THE DUNAMO BEHAVTOR OF AN ARTIFTCTAL SATELLTTR GTABILIZED BY GRAVITY-GRADTETS

by
Roberst Moskelding

> A Thesis Dubmitted to the Faculty of the DEPARTMGT OF MBCHANICAL MNGTMERRTNG
> In Postial Mulfilmont of the Requarements por the Dacree of
> MASTER OF SCTENOE
> In the Qraduate Calloge
> THE DMIVERSTTY OF ARZZONA

STATEMENT BY AUTHOR

This blabs has been bitted in partial fulfillment of requirements for an advanced degree at The Universe by of Arizona and is deposited in The University library to be mede available to borrowers under rules of the Library．

Brief quotations front this thesis are allowable without special permission，provided that accurate acknowledgment of source th made Requests for permission for extended quotation from or reproduction of this manuscript in thole or in pert ray be granted by the head of the amor department or the Dean of the Graduate College wan in their judgment the proposed use of the material is in the interests of scholarship．In all other instances，however，permission must be obtained from the author．

APPROVAL BY THESIS DIRECTOR

留is thesis has been approved on the date show below：

TABLE OF CONTETHTG
CIAPM男 Page
1 THERODYORTON 2
2 EQUATROMS OF NOTMOR 3
3 GKAVTHY GRADIENT HOMETS 20
 19
 23
6. APHLCATON OM RESULTS TO BPECTFICALIY SHAPED SATEDLTER. 33
7 - Cownintsont 36
APPETDHCES
1 BUEER ATGLE TRANSMORMATIORS 38
2 NOMTTON 39
 41

ILLUSTRATIONS

Figure Fage
2.1 Referenco Coordinate System 5
S. 1 Regions of R,S for RS >0 24
5.2 Regions of R,S for $3 S+R S+1>0$ 24
5.3 Regions of R, S for $(3 S+R S+1)^{2}-16 R S>0$ 25
5.4 Regions of R, S for $\frac{R S-1}{S-1}>0$ and $\frac{R-1}{S-1}>0$ 27
5.5 Stability Regions of R,S for ϕ and ψ lotions 28
5.6 Regions of R, S for $\frac{S-1}{R-1}<1$ 29
5.7 Stability Regions of R,S for θ Motion 30
5.8 Stability Recions of R,S for ϕ, θ, ψ Kotions 32
6.1 Charactoristice of Ciroular Cylindrical Satellite 33
6.2 Characteristics of Rectangular Satollite 34

CHAPTER 1

INTRODUCTION

The control of an artificial satellite's attitude may be accomplished by control devices installed in the satellite, proper utilization of netural forces or a combination of both. The natural means referred to are buch forces as solar radiation preasure, earth's mametio field, aerodynamica or gravity gradient. Depending upon the mission and geometry of the satellite, these forces may either be stabilizing or destabilizing.

Equations of motion for a gravity gradient stabilized satellite have been derived in reference (1). The satellite was of laterally isotropic arepe and the motion man considered to be amall. Eular angles were used to describe the satellite's attitude with respoct to a reference coordinate syetem. Solutions to the equations of angular motion indicated that, although the Euler angles were assumed to be small, the displacement about the Earth-oriented axis may not be expected to be amall. Since this result is contrary to the assumption that the Euler angles are all small, it is reasonable to consider next the satellite's angular motion when the displacement about the Earth-oriented axis is not assumed small.

The objoctive of the first portion of this thesis is to derive the equations for the small angular motion of an Earth-scanning
satellite stabilized by gravity gradient moments, allowing the angular displacement around the Earth-oriented axis to be unrestricted.

Equations of motion derived for a satellite of arbitrnry shape stabilized by gravity gradient are then used to inveatigate ectellite stability. It may be said that a satellite can asoume a number of various attitudes in which it will be in equilibrium. Therefore, an analyois is performed to determine what epecific configurations will result in stable motion once the equilibriun is disturbed. It is assumed that only small motions are to be considered.

CHAPTER 2

EQUATIONS OF MOTION

Consider a satellite of arbitrary shape injected into an elliptical orbit about the orth. A coordinate system shall be fired in the satellite with origin at the center of mas. The x, y, z axes of the coordinate system coincide with the principal axes of the body. The angular momentum of tho satellite may be expressed in matrix notation es:

$$
\left\{\begin{array}{c}
H_{x} \tag{2.1}\\
H_{y} \\
H_{z}
\end{array}\right\}=\left[\begin{array}{ccc}
I_{x} & 0 & 0 \\
0 & I_{y} & 0 \\
0 & 0 & I_{z}
\end{array}\right]\left\{\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right\}
$$

There Ix, By, Hz represent the components of angular momentum on the body ares; Ix, Iv, Az tho moments of inertia about the body axes; and $\omega x, \omega y, \omega_{z}$ tho components of satellite angular velocity on the body axes relative to a fixed frame of reference.

The time rate of chance of angular momentum in vector notation may be defined as

$$
\dot{\bar{H}}=\dot{\dot{H}_{r}}+\dot{\omega} \times \bar{H}
$$

where $\dot{\vec{H}}_{r}$ is the relative rato of change of angular momentum as observed from the satellite. Therefore, an expression for the time rato
of change of angular momenturs of the satellite in terms of body axes 1.3

$$
\begin{align*}
\left.\dot{H}=\dot{H}_{x} \bar{\imath}+\dot{H}_{y} \bar{\jmath}+\dot{H}_{z} \bar{k}+\left|\begin{array}{ll}
\imath & \bar{\jmath} \\
k
\end{array}\right| \begin{array}{lll}
\omega_{x} & \omega_{y} & \omega_{z} \\
H_{x} & H_{y} & H_{z}
\end{array} \right\rvert\, \tag{2.2}
\end{align*}
$$

or, substituting equations (2.1) into equations (2.2) and collecting terms

$$
\begin{align*}
\dot{\bar{H}}= & \bar{\imath}\left[I_{x} \dot{\omega}_{x}+\omega_{y} \omega_{z}\left(I_{z}-I_{y}\right)\right]+ \\
& \bar{J}\left[I_{y} \dot{\omega}_{y}+\omega_{x} \omega_{z}\left(I_{x}-I_{z}\right)\right]+ \\
& \bar{k}\left[I_{z} \dot{\omega}_{z}+\omega_{x} \omega_{y}\left(I_{y}-I_{x}\right)\right] \tag{2.3}
\end{align*}
$$

Nor

$$
\dot{\bar{H}}=\bar{Q}
$$

$\dot{\vec{H}}$, the tine rate of change of angular momentum of the actollite about the center of ruse, is equal to \bar{Q}, the resultant moment of the extern nail forces about the same point. Denoting the components of \bar{Q} on the body axes as L, M and N, equations (2.3) may be written as

$$
\begin{align*}
& L=I_{x} \dot{\omega}_{x}+\omega_{y} \omega_{z}\left(I_{z}-I_{y}\right) \tag{2.4a}\\
& M=I_{y} \dot{\omega}_{y}+\omega_{x} \omega_{z}\left(I_{x}-I_{z}\right) \tag{2.4b}\\
& N=I_{z} \dot{\omega}_{z}+\omega_{x} \omega_{y}\left(I_{y}-I_{x}\right) \tag{2.4c}
\end{align*}
$$

Consider now that tho satollite is assignod the miseion of orienting one of ita axes toward the arth and mantrining that specific oriantation. The reference cocrdinate systom is definod as shom in figure (2.1).

Figure (2.1). Reference Coordinato System.

The $x_{0}-z_{0}$ plene lies in the plane of the orbit and the x_{0} axis is dirocted tomed the earth's center. Ω is the ongular velom city of rotation of the referenco coordinoto syetem obout the y_{0} axis. Appondix 1 defines the Eulor anfle trenoformation which relates the attitude of the satellite to the roference coordinate bystem. The body components of the ancular volocity of the satellite can be related to the angular velocity of the reference coordinate sygtem and the time rates of change of the Euler ancleo by the following equations in matrix notam tion.

$$
\begin{align*}
\left\{\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right\}= & {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right]\left\{\begin{array}{c}
0 \\
\Omega \\
0
\end{array}\right\}+} \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]\left\{\begin{array}{l}
0 \\
0 \\
\dot{\psi}
\end{array}\right\}+} \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left\{\begin{array}{l}
0 \\
\dot{\theta} \\
0
\end{array}\right\}+\left\{\begin{array}{l}
\dot{\phi} \\
0 \\
0
\end{array}\right\} } \tag{2.5}
\end{align*}
$$

Assume that the Euler angles θ, ψ and the time derivatives of ϕ, θ and ψ can be considered aral but that the Euler angle ϕ is not necessarily small. Trigonometric toms involving ϕ then cannot be 1 inverized. The second order approximation of equations (2.5) 13

$$
\left\{\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right\}=\left[\begin{array}{ccc}
1 & \psi & -\theta \\
\theta \sin \phi-\psi \cos \phi & \theta \psi \sin \phi+\cos \phi & \sin \phi \\
\theta \cos \phi+\psi \sin \phi & \theta \psi \cos \phi-\sin \phi & \cos \phi
\end{array}\right]\left\{\begin{array}{c}
0 \\
\Omega \\
0
\end{array}\right\}+
$$

$$
\left[\begin{array}{ccc}
1 & 0 & -\theta \tag{2.6}\\
\theta \sin \phi & \cos \phi & \sin \phi \\
\theta \cos \phi & -\sin \phi & \cos \phi
\end{array}\right]\left\{\begin{array}{l}
0 \\
0 \\
\dot{\psi}
\end{array}\right\}+\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left\{\begin{array}{c}
0 \\
\dot{\theta} \\
0
\end{array}\right\}+\left\{\begin{array}{l}
\dot{\phi} \\
0 \\
0
\end{array}\right\}
$$

Equations (2.6) cen now bo oxpressod as

$$
\left\{\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right\}=\left\{\begin{array}{c}
\psi \\
\theta \psi \sin \phi+\cos \phi \\
\theta \psi \cos \phi-\sin \phi
\end{array}\right\} \Omega+\left\{\begin{array}{c}
-\theta \\
\sin \phi \\
\cos \phi
\end{array}\right\} \dot{\psi}+\left\{\begin{array}{c}
0 \\
\cos \phi \\
-\sin \phi
\end{array}\right\} \dot{\theta}+\left\{\begin{array}{l}
1 \\
0 \\
0
\end{array}\right\} \dot{\phi}
$$

Therefore

$$
\begin{align*}
& \omega_{x}=\psi \Omega-\theta \dot{\psi}+\dot{\phi} \tag{2.7a}\\
& \omega_{y}=(\theta \Psi \sin \phi+\cos \phi) \Omega+\dot{\psi} \sin \phi+\dot{\theta} \cos \phi \tag{2.7b}
\end{align*}
$$

$$
\begin{equation*}
\omega_{\mathcal{Z}}=(\theta \psi \cos \phi-\sin \phi) \Omega+\dot{\psi} \cos \phi-\dot{\theta} \sin \phi \tag{2.7c}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{\omega}_{x}=\psi \dot{\Omega}+\Omega \dot{\psi}-\Theta \ddot{\psi}-\dot{\psi} \dot{\theta}+\ddot{\phi} \tag{2.8a}
\end{equation*}
$$

$$
\begin{align*}
\dot{\omega}_{y}= & \theta \psi \dot{\Omega} \sin \phi+\theta \psi \Omega \dot{\phi} \cos \phi+\Theta \dot{\psi} \Omega \sin \phi+ \\
& \dot{\theta} \psi \Omega \sin \phi+\dot{\Omega} \cos \phi-\Omega \dot{\phi} \sin \phi+\ddot{\psi} \sin \phi+ \\
& \dot{\psi} \dot{\phi} \cos \phi+\ddot{\theta} \cos \phi-\dot{\theta} \dot{\phi} \sin \phi \tag{2.8b}
\end{align*}
$$

$$
\begin{align*}
\dot{\omega}_{\mathcal{Z}}= & \theta \psi \dot{\Omega} \cos \phi-\theta \psi \Omega \dot{\phi} \sin \phi+\theta \dot{\psi} \Omega \cos \phi+ \\
& \dot{\theta} \psi \Omega \cos \phi-\dot{\Omega} \sin \phi-\Omega 2 \dot{\phi} \cos \phi+ \\
& \ddot{\psi} \cos \phi-\dot{\psi} \dot{\phi} \sin \phi-\ddot{\theta} \sin \phi-\dot{\theta} \dot{\phi} \cos \phi \tag{2.8c}
\end{align*}
$$

Substituting equations (2.7) and (2.8) into equations (2.4), and olininating third order and highor forms in θ and ψ and the tine derivatives of ϕ, Θ and Ψ, the following moment equations result.

$$
\begin{align*}
L= & I_{x}(\dot{\Omega} \psi+\Omega \dot{\psi}-\Theta \ddot{\psi}-\dot{\theta} \dot{\psi}+\ddot{\phi})+\left(I_{z}-I_{y}\right)[(\dot{\theta} \dot{\psi}+ \\
& \left.\left.\dot{\psi} \Omega+\Theta \psi \Omega^{2}\right) \cos 2 \phi+\left(-\dot{\theta} \Omega+\frac{\dot{\psi}^{2}}{2}-\frac{\dot{\theta}^{2}}{2}-\frac{\Omega^{2}}{2}\right) \sin 2 \phi\right] \tag{2.9a}
\end{align*}
$$

$$
\begin{aligned}
M= & I_{y}[(\theta \psi \dot{\Omega}+\theta \dot{\psi} \Omega+\dot{\theta} \psi \Omega-\dot{\phi} \Omega+\ddot{\psi}-\dot{\phi} \dot{\theta}) \sin \phi+ \\
& (\dot{\Omega}+\dot{\phi} \dot{\psi}+\ddot{\theta}) \cos \phi]+\left(I_{x}-I_{z}\right)[(\dot{\psi} \dot{\phi}+ \\
& \psi \dot{\psi} \Omega) \cos \phi+\left(\theta \dot{\psi} \Omega-\dot{\phi} \Omega-\dot{\theta} \dot{\phi}-\psi \Omega^{2}+\right. \\
& -\dot{\theta} \psi \Omega) \sin \phi]
\end{aligned}
$$

$$
\begin{align*}
N= & I_{z}[(-\dot{\Omega}-\dot{\phi} \dot{\psi}-\ddot{\theta}) \sin \phi+(\theta \psi \dot{\Omega}+\theta \dot{\psi} \Omega+ \\
& \dot{\theta} \psi \Omega-\dot{\phi} \Omega+\ddot{\psi}-\dot{\phi} \dot{\theta}) \cos \phi]+\left(I_{y}-I_{x}\right)[(\dot{\phi} \Omega+ \\
& \left.\left.\dot{\phi} \dot{\theta}+\psi \Omega^{2}-\theta \dot{\psi} \Omega+\dot{\theta} \psi \Omega\right) \cos \phi+(\dot{\phi} \dot{\psi}+\psi \dot{\psi} \Omega) \sin \phi\right] \tag{2.90}
\end{align*}
$$

Since no restriction has been placed on Ω, it is reasonable to assume that Ω will be large in comparison with $\dot{\phi}, \dot{\theta}$ and $\dot{\psi}$. It has been stated that the θ and Ψ displacements and the time derivatives of ϕ, Θ and ψ are assumed mall. Utilization of the above two assumptions and elimination of products of these mall quantities, equations (2.9) can be reduced to tho following set of moment ecuafiona.

$$
\begin{align*}
L= & I_{x}(\psi \dot{\Omega}+\dot{\psi} \Omega+\ddot{\phi})+\left(I_{z}-I_{y}\right)[\dot{\psi} \Omega \cos 2 \phi+ \\
& \left.\left(-\dot{\Theta} \Omega-\frac{\Omega^{2}}{2}\right) \sin \alpha \phi\right] \tag{2.100}
\end{align*}
$$

$$
M=I_{y}[(-\dot{\phi} \Omega+\ddot{\psi}) \sin \phi+(\dot{\Omega}+\ddot{\theta}) \cos \phi]+
$$

$$
\begin{equation*}
\left(I_{x}-I_{z}\right)\left(-\dot{\phi} \Omega-\psi \Omega^{2}\right) \sin \phi \tag{2.10b}
\end{equation*}
$$

$$
\begin{align*}
N= & I_{z}[(-\dot{\Omega}-\ddot{\theta}) \sin \phi+(-\dot{\phi} \Omega+\ddot{\psi}) \cos \phi]+ \\
& \left(I_{y}-I_{x}\right)\left(\dot{\phi} \Omega+\psi \Omega^{2}\right) \cos \phi \tag{2.10c}
\end{align*}
$$

Thus, equations (2.10) represent the angular motion of an artficial satellite in an elliptical orbit.

CHAPTER 3

GRAVITY GRADIENT I!ORETYS

Ae a means of controlling the satellite's attitude, the principle of gravity gradient is useful. The gravity gradient torque can provide inherent static stability for a setelifite with respect to the earth's gravitational field, providing extomal disturbances are small.

The gravitational potential of en element of mass located at $\left(x_{0}, Y_{0}, Z_{0}\right)$ on tho reference coordinate system as defined in Figure (2.1), is

$$
\begin{equation*}
d U=-g_{0} R^{2} \frac{d m}{\sqrt{\left(r-x_{0}\right)^{2}+y_{0}^{2}+z_{0}^{2}}} \tag{3.1}
\end{equation*}
$$

where g_{0} is the acceleration of gravity at the earth's surface; R, the radius of the earth; and r, the distance from the center of man of the enrtin to the origin of the roferonce coordinate ajetem.

Rewriting equation (3.1)

$$
d U=-\frac{g_{0} R^{2}}{r}\left[1-\frac{2 x_{0}}{r}+\left(\frac{x_{0}}{r}\right)^{2}+\left(\frac{y_{0}}{r}\right)^{2}+\left(\frac{z_{0}}{r}\right)^{2}\right]^{-\frac{1}{2}} d m
$$

Expanding according to the binomial expansion,

$$
\begin{aligned}
d U= & -\frac{g_{0} R^{2}}{r}\left\{1-\frac{1}{2}\left[-\frac{2 x_{0}}{r}+\left(\frac{x_{0}}{r}\right)^{2}+\left(\frac{y_{0}}{r}\right)^{2}+\right.\right. \\
& \left.\left.\left(\frac{z_{0}}{r}\right)^{2}\right]+\frac{3}{8}\left[-\frac{2 x_{0}}{r}+\left(\frac{x_{0}}{r}\right)^{2}+\left(\frac{y_{0}}{r}\right)^{2}+\left(\frac{z_{0}}{r}\right)^{2}\right]^{x} \cdots\right\} d m
\end{aligned}
$$

and eliminating the 3rd order and higher terms,

$$
\begin{equation*}
d U=-\frac{9 \cdot R^{2}}{r}\left[1+\frac{x_{0}}{r}+\left(\frac{x_{0}}{r}\right)^{2}-\frac{1}{2}\left(\frac{y_{0}}{r}\right)^{2}-\frac{1}{2}\left(\frac{z_{0}}{r}\right)^{2}\right] d m \tag{3.2}
\end{equation*}
$$

The relationship of body and reference coordinates, shot in matrix notation below, my be obtained from the Euler anglo transformations deccribed in Appendix 1 , assuming small oxternol disturbances.

$$
\left\{\begin{array}{l}
x \\
y \\
z
\end{array}\right\}=\left[\begin{array}{ccc}
1 & \psi & -\theta \\
\theta \sin \phi-\psi \cos \phi & \theta \psi \sin \phi+\cos \phi & \sin \phi \\
\theta \cos \phi+\psi \sin \phi & \theta \psi \cos \phi-\sin \phi & \cos \phi
\end{array}\right]\left\{\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right\}
$$

Tho inverse relationship is given by

$$
\left\{\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right\}=\left[\begin{array}{ccc}
1-\frac{\theta^{2}}{2}-\frac{\psi^{2}}{2} & -\psi \cos \phi+\theta \sin \phi & \psi \sin \phi+\theta \cos \phi \\
\psi & \left(1-\frac{\psi^{2}}{2}\right) \cos \phi+ & -\left(1-\frac{\psi^{2}}{2}\right) \sin \phi+ \\
& \theta \psi^{\sin \phi} & \theta \psi^{\cos \phi} \\
-\theta & \left(1-\frac{\theta^{2}}{2}\right) \sin \phi & \left(1-\frac{\theta^{2}}{2}\right) \cos \phi
\end{array}\right]\left\{\begin{array}{l}
x \\
y \\
z
\end{array}\right\}(3.3)
$$

Then wo can write

$$
\begin{aligned}
& x_{0}^{2}=\left[\left(1-\frac{\theta^{2}}{2}-{\frac{\Psi^{2}}{2}}_{2}^{2} x+(-\Psi \cos \phi+\theta \sin \phi) y+(\psi \sin \phi+\theta \cos \phi) z\right]^{2}\right. \\
& y_{0}^{2}=\left\{\psi x+\left[\left(1-\frac{\Psi^{2}}{2}\right) \cos \phi+\theta \psi \sin \phi\right] y+\left[-\left(1-\frac{\psi^{2}}{2}\right) \sin \phi+\theta \psi \cos \phi\right] z\right\}^{2} \\
& Z_{0}^{2}=\left\{-\theta x+\left[\left(1-\frac{\theta^{2}}{2}\right) \sin \phi\right] y+\left[\left(1-\frac{\theta^{2}}{2}\right) \cos \phi\right] z\right\}^{2}
\end{aligned}
$$

It is advantageous, at this point, to define the static moments, pro ducts of inertia, and moments of inertia, rospectively, prior to expanding the $x_{0}^{2}, y_{0}^{2}, z_{0}^{2}$ terms and integrating.

$$
\begin{aligned}
& \int x d m=\int y d m=\int z d m=0 \\
& \int x y d m=\int y z d m=\int x z d m=0 \\
& \int\left(x^{2}+y^{2}\right) d m=I_{z}, \quad \int\left(y^{2}+z^{2}\right) d m=I_{x}, \quad \int\left(x^{2}+z^{2}\right) d m=I_{y}
\end{aligned}
$$

Thus, integration of the $\frac{x_{0}}{r}$ term of equation (3.2) in terms of x, y and z and terms involving products of x, y, z are zero and therefore neglected. Expanding the squared terms and eliminating third order terms or higher in the oral cquentities θ or ψ, the following oxproesions for x_{0}^{2}, y_{0}^{2} and z_{0}^{2} result.

$$
\begin{align*}
x_{0}^{2}= & \left(1-\theta^{2}-\psi^{2}\right) x^{2}+\left(\psi^{2} \cos ^{2} \phi-2 \theta \psi \sin \phi \cos \phi+\theta^{2} \sin ^{2} \phi\right) y^{2}+ \\
& \left(\psi^{2} \sin ^{2} \phi+2 \theta \psi \sin \phi \cos \phi+\Theta^{2} \cos \phi\right) z^{2} \tag{3.4a}
\end{align*}
$$

$$
\begin{align*}
y_{0}^{2}= & \psi^{2} x^{2}+\left(\cos ^{2} \phi-\psi^{2} \cos ^{2} \phi+2 \theta \psi \sin \phi \cos \phi\right) y^{2}+ \\
& \left(\sin ^{2} \phi-\psi^{2} \sin ^{2} \phi-2 \theta \psi \sin \phi \cos \phi\right) z^{2} \tag{3.4b}\\
z_{0}^{2}= & \theta^{2} x^{2}+\left[\left(1-\theta^{2}\right) \sin ^{2} \phi\right) y^{2}+\left[\left(1-\theta^{2}\right) \cos ^{2} \phi\right] z^{2}
\end{align*}
$$

(3.4c)

Substitution of equations (3.4) into equation (3.2) and intorratinc equation (3.2) utilizing the definitions of the moments of inertia yields

$$
\begin{align*}
U= & -\frac{g_{0} R^{2}}{r}\left(m+\frac{1}{2 r^{2}}\left(I_{y}+I_{z}-2 I_{x}\right)+\right. \\
& \frac{3}{2 r^{2}} \theta^{2}\left(I_{x}-I_{z}\right)+\frac{3}{2 r^{2}} \psi^{2}\left(I_{x}-I_{y}\right)+ \\
& \frac{3}{2 r^{2}}\left(I_{z}-I_{y}\right)\left(\theta^{2}-\psi^{2}\right) \sin ^{2} \phi+ \\
& \left.-\frac{3}{r^{2}}\left(I_{z}-I_{y}\right) \theta \psi \sin \phi \cos \phi\right] \tag{3.5}
\end{align*}
$$

The partial derivatives of U with respect to ϕ, θ and ψ yield the components of tho gravity gradient moments in the directions of increns$\operatorname{lng} \phi, \theta, \Psi$.

$$
\begin{aligned}
-\frac{\partial U}{\partial \phi}= & \frac{3 g_{0} R^{2}}{r^{3}}\left(I_{z}-I_{y}\right)\left[\left(\theta^{2}-\psi^{2}\right) \sin \phi \cos \phi+\right. \\
& \left.-\theta \psi\left(\cos ^{2} \phi-\sin ^{2} \phi\right)\right]
\end{aligned}
$$

$$
\begin{align*}
-\frac{\partial U}{\partial \theta}= & \frac{3 g_{0} R^{2}}{r^{3}}\left\{\left(I_{x}-I_{z}\right) \theta+\right. \\
& \left.\left(I_{z}-I_{y}\right)\left[\theta \sin ^{2} \phi-\psi \sin \phi \cos \phi\right]\right\} \tag{3.6b}\\
-\frac{\partial U}{\partial \psi}= & \frac{3 g_{0} R^{2}}{r^{3}}\left\{\left(I_{x}-I_{y}\right) \psi+\right. \\
& -\left(I_{z}^{\left.\left.\prime-I_{y}\right)\left[\psi \sin ^{2} \phi+\theta \sin \phi \cos \phi\right]\right\}}\right. \tag{3.6c}
\end{align*}
$$

The angular displacement ϕ is about the body x axis. However, θ is about an intermediate y_{1} axis and ψ about the reference $z_{\text {。 }}$ axis. Therefore, the results of equations (3.6) rust be transformed to the body ares. The Euler anglo transformations of Appendix 1 can be utilized for this operation. Transforming the components of the gravity gradient moment to the body coordinate system, the following is obtained.
$\left\{\begin{array}{l}L \\ M \\ N\end{array}\right\}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi\end{array}\right]\left[\begin{array}{ccc}1 & 0 & -\theta \\ 0 & 1 & 0 \\ \theta & 0 & 1\end{array}\right]\left\{\begin{array}{c}0 \\ 0 \\ -\frac{\partial \tau}{\partial \psi}\end{array}\right\}+$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left\{\begin{array}{c}
0 \\
-\frac{\partial U}{\partial \theta} \\
0
\end{array}\right\}+\left\{\begin{array}{c}
-\frac{\partial U}{\partial \phi} \\
0 \\
0
\end{array}\right\}
$$

Combining matrices,

$$
\left\{\begin{array}{l}
L \tag{3.7}\\
M \\
N
\end{array}\right\}=\left[\begin{array}{ccc}
1 & 0 & -\theta \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left\{\begin{array}{c}
-\frac{\partial U}{\partial \phi} \\
-\frac{\partial U}{\partial \theta} \\
-\frac{\partial U}{\partial \psi}
\end{array}\right\}
$$

Substitution of the equations (3.6) into equations (3.7) yields

$$
\begin{align*}
L_{=} & \frac{3 g_{0} R^{2}}{r^{3}}\left\{(I _ { z } - I _ { y }) \left[\left(\theta^{2}-\psi^{2}\right) \sin \phi \cos \phi+\right.\right. \\
& \left.-\theta \psi\left(\cos ^{2} \phi-\sin ^{2} \phi\right)\right]-\left(I_{x}-I_{y}\right) \theta \psi+ \\
& \left.\left(I_{z}-I_{y}\right) \theta\left[\psi \sin ^{2} \phi+\theta \sin \phi \cos \phi\right]\right\} \tag{3.8a}\\
M= & \frac{3 g_{0} R^{2}\left\{\left(I_{x}-I_{z}\right) \theta \cos \phi+\left(I_{x}-I_{y}\right) \psi \sin \phi+\right.}{} \\
& \left(I_{z}-I_{y}\right) \cos \phi\left[\theta \sin ^{2} \phi-\psi \sin \phi \cos \phi\right]+ \\
& \left.-\left(I_{z}-I_{y}\right) \sin \phi\left[\psi \sin ^{2} \phi+\theta \sin \phi \cos \phi\right]\right\} \tag{3.8b}\\
N= & \frac{3 g_{0} R^{2}}{r^{3}}\left\{-\left(I_{x}-I_{z}\right) \theta \sin \phi+\left(I_{x}-I_{y}\right) \psi \cos \phi+\right. \\
& -\left(I_{z}-I_{y}\right) \sin \phi\left[\theta \sin ^{2} \phi-\psi \sin \phi \cos \phi\right]+ \\
& \left.-\left(I_{z}-I_{y}\right) \cos \phi\left[\psi \sin ^{2} \phi+\theta \sin \phi \cos \phi\right]\right\} \tag{3.8c}
\end{align*}
$$

Substitution of the moment equations (3.8) into equations (2.10) results in the equation of motion for on en th orbiting satellite of unspecified shape stabilized by gravity gradient with unrestricted angular displacement about the earth-oriented axis.

$$
\begin{align*}
& I_{x}(\psi \dot{\Omega}+\dot{\psi} \Omega+\ddot{\phi})+\left(I_{z}-I_{y}\right)[\dot{\Psi} \Omega \cos 2 \phi+ \\
& \left.\left(-\dot{\theta} \Omega-\frac{\Omega^{2}}{2}\right) \sin 2 \phi\right]+\frac{3 g_{0} R^{2}}{r^{3}}\left\{(I _ { y } - I _ { z }) \left[\left(\theta^{2}+\right.\right.\right. \\
& \left.\left.-\psi^{2}\right) \sin \phi \cos \phi-\Theta \psi\left(\cos ^{2} \phi-\sin ^{2} \phi\right)\right]+ \\
& \left.\left(I_{x}-I_{y}\right) \theta \psi+\left(I_{y}-I_{z}\right) \theta\left[\Psi \sin ^{2} \phi+\theta \sin \phi \cos \phi\right]\right\}=0 \tag{3.9a}
\end{align*}
$$

$$
\begin{align*}
& I_{y}[(-\dot{\phi} \Omega+\ddot{\psi}) \sin \phi+(\dot{\Omega}+\ddot{\theta}) \cos \phi]+ \\
& \left(I_{x}-I_{z}\right)\left(-\dot{\phi} \Omega-\psi \Omega^{2}\right) \sin \phi+ \\
& \frac{3 g_{0} R^{2}}{r^{3}}\left\{\left(I_{z}-I_{x}\right) \theta \cos \phi+\left(I_{y}-I_{\lambda}\right) \psi \sin \phi+\right. \\
& \left(I_{y}-I_{z}\right) \cos \phi\left[\theta \sin ^{2} \phi-\psi \sin \phi \cos \phi\right]+ \\
& \left.\left(I_{z}-I_{y}\right) \sin \phi[\psi \sin 2 \phi+\theta \sin \phi \cos \phi]\right\}=0 \tag{3.9b}
\end{align*}
$$

$$
\begin{align*}
& I_{z}[(-\dot{\Omega}-\ddot{\theta}) \sin \phi+(-\dot{\phi} \Omega+\ddot{\psi}) \cos \phi]+ \\
& \left(I_{y}-I_{x}\right)\left(\dot{\phi} \Omega+\psi \Omega^{2}\right) \cos \phi+\frac{3 g_{0} R^{2}}{r^{3}}\left\{\left(I_{x}-I_{z}\right) \theta \sin \phi+\right. \\
& \left(I_{y}-I_{x}\right) \psi \cos \phi+\left(I_{z}-I_{y}\right) \sin \phi\left[\theta \sin ^{2} \phi+\right. \\
& -\psi \sin \phi \cos \phi]+\left(I_{z}-I_{y}\right) \cos \phi\left[\psi \sin ^{2} \phi+\right. \\
& \theta \sin \phi \cos \phi]\}=0 \tag{3.9c}
\end{align*}
$$

Eliminating products of small quantities θ, ψ reduce equations (3.9) to the following equations of notion.

$$
\begin{align*}
& I_{x}(\psi \dot{\Omega}+\dot{+} \Omega+\dot{\phi})+\left(I_{y}-I_{z}\right)[-\dot{\psi} \Omega \cos z \phi+ \tag{3.10a}\\
& \left.\left(\dot{\theta} \Omega+\frac{\Omega_{2}}{z}\right) \sin z \phi\right]=0 \\
& I_{y}\left[\left(-\dot{\phi} \Omega_{z}+\ddot{\psi}\right) \sin \phi+(\dot{S}+\ddot{\theta}) \cos \phi\right]+\left(I_{z}-I_{x}\right)(\dot{\phi} \Omega+ \\
& \left.\left.\psi \Omega^{2}\right) \sin \phi\right]+\frac{3 g_{0} R^{2}}{r^{3}}\left\{\left(I_{z}-I_{x}\right) \theta \cos \phi+\left(I_{y}-I_{x}\right) \psi \sin \phi+\right. \\
& \left(I_{y}-I_{z}\right) \cos \phi\left[\theta \sin ^{2} \phi-\psi \sin \phi \cos \phi\right]+ \\
& \left.-\left(I_{y}-I_{z}\right) \sin \phi\left[\psi \sin ^{2} \phi+\theta \sin \phi \cos \phi\right]\right\}=0
\end{align*}
$$

$$
\begin{align*}
& I_{z}[(-\dot{\Omega}-\ddot{\theta}) \sin \phi+(-\dot{\phi} \Omega+\ddot{\psi}) \cos \phi]+ \\
& \left(I_{y}-I_{x}\right)\left(\dot{\phi} \Omega+\psi \Omega^{2}\right) \cos \phi+\frac{3 g_{0} R^{2}}{r^{3}}\left\{-\left(I_{z}+\right.\right. \\
& \left.-I_{x}\right) \theta \sin \phi+\left(I_{y}-I_{x}\right) \psi \cos \phi+ \\
& -\left(I_{y}-I_{z}\right) \sin \phi\left[\theta \sin ^{2} \phi-\psi \sin \phi \cos \phi\right]+ \\
& \left.-\left(I_{y}-I_{z}\right) \cos \phi\left[\psi \sin ^{2} \phi+\Theta \sin \phi \cos \phi\right]\right\}=0 \tag{3.10c}
\end{align*}
$$

For a satellite of laterally isotropic shape $I y=I z=I$. For a satellite injected into a circular orbit, the angular velocity of rotation of the reference coordinate syoten, Ω, is constant. Therefore, $\dot{K}=0$ and Ω key be expressed es $\sqrt{\frac{g_{0} R^{2}}{r^{3}}}$ where r is now a constant. The following equations of notion, derived from equations (3.10), result for the special case of a laterally isotropic satellite in a circular orbit.

$$
\begin{equation*}
\pm x(\dot{\psi} \Omega+\ddot{\phi})=0 \tag{3.11a}
\end{equation*}
$$

$$
\begin{align*}
& I[(-\dot{\phi} \Omega+\ddot{\psi}) \sin \phi+\ddot{\theta} \cos \phi]+\left(I-I_{x}\right)(\dot{\phi} \Omega+ \\
& \left.\left.\psi \Omega^{2}\right) \sin \phi\right]+3 \Omega^{2}\left\{\left(I-I_{x}\right) \theta \cos \phi+\right. \\
& \left.\left(I-I_{x}\right) \psi \sin \phi\right\}=0 \tag{3.11b}
\end{align*}
$$

$$
\begin{align*}
& I[-\ddot{\theta} \sin \phi+(-\dot{\phi} \Omega+\ddot{\psi}) \cos \phi]+\left(I-I_{x}\right)(\dot{\phi} \Omega+ \\
& \left.\psi \Omega^{2}\right) \cos \phi+3 \Omega^{2}\left\{-\left(I-I_{x}\right) \theta \sin \phi+\right. \\
& \left.\left(I-I_{x}\right) \psi \cos \phi\right\}=0 \tag{3.11c}
\end{align*}
$$

The toms in equations (3.11b) and (3.11c) represent moments about tho y and z body axes respectively. Equation (3.11a) represents the oquilibrum of moments about both the body x and roforance x_{0} axis since θ and Ψ angular displacements were assumed small. Equations representing the equilibrium of moments around the y_{0} and z_{0} axes may be derived from equations (3.11b) and (3.11c) as follows.

$$
\begin{align*}
& {[\text { equation }(3.11 b)] \cos \phi-[\text { equation }(3.11 c)] \sin \phi} \tag{3.12a}\\
& {[\text { equation }(3.11 c)] \cos \phi+[\text { equation }(3.11 b)] \sin \phi} \tag{5.123}
\end{align*}
$$

Performing: the indicetod operations of oppressions (3.12) and rewriting equation (J.1la), the equations of motion become

$$
\begin{align*}
& \ddot{\phi}+\dot{\psi} \Omega=0 \tag{3.130}\\
& \ddot{\theta}+3 \Omega^{2}\left(\frac{I-I_{x}}{I}\right) \Theta=0 \tag{3.1zb}\\
& \ddot{\psi}-\frac{I}{I} \Omega \dot{\phi}+4 \Omega^{2}\left(\frac{I-I_{\lambda}}{I}\right) \psi=0 \tag{3.13c}
\end{align*}
$$

Equations (3.13) are identical to those derived in reference (1) assuming small ϕ, θ and ψ angular displacements. It cen be concluded that the same satellite motion will result whether the angllar displacement about the earth oriented axis of a laterally isotropic satellite is or is not restricted.

CHAPTER 4

GTADILITY CORDITIONS FOR SATELLITE OF ARBITRARY SUAPE

For n antellite of arbitrary shape, thero mey be one or soveral attitudes it may assume in orbit for which the setellite is said to be in a condition of equilibrium. Onoe the equilibrium stato has boen ostablished, the stability characteristics oin the oquilibrium rast be deternined. If a satellite in oquilibrium oncounters a disturbence, it will either tend to return to tho equilibritim atato or contime to nove away from it. liotion of the formor nature is conoidered stable and of the latter, unstable or diver eent.

The followinc analysis is intended to determine whot spocific attitudes a satellito on arbitrary ahnpe met assume for stible motion, once its oquilibrtur hos beon disturbed. Furthor qualification of the analysis requires that

1. tho satollite is in a circular orbit, for which the angular velocity of rotation of the reforence coordinate syeten, Ω, is constant. Thorefore, $\dot{\Omega}=0$ and Ω may be expressod no

$$
\sqrt{\frac{g_{0} R^{2}}{r^{3}}}
$$

2. the satellite angular motion is mall. Thus, the ϕ trigonometric torms can bo linearizod. Application of tho above oriteria to equations (3.10) of Chapter 3 reduces them to the following linearized equations.

$$
\begin{aligned}
& I_{x} \ddot{\phi}+\Omega^{2}\left(I_{y}-I_{z}\right) \phi+\Omega\left(I_{x}-I_{y}+I_{z}\right) \dot{\psi}=0 \\
& I_{y} \ddot{\theta}+3 \Omega^{2}\left(I_{z}-I_{x}\right) \theta=0 \\
& I_{z} \ddot{\psi}+4 \Omega^{2}\left(I_{y}-I_{x}\right) \psi+\Omega\left(I_{y}-I_{x}-I_{z}\right) \dot{\phi}=0 \quad \text { (4.10) }
\end{aligned}
$$

Inspection of equations (4.1) indicetes that the oguation of motion in the plane of the orbit is uncoupled. Equation (4.1b) will therefore be investigeted briefly before considering the two coupled equations. A more complete analysis of equation (4.1b) is performed in Chepter 5.

Rewriting equetion (4.1b),

$$
\ddot{\theta}+3 \Omega^{2}\left(\frac{I_{z}-I_{x}}{I_{y}}\right) \theta=0
$$

Since Ω^{2} and I_{y} aro intrinsically positive, the $I_{z} q u a n t i t y$ must be greater than the I_{x} quantity for stable motion. A ceneral solum tion to equation (4.1b) can then be written as

$$
\theta=A \cos \sqrt{3 \Omega^{2}}\left(\frac{I_{x}-I_{x}}{I_{y}}\right) t+B \sin \sqrt{3 \Omega^{2}\left(\frac{I_{x}-I_{x}}{I_{y}}\right)} t
$$

where A and B are arbitrary constants to be evalueted fron the initiel conditions.

The general solution is seen to be oscillatory from which it can be said that tho motion in the orbital plane is stable.

Consider now the coupled equations ($4.1 a, c$) which, when solved, represent the response $\Phi(t)$ and $\psi(t)$.

$$
\begin{aligned}
& \ddot{\phi}+\Omega^{2}\left(\frac{I_{y}-I_{z}}{I_{x}}\right) \phi+\Omega\left(\frac{I_{x}-I_{y}+I_{z}}{I_{x}}\right) \dot{\psi}=0 \\
& \ddot{\psi}+4 \Omega^{2}\left(\frac{I_{y}-I_{x}}{I_{z}}\right) \psi+\Omega_{2}\left(\frac{I_{y}-I_{x}-I_{z}}{I_{z}}\right) \dot{\phi}=0
\end{aligned}
$$

Lot $R=\frac{I_{y}-I_{z}}{I_{x}}$

$$
S=\frac{I_{y}-I_{x}}{I_{z}}
$$

The above two coupled equations can now de rewiftien as

$$
\begin{align*}
& \ddot{\phi}+\Omega^{2} R \phi+\Omega(1-R) \dot{\psi}=0 \tag{4.2a}\\
& \ddot{\psi}+4 \Omega^{2} S \psi+\Omega(S-1) \dot{\phi}=0 \tag{4.2b}
\end{align*}
$$

Assume solutions to equations (4.2) of the form

$$
\begin{aligned}
& \phi=A_{1} e^{p t} \\
& \psi=A_{2} e^{p t}
\end{aligned}
$$

Upon substitution of the assumed solutions into equations (4.2) and dividing out the common factor $e^{p t}$, the Following two equations can be obtained.

$$
\begin{aligned}
& \left(P^{2}+\Omega_{2}^{2} R\right) A_{1}+\Omega(1-R) P A_{2}=0 \\
& \Omega(5-1) P A_{1}+\left(P^{2}+4 \Omega^{2} S\right) A_{2}=0
\end{aligned}
$$

Sot the determinant of the coefficients equal to zero for a nontrivial solution.

$$
\left|\begin{array}{cc}
\left(p^{2}+\Omega^{2} R\right) \cdot & \Omega(1-R) p \\
\Omega(s-1) p & \left(p^{2}+4 \Omega^{2} s\right)
\end{array}\right|=0
$$

Expanding the determinant, the following characteristic equation reaults

$$
P^{4}+\Omega^{2}(3 S+R S+1) P^{2}+4 S^{4} R S=0
$$

The solution to the characteristic equation is of the form

$$
\begin{equation*}
p^{2}=-\frac{\Omega^{2}}{2}(3 S+R S+1) \pm \frac{\Omega^{2}}{2} \sqrt{(3 S+R S+1)^{2}-16 R S} \tag{4.3}
\end{equation*}
$$

Inspection of equation (4.3) Indicates the roots for p^{2} may be of the nature:
2. Real $p^{2}<0$; in which event the roots are pure imaginary.
2. Roal $p^{2}>0$; for which the roots are roal, positive and necative.
3. Complex P^{2}, with real part >0 or <0; for which the roots are complex, the real parts positive and negative.

The nature of the roots for Case 1 indicate stable motion can result. Cases 2 and 3 , howover, always have roots with positive real parts. The only acceptable condition for stable motion then is when the p^{2} term is lose than zero. Boaring this in mind, and focusing attention on the terms in equation (4.3), the ensuing deductions can be made.

The motion will always be unstable if the terms $3 S+R S+1$ and RS are lesa than zero. This then indicates that the terme $3 S+R S+1$ and $R S$ mast be creater than zero for atability. Should they be greater than zero, the motion will be atable only if $(3 S+R S+1)^{2}>16 R S$.

CHAPTER 5

INVESTIGATION OF TIE SEABILITY COMDITIOAS

The deducod conditions for stable motion from Chapter 4 roquiro further analysis before drawing conclusions regarding antellite attitudes which can reoult in stablo motion. An $\mathrm{R}-\mathrm{S}$ diarram has boon instituted to facilitate visualization of the investicated conditions. The R-S diagram resulting from the complete investigetion of the stability conditions will show the stability recions as a function of R and S.

It is recalled from Chapter 4 thet

$$
R=\frac{I y-I z}{I x} \text { and } S=\frac{I y-I x}{I_{z}}
$$

In addition, the conditions requiring further invectigation are $R S>0, \quad 3 S+R S+1>0$ and $(3 S+R S+1)^{2}-16 R S>0$.

Stability Analysis of Φ, Ψ Motions

Consider RS >0. Substitution of the expressions for R and S into the above inequality yields $\left(\frac{I y-I z}{I x}\right)\left(\frac{I y-I x}{I z}\right)>0$

It bocomes radily apparent that Iy must be either rroater than Iz and Ix or leas than both for the product of the two terma to be non-negative. The regions of R and \mathbb{S} for which $R S>O$ exist ore as shown in Figure (5.1).

Figure (5.1). Regions of R,S for RS >0

Coneider noxt $3 S+R S+1>0$. Rewriting, $R>-\frac{1}{3}-3$ For R,S >0 and for R,S <0 the rogions where $3 S+R S+1>0$ exist are as show in Figure (5.2).

Figure (5.2). Regions of R,S for $3 S+R S+1>0$

$$
\text { Now consider }(35+R S+1)^{2}-16 \text { RS }>0
$$

Expanding the ter under consideration, and equating to zero, we obtain

$$
R^{2}+\left(6-\frac{14}{5}\right) R+\left(9+\frac{6}{5}+\frac{1}{5^{2}}\right)=0
$$

for which the solution is

$$
R=\frac{1}{5}[7-35 \pm 4 \sqrt{3-35}]
$$

For $s>0$ and $s<0$ the reactions for which $(3 s+R S+1)^{2}$

- 16 RS >0 exist are show in figure (5.3)

Figure (5.3) Regions of R,S for $(3 S+R S+1)^{2}-16 R S>0$

Prior to analyzing the θ motion, and before superimposing Figures (5.1-5.3), an analysis shall be performed to determine which regions of R and S yield negative moments of inertia.

From the expressions for R and S,

$$
I x R+I:=I y \text { and } I z S+I x=I y
$$

then

$$
\frac{I z}{I x}=\frac{(\beta-1)}{(3-1)} \text { and for nonnegative moments of }
$$

inertia,

$$
\frac{I_{X}}{I_{x}}>0
$$

Those,

$$
\frac{I_{x}}{I_{x}}=R+\frac{I_{z}}{I x}=\frac{R G-I}{S-1}
$$

and now

$$
\begin{equation*}
\frac{R S-1}{S-1}>0 \tag{5.1}
\end{equation*}
$$

Likewise, for nonnegative moments of inertia $\frac{I z}{I x}>0$ Then

$$
\begin{equation*}
\frac{(R-1)}{(S-1)}>0 \tag{5.2}
\end{equation*}
$$

Utilization of the inequalities (5.1) and (5.2) yield the regions chow in Figure (5.4) for which values of R and S result in positive moments of inertia.

Figure (5.4). Regions of R,S for $\frac{E S-1}{S-1}>$ on d $\frac{P-1}{S-1}>0$
Superimposing Figures (5.1-5.4) shows the R,S reckons in Figure (5.5) where stable motion cen occur for the ϕ and ψ motions.

Figure (5.5) Stability Recions of R,S for ϕ and ψ Motions.

Stability Anslyeis of θ Motion

Ao proviously stated in Chapter $4, \frac{I x}{I z}<1$ is requireci for stability. Then $\frac{S-1}{R-1}<1$ and the R, S regions where this spplies are shown in Figure (5.6).

Figure (5.6) Recions of R, S for $\frac{S-1}{R-1}<1$.

Superimposing, Figures (5.4) and (5.6) show the R,S regions in Ficure (5.7) whare otable motion can occur for the θ motion.

Figure (5.7) Stability Regions of R,S for θ Motion.

Superimposing Figuros (5.5) and (5.7) shows the complote picturo of the rofions for R and S which yield stable motion for the ϕ, θ, ψ motions. These recione are shom in Figure (5.B).

Figure (5.8). Stability Regions of R,S for ϕ, θ, Ψ Motions.

CHAPTER 6

APPLICATION OF RESULTS TO SPECIFICALLY SHAPED SATELLITES

Consider a homogeneous solid right circular cylinder of mass m with axis directed toward the earth's center, as shown in Figure (6.1). The $x-z$ plane is in the orbital plane with y axis normal to it. A circular orbit and small satellite angular motions are assumed.

Figure (6.1). Characteristics of Circular Cylindrical Satellite

The principal moments of inertia are

$$
\begin{aligned}
& I_{x}=\frac{m r^{2}}{2} \\
& I_{y}=I_{z}=\frac{m}{12}\left(h^{2}+3 r^{2}\right)
\end{aligned}
$$

and

$$
R=\frac{I_{y}-I_{z}}{I_{x}}=0, \quad S=\frac{I_{i d}-I_{x}}{I_{z}}=\frac{h^{2}-3 r^{2}}{h^{2}+3 r^{2}}
$$

Substitution of the values for R and S into equation (4.3) yields the following roots for the response $\phi(t)$ and $\psi(t)$.

$$
\begin{aligned}
& P_{1,2}=0 \\
& P_{3,4}= \pm i \Omega \sqrt{\frac{4 h^{2}-6 r^{2}}{h^{2}+3 r^{2}}}
\end{aligned}
$$

The Θ motion can be obtained by substitiation of the $I z$ and $I x$ valuee into equation (4.1b). The roots for $\theta(t)$ are $\pm \pm \Omega \sqrt{3\left(\frac{h^{2}-3 r^{2}}{h^{2}+3 r^{2}}\right)}$. Consider first the stability of the motion in ϕ and ψ. The motion is evidently stable if $\frac{h}{r}>\sqrt{\frac{3}{2}}$ and unstable if $\frac{h}{r}<\sqrt{\frac{3}{2}}$. In torms of the parameter s, the motion is steble if $S>-\frac{1}{3}$ and unstable if $S<-\frac{1}{3}$. These conclueions are in agreoment with the otability regions of Figure (5.5). Consider now the stability of the θ motion. If $\frac{h}{r}>\sqrt{3}$ the motion is stable and unstable if $\frac{h}{r}<\sqrt{3}$. Or, in terns of S, the motion is stable if $s>0$ and unstable if $S<0$. These conclusions ogroe with the stability recions of Figuro (5.7).

As our next application, consider a rectangular plate of infinitesimal width oriented in the orbital plane, as shown in Fifure (6.2). Assume a circular orbit and smell setellite angular motions.

Figure (6.2). Characteristics of Rectangular Setellite

The principle moments of inertia are

$$
\begin{aligned}
& I_{x}=\frac{h b^{3}}{12} \times \mu \\
& I_{y}=\frac{b h}{12}\left(b^{2}+h^{2}\right) \times \mu \\
& I_{z}=\frac{b h^{3}}{12} \times \mu
\end{aligned}
$$

where μ is the mass per unit aron.
Now, $\quad R=\frac{I_{y}-I_{z}}{I_{x}}=1, \quad S=\frac{I_{y}-I_{x}}{I_{z}}=1$

The roots for $\phi(t)$ and $\psi(t)$ are

$$
\begin{aligned}
& P_{1,2}= \pm i \Omega \\
& P_{3,4}= \pm i 2 \Omega
\end{aligned}
$$

The roots for the $\theta(t)$ response are $\pm i \Omega \sqrt{3\left(\frac{h^{2}-b^{2}}{h^{2}+b^{2}}\right)}$
Consider first the stability of the ϕ and ψ motions.
Apparently, b and h can assume any value and tho motion will be stable. The values for R and S define a point on the boundary between stable and unstable motion of Figure (5.5) so that the results are anconclusive in this case. The roots, however, are definitive and the motion is stable.

Consider next the stability of the θ motion. The motion is evidently stable as long ac $h>b$ and unstable if $h<b$. In terms of the parameters R and S, the values for R and S define a point on the boundary between stable and unstable motion of Figure (5.7). The results in this case are also inconclusive.

CHAPTER 7

CONCLUSIONS

The equations for the angular motion of a setellite of arbitrary shape stabilized by gravity gradient momente have been developed. The angular motion has been assumed amall except that the ancular displacoment around the Earth-oriented axis is unreatricted. For the apocial case of a aatellite which is a body of revolution around the Earth-oriented axis, the equations of notion are identical with those for a mall motion.
laking use of the equations of motion developed for a satellite of arbitrary shape, the dynamic behavior of such a satellite has been investigated. In ordor to linearize the equatione of motion, a amall motion is assumed.

The anculer motion of the satellite in the orbital plane, represented by the Euler angle θ, is uncoupled from the other angular motion if the motion is small. The condition for stability is simply $I_{z}>I_{x}$. In terms of the parameters R, S, the condition for stability is shown in Figure (5.7).

The angular motions of the satelilte out of the orbital plane and around the Barth-oriented axis, representod by the Euler angles ψ and ϕ, are coupled. Because of the complexity of the motion, the condition for atability cannot be stated simply in terms of the
monents of inertia. In tarme of the parameters R, S, the condition for stabiluty is show an Figure (5.5).

APPEIDIX 1

Buler Anclo Trunsformations

Smbod	Quantity
I	Roment of Inertia
ω	Angular Velocity
H	Ancular iforentum
$\bar{L}, \bar{\jmath}, \bar{k}$	Unit Voctors
て	Resultont Noment about the Center of Nass
$\mathrm{L}, \mathrm{M}, \mathrm{N}$	Componento of \bar{Q} on the Body Axes
x, y, z	Body Axes (Appear Frocquently as Subscripts)
xo, 70,20	Referonce Axes
Ω	Ancular Velocity of Rotation of the Reference
	Coordinate syotor:
ϕ, θ, ψ	Bulor Anglos
U	Grevity Potontial
P	Radius of the Rarth
go	Acceleration of Gravity on the Surfnce of the Enrth
m	Menss
\boldsymbol{r}	Distance from Conter of lises of the Enrth to the
	Oricin of the Reforence Coordinate System
A, B	Arbitrary Constants
R	Parometor Equivalont to $\frac{I y-I z}{I x}$
S	Paramoter Equivalent to Iy - Ix

APPMDIX 2
(Contimed)
notation

Symol	Quantity
P	Exponential
p	Root of the Characteristic Equation
$>$	Time
$<$	Groater Then
μ	Less Than
Dots ovor symbols indiceto dinferontiation with respoct to time.	

ITST OF REFERMTOES

(1) Pumsey, J\% , Frant A_{0}, The Dramics of En Earthomgning Gabelife Stebilized by grovity-Gredient ond Tnexian Wheels. University of Arizone Thesis, E9791, 1962, No. 26

