B .. (32)

Also setting D= Ny x F(zi) where i is indexed from O to 6
ioeo D0= l X F(ZO)
Dl= L x F(Zo+ h2)

D,= 2 x F(Z%0+2hy)
D= 4 x F(Zp+ 3h,)
D,= 2 x F(%o+ 4h,)
Dg= 4 x F(%o+ 5h2)

Dg=1 x F(®0+ 6h,)= F(R)
then Ejuation 33 becomes

JR F(z)dz = E‘E(Do+ Dy + Dyt D3+ D+ D5+ Dé) =D . . (33)
Zg 3



Hence Ejuation 29 can be simplifjed as

Lo
M:—XﬂxB-}-f&XD ...o--o-ot(Bu‘)
req ael

where B 2nd D are given by the Equations 32 and 33.

Case 3. If ¢ >» & - 8, setting Zo=r(61- a) and z1=r(al+ a), then

the corresponding stresses are

z0
0 = —LePe for zx zo
req
o
= —JsPe z 2
o uael[lbael- (r - &- a)<] for zp< z2< 2y
ard g = oy.p. for 2 »2q

Equation 24 becomes

z
0
M = u,f O.Y-E. 22(R%- zz)%dz

Z
1
+'*f_ol;&u_2_ 212 2.%

Zq 4ael[ a‘sl[r (el*”a)]](R-z)zdz

1
+ uf o (R%- 2%)%zdz
YePo
2]

b

= —'Y-‘p-"fo 22(R%- zz)%dz +
re, Jg

22
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o z 2
+ —LeBe 1[- 52 + 22 (sl:;{z - (eq- a)zz]-(RZ-zz)%az
ae 2 r 1
ZO r
& 2. 2
+30y.p.(R-Zl 00000000000000(35)

Simpson's law is applied again by dividing 2429 into six equal
parts, therefore n= 6 and h3= (29~ zo)/6, and setting
= N;x H(zi) where

[- z ., 2( e+ a) 22

H(z) = - (e 2] (R At

Hence

G.= U x H(z0+ h3)

Gz= 2 x H(zo+ 2h3)
G3= b x H(zge 3h3)

Gu=2x H(zo+ bh3)

G5= L x H(zo+ 5h3)

and Gg=1 x H(zg+ 6h3) = H(zl)

therefore the integral in Ejuation 35 can be represented as follow

f [_Z_B 2(51*“ 2) 2 _ (- 2)227+(R%- %) %as

h
_32[GO+G + Gyt Gat Gt Gt Gg] =G v o v v o oo (36)

1" "2
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The Equation 35 becomes

g ue) 2 2y
M= Ry bxBetxas CR=5I ] OD)

where B and G are represented by Equation 32 and 36,
respectively.
Casa 4. - Perfect plastic case

When the bending moment increases and approaches the maximum

value, the bending moment becomes

2
- TR LR,
Mnax™ 2 X o;y.p.x ( 3n 2)

3
RGyOPU 000010000001(38)

1]
wiE

Using Equations 27, 3%, and 37, the relation between bending
moment and curvature for a circular cross section with a radius
equal to 1 inch can be obtained. For the periect plastic case, by
dropping the second term of Equation 37 and setting a= 0 and
replacing 25 €4 then Equation 27 and 37 give the relation between
bending moment and curvature for the perfect plastic case as shown

in Figure 8.



N in-1b)

moment (10

R= 1.0 in.

°y.p.= 53000 psi
61= 0.0031 in.
a = 0,0019 in,

gmaximum bending moment

=T |

@//
é@;

@ nonlinear casle
I
@ perfect plastic case

2 4 6 8 10 12
curvature '}li (10"3 1n.'l)

Figure 8 Relation between bending moment and curvature

‘for a eircular ' cross section TR
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3.4 - Moment-Curvature Relation for a Beam with Wide Flango
Cross_Section

The last example bsam treated here is a beam having a wide

flange cross section as shown in Figure 9.

| b |
I |
L_ ]
—Ldz
—Iz
h hl — — . -_;—-_-—-—-— N.A.
b1
[ 1
Figure 9
From Equation 7
M= ‘f ozdA
A

In the web, dA= bydz while in the flange portions, dA= bdz.

Therefore

=
]

j ozdA + f ozdA
web flange

hy $h
=2 azbldz + Zj ozbdz ) (39)

0 %hl

26
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Case 1, If €1y < E1- & then the Hooke's law is valid and the
2

1
bending moment is

sh
lg o
M=2f—L—'°'z2bdz+2f —L:B2 7%bdz
Carrying out the integration and simblifying. the following equation

is obtained:
2¥eDafpy3 3 "
M = 12511' bh ‘(b"bl)hl ] ® ° o e & o ¢ o o+ o ( )

Case 2. If sl- ag e, < el+ a, there are several cases for a

$h

different value of z= ( &~ a)r,

(1) if =z >-%hl. then the bending moment becomes

1
in z
10 g
M= 2 _.w_;.bldez +2 f 0 %yeps 1,24,
0 §T in, 17

+h
+ 2[ —fl:-&[aael_(% - 81- a)ZJZbdZ

After carrying out the integration and simplifying, this becomes

2.0. __..‘L.R._
125 r 8bZ —(b- bl)h :I + 128 el 2 X

[- hu + 16z0u+-%$(el+ a)r(h3-8z03)- 8(61- a)zrz(hz-hzoz)] .(41)

(2). if z4= —;—hl. this is a special case of case (1), and the

equation may be obtained by setting z =%h1finto Equation 41.

0
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(3). if 2,< %—hl, then the bending moment becomes

%00
M = [ _.‘[._R_' *b zzdz
3hy o 2
1 eDei” 2
+ 2\/‘z —uuaelLl&asl- (= - €.~ a) jblzdz

+ 2 J&&[ae_(_

2
" T 1 a)”] bzdz

After carrying out the integration and simplifying, this bocores

4 4 L
12 128ar {-bh + (b= b )by + 16byz

+ %6( e+ a)r[th-(b- bl)hlB- 8b1203]

- 8( ¢,- 2)%r%[bh’=(o- bl)hlz - .z 201] L. . (u2)

10
Case 3. If €&, > € +a, there are several cases for a
2h
different value of 2 and 2, = ( e+ a)r.

1z %hl and zo<%hl, then the bending moment becomes
2 ZO OIY -Eo 2 j
M= fO o blz dz + 2[ —L—I Uasl-(- - € -a) ]b zdz

i
sh
. L 2 :
i o2 [ oy
$h Y281 ¢






Case 4, - Perfect plastic case

Before determining the maximum bending moment, the distance

from the centroidal axis of half wide flange cross section to the edge

of the web must be found first, i.e. e, as shown in Figure 10.

l Mt e e — —
Co g.

4[b(h =h; )+ bh; ]

Therefore the maximum bending moment is

- 1 -
Mpax™ % [b(h-hl) + b1h1] x oy.p x 2e

c. 2 . 2 2
=—%'-Rl-[b(h-h1)+b1h1]

Using Equations 4O, 41, 42, 43, L4, and &5, again the relation

between bending moment and curvature for a wide flange cross section

will be developed. In Figure 11, an 8WF1?7 cross section was used for

this example and the relation between the bending moment and curvature

for a case of perfect plastic behavior was obtained.



moment (10“ ft-1b)
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BWF17

h= 8.0 in. oy.p-= 53000 psi
hy == 7.384 in, €y = 0,0031 in.

b = 5.250 in. a = 0,0019 in.

bl= 0.230 in.

8
ymaximum bending moment~ ]
/ A
! ' /////

4 / -

////%V 1 norlinear cﬁse

2 perfect plastic case

A/
0

L 8 12 16 20 24 28

curvature % (103 rt.71)

Figure 11 Relation between bending moment and curvature

for a wide flanre cross section




CHAPTER &

APPLICATION OF MOMENT-CURVATURE RELATION TO DETERMINE

THE DEFLECTION OF A BEZAM OF NONLINEAR MATERIAL

4,1 - Slope and Deflection Due to Bending

The basic relationship between curvature and slope is

ad - 1 S (7))
ds r

whera ¢ is in radians
For initially straight beams with small deflections, the original
length dx is very nearly equal to the cﬁrved length ds; consequently
no appreciable error is introduced by using dx instead of ds for

originally straight beams. Therefore Equation 46 becomes

%%=% S (14

For a finite element dx, the corresponding change of slope is found
from Equation 47

da¢ =

ol | o

dx G s e o e e e e s e e oo (UB)

If a diagram for curvature, %, against the length, x, 1is plotted,
then Equation 48 is an element of the area under the % curve., The total
change of slope between any two points A and B is found by summation

of all the elements,

=20 Tax L. (W)

32
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This can be stated as

curve between x= A and x= B.

e 1 Lo 9

¢AB= area of

where ¢AB 1s the change of slope between A and B and is

measured in radians.

»ir
i
[
N

e ] Lo

7
R

————————e |

Figure 12 Curvature of a beam along axis

To determine the values of the slope along a beam, it is
necessary to select a starting point, say the left end point, and then
perform the above operation for various values of x., By this
procedure, a curve for the slope 1] against x, as shown in Figure

13 may be obtained.
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rad.

x -—————.ILp_dx

Figure 13 Slope plotted ove encth

Having determined the slope at every point along the axis, the
deflection then can be obtained. Slope is defined as rate of change

of deflection, i.s.

tan = 4

For a flat curve, it is sufficiently accurate to assume that

the tangent of the angle @ equals the angle ¢ in radians.
= ¢ = S
tan¢ ¢ dx .0..0."..(50)
Over an element length dx, the change of deflection dy is

Ay =@ dX v v e e e e e e e e e . (51)
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This represents the area of an element strip as shown in Figure
13. The total deflection between the points A and B is found by

summation of these elemental areas,

yAB=2i¢dx I € )

This can be stated as

Yy = area under @ curve between x= A and x= B.
\

]

& axis of beam

a

lope

Figupe 14 Relation beiween slope and deflection

The base line is tangent to the deflection curve at the point
which was used as a base in determining the § curve. This must be
true because at this point the value of @ is zero. The deflection

is measured normal to this base line.



4,2 - Application to a Statically Determinate Problem

Example 1: Determine the deflection of a cantilever beam with
rectangular cross section (1.5 x 2.0 in.?) having
stress and strain relation as shown in Figure 1,
subject to the end load of 3000 lbs as shown in

Figure 15.
3000 1lbs 3,5v

Jeo

AN
NN |

I= 2 ft.

Figure 15

]

For a 1.5 x 2,0 in.z cross section and a stress-strain
relation as shown in Figure 1, the relationship given Figure 5 can
be applied directly. To accomplish this, the beam was divided into
24 equal parts with dx= 1 inch and the moment at each station was
computed. From Figure 5, the curvature % corresponding to each
moment at each station along the length may be found. Therefore
a curve of curvature % versus the length x as shown in Figure 16a
can be plotted. Using the numerical integration method of Equation
49, the slope of every station along the length was computed and a

diagram of slope against the length as shown in Figure 16b was

constructed. Using Equation 52, the deflection at every point of

36



the beam as shown in Figure 1l6c was obtained. For convenience, all

these processes can be tabulated as shown in Table 1,

Table 1
station .moment M curvature slope deflection
% in.. 10 i1 10707 1072 rad, y 107in,
24 7.2 6.83 0 ' 0
23. 6.9 5.78 0.63 - 0.03
22 6.6 5,09 1.17 . 0.12
21 6.3 b, 59 . 1,66 0.26
20 6.0 4,19 2.10 0,45
19 5.7 3.85 2,50 0,68
18 s 3,56 2.87 0,95
17 51 3.29 3.21 1.25
16 4,8 3.04 3.53 1.59
15 4,5 2,81  3.82 1.96
14 b2 2.58 %.09 2.35
13 3.9 2,36 4,34 2,78
12 3.6 2,15 | 4,56 3.22
11 3.3 1.95 4,77 " 3.69
10 3.0 1.76 ‘ 4,95 4,17
9 2.7 1.57 5.12 4,68
8 2.4 1.40 5.27 5,20
7 2.1 1.23 5.40 5.73
6 1.8 1,05 5,52 6.28
5 1.5 0.88 5,61 6.83
4 1.2 0.70 5.69 7.40
3 0.9 0,53 5.75 7.97
2 0.6 0.35 5.80 , 8.55
1 0.3 0.18 5.82 9.13
0

0 0 5,83 - 9.71
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3000 1b
% |

L=24 ft.
curv
107
inT? 3
1
X
24 20 15 10 5 0
(a) curvature
1
s OES 5
10
rad. 3
1
(b) slope
defii 0
10
in. 2
4
6
{
8
10

(c) deflection

Figure 16
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In Table 1, the stations are arranged from x= 24 to x=0. This
is because both slope and curvature should be integrated from the fixed
end to the free end.

For convenience and more accuracy, the digital Computer may be
used to do this computation. First,however, the proper mathematical
expressions for a curve shown in Figure 5 must be found, that is, the
curvature must be expressed as a function of bending moment.

The curve obtained in Figure 5 for a rectangular cross section

can be expressed by the following equations:

(a). If M<20516.128 in-1b, then

= 0.5849057 x 1077 M .+ v v Tu . 4. (54)

e § Lo

Curvature =
(b). if 20516.128 <M<65486.793 in-1b, then
% = 3.0522772 x 10 2% W - 5.6615856 x 1072
+ 4,1213191 x 107265 P - 1.4201007 x 107 x 1
+ 2.8930082 x 10 'x M = 14248202 x 107> . . . (55)
(e¢). Af=M 65486,793 in-1b, then
;:=/f53553§-
r Mmax' M
where M ,,= 79500 in-1b

Using these equations, the curvaturs, slope, and deflection at
any point of the cantilever beam can be obtained. A Fortran computer

program to compute these values is shown in appendix B.



4,3 - Application to a Statically Irdeterminate Problem

Figure 17 ropresents a beam fully restrained at A and simply
supported at B, The deflection curve of beam is skitched as shown

by the dotted line,

B
M-RL (A TDM
-’/4 “\‘\\ //fé}’
H| ————— +R
L .
Figure 17

For a linear material, the reaction force R equals %%, but
for a nonlinear material beam the reaction force can not be found
directly. The problem is statically indeterminate. Different values
of bending moment will be considered. The procedure to handle this
kind of problem is shown as below,

First, assuming that the reaction force R is known, for
convenlence say R= %% » then the moment diagram along the length of
the beam can be sketched. Next, by Figure 11, the relation betwsen
bending moment and curvature of the wide flange cross section is
known and so the curvatures at every point of the beanm can be found.
Do the same process as the former example of a statically determinate
cantilever beam. Then the deflected shape of the beam corresponding -

to the assumed value of the reaction force R may be obtained. The
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deflection at B should be zero, but the deflection actually obtained
is different from zero, say ¥y By 1justing the value of R and
repeating the computational process, another value of deflection at
B would be obtained, say Yoo By connecting the points P1 and P2 and
extending the straight line to intersect the R axis at R3 as shown in
Figure 18, the value R3 was picked as an assumed reaction force and
the process was repeated again,

The full process is repeated until the deflection at right

end B is essentially equal to zero, say %% < 0,001, The last assumed
sL
2

value of reaction force R and its corresponding deflection shape are
thus the value of the reaction force and deflected shape of this

statically indeterminate beam.
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Before applying Figure 11, the relation between bending moment

and curvature for a wide flange cross section, a suitable mathematical

expression to express the curvature as a function of bending moment

must be found first.

The curve plotted in Figure 11 can be expressed by the

following equations:

(a).

(o).

(e).

If M<23755.332 ft-1b, then

%:0.1515%923:10'7M S € 72
if  23755.332<M<65808,156 ft-1b, then
L = 0.28780133 x 10 ¥ - 0.5“619712‘.x.10-1>9c v

+ 040398149 x 10 x I - 0.1438955 x 10x M2

+ 0.26194906 x 10™7x M - 0.16363522 x 10> . . (58)

if M=>65808.156 ft-1b, then

J/ 0. 6&62762

where M .= 68781 ft-1b

Some numerical results have bsen obtained by the foregoing

procedure on an IBM digital computer for a beam clamped at one end

and simply supported at the other end in which 1= 10 ft. with 8WF17

cross section having a stress-strain relation as shown in Figure 1.

The results are shown in Figure 19, 20, 21 and Table 2,
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Table 2
bending moment reaction df- reaction of non- slope at simple
- linear case linear case . ratio  supported end
_(£t-1b) (1b) ___(b) (1072 rad,)
23755 3563 3563 1.,0000 0.9000
25000 3750 3751 1.0003 0.9456
20000 1500 4502 1.0005 1,1341
35000 5250 © 5253.3 1.,0007 1.3265
40000 6000 : 6005.5 1.0009 - 1.5311
15000 . 6750 - 6760 1.0015 1.7475
50000 7500 ' 7519 11,0025 1.9718
55000 8250 8281 - 1,0038 . 2,2068
60000 9000 9ok7 . 1.0052 2.4673
65000 9750 . 9820 - 1,0072 "2.7909
66000 9900 9976 1,0077 2.8704
67000 10050 10135 - 1.0085 3,0230
68000 10200 - 10303 . 1.0100 3,3203
68700 10305 10483  1,0163 14,8233

In Figure 19, it cén be séen that the reaetio? of this nbnlinear

béaﬁ_when MséMglaa (1.0, stress=-strain relation folloﬁs fhe Hooks®s

' law) is just the same as the linéar case, When M gradually increases,
the ratio of the resction of nonlinear beam to ﬁhé reaction of linear
bean (%%) of the same type and same dimensions increases slightly as
shown in Table 2, When M becomes large and approaches the maximum
value, the intersection of bending moment diagram and horizontal axis
Moves inward, This says that a strain regression has occurred. If

the bending moment keeps increasing, there will be a further movement

until the maxirmum bending moment is reached and the beam fails.



Several values of slope at ﬁhe simply supported end corres=
ponding to various values of bending moment are computed and shown in
Table 2, Using table 2, the diagram of bending moment against slope
can be plotted as shown in Figure 20, From Figure 20, it may be seen
that when the linear relation between the stress and strain is held,
the slope at the simply supported end is proportional to the bending
moment as shown by the straight line 0C., Beyond the proportional
1imit, the rate of change of the slope increases gradually as the
moment incrsases; when the behding moment exceeds about thrse-quarters
of the ultimate value, the rate of ehange in slope rapidly becomes
greater, V |

It may be imsgined, when the linear relation bétweénistrass
and strain aia held, the deflection of the beam is proportional to the
bending moment and the point of maximum deflection remains at the same
place when the bending mcment increases, When the stresse=strain
relation is no longer linsar, the family of deflection curves for
various values of bending moment are shown in Figure 21, From this
figureg it is clear that the rate of change of deflection increases,
the deflection shape becomes steeper, and the point of raximmn
deflection moves to the right (moves ﬁowara the simply supported end)
as the bending momenﬁ increases, A normalized deflection shape of

linear and nonlinear cases is shown in Figure 22,



reaction 10° 1b.

=
o

1 2 3 4 5
moment 104 ft-1b
A4
i
12510
36130

moment at fixed end

moment at simply

fi-1lb support end
12510 25000
15020 30000
17535 35000
20055 40000
22600 45000
25190 50000
27810 55000
30470 60000
33200 65000
36130 58700

Figure 19 Bending moment diagram for different values

end moment

45

68700

25000



moment 10’4 ft.1lb
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p 8WFL7 ’QM
A 4 ‘\\\\ ey&
| |
10 ft. !
/
<z/
1 2 3 4 5 6 7

slope 107° rad.

Figure 20 Relation between bending moment

and slope at simply supported end




0.5
1.0
1.5
2.0
2.5
3.0
35
4,0
4.5

5.0

5.5

Moment ft-1b

OO W N

23755
30000
140000
50000
60000
65000
68000
68700
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1 : linear case

2 : nonlinear case

Figure 22 Normalized deflection shapes of linear and nonlinear cases
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CHAPTER 5
CONCLUSION

The procedure and the computer program used in this thesis
cah bevextended to other types of cross section and any othef stresse
strain diagram or diagrams;

The ratio of the reaction of a nonlinear proped cantilever
beam to the reaction of a linear beam increases slightly ( about 14%)
as the bending moment increases beyond the moment which corresponds
to the limit of the linear relation between stress and strain (i.e.
proportional limit of linear range). When the bending'ﬁémént increases
and approaches the maximum value, the intersection of bending moment
diagram and horizontal axis moves inward., This séys that a strain |
regression has oceﬁrrad;

When the linear relation between stress and strain are held,
the deflection of the beam is éropor@ienai to the bending moment and
the point of maximum deflection remains at the same place when the
bending moment.increéses; when the siress-sirain relation ié nO‘longer
linear, ﬁﬁe rate of change of deflection increases, the deflection -

- shape becomes steeper, and the point of_méximum deflection moves to
the right (moves toward the simply supported end) as the‘bending

monent inecreases.
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APPENDIX A
NOTATION
The following synbols have been adopted for use in this thesis:

a  One half of the strain range which represents the -parabolic
portion of stress-strain diagram.

b Width of the cross section.

_bl Width of the webl,

Csp Do

50 Gy Notation used to evaluate the value of integration

10
by Simpson‘’s law,

E Modulus of é&lasticity in tension and compréssionb -

h  Depth of cross section.

hy Depth of web of wide flange cross sectiéno

I Moment of inertia with reSpec@ to x-axis.

L Length of the beam, |

M  Bending moment.

Mpax Maximum bending moment.

Mal_ a Bending moment éorreSponding to e=¢eq=- a,

R Radius of circular cross section, or reaction of the beam;

r Radius of curvature. |

y  Deflection of the beam.

IR Total deflection between points A and B.

2z  Distance from the neutral axis.

'zo Distance from the neutral axis to z=(81n a)r,

z, Distance from the neutral axis to z=(sl+ a)r.

51



€ Strain.
&q Strain at the limit of linear stress-strain relation.
€y Strain at the edge of convex side of cross section.

g Strain at the edge of concave side of cross section,

o Stress,
o L]

o p Yield point stress,

A= +
at 80

df Rate of change of slope.

ds Arc length of infinitesimal element.

¢AB Slope change between A and B.
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APPENDIX B

FRAGMENT OF COMPUTER PROGRAM

#i% HSU ' . . 2R

COMPILE FORTRANs EXECUTE FORTRAN

DETERMINATION OF THE MOMENT-CURVATURE RELATION FOR A BEAM OF ~

C
C NONL INEAR MATERIAL WITH RECTANGULAR CROSS SECTIONs, EQUATIONS
o 14, 159 AND 16 OF THIS THESIS WERE USED.
C SIGMA= YIELD POINT STRESSy B= WIDTHs H= DEPTH®
C ALPHA= STRAIN AT THE LIMIT OF LINEAR STRESS~STRAIN RELATION
C D= ONE #HALF OF THE STRAIN RANGE WHICH REPRESENTS THE
C PARABOLIC PORTION OF STRESS-STRAIN DIAGRAMo .
C EPSIL= STRAIN AT THE EDGE OF CROSS SECTIONo
99 READ 100s 200+ R
100 FORMAT (F10.01})- ' l
SIGMA= 53000,0
ALPHA= 0.,0031
B= 1.5
H= 290
D= 0,0019
CURVA = 1,/R
EPSIL = H*¥CURVA/Z»,
C START OF COMPUTING MOMENT~CURVATURE RELATION.
- IF (EPSIL = (ALPHA - DY) 101y 101ls 102 i
101 XM= SIGMA#B*H*%*3%CURVA/ (12 %#ALPHA)
PRINT 201s CURVAs XM ' -
201 FORMAT ({3Xs 7TH CURVA= 1PE20.8¢ 4X»s 4H XM= E25.8}
GO TO 99 '
102 IF (EPSIL = (ALPHA+D)) 103, 103, 104 )
1030XM= (B#*SIGMAXCURVA®#2% (160 ¥R¥X4F (ALPHA=D ) %34
1 ~2L o WRIAFR2HHFK2H (ALPHA-D ) %%2 4 16, #R*H#%3
2 #{ALPHA + D)~ Bo*Hw*é)i/(BSQQ“ALPHA Dy
: PRINT 201 CURVAo XM
GO, TO 99 ‘
1040XM = ~B*R**2*SIGMA*(ALPHA*%2+D**2)/3o
1 +RFHHERZ2XSIGMA/ Lo
PRINT 2019 CURVA, XM
GO TO 99
200 STOP
END
%4 HSU 2R
#* COMPILE FORTRANo EXECUTE FORTRAN
C FOR A CIRCULAR CROSS SECTION,; SIMPSON!S 1/3 LAW WAS USEDe
C

EQUATIONS 275 349 AND 37 OF THIS THESIS WERE USED.

100 READ 1225 500s BATA
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C S
200
301

201

54

FORMAT {F1060)

SIGMA= 5300000

ALPHA= (0.,0031

D= 0,0019

CURVA= 1./BATA

.R'-'-' 1.0 -

ESPIL= R*CURVA

P= ALPHA-D

Q= ALPHA=D

TART OF COMPUTING MOMENT“CURVATUQE RELATION.
IF (ESPIL-P) 2009 2005 201

XM= 097853982*516MAXR**#/(ALPHA*BATA5

PRINT 301s CURVAy XM

FORMAT "(4Xe 7H CURVA= 1PE20.8s 4Xs 4H XM= E20,8)
GO TO 100 - : ' .
Z0= P®*BATA

Zi= Q¥*BATA

Bl=s Z0%%#2/854:%SQRTF(36%¥RF%X2=Z0##2)

B2= 4 o%720%#2/540%SARTF (9o ¥R#¥2=Z20%%2)

B3= Z20##2/2RSQRTF{ 4o ¥R¥#Z2m70#%2)

Baz= BoWZO#R2/2T ¥ SORTF {9 RRUH2=G o ZOUR2 Y
Bo= 25.%Z0%%2/54¥SQARTF (364 #R¥#2-25, *ZO*%27
Bé= ZO#%#2%SQRTF(R¥*#2~20%%2)

SUMB= 20/18.%(Bl+B2+B3+B4+B5+B6)

IF {(ESPIL =~ Q) 4009 400,401

X= (R=Z20)/60

400

1
0
1
0
1

0CO= (=Z20%%3/(BATAI** 242, ¥Q¥Z0%*2/BATA-P*#2#Z0 ) *SQRTF{R%**2

-ZO%%2 )

Cl= 451("€ZO+X)“*3/(BATA)“%2+2o*Q%(ZO+X)*%2/BATA-P%K2%
(ZO+X) ) *SQRTF (R#R 2 {204+ XY #%2 )

C2= 2. *("(ZO+20ﬁX)**B/(BATA)**2+2oAQ*(ZO+ZQXX)*“2/BATA
~PRHE2K(Z0+2a%X) IFSQRTF (RER2=(Z0+2o¥X ) #%2}

©0C3= LW (= {Z0+3o#X}**3/{BATA)HE2+2a % Q¥ (Z0+3 %X ) *#2/BATA

1

~P¥% 2% (Z0+3 4 %X} ) #SQRTF (R¥#2~(Z0+30%X ) #%2 ),

0C4= 2% (= (2044 %¥X)¥¥3/(BATA) RN24+2 ¥Q¥ {Z0+4 %X ) #%2 /BATA

1
0
1

401
0
1

~PR# 2% (2044 o *X) ) ¥SQRTF (R¥%2=(Z0+4 o ¥X ) #%2)

C5= 4o%(=(Z0+5e%X)¥%3/(BATA) F¥242 % QF (Z0+50%X ) %32 /BATA
~P#¥ 2% (Z0+50%X) ) #SQRTF (R¥# 2~ (ZO+5o*X ) 342 )

SUMC= X /3% (CO+C1+C2+C34C44C5) -

XM= 4o%STGMA*SUMB/ ( ALPHABATA) + SIGMA#SUMC/({D%ALPHA)

PRINT 301s CURVAs XM

GO TO 100

Y= (Z1-20)/6 |

DO=(=ZO0%#3/ (BATA}##2+20¥Z0%%2%Q/BATA=P#*#2#20) *SQRTF (R¥#2
-ZO#%2)

2

OD1= 4o#(=(Z0+Y)%%3/(BATAI#U242RQ* {Z0+Y ) #%2/BATA=PR%2%

1

(ZO+Y ) ) *SQRTF(R## 2=~ (Z0+Y ) ®¥%2)

OD2= 2% (={Z042%¥Y ) RRI/(L, TAYRA2L2RQ¥(ZO+2%Y ) #¥2/BATA

1

1

~P*# 2% (Z0+26%Y ) ) HSQRTF (R¥H 2= (20426 %Y ) #%2)

0D03= 49*(*(ZO+30*Y)**3/(BATA)**2+29*Q*(ZO+30*Y)*%Z/BATA

~P## 2% (2043 o%Y) ) ¥SQRTF (R¥*2~{Z0+30%Y ) %%2)

T OD4E 6% (= (Z0F4e¥YIEHB/(BATAI #R2426%QU(Z0vhe¥Y ) #5%2/BATA
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%

C

e

c

I —PRRZRAZO+4LHa®Y ) JESQRTF(RF¥2-{ L0+ b ¥Y ) %%2)
ODS= 4o*¥{={Z0+5%Y ) ¥ %3/ (BATAYHH2+2,¥QH(Z0+5%Y ) ¥%#2/BATA
1 ~Pr% 2% (Z0+5e%Y ) I FSQRTF{RFZ2=(Z0+5o®Y jH%*2} -

0D6= (— Zl”*B/(BAlA) X2+29*O%71**2/BATA”P**2*21§*SQRTFCR‘

1 RR2-Z1%%2)
SUMD= Y/3.%(DO+D1+D2+D3+D4+D5+D6)

55

OXM= SIGMA/ALRHA¥(4o%*SUMB/BATA+1l./D%SUMD +4enALPHA*R #3/3.

i RSQRTF((lo={Z1/RI¥#2X%3 )
PRINT 301s CURVAs XM

GO TO 100
500 STOP
END
¥ HSU : ‘ ' 2R

COMPILE FORTRANs; EXECUTE FORTRAN

FOR A WIDE FLANGE CROSS SECTIONs EQUATIONS 409f419 429 435

44 5 AND 45 WERE USEDe .
100 READ 12, 500y Bs Ble He Hle R
12 FORMAT (KF10.0)
ALPHA= 0.,0031
D= 04,0019
SIGMA= 5300060
CURVA=12. /R
EPSIL= H/{2:%R}
P= ALPHA-D
Q= ALPHA+D
START OF COMPUTING MOMENT=CURVATURE RELATION.
IF (EPSIL=P) 14y l4s 15
14 XM=(SICGMAR(BX¥H*¥3~(B-B1)*¥HL*%¥3)/ (12, *ALPHA%#R} ) /126
PRINT 20s CURVAs XM |
20 FORMAT (4Xs B6HCURVA= 1PE2068s 4Xy 3HXM= £20.8)

GO TO 100
15 Z0= P*R
21= Q%R

 IF (EPSIL-Q) 24s 24, 25
24 1F (20 = H1/2s) 345 355 35

340XM=(STGMA/ (ALPHAXR ) ¥ {2 %B1#Z20%%3/3.+106/ {128, #D*R) *{~B*

1 H*#4+ (BBl FH1%¥4416 ¥BI¥Z0ORR44166 /3o ¥QFR¥ (BRHX* 3~
2 {B=Bl)#H1¥#3=~8o¥BIXZOHHB ) —8 RPHXZURRUK (BRHFH 2~ (B~
3 Bl)¥H1¥%2-4 o ¥B1*Z0¥*2)))) /120 - !

PRINT 205 CURVAy XM '

GO TO 100

350XM=(SIGMA/ (120 *ALPHA%R )% (8, #B¥Z0%%3=(B~B1 ) #H1%%3 ) +B*5IGMA
1 /U128 o ¥DHALPHARR¥ %2 ) # (=M RH 4416 o K20 %4416 0 /3 o #Q¥RH® (
2 HA%3wB oK ZO¥H3 JmB o KPR QHRAK ¥ (HH¥#2mb o RZO¥%2)) ) /120
PRINT 205 CURVAs XM
GO TO 100

25 IF (Z0~H1/2¢) 54y 55, 55
54 IF (21=H1/2e) 64¢ 655 65 :
640XM=(B1%SIGMA/ (ALPHA¥R) ¥ (20 %Z0%#3/3 0410/ (260 ¥DHR) % (=3 %












