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ABSTRACT

The propagation of very low frequency (vlf) radiowaves in
the earth-ionosphere waveguide region is considered. The earth is
assumed flat and perfectly conducting while the ionosphere is sharply
bounded, homogeneous, and anisotropic. The problem is formulated
exclusively for propagation of the ™ mode along the magnetic equatlor.
The integral representation of the field is given and iis character-
istics are discugsed with respsct to the complex plane. A conformal
transformation and the method of steepest descents are employed to
evaluate the integral and obtain a final answer. The resulis arxe
compared with experimental data in several field strength versus
distance plots. The sast-west effect is discussed at length and a
detailed account of its origin in the air-ionosphers boundary is

\
given.

vi



INTRODUCTION

The propagation of radio waves at vlf was understood fairly
well as long ago as 1911. At that time the empirical Austin-Cohen
formula was proposed. It describsed radio wave pfdpaga%ion quite
accurately at about 25 KHz. Somewhat later v1lf waves were studied
experimentally by Round et al. (1925). Their findings indicated among
other ﬁhings that the propagation of radiowaves is, in gemneral,
nonreciprocal. This was labeled the east-west effect.

However, despita the fact that v1{ waves propagate great
distances with small atienuation, investigation inte their nature
was neglected for some time. More recently they have regained
attention. The great need for sattelite communication, long range
navigation, and weather observation has again made very low frequen-
cies desirable. Among others, Budden (1951, 1954) has studied the
reflections of waves at the boundary of the lonosphere as also has
Yabroff (1957). Wait (1957) and Wait and Howe (1957) have contributed
significantly to the mede theory of wave propagation, while Crombie
(1958), and Barber and Crombie (1959) have investigated the none
reciprocity of the reflection coefficient at the sarth-ionosphere
boundary. The same nonreciprocal property of the ionesphere boundary
but in terms of its input admittance has been considered by Dobrott
and Ishimaru (1961).
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In this thesis the propagation of vlf waves in the air region

betwsen  the earth and ionosphere dus to a source located in the ionos-

phere will bs discussed. The fields in the plasma medium are, in
general, described by a set of coupled differential equations. In
oxder to uncouple these equations the source excitation is chosen so
that only one magnetic fie;d component, parallel to the steady
magnetic field is present. This is really no great restriction since
it is Jjust the transverse component of the earth'’s magnetic field
that is important in v1f wave propagation to great distances.

In addition, ths direction of propagation is taken along the
magnetic equator. I{ is here where the greatest anisotropy occurs
(Wadt and Spies, 1960) and hence where the greatest difference in
e@ast-west propagation manifests itself. This east-west effect will
ba discussed in great detail. The method formulated by Barber and
Crombie (1959) for the case of a plane wave incident upon the ionos-

phere will be employed to show not only that the electric vector in

the plasma contains a rotating component, but also that this component

is an absolute necessity for a2 nonreciprocity to occur.
It will also be seen that in the hypothetical case of a losse

less ionosphere the east-west effect may or may not appear.



2. DISCUSSION OF THE PROBLEM

2.1 Problem Statement
The gometry of the problem is shown in Fig. 2.1. The plane
z=0 represents the earth'!s surface and the plane z=b a sharply bounded
ionosphers. Region (0), then, is the earth-ionosphere wawveguide.
Region (1) is the ionosphere, semi-infinite in extent. For simpli-
city the curvatures of the sarth and ionosphere are neglected and
the earth’s conductivity is considered infinite.
Excitation of electromagnetic waves is by a magnetic line source
located in the ionosphere parallel to the interface and carrying a mage

<19t 4, the positive x-direction. A magnetostatic

netic current Ime
field Hdc parallel to the line source is present. Evaluation of field

strength in the wavegulde region is desired.

2.2 The Source

The source is an infinite magnetic line of current oriented
in the x-direction, parallel to the sarth's magnetic field. This
type of excitation yields a magnetic field component in the x-direc-
tion and components of the electric field in the y-z plane. Hence the
earth’s magnetic fisld is parallel to tﬁe magnetic field of- the wave
and perpendicular to the direction of propagation. This case is of
most importance in the transmission of vlf waves to great distances.
The chosen excitation alse results in uncoupled field equations which

simplifies the problem though retaining the salient features.



A mathematical representation of the source is
9
. A
Fm =Tom Sy) T(z=4-A) %

A
where J is the Dirac delta function and X is a unit vector in the

positive x-direction.

2.3 The Magnetoplasma

For the purpose of this thesis the ionosphere shall consist
of an equal number of positive and negative charges, the positive ions
and the electrons. Since the mass of the positive ions is appreciable
compared to the electrons, the electrons only shallbe considered free
to move. The presence of a steady magnetic field renders the plasma
anisotropic. Such a plasma may be characterized by the constitutive

relations
— @ =
D=¢€.€ E
-y ~F

Bz/‘o/.LH
where ?? is the permittivity tensor given by (Tyras and Held, 1959):

§ o0 o
H .
€ = |0 ¢ Am
O-A'?ZE
The different elements are complex. If one prime is used to denote
the real part and two primes the imaginary, the different elements

may be written:



s = — wp
wr+ v
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wW(wr+v?)
€ = | — w}(w‘—w,f.;y’-)
L(w+wy )+ vi][ (w-w,)+4V "]
€’ = Vw;(wz+w;+ V)
wl(wrw, ) v2I1[(w-wy )+ V3]
’ 2 by 2z 2
N = Wy Wp(wrwy-yY*)
wl(wsay )4y I[(w-wy) =+ ]
“ Ly w ws
= H P

[(q)+u)H)"+v"][(u)-u)H)‘:¢ vl

where u)p is called the plasma frequency given by :

2 2N
w/”"’e m,
[4]

and Wy 1is the cyclotron frequency given by :
121 g Hy
W, = — (2o Tde

M,

In these expressions N is the number of free electrons per cublc meter,
o) = 1.6x10~19 coulomb is the electric charge, m = 9.1)1:10"31 kg is the

electron mass, and W, V are the wave frequency and electron collision

frequency, respectively.



The inverse of the permittivity tensor, which will be

necessary in subsequent chapters, may be written:

~ -
X
< O o
€=Ll o ~
"x ’ ".LK
O 4K |
L
vwhere X:e—g—)z-l—and K--eﬁ.

2.4 The Boundaries

The lower boundary at 2z=0 is the flat earth with the conduc-
tivity considered infinite. This is a good representation, for example,
for a large expanse of ocean.

The boundary at z=b is the sharply bounded ionosphere. This,
of course, is an idealization since the boundary is continuously
varying. In fact, typical experimental results as reported by a
colleague (Schell, 1967) yleld the following variation in the parameter

X » which for ™ mode propagation is the square of the refractive

index.
X = 0.9987 + 10.3215 at z = 60 lm
X = 0.8822 + 16.176 at z = 70 km
X =-2.864 + 1136.1 at z = 80 km

These measurements were made at 11.14 KHz. The index of refraction,
VX, then, changes from ~1.0 to ~10 in a half wavelength. Hence,
considering the boundary to be abrupt at vlf is justified. It may

be noted that the situation of vlf radliation incident on the
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ionosphere is analogous to radiation of optical frequencies incident

upon a metal plate. This aspect of the problem will be discussed
further in Chapter 6.



3. PROBLEM FORMULATION

3.1 The Field Equations

Since the main interest lies in finding the fields in the air
space 0=gz =b a solution to Maxwell's equations is implied. This
solution must obey certain boundary conditions and exhibit a proper
behavior at infinity. The formulation presented here has already been
detailed by Tyras, Ishimaru, and Swarm (1963), and Wade and Williams
(1966) and will only be sketched briefly.

Since the source current has a harmonic time dependence,

Maxwell's equations yleld the vector wave equation

(vx€'Ox -4) I:I: = Le,wl,d(y) I (z-£-R) %

The operation ( @ x é’"Vx ) may be written as a matrix if it is

observed that:
o -0 a
—p z
VUx = |92 o _9* (3.1)
) x
¥ 9% o
Since the geometry of the problem precludes variation in the x co-
ordinate
J,= O
Therefore a family of equations appears.
-[O:-h);] -"i -ﬁo?' O O _Hxl X
© ...():(_é,>~£o Jx 013/(—'9')2‘ H'&' = g
T
O 9y (d) ~Oy@E) k]



It 1s seen immediately that the y- and z-components are coupled but
the x-component is uncoupled. Since, as has been concluded by previous
research (Galejs and Row, 1964), the boundary conditions may be satis-
fied by an x-component only, the differentisl equation containing H,
will be sufficient and only H* will appear in the final answer. This
is a direct result of the nature and direction of source and steady
magnetic field employed. Hence,

(o) + a,; +x)e:') Hy, = a€,wxI,, §ty)d(2-4-h) (3-2)

Likewise for the air space

(07 +94 +A, ) Heo=0

In order to solve the above equations, the Fourier transform pair is

(3.3)

introduced.
Flz, ) =[ F(z,m) " ©-8)
—w( Y) e ‘?OL,*
F(zy) =If(z,°<)g“‘#% (3.5?

Applying (3.4) to (3.2) and (3.3) in the usual manner yields:

(L E [ RE~o]) Ay = £ € cox Ton Tlz=4-A) (3.6)

(ds +L AT-a*T) Heo =0 (3.7)



10

The most general solution of (3.7) is the complimentary solution

%

- l:soz ‘1:5 Z
He, = A, 2 + B, (3.8)

Since (3.6) has a source term there will be a complimentary solution

~ £LS,2 -45Z .
Hc—/\,l +B,£ (3.9)
and a particular solution
,L‘ S‘IZ-(b*ﬂt)‘
~ £
Hp= —Feowxlnm S (3.10)

where the coefficients are functions of the transform variable, & ,

S, = V”e:_a(z

s, =VxhZ-«*

It is necessary at this point to establish a sign convention

and

concerning the radicals. It shall be required that
T 5o} Z0  Im{s} Zo0 (3.11)

This in effect chooses the upper surface of the Riemann plane.

With this information it is seen immediately that B1 in
(3.9) must be zero. This follows since z is unbounded in the positive
direction in medium (1). A B, # 0 would result in Hy,—> 00 as z -~
which is physically impossible. Therefore the transformed fields

become :



1"

~ 5,7 - 'Soz
on = A, P B. ’ (3-8)
‘_.5"2"'(b4&)' L‘S z
7 Y ) (3.12)
fﬂJz'éeoWXIm. S, +A £
Now applying the inverse Fourier transform (3.5) the fields become
—h502Z X (3.13)
Hon ‘-‘JfoXI‘m [-A 2 +B ,Z'L J,QL /LJ/J'

is,lz- (b+}1)| : ' L
Ho= “’—’—‘”f[ W P PR
xX

where the coefficients Ag, BO' and Ay have been renormalized for
convenience.

Equations (3.13) and (3.14) are in effect the answers. First,
however, the coefficients must be evaluated by applying the boundary

conditions which will now be discussed briefly.

3.2 The Boundary Conditions
The boundary conditions are:
Epg = 0 at z = 0 (3.15)
since z = 0 is a perfect conductor and

at z
(3.17)

[}
o

Hpy = Hg
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vhere the subscript T in each case denotes the components tangential
to the boundary. It will be convenient to express these conditions
completely in terms of the magnetic fleld. Using Maxwell's equations
in source-free region (0) the boundary condition (3.15) becomes
JHx0 =0 atz=0 (3.18)
Similarly in source-free region (1)
E (3.19)
_{7?x—H> —EO?E%EE‘=O "
Expressing (3.19) in matrix form yields:

vl , %’ O © O
. iy, O, H
Eyi|Twx | © 1 —«K 2 Ha (3.20)
Ez' o X'—K | —D‘YHI‘
Observing that
Dy Hy, = <ot Hy, (3.21)

allows (3.16) to be written as:

x0sHro = (k) H,, } ot 2 =b 0-22)

It is now a simple matter to solve for Ay + By . and Ay by applying
boundary conditions (3.17), (3.18), and (3.22).
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oo ~

Figure 2.1 Geometry of the Problem



L. EVALUATION OF THE INTEGRAL

4.1 The Integral Representation
The integral (3.13) in the waveguide region is of importance

and may be written:
[ve) , . .
“ ﬁl— ) ob S0 Z -4 %2 Lo{?
H _ ~€owXx I 2 (4 ° )z d
o AT Bxset(s+ix)I[ 1= R g %P ]

-

where R is the reflection coefficient at the air-plasma interface

given by

f:e = X So — (SI *'*:*KC( )
X Se +(S, +4KX)

The reflection coefficient at the earth boundary is, of course,
unity. If, now, the transformation

A= KR, A\

is applied to the integral above, the result is:

wil,&mx—x (R VIENY (ZTONE =iz ES choA
p =fagkdm | £ £ (e te 2 __dX
e 1T ) VR (R Ak N[ = RN ¢ RPN ]

=0

(4.1)

It will be profitable to inspect this representation in the complex
plane. If the singularities in the integrand are plotted in the

A -plane Fig. 4.1 results. It is seen that A =¥ VX yields two branch
points which are connected by a branch cut passing through infinity.

The poles are located by the expression | - R(/\)z"'z'j'”b =A% 20 .

14



branch cut
,l// /

15

Figure 4.1 Singular Points in the )\ -plane
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The path of integration runs along the A\’ -axis from -
to +© and closes in the top half-plane with a semicircle. It is
obvious at once that the contour must be indented around the branch
cut emanating from A =+ YX and proceeding upward to infinity. The
contour of integration may be deformed in all portions of the complex
plane where the function is analytic. Therefore, the integral (4.1)
may be written as the sum of the contributions from the poles and the
branch cut.

Hy = Hy + by
Here H 1s called the modal field and Hy, contributes a so called
lateral wave (Brekhovskikh, 1960).

This type of approach is called the mode theory of wave propa=
gation since the contribution from each pole corresponds to a partie-
cular mode. In general, a few poles will lie between the A”-axis and
the A\ =1 point, close to the >\I -axis. These poles will contribute
the major portion to the field and may be called the dominant modes.
The remaining poles, infinite in number, contribute only negligibly
to the total field.

The integration around the branch cut ylelds, as noted, a lateral
wave. It may in certain instances be the dominant term but in general,
and as will be shown subsequently, the lateral wave falls off
exponentially and will therefore not contribute significantly.

In addition to the mode theory outlined above another inter-
pretation of the integral is available. This second interpretation

describes the field in the waveguide as a summation of contributions
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from an infinite number of image sources. It will now be discussed

and subsequently used to evaluate the integral.

4,2 Expansion of the Reflection Coefficient

It is possible to assume on the path of integration that

R o -2 Rep V153 \ < |\

This 1s justified by the physical consideration that there will be
some absorption, regardless of how small, of the incident wave in

the boundary. ( A notable exception is the case of tangential inci-
dence, 6 — E—'—' , in which case [R|= 1 ). Alternately a small imaginary

part may be assigned to kj. Upon these assumptions the term
A2 Rob Y122\~
(I-Re )

may be expanded in a power series according to:
( 1=x )=1= 14x+xZ43+. .. =i xn | x|<1.
[o]

Using this expansion, (4.1) may be arranged as the sum of two terms
(Brekhovskikh, 1960)

where
- szik.ﬂm R DL LRI A\
B XANTAT + (VR +<KN)
and 7

© b hYEIT £;},[([uzn]b-z)%-)\’“wg)\]
=| 2
2n XNT=XE + (Fx-2T+ £ &)

-0

IRV A\
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By consldering the exponential portion containing W it is seen
that the parameter z has been replaced by an "effective" value of 2
given by:
Z4n = (1+42n)bzz j=1,2 (4.3)
The plus sign corresponds to j = 1 and the minus sign to J = 2. This
interpretation ylelds the image source representation as shown in
Fig. 4.2. In this case the reflection coefficient to the n-th power
may be considered as a weighting function for the n~th source.
In either of the above representations it is seen that the
field consists of an infinite number of integrals. These integrals
are very similar and may be evaluated by an approximate method known
as the method of steepest descents or saddle point method. This
method is widely documented (Banhos,1966; Brekhovskikh, 1960;

Tyras, 1963) and will not be discussed here.

4.3 Integral Evaluation on the Steepest Descent Path
4.3a Introduction

In Fig. 4.3 the A\ -plane is again pictured, this time inclu-
ding not only the branch cut but also the assumed saddle point, the
angle 6, and the deformed path of integration, composed of two
segments, r,' and r'z . It is seen immediately that for 0568, the
branch cut will not be crossed by the path of integration and the
contribution due to the lateral wave will be zero. In this case
evaluation of the integral along path r,l will result in the total

field. At angles greater than 6, the contour r: intercepts the branch



19

o12 2=5b
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Figure 4.2 The Network of Image Sources
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Figure 4.3 Deformed Path of Integration in the )\ -plane

> Y
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cut, however, and thus leaves the original Riemann shest. In order
to return to the same Riemann sheet the path F‘z is necessary. The
integration around this path is the lateral wave. It is therefore
possible to write the total field as:

xo = Hap + u(® - 80) Had ()
where u(8 - 8,) is the unit step function and l", , 2 denote the
respective paths. An approximate value for 6, 1s readily available.
In section 2.4 it was seen that X had a very large imaginary part
compared to the real part. It is therefore not a bad assumption to
consider X as pure imaginary. This would ylield equal real and

imaginary components for YX . Hence

~ X
6, ~ 3

It shall now be shown that the integral over Q , the lateral wave,

decreases exponentially and hence is negligible.

4.3b The Transformation A= Wcos w

The transformation
)\=V—):OG’§,W ) d_k::"ﬁMWdW (4.5)

is made in the integral (4.2). As is seen in Fig. 4.4, the conformal
transformation (4.5) maps the complete upper Riemann sheet of the
A -plane onto a strip of width TT in the w-plane. The boundaries

are the contours about the upper and lower branch cuts in the )\-plane.
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Figure 4.4 Branch Cut Integration in the w-plane
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The equations of the boundaries can be deduced from the conditions

(Barios, 1966)

Rt{V;wd.w}r- in{W}
I"“{V—&MW} Z iI’"‘iW}

and these are shown in their general curvilinear shape. The real and
imaginary axes of the ,X_-plane have also been shown for referencs.
The desired path of integration is, of course, the right hand
boundary .

If in addition the space coordinates are transformed according
to the suggestions of section 4.2 and equation (4.3)

¥y = rjpsin @in

4n= Fincos 8y (-6
the integral (4.2) becomes:
er} _ %&iiﬂw)eihﬂdﬂm e‘-,,‘m]
55
. LR, AJ-,,[.M 6jn X cos W L (4.7)
where
Flw)= ,e"ﬂ"}lﬁmw("fimw)[f?(wﬂﬂ

AN T=x coaZw +( simw +4 K VX corw) (4.8)
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Taking according to the method of steepest descents

%(w) si,z&o (meén\l =X COATW + A ey Yx o w)
two roots occur at
w=0, w= arccos(v_.sin ejn)
As is seen in Fig. 4.4, the proper saddle point is the first root.
The second one will refer to the integration over HQ). Consequently

employing the transformation

Sz,j}éo[au'm Oyn VX + cos o1 VI-X - am 0, 1X mw-me&“m-}
yields for the field in (4.7):

. ,4./& /lnr(AdMQn*l wd Oom )
H 'z wex T wexIZZ o4 iV

[ K {Flw(sﬂgs—} ds

- 00

The quantity in the braces may be expanded in powers of s and
the subsequent integration ylelds a quickly converging series in
inverse powers of r. The integrand, then, is bounded. Of primary
importance now emerges the exponent. Since X has an appreciable
imaginary part, the exponent will have a large negative real portion.
Hence, especially if r is large, the field due to the branch cut
integration, H,S’. will die out exponentially. This is equivalent to
saying the lateral wave will not contribute to the total field.
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The only contribution to the field will come from the first term
in (4.4). This term will now be evaluated.

4,3¢ The Transformation A= sinﬁ
In order to evaluate the integral (4.2) on the contour ﬂ
the transformation
A= sin(3 , dA = coapd(&
is made. The effect of this mapping is similar to the one just dis-

cussed in the previous section. Fig. 4.5 shows that the A -planes has
L
2
integration, the X -axis, is shown as r; + The branch point and branch

been mapped onto the infinite strip between ~ - and _12_1' « The path of
cut are located well away from the path of integration. This results
since (3”>>’ . Actually in view of the results of the preceeding
section, the branch point may be ignored. Since there are no other
singularities in the @-plane. the deformation to the path of steepest
descents should occur without difficulty. And in fact it does.
Employing the transformation (4.6)
y = rynsin %n

Zjn = Tincos Pyn

yields for the field in (4.2):

H =-we,xlm§§ j';((_,’)z i ko A 8- 9j)

X 0 L _ ) o(_/g

F(p) = AJ@,,A X—Mzﬁmﬁ[f’\(ﬂﬂmdﬁ
)= X wafp+ (Txmin 3 + A K 5 [3)
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Figure 4.5 Path of Integration in the /S-plane
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From the exponent it is seen that

= bsn (4.9)
is the desired saddle point. The path corresponding to this saddle

point is shown in Fig. 4.5 as r: . This is the path of steepest de-

scents given by:

C’M( - ¢, = /:-52
P-bm) = |+ F
Using the information (4.9) and employing the saddle point method,

the field in the earth-ionosphere wavegulde may be found.

ko(2ym= 7)
exI L Ro m 4 2T
Hoo =™ EE v g,

iko Vst TR, "
e 0 i) R(4:0)]
x w‘b%’n + (Vx-2injm +iksinm ¢ im)
(4.10)

This answer is presented in graphical form in Figs. 5.1-5.5 and

will be discussed in the next chapter.



5. NUMERICAL RE3ULTS

The finai eXpression foﬁ the‘fieids, (4.10), has been promv
grammed for a digital computer and the results are plotted in the
following figures. The ordinate in each case represents the field
strength, measured on the ground, of a unit source located in the
ionesphere. The aﬁscissa is the distance from the source in kilo-
meters.Also, in each theoretical graph the solid line repregents v
the positive values of y, and the dashed_linés negative values of y.
| The difference in the curves for the two directions is due te the
eaét=w§st effect. This will bse explained in great detail in the next
chapter.

In order to check the results obtained a comparison with
known experimental data is .appropriate. Considerable amounts of infor=
matﬁan are not availabls, especially for propagation exactly along
the magnetic equator. For the present purpese the data gathered by
Heritage, Weisbrod, and Bickel, as presented at a Sympesium of v.1.f.
Radio Waves at Boulder, Colorade, Jan. 1957, and reporied by Wait
(1957, 1962) will be used. '

Fig. 5.1 shows the field strength for the source located 1o m
above the interface at a frequency of 11.14 KHz. At the distances
shown ﬁhélhigher order podes_still contribute significantly and are
‘the cause of the marked interference effects obserﬁed, Fig.5.2 is an

experimental curve for comparisen with Fig..5.1. The field strength

28
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recorded is that of the vlf transmitter (18.6 KHz) at Jim Creek,
Washington taken in the direction of San Diege, Califernia. The
qualitative agreement is good. Espscially the deep troughs at 250 knm
and 600 km, as well as the two pealks at about 750 km ars observed in
both plots

Fig. 5.3 again is a theorstical plot, this time-fbr digtances
up to 5000 km. The experimental plot, Fig. 5.4 compares well. Fig. 5.4
is field stfength taken in Dec. 1954 between San Diego, California and
Hawaii at a frequency of 16.6 KHz. Again the major interference sffects
between 250 km and 900 km are clearly visible in ﬁoth plots, indicating
the general validity of the theoretical treatment. The attenwation of
vlf radie waves, as found experimentally by Réund et al. (1925), is
~ about 3=t db/K at 12.8 KHz. The attenuation determined from the theo-
retical plots (especially Fig. 5.5) was between 2.78 db/K and 3.67 db/K
depending upon the direction of the path.

Fig. 5.5 also shows the marked difference between east-west
and west-east propagatien. It is seen that for west to east the atten-
ﬁatien is about 1 db/K less than in the opposite direction. The same
phenomenon was observed by Round et al., who determined a difference
of about 2 db/K. Since, howover, their observations were somstimes
over mixed land-sea paths, and alse over day-night paths, and never
~ due east-west, it is difficult to make agood comparison on this point.

As is seen from the preceeding comparisons, the theoretical
treatment employed appears entirely justified by the general agree-

ment with experimental observations.
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6. THE EAST-WEST EFFECT

6.1 Introduction

The theoretical field strength plets displayed in Figs. 5.1=5.5
show a pronounced difference in propagation between the 4y directioen
and the -y direction. In particular, thevattenuation for large distances
is greater in the positive y-direction. This was first neted experimente .
ally by Round et al. (1925) on & round the world cruise and has beon :
named the east-west effect. It appears most strongly in propagation along
the magnetic equator and disappears for directions duec north @r-soﬁtho

More recently the sagt-west effsct received a theoretical foun-
dation through the work of Barber and Crombie (1959). It was shown that
fthe nonreciprocity is due to the interaction between the earih's mégn@tie~
field and a component of the slectiric vector rotating in the vertical
plane of propagation. This implies-that even in thelabsence of an ambient
magnetic fieid an inhomogeneous wave propagates in the lonosphere. In
this chapter it will be shown not only that the wave in the ionosphere
is indeed inhomogeneous, but that this is an absolute necessity for a
nenrsciprocity to occcur. As a corollary it will_be-seen that for a 1@98#
less jonosphere the east-west effect will not appear. | |

Throughout the discussion it will be evident that the longi-
tudinal component of the electric field in the ionosphere is respone-

sible for the nenreciprociiy appearihg in the reflectien coefficient.
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6.2 Physical Concepts
Since medium (1), as well as medium (0), is reciprocal, it is
clear that the boundaries must be essential in producing the nonreci.
procity. At z = 0 the reflection coefficient is unity which is certainly

independent of direction, but at z = b the reflection coefficient is:

(6.1)

It depends on the direction of propagation because ain(QJn) = -sin(-§ ).
The air ionosphere boundary, then, is necessary to produce the east-west
effect. This should have been expected since expression (3.22), stating
the continuity of the tangential electric fleld, contains an extra term
dependent on direction.

, An analogous problem was considered some time ago (Fry,1928)
and the results are applicable here. Fry discussed the properties of
optical frequencies incident upon metals concluding that the wave
penetrating into the medium is inhomogeneous. This is to say the
direction of amplitude attenuation is different from the direction of
phase gradient (Stratton, 1941). Furthermore, if the wave is polar-
ized in the plane of incidence, Fry demonstrated that the electric
field wvector rotates in the medium. Now, the index of refraction and
sldn depth of metals at optical frequencies are about the same as the
index of refraction and "skin depth" of the ionosphere at vlf. It could
therefore be presumed that in the absence of a steady magnetic field
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waves incident on the ionosphere exhibit a behavior similar to optical
frequencies incident upon metals. And as will be shown, they do.

The elliptically rotating electric field vector will cause
the available free electrons to describe elliptic paths in the plane
of incidence. If the magnetic field is now superimposed it will alter
the motion of the electrons. Depending on its direction it will either
increase the electron orbit or decrease it. The electron motion in turn
modifies the electric field. Thus the electric field is coupled to
the steady magnetic field, in particular to its orientation, by the
moving electrons. A different orientation of the steady magnetic field
results in a different propagating electric field. This physical
picture will now be discussed analytically.

6.3 Origin of the Nonreoiprooity ‘
In source~free medium (1) for harmonic time depsndence Maxwell's

equations become:

vV x E - /«/‘/wH’ (6.2)
UxH +i€,€wE =0 (6.3)

By combining (6.3) with (6.2) and taking M=1 the vector wave equation

appears:

(7% V x —,&:g>(ﬁ)=(o) (6.4)

The parentheses are used to denote that this equation may actually be
written as a matrix equation. Since the boundary belongs more naturally
into the rectangular coordinate system, it will be written as:
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,—_(ézf*c);.tﬁzﬂﬁ) 0] O E, o)
o -Ekie) 20k | |y
O c)zclz-u' :7 -(a;*k:e)_ Ez o

i
@)

(6.5)

In order to glean the desired information from (6.5) the
following simple example will be considered. A plane wave is incident
upon the air-ienosphere boundary as shown in Fig. 6.1. There will be a
reflected and transmittad wave. If the space dependence of the wave
is assumed to be of the form

o-i(mynz)
in either medium, then the partial derivatives in medium (1) are:
é)y

This means that the second equation in (6.5) may be written:

= «imq H C)z = «in,

£, mr- Rle

Q2
_€1= mm14l.£0n (6.6)

Several things may now be said. First, if E, is normalized to
unity, (6.6) is actually the longitudinal component of the electric
field in the ionosphere. It is composed of a term in time phase with
E; and a term %; radians out of time phase. As was noted in Section 6.2,
the latter term gives rise to an elliptically rotating component of
the electric field vector. Furthermore the longitudinal component

depends upon the direction of propagation. Since ’7 is complex a
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change in its sign would alter the real part of (6.6) thus changing
the magnitude of Ey. This change would carry into the boundary ocondition
and thence into the reflection coefficient causing the nonreciprocity.
Secondly, if the d.c. magnetic field vanishes the wave still
retains a component of the electric vector rotating in the y-z plane.

This is because % in the expressioen:

7,\% 2
Vagdl
(F)+ ()= x
is complex. Because of continuity at the interface mq equals mp and

hence is real. X is complex from Chapter 1. Therefore ny is complex

and the expression:

By _ ~
Ez ”7,"—,3‘,‘6

is complex which proves the assertion. (Note: € need not be complex).

It will now be shown that unless the wave propagating in the
ionosphere contains an elliptically rotating component of the electric
vector without the d.c. magneticfield present , thers will be no east-
west effect. To this end it will be assumed that the wave in the ionos-
phere is homogeneous, which implies among other things, that the
collision frequency, Y , be zero. Hence ny is real instead of complex
and (6.6) may be rewritten

2
E. -7, m .i,ﬂo .
Ezx ’)’),z'l:e /”‘2_ 0 € A
where both A and B are strictly real. (Since V =0 both Vi and & are

real). If the direction of propagation changes (»z —-7 g—-8)
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the phase relation of E; to E, changes, 1.e. the direction of rotation
in the vertical plane of propagation is reversed, But the absolute
value |A+1B| remains the same. Hence the longitudinal component of the
electric field in the ionosphere does not change in magnitude. This
component is, of course, continuous across the boundary. Hence, in this
case there is no difference between propagation east and west.

The properties just discussed for the tangential electric field
under a change in direction, change in phase but constant magnitude,
also appear in the reflection coefficient. If the wave is homogeneous
the reflection coefficient, (6.1), may be written:

R = (242 o 1caDl ~4h2+4s

E+4D | E+< DI
where:
= xm:ﬁ;ﬂ—\h-mzc},‘n
E =xcosp;m tYx-2m¥g,
= K o ¢éq&
and
- D p)
¢,z acten £ ¢, =onclan 2

Changing the sign of D (a change either in orientation of the magnetic
field or in direction of propagation) leaves R with the same absolute

value but with a different phase. Hence it may be stated again that if
the wave in the ionosphere were not inhomogeneous, the magnitude of the

reflection coefficient would be the same for either sast or west

propagation, only the phase would differ.
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6.4 The Lossless lonosphere
For the hypothetical case of a lossless ionosphere, Y =0,
the east-west effect will not ocour. This may be quickly seen by
considering the reflection coefficient:

R: % 008in—( x-3inier, ""'K‘A"Mﬁ'&)
‘x(.ob‘b:ﬂ-"( X = e ¢J'w. -+4:KA4;\4¢;%)

For V=0, K is real and

2
x »-—ooig: "(%‘e)

Therefore m 1s either pure imaginary or real. For %‘-:-cosQ m
it 4s imaginary and |Ri=1 regardless of the direction of propagation.
For %’40«0.’“ it is real, |R/<1, but a change in direction yields only
a change in phase not in magnitude. This latter case is the same as
discussed just previously.

Hence in either case the east-west effect does not occur.
. A}

6.5 Conclusion

It has been seen that the wave in the ionosphere has a compoe
nent of the electric vector rotating in the vertical plans of propa-
gation. This component is an absolute necessity for the appearance of
the east-west effect. If the lonosphere is considered lossless the
wave does not contain this elliptically rotating component and the east-

wost effect does not appear.
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From a mathematical viewpoint the nonyeciprecity onteors inte

the reflection coofficient because the lengitudinal component of the
electric fieold, which is continuous acress the bewndary, depomds in

magnitude upen the direction of propagatien.



7. SUMMARY AND CONCLUSION

In the pﬁ@e@@ding chapters the problem of vlf wave propagation

: al@ng'the.magn@tic equateor has besn developed. From the discussion of
the boundaries in Chapter 2, it was comcluded that a sultable medel
would bs a parailel plate waveguide bounded by a psrfeet conductor at
the bottom and an anisetropic magnetoplasma at the top. - |

‘ Using this model the problem was developed in Chapter 3 and the
field equations obtained. I{ was found that the fields werxe, in goneoral,
coupled by the diffétential equations in the magnetoplasma. In oxder

to uncouple these the ™ mede propagating aloﬁg the magnetic equator
was comsidored exclusively. In addition it was neted that the boundary :
conditiens contain an explieit dependence upon the off-diagonal terms
of tho pormittivity temsor.

In Chaptar‘a the fields were expressed as integrals intexproted
in the complex plane. It was possible teo oxpress the answer as an |
infinite series of integrals which were evaluated by the method of
steepest descents. The resuliing answers were, of course, approximate

but exiremely accuﬁa@e at distances for which kor >> 1.

The resulting field strongth plots compared faverably with
aotualebservationsa A%t distances close to the source large interfors
ence effects are present. These damp out farther away as the high oxder
modes centribute less and less, It is interesting to nots that even for

distances as great as 2000 km the second and higher oxrder medes



b5

contribute to the field. The attenvation observed exparimentally
and that calculated agree reasonably well. The theoretical approach
yielded 3.67 db/K and 2.78 db/K of attenuation for east-west and
west=east propagation respoctively, while experimental data ylelded
approximately 3<4 db/K but for randem directions.

| The graphs also give strong @#idené@ of the east-west effect.
“This nonreciprdeal bahavior of the reflection coefficient at the
ionosphere is discussed at length in Chapter 5. Its origin lises in
the coupling at the boundary betwaen the longitudinal component of .
the elsciric field and the steady magnetic field. The coupling is
accomplished through the off-diagonal terms in the permittivity

tensor, 1.6. through the anisoiropy of the lonosphers.
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