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CHAPTER 1

INTRODUCTION

The control of an artificiasl satellite's attitude mey be
nccomplished by control devices installed in the satellite, proper
utilization of netura)l forces or a combination of both. The natural
means referred to are such forces as solar radiation pressure, earth's
mametioc field, aerodynamics or gravity gradient. Depending upon the
mission and peometry of the satellite, these forces moy either be
stabilizing or destabilizing.

Equations of motion for a gravity gradient stabilized satel-
lite have been derived in reference (1). The satellite was of later-
ally isotropic shepe and the motion was considered to be emall. Euler
engles were used to describe the satellite's attitude with respect to
a referon;e coordinate system., Solutions to the equations of engular
motion 1ndicated that, although the Buler angles were assumed to be
small, the displacement about the Earth-oriented axis may not be
expected to be amll, Since this result 1s contrary to the.aseump-
tion that the Euler angles are all small, it is reasonable to consider
next the satellite's angular motion when the displacement about the
Earth-oriented ‘axis 1s not assumed emall,

The objective of the first portion of this thesis is to derive

the equations for the small angular motion of an Earth-seanning

1



2
satellite stabilized by gravity gradient moments, allowing the angular
displacement around the Earth-oriented axis to be unrestricted.

Equations of motion derived for a satellite of arbitrary shape
stabilized by gravity gradient are then used to investignte sctellite
stability. It may be said that a satellite can assume a number of
various attitudes in which it will be in equilibrium, Therefore, an
analysis 1s performed to determine what specific configurations will
rosult in stable motion once the equilibrium is disturbed., It is

assumed that only small motions are to be consildered.



CHAPTER 2

IQUATIONS OF MOTION

Consider a patellite of arbitrery shape injected into an
ollipticel ordbit about the earth. A coordinate syctem shall be fixed
in the sateclllite with origin at the center of mass, The x,y,z axes
of the coordinate syster: coincide with the prineipal axes of the body.

The anguler monentum of tho sntellite may be expressed in

mirix nototion eo:

H I—IA o o W

= 2.1
Hy o T, o Wy (2.1)
Hs o o 1, Wy

Yhere Hx, Hy, Hz ropresent the components of angular momentun on the
body azes; Ix, Iy, Iz the momenits of inertia about the body axes; and
wx, Wy, wz tho components of satellite anpular velocity on the body
axos relative to a fixed frame of referonce.

The time rate of chenge of anpular momentum in vector notation

my be defined ae

° —
— —

r

vwhere ?ir is tho relative rate of chanpge of angular momentunm as

obsarved from the satellite. Therefore, an expression for the time rate
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of change of anpular momentur: of the satellite in terms of body axes

is

I.
+

— HSJ+H|<+ T

Cou

HX

.
k |
wz" (2.2)

H

I b«

Y

or, substituting squations (2.1) into cquations (2.2) and collecting

terms
A= tlT, o, + gy (I, - T P] 4
JUI,p + @ -1 +
k[T, v wow (- 1)) (2.3)
Now H = Q

H s tho tine rate of chonge of anjular nomentun of the sctellite about
the center of nass, is equal to 6 , the resultant moment of the exter-~
nal forces about the same point., Denoting the components of Q on the
body axes as L, M and N, equatione (2.3) may be written as

L o= T,oon + oy, (T, - T, (2.4a)
M= T,y + wewe(Tx-1,) (2.4b)

N =T,k + wxwy (I4-I) (2.4c)
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Consider now that the antellite is assipned the mission of
orienting one of its axes townrd the oarth and maintaining thot specific
oriontation. The reference cocrdinate systenm is defined as shown in

ficure (2.1).

SATELLITE

SLARTH

Figure (2.1). Reference Coordinnte System,

The Xo~— &, plane lies in the planc of the orbit and the
X, axis ic dirocted toward the earth's center. £ is the ongular velo-
city of rotation of the reference coordinetc system about the 3onxis.
Appendix 1 defines the Euler angle itrensformntion whleh relates the atti-
tude of the satellite to the reoference coordinnte system. The body
conponents of the ansular velocity of the satelllte can be related to the
angular velocity of the reference coordinate system and the time rates
of change of the Euler angles by the following equatlons in matrix nota~

tion.



-
Wy i { o o .] CcOS©® O -3ngl|CosY Siny O o

I
wy = ‘ o cosé smcb! O 1 o ||-sinY cosw O] { A +
W LO-S\h(b COS¢>! SING® O cose 0 o | o

]

! o o l'c,ose o -sne o
+

cosd sing Ee) l o) o

-
I
|
e
I

Lo -sind cos¢ sime O cose N 5

) O o O ¢
: (2.5)

y
+
0

o ¢cosd snd

O -5nNn® cos (@)

Assume that the Buler angles © , ¥ end the time derivatives

of & , © and ¥ can be coneiderod omnll but that the Euler angle
$ is not necesparily small, Trigonometric terms involving ¢ then

cannot be linearized. Tho second order approximation of equations (2.5)

ia



(.,L),,L i ko -6 O
wy [ = esind -Wwcosd eyYsind + cosed  sing Nq¥ +
“”z ecosp +¥sSing avycosd — sing cosd O
! o) -6{{0O t O o ||o ¢
esind cos sin O} + |0 cos¢p sinp|le} +
$ ¢ ¢ sino (2.6)
6 cose -sinp cosd| (v LO -sin$ cosel{ o o}
Equations (2.6) can now be oxpressed as
W, g -9 o} !
Wyp= {@Ysing + cosr L1 +4sing Y +{cosd (S +940} ¢
wz ey cosp - Sind cos¢ -sind 0o
Therefore
W, =WYoo —evw + ¢ (2.72)
Wy = (e¥Ysing + cosb)a + Wsine + 6cos (2.7b)
Wg = (e®cosd - sind)a + Yeosd - &sind (2.7¢)
end
Wy 2¥YA + Vv -y -vé+d (2.8a)



de z: 6v L sing + OV L dcosh + ePLL sing +

WL sing + £2cosd - 2dSNd + PSind +

G bcosd +6cosd - & sind (2.8D)

Wy = 8wl cosp - eV PSIne + eV cosd +

OVY(2Cosd — O SN — C1Ldcosd +

Pcosgp - Vdsing - Esine - Sbcosd (2.8¢)

Substituting equatione (2.7) and (2.8) into equations (2.4), and elinm-
inating third order and highor torms in © and Y ond the tine

derivatives of ¢ , © and ¥ , the following moment equations result,

L=I, (Gv+av-e¥-6¥% +d)+ (IZ-IJ)[CéwDJr

Yo revnd coszh +(-én+ L - S -Fanzé]  (2.00)

M = Ij[(QW.C'L+e@ﬂ+éwﬂ—&9ﬁ+‘v-d‘>é>5m¢ +
(A +é9 'e')cosq>J + (I,L—Iz)[(tpcﬁ +

tia)cosd + (epa-pa-éf-wat+ (2.9b)
-6¢ L) sing ]



N = Iz[(-fu_—cb@—é)smcp + (9Wﬂ+ 6w +
sV —45.(1+Q3-<bé)6054>]+(1j-Ix)[(45a+

dpe +e0f-eva+ é‘#’&l)cos4>+(é>@+‘+"i’ﬂ)$m¢] (2.90)

Since no restriction has been placed on (. , it is reasommble
to assume that (o will be large in comparison with ¢ ’ & and ¥ ,
It hae been stated that the © and W displacements and the time deriv-
atives of ¢ , © and ¥ ere assumed small, Utilization of the above
two asoumptions and elimination of products of these small quantities,
equations (2.9) can be reduced to tho following set of moment equa=-

tions.

L=I, (v +¥r+¢)+ (Iz-IJ)[vncoszo+

(-602 - ) sinzs] (2:10e)
M:Iﬂ[(—d\'ﬂ +(p)51h¢ +(ﬂ +é/)cog¢)1+

(Ix-IQ(-i’D— -yQOl) sing (2.100)
N= I, [((-r-8)snd +(-da +¥)cose ]+

(I,-I,) (e ++¥0r)cos¢ (2.100)

Thus, equations (2.10) represent the angular motion of an arti-

fieinl satellite in an elliptlcal orbit,



CEAPTIR 3

GRAVITY GRADIZNT HOQUENTS

Ae a mecns of controlling the setellite's ettitude, the
principle of gravity grodient is useful, The gravity pradient torque
can provide inherent sintic stebility for a satellite with respect to
the eerth's pravitational field, providing extornal disturbances ore
smell,

The grevitotional potontial of an element of mnss located at
(*xos Y, » &, ) on tho reference coordinate system as defined in

Figure (2.1), 1=

dU = -3 R dm
J(r =Xy + 4% + 22

(3.1)

wvhere 9  is the acceleratlon of gravity at the earth's surface; R,
the radius of the earth; and r, the distance from the center of oess of

the enrth to the origin of the roferonce coordinate systenm.

Rewriting equation (3.1)

Ni-

U A () (B (B)) o

10
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Expanding according to the binomlal expansion,
= - BRI Lz Xo Y™ PR
dJU = {‘ z_[ —,:-+<?)+(r‘)+

(Z) )+ 2 (-2 (T (L) (2)]" Jam

and eliminating the 3rd order and higher terns,
dU - - ?;RL(I + x" (_Z;O)l-— ‘_ <3o)z‘ - L (ﬁ.)z’] ( 2)
=T r F T r z \F z (¥ dm 5.
The relationship of body and reference coordinnteos, shown in
motrix nototion below, mny be obinined from the Tuler angle trans-
formtions deccribed in Appendix 1, assuning small externol dieturbances.

) [ -s |

N X

o

<Lj L Zlesimd - Ycosg eYsind +cosd  sind Y

LzJ 6 cosd ¥+ Ysind ey cosg-sind cosg rd
e _ L4

The inverse reletionship is given by

r - z z -
'X(] { = % "% -YWcosd +Osmd  Ysing + ©cose X
4Lj = Y (1- %l)coap + -(l-({l)Sm(’v{» Lj
° ey sind ey cosé (3.3)

\ZD -e (l—ijl)smcb (l—%t)co-cnb_J Z
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Then we can write

Xt = [(l‘—%L- %L)’x + (—‘Pcos4> + eslrub)gj +(Ysne+8e coscj))z]z

L_j: :{Lp'z + [U - %l) cosod + 6‘4)5”'14)] Y +[— (- %35”14: + 8y COSCPJZ}Z
g2 ef-oxefu-g)ema]y + ((-F)coselz |

It is edvantapeous, at this point, to define the stotlic moments, pro-
ducta of inertin, and moments of inertin, respectively, prior to

oxpanding the %o , Y , Z ‘terme ond integrating.

g%dm =jjdm = Szdm = O
g')ujdm=jlj:£dm =§’)<de = 0O

g(’xz*'kjl)dm = Iz , S("jz*'zl)d‘m :I’X. ) S(Xlrzl)dmzla

Thus, intepgration of the % term of equation (3.2) in terms of
X, v and £ and terms involving products of x, y, z are zero and there-
fore neglected, Expanding the squared terms and eliminating third

order terms or higher in the smmll quentities € or Y , the follow-

ing expressions for X, , y* end =’ result.

X2 = (1-0*-pH)xt + (Yicostp —26¥smeosd +ezsnnl¢)tjl+

2 (3.4a)
(W?sin*¢ + 26% SIng cosp + B+ Costd) =
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L‘jz = wrx* + (cos?¢ -wWicostd +zeW simg cos dIyt +
(sin*™ — w*sin*d —26¥Y SN cosd ) E" (3.4b)

2 v 2

Zo= e xt+ [(1-e")sne)yr+ [(1-e')cos™d) & (3.40)
Substitution of equations (Z.4) into equation (3.2) and interrating
equation (%.2) utilizing the definitions of the moments of inertin
yields

3. R= -
U = - rR [m +ZLr"(Ij+IZ—Z-‘->L>+

et (I,-1,) + 5w (Tu-T )+

Noo

x 2
» (T, T - st &
32 -—
- Fi(*z—Ij)eW Sing cos¢] (3.5)
The pertinl derivetives of U with respect to $ , © and Y yvield the

components of the gravity gradient moments in the directlons of increas-

1ng¢.e.“}".

—_ —aU - 380RL -— 2 2
3% ° “—:;—'(IZ' Ij)[(e -¥)singcosd +

- oy (cos?¢p - sm"cb)]

(3.6a)
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—a—g= 33R{(1 -I 08 +
(IE“IU)[GSHWICP -4 sing cosq;]} (3.6b)
21U _ 29 R*
-5 ° ——?,SR {(Ix—Iﬂ)w+

_(Iz'-r_j)[q_,'smlcb +esind Cosct)]} (3.6¢)

The enpular displecement ¢ 4is about the body x axis. However,
© is about an intermediate - axis end ‘¥ about the reference =,
axis., Therefore, the results of equations (3.6) must be transformed
to the body axes. The Euler angle transforrations of Appendix 1 can be
utilized for this operation. Transforming the componente of the gravity

gradient moment to the body coordinate system, the following is obtained.

L { 1 © o T o -6 o
|
M =i O Cosé sing I o ) . o +
N L o -Sin¢g cos$ J 1— e ) ! =y
- oJ
r | O o @ =Y
=10
' o cos¢ <ang T o6 + e}
Lo -sing cos&:J o o
Combining matrices,
U
L ( | o - o - %
: U
Mf = 'O cosd and - 3o

N | o -sing cosé =T (3.7)



Substitution of the equatioms (3.6) into equations (3.7) yields

= ._.F";_- {(IZ - I‘j) [(67— - YY) sind cosed +

— By (cos*p - SIh"q:»)] - (Ix“l‘j)e“i) +

(Iz"Iﬂ)e[‘PSlﬂLQ“ + 6 Sing cosQ»l} {3.8a)

M = 3?¢§{(IX—IZ)GCOS¢» + (Ix“Iﬂ)\Ut\.M‘t’ +

( Iz —Ij)Cos¢[e SN — P Sind cos:p] +
—(Iz ——Ij) e,mzﬂ:k{) SinTd + 6 sind c_os¢]} (3.5b)

39, R"
r3

N =

{ - CI'X_‘ IZ)Q SiNnd +« (1:)_ - Ij)\u cosd +

- (IZ -Ij)smct [:9 SINTd ~ Y sSing cos¢] +

- (T’Z-Ij> cos ¢[l+) sz4) + Esing Cos¢~} } (5.80)

Substitution of the moment equations (3.8) into equations
(2.10) results in the equatiore of motion for an earth orbitins satellite
of unspecifiied shape ctabilized by gravity pradient with unrestricted

enpgular displancemont about the earth-oriented axis,

I, (Wwa+da +8)+ (1, -I)[¥n cosze +
. ok 2

(-6 -3 )sinze] + ———B%f {(I‘j'Iz)[(SL+

~Y*)Sinpcosd — &¥ (coszg — sinig)] +

(Tu-Tpev+ (Ty-Tpelwanteesnscsdl=o
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I%[(—q'.v.m_ + ¢ )sime + (A& +S) Cos¢] +
(r, -1 (-4 ~wa?)smp +

3q R*

50 {(J‘ ~I,)ecesd + er”Ix)Ws'h4’ +
(I‘j —IZ) CCS4'[S S - Y Sing QOS4>1+

(IZ—In)S|n¢E‘~{J Sin*d + 6 and cos ¢]} = 0 (3.9b)

IZ EC‘_C.l -6 )sind +(—<i7n +£}3)cos¢] +
(T, - T +war)cosd v 22E(L-2 e s

(Ij -~ L, )Weosey + (T

>~ I'j) Sin G [9 Slmlq; +
- Yysing Coscta] + CIZ I‘j)co&ta ELP smlcp +
8 =nd cos 'J;]} - .

= O (3.9¢)

Eliminating products of small quantities ©, Y  reduce equations (3.9)

to the following equations of motien,

I, (vAa+ba+&) + (T - I, )[-dorcoszp+

4 (3.100)
(& +%1) sin z_cp] = O

I E( ¢IL+‘4J)S|n¢> + (.CL*—S)C,oscp]-&-(*

I )4+
q»_o:—) S + 339

{(1: -I )SCOS¢+(I “LOoWsme+
(I -I- )coscb[e 'sm‘c§> ¥ sing COScb] +
- QE -I sing [Lp sntd + & swd c°s<§>]} 'e)

(3.10b)
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Ig[(—_fL -8 )sng + (-cb.m_+k:‘)c_os¢>] +

s

(Fy - I )(Pce + P 2?) cosd + 3}5—{-(121»
-174)9 Sing + (Ij-Im)q—'cosq\ +
_(Iﬁ‘lz>sm¢ [9 Sty -WYsing Cos¢] +

- (Ilj'Iz)cos¢>[‘P S'”l¢*95'”¢cos¢]} =° (3.10)

For a satellite of laterally icotropic shepe Iy = Iz = I, For
a satellite injected into a circular orbit, the ansular velocity of

rotetion of the reference coordinnte syester, {1, 1s constant. There-

. =Y
fore, £ : O and L+ ney be expressed as »39%%4 - whero r
is now a constant. The following equetions of motion, derived from
equations (3.10), reoult lor the special coce of a laternlly ilsotropic

santellite in 2 circular orbit,

Zx (Y2 +¢) = o (3.11a)

1[(-43_(\_4-\}3) sSiné +écos¢] + (I-Ix)(ia.o_ +
wYa?)sing ] + 3.0_1{(1:-1:1)9 cosd +
(r-T))%smed} = O (3.11b)

I[-&smne +(-dbcu +P)cosd]+ (I-Ix)($n+
YWl )cosgp+302 {—(I-Ix)e Smep +
(L-1,)Weesdl= o (3.11e)
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The torms in equations (3.11b) and (%.lle¢) represent noments about the
y and z body axes respectively. DEquation (3.lla) represenis the equilib-
riun of moments about both the body x and reference X, exis since © ond
Y sanpular displecements were assumed smll, EBquations representing
the equilibrium of moments around the 4y end &, axee may be derived

from ecuations (3.11b) and {Z.llc) as follows.

[_en\uatiop. (3,\\\3)] cosd ~[c—:qua‘tion(’3,n c)] Sing (3.122)

{:equat_lon (3.1c)] cos ¢ + [eguation (3. \o)] sind (3.12b)

Performiny the indiceted operations of oxpressions (3.12) and rewriting

equation (J.lla), the ecuations of motion become

¢ + Yoo = o (3.1%0)
.e 7_ I-Ix)

e + 30 <'—_‘1 e =0 (3.13b)
. I, . . (L-XI

Y - T 1 d + 40 (-—I—-’“)*P = 0 (3.13c)

Equatione (3.1%) are 4identical to those derived in reforence (1)
essuming smell @ , © and ¥ anguler displacements, It can be
concluded that the seme satellito motion will result whethor the anpu-~
lar displacement about the earth orlented axis of a laterally isotropic

setellite is or is not restricted.



CHAPTER 4

STABILITY CONDITIONS FOR SATALLITE OF ARBITRARY SHAPE

For n satellite of arbitrery shape, thero mey he one or
soveral attitudes it mey sssume in orbit for which the setsllite is
2aid to be in a condition of equilibrium, Once the equilibrium state
has been established, the stability characteristics of the oquilib-
rium rst be determined. If & satellite in ecuillbriur encounters a
dioturbence, it will either tend to return {to the equilibrium stote
or contimie to move away from it. liotion of the formor nature is
conpidered stable and of the latter, unstable or divergent,

The followinsg enalysis is intended to determine what specific
attitudes a seiellite of arbitrary shope muet assume for sinble nmotion,
once its equilibrium hsos been disturbed. Further qualification of
the analysls requires that

1. +tho soiellite is in 2 circular orkit, for which the
enculer velocity of rotation of the reference coordinate system, 1 ,

is constani. Therefore, L = O and - my be expressed ns

9. R
ra

2. the satellite angular motion is small., Thus, the ¢
tripgonometric terms can be linearized,
Application of the above criteria to equations (3,10) of Chapter 3

reduces them to the following linearized equetions.
19



20

Ixfb' + QL(Ij—IZ)¢ + 0 (L, -I +1’.,5)kiJ =0 (4.1a)

4

1,6 + 30* (I,-Ix)e = o (4.10)
I,9 +4 0 (Iy-I )% +0@y-Ix-I)b:0 (h1c)

Inapection of equations (4.1) indicates that the oquation of
motion in the plane of the orbit is uncoupled. Equation (4.1b) will
therefore be investigmted briefly hefore considering the two coupled
equations, A more complete analysis of equation (4.1b) is performed
in Chepter 5.

Rewriting equetion (4,1b),

& + 307 (E_E;

I -
3")9 e

Since 1 and Iﬁ are intrinsicmlly positive, the I quantity must
be greater than the I, quantity for steble motion. A general solu-

tion to equation (4.1b) can then be written as

where A and B are arbitrary constanis to be evaluated from the initisl
conditions,

The generel solution 1s seen to be oscillatory from which it
can be said that the motion in the orbital plane ias stable,

Consider now the - coupled equations (4.la,c) which, when

solved, represent the response ¢ (t) and W (t).



¢ ﬂ(J—_'L‘)¢+Q< ,,,-1:_3:_5_)@=o
Y +4D_(_1‘fz)w +_c;_(_:_ =~ Lz)b =0
Tz
lLet R = I“’}-IZ
Ix
S = t‘j-t?‘
—Sy

The above two coupled equatlions can now bte rewritten as

21

¢ + O*R¢ + (1-RIY =0 (4.20)
$ +40°Sy + A (s-1)¢ =0 (4.2v)
Assume solutions to equetions (4.2) of the form
t
¢ = A e’
F,'t_
Y = A,e

Upon eubstitution of the assumed solutions into equstions (4.2) and
dividing out the common factor € et » the Follovwing two equetions

can be obtained,
(Pz-v_c;:R)A, + h‘(“R)PAL = o
o (s-pa, + (pr+a2S)a, = O

Set the determinant of the coefficients oqual to zero for a

non=trivial solution.

p*+IR) - a(I-R)p

1]

Q(s-1)p  (p +4OYS)
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Expanding the determinant, the following characteristic
equation results
4 2 2 \ =
P +Q(35+R5+|)P + 4CL RS = O

The solution to the characteristic equation is of the form

PZ - - %(35 + RS+.):%7@5 +BS +1) — IaRS (4.3)

Inspection of equation (4.3) indicates the roots for Pz may be of

the nature:

1. Real Pz < O; in which event the roots are pure
imaginary,

2. Real p?>o0 ; for which the roots are real, positive
and negative,

3. Complex p?* , with real part > © or < O ; for
which the roots are complex, the real ﬁarts positive and
negative,

The nature of the roots for Case 1 indicate stable motion can result,
Cases 2 and 3%, however, always have roots with positive real parts,
The only acceptable condition for stable motion then is when the Pl
term is less than zero. Bearing this in mind, end focusing attention
on the terms in equation (4.3), the ensuing deductions can be made,
The motion will slways be unstable if the terms 35 4+ RS « 1
and RS are less than zero., This then indicates that the terms
35 4+ RS + 1 and RS must be greater than zero for stability. Should

they be greater than zero, the motion will be stable only if

(3s+Rs +1)° > 16 RS.



CHAPTER &

IIIVESTIGATION OF THE STABILITY COIDITIQIS

The deduced conditions for stable motion from Chapter 4
requiro further analysis before drawing conclusions regarding satel-
lite attitudes which can result in stable motion. An R-5 diagrem
has beon instituted to facilitate visualizetion of the investigmted
conditions., The R-3 diagram resulting from the complete investige-
tion of the stability conditions will show the stability rejions as a
function of R and 8.

1t is recalled from Chapter 4 that

Ra=12 ongs. Ix=iIx
Ix Iz

In addition, the conditions requiring further investigmtion are

RS >0, 33 +RS +1 >0 end (3 +RS +1)2 -16RS >0 .

Stebility finalysies of ¢, ¥ Motions

Consider RS > O , Substitution of the expressions for

R and S into tho above inequality ylelds (Iy - Iz) ( Iy - Ix> 5> O
Ix Iz

It becomes readily apparent thet Iy must be either greater then
Iz and Ix or less than both for the product of the two terms to be
non-negetive., The regions of R and & for which RS > O exist ere as

shown in Figure (5.1).
23



Pipure (5.1).

Regions of R,S for RS > O

Conelder next 35 + RS 4 1 > O, Rewriting, R > - i. 3
3

Por R,S > O and for R,§ < O tho rogions whore %5 + RS ¢+ 1 > O

exist are as shovn in Figure (5.2).

+
A
R 7
//
I// /
/38 +Rs+1 20
S
/ /
R 17 A
o S

N

R CLEEEs

//3:7‘/ /’ e
7 /

Figure (5.2) .

Regions of R,S for 38 + RB + 1 > O
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Now consider (33 + RS + 1)2 -~ 16 RS > O
Expanding the term under consideration, and equating to zero, we

obtain R* + (6-3IR +Cat & v in) =0

for which the solution is
]
R = =[(7-3s%t4f3-3s ]
For S > O and 8 < O the rerions for which (35 + RS + 1)°

- 16 R5 > O  exist ere shown in fifure (5.2

+
}

R

+4 ]

/éks>o

2
+1) =
/
7’

F -2

2
Pigure (5.3) Regions of R,S for (35 + RS 4+ 1) =1l RS > O
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Prior to amalyzing the © wmotion, and before superimposing

Figures (5.1 ~ 5.%), an annlysis chall be performed to deteruine
which regions of R end S yield nepative momonia of inertia,
From the expressions for R and S,

IXR + It = Iy and 128 + Ix = Iy

then
iz = %551% and for non-nerative moments of
Ix S“l
Ix
Thus, -
I}: e R 4 h - "P:'J':l
Ix Ix -1
and nov f}f}_‘i >0, (5.1)

S-1

Likewise, for non-nerptive moments of inertia ﬁ > O

Then R-1}) 5 O (5.2)
51

Utilization of the inequilities (5.1) and (5.2) yield the rezions chown

in Pigure (5.4) for which values of R and S result in positive momants

of inertin.



Fisure (5.4). Rerions of R,5 for ‘:S -1

- N -

“e=ygand S0E P-1 > 0

Superimposing Fipures (5.1 - 5.4) shows the R,S rerions in

Fipure (5.5) where stable rotion cen occur for the ¢ and ¥ motions.



’
R
/ p /
+2 s ,/
STABLE
//
4
o 7 , /
// // /
-2 -1
- _—— .<>+
+1 +2 S

f.

Fipure (5.5) Stability Regions of R,S for ¢ and ¥ Motions.



Stabllity Anelvels of © Motion

Ao previously stated in Chapter 4, % <1 is required for

atability. Then 'Re;%' <1 and the R,S regions where this opplies are

shown in Figure (5.6).

-

. A// .
/
%

O
e //
S=t.) -

R /
// / // 4
/ ) /

o

Figure (©£.6) Eegions of R,S for i’:‘; <1.

Superimposing Figures (5.4) and (5.6) show the R,S regions in Fip-

ure {£.7) whore stable motion can occcur for the © motion.



Figure (5.7)

— >4

e
e

5tability Reglons of RS for © Motion.

! S

ke
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Superinposing Fipures (£.5) and (5.7) shows the complote pic-
ture of the rogions for R and 5 which yield stable motion for the

¢, ©, ¥ motions. These regions cre shown in Figure (7.8).



>

Figure (5.8).

Stability Regions of R,S for §, ©, ¥ Motions.
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CHAPTER 6

APPLICATION OF RESULTS TO SPECIFICALLY SHAPED SATELLITES

Consider a homogeneous solid ripght circular cylinder of mmss m
with axis direoted toward the earth's center, as shown in Figure (6.1).
The x=-z plane is in the orbital plane with y axis normal to it. A cir-

cular orbit and smnll setellite angular motions are assumed.

[~ h

Fipure (6.1). Characteristics of Circuler Cylindrical Satellite

The principal momonts of inerties are

. mr®
m A z
I.j = L, = ;‘i(h +3Y‘)
and
I _-XI -
R: 3 T = O, .S:ﬁ: _h:-__:i.r_'_:_
Ix, Iz "\ +3r

Substitution of tho values for R and S into equation (4.3) yields the

following roots for the response ¢ (t) and ¥ (t).

R ©

. 4h* - &rt
z ¥ -

Ra® © L“—J h* +3rt
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The © motion can be obtained by substitution of the Iz end Ix values

2 T
into equation (4.1b). The roots for © (%) are * i .C)_\/B (%:_:35_5 .

Consider first the stability of the motion in & and ¥ .
The rotion is evidently stable if % >V —%—“ and unstable
ir —b—( f_-g:-— . In torms of the porameter 3, the motion is
stoble if S > -13 and unstable if S < -+. These conclusions

ere in egreemont with the stability regions of Figure (%5.5).
h
r
the motion is stable and unsiable 1f -F: {y3. Or, in terms of §,

Consider now the stability of the © motion. If =2 >3
the motion is stable if S > © and unstable if 3 <O, These con~
clusions sgree with the stability rerions of Fipure (5.7).

As our nexi application, consider a rectangular plate of
infinitesimnl width oriented in the orbital plane, as shown in Fipg-

ure (6.2). Assure a circular orbit and small satellite angular motions,

N EARTH

Figure (6.2). Characteristics of Rectangular Satellite



The principle noments of inertias are
hb?

I, = btk
Iy - %-:(BZ-O—HL)*/J
2 (3
Iz %: x
vhere A) 1s the mmse per unit aroa,
Now, R = 1_3_];;1_'-_%_ = \ S = _:_[‘3125_75 N

The roots for P (t) and P (t) are

P.,L = L0
= Ttz
Ra _
The roots for the © (t) responsc sro £ U L1 \[3 —%:S_

Consider first the etability of the & snd W rmotions.
Appcrently, b ond h can assume any value and the motion will be stable.
The values for R and S define & point on the boundary between stable
and unstable motion of Fipure (5.F) so that the results are incon-
clusive in this case. The roots, however, are definitive and the
rotion is steble,

Consider next tha stabllity of the © motlon, The motion is
evidently stable 2s long as h > b and unstable if h < b, In terms
of the parameters R and S, the values for R and 3 define & point on
the boundsry between stable and unstable motion of Figure (5.7). The

results in this cage are also inconclusive,



CHAPTER 7

CONCLUSIONS

The equations for the angular motion of a satellite of arbi-
trary shope stabilized by pravity pgradient moments have been developed.
The anguler motion has been assumed small except that the enpular
displacement around the Earth-oriented axis is unrestricted. For the
gspecial case of a satellite which 1s a body of revolutlon around the
Earth-oriented axis, the equations of motlon are identical with those
for o srmell motion,

lHaking use of the equatlons of motion developed for & satel=-
lite of arbitrary shape, the dynemic behavior of such & satellite hss
been investiprted. In order to linenrize the eguations of motion, a
small motion is assumed,

The anpuler motion of the satellite in the orbital plane,
represented by the Ruler angle © , is uncoupled from the other anpu-
lar motion if the motion is armll, The condition for siability is
simply I, > I,. In terms of the parameters R,S5, the condition for
stability is shown in Firure (5.7).

The angular motions of the satellite out of the orbital plane
and around the Earth-oriented axis, represented by the Euler angles
Y and ¢ , ere coupled, Because of the complexity of the motion,

the condition for stability cennot be stated simply in terms of the
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mements of inertis. In terms of the parameters R,3, the condiiioen

for stability ie shown in Pigure (5.%).



APPERIDIX 1

Buler Angle Transformations

- X

s ~— J‘f o
Y - Y T e X,
' \% X, ,fcosw Sin W o“l x,
o Y | —sm;m¥  cosw o Y
1 o
Z, @) o |J 2z,

[- coso o) ‘SinB] 7_.

J,

| e o (_OSOJ b

io i o

]

xi
= |o cose =Swme Y,

e o ]
|
O —Slnf Cos¢ J z
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L,M,N

XyYs2
X0,70,2%0

L1

$,8,¥

-]

A,B

APPEIIDIX 2

NCTATION
Quentity
loment of Inertila
Anpuler Velocity
Anpular ilomentum
Unit Vectors
Resultant Moment about the Center of Mres
Componente of Q on the Body Axes
Body Axes (Appear Frequently ee Subscripis)
Reference Axos
Anguler Velocity of Rotation of the Reference
Coordinnte Syster
Zulor fngles
Grevity Potontial
Radius of the Darth
Aeceleration of Gravity on the Surface of the EBorth
Mass
Distance from Center of HMass of the Earth 1o the
Origin of the Reference Coordinate System
Arbitrary Constants ‘

Paremeter Equiveloent to Lr-lz

Ix

Poramoter Equivelent to Iy - Ix
Iz
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APPENDIX 2

(Continued)
NOTATION

Symbo Quoantity

e Exponential

P Root of the Characteristic Zquation

t Tire

> Groater Then

< Less Than

p less Per Unit Area

Dots ovor symbols indicnte differentintion with resnect to time.
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