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NOTATION

cross—-sectional area
constant
constant
determinant of coefficients
modulus of elasticity
transcendental function of p
defined as Jo<t* dvj -

0
moment of inertia
constant

constant

moment at a given section

function in the Rayleigh-Ritz
harmonic function

shear at a given section
normal function

constant

ratio of constants

solution

transcendental function of JJgand p
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constant

length

numerical variable

time

forcing function

rectangular coordinate
rectangular coordinate
dimensionless length parameter
mass density

dimensionless area function
depth ratio: h,/hQ ; h >ho0
natural mode of vibration
dimensionless moment of inertia

natural frequency

function
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INTRODUCTION
The problem to be considered in this thesis is that
of transverse vibrations of beams of variable cross-section.

A linear small-deflection theory is utilized for the solution.

o’
ye
i

Because the linear smell=deflection theory has long
been well developed, manyiattempts have been made to solve the
the transverse vibration problem for beams of variable cross-
section, In fact exact solutlons for specific cross-sectional

(1 3 10)“. Unfortunat81Ya the

forms have been obtained -
governing differential eqdetion for the transverse viBration
problem is noe conducive.te rapid or exact solution even
when shear‘end rotary inéfﬁia effects are:neglected°
Consequently, most of the exact solutions thus far generated
are for somewhat unreallstle variatlons in cross- sect;on

In order to obtain solutions for cross-sections

commonly encountered in structural engineering, one is

virtually forced to use approximate methods of solution,

Certain approximate solutions have been obtained for the
natural frequencies and mbde shapes by the use of the

Rayleigh-Ritz method (7), by*reblacing the continuous

* Numbers refer teffeferenees in the Bibliography.
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system by a "lumped-parameter' system (294), and by finite
difference techniquesA(S). |

This thesis is concerned with the determination of
the low order natural frequencies and mode shapes for
simply«supported’beams with constant width»and depths which
vary linearly and parabolically along the length of the
beam., Solutions are obtained by the Rayleigh-Ritz method,
In applying the Rayléigh=Ritz method, the mode shapes for
the specific beam are expanded in an infinite series,
éubstitution,of this series into thé Rayleigh=-Ritz equations
yields an infinite set of equations, the terms of which are
e%panded_in terms of infinite series, to be solved for the
natural frequéncies and, the constants which define the

corresponding mode shapes.



NEGLECTED PHENOMENA

Before proceeding to the anélysiss it must be noted
that the effects of shear, rotary inertia, and damping are
omitted in this thesis.

Omission of the above factors is necessary im order
to cbtain a ﬁelatively simple governing equation, which
though simplified yet reflects the principle features of
‘the problem, ie., the variation of mass and stiffness of the
beam. It is not, however, unreagsonable to omit‘cemsideration
of shear9 rotary inertia, and damping wﬁen the beam is-
relatively long and the damping effect is smalla<12}

For the case of the uniform simply-supported beam,
‘the shear distortion and rotary inmertia affect only the
natural frequencies. On the basis of energy considerations,
it can be shown that the effect of bathlshear and rotary
inertia is to reduce the natural frequencies,

For other than the short and stubby beamgrthe effects

¢ shear and rotary inertia are only appreciable in cases

®]
%

relatively short wave lengths, ie., in the higher modes

o]
th

of vibraticmqilz)



In general damping has a two-fqldAeffect on the
vibration characteristics of a linear éystem; Damping,
first tends to reduce the frequency of vibration, énd second,
tends tg distort, ie, change, the mode shapes. The extent
to which the frequencies and mode shapes are changed is in

effect a measure of the damping.



DERIVATION OF THE EQUA?IONS OF MOTION

In the derivation of the equations of motion which

follows, these listed assumptions are made:

1. The beam under consideratién is long and slender,
such that any cross-sectional dimension is very
small when compared to the beam length.

2. There is linear elastic behavior throughout.

3. The beam has a‘piane of symmetry, and the
vibration occurs in thig plane.

4, The Gscillations are so smallythat the use of
small angle geometry is valid.

5., Plane sections remain plane.

6. S8Strain in the transverse direction is zero.

7. There is no damping.

Considering the foregoing assumptions, it is possible;
without inducing appreciable error, to ignore the effects

of shear and rotary inertia.



The equations of motion are derived for a beam

(Fig. 1)

w(x,t)

Fig. 1

of length 1, having a cross-sectional area A = Alp (x),
a moment of inertia I = , a constant modulus of
elasticity E, and a constant mass densityp.

The functions p(x) and ~“P(x) are dimensionless
functions of the length-measuring co-ordinate x, and Ac
and I0 are the area and moment of inertia respectively
at some suitably chosen section of the beam.

To derive the equations of motion, consider a
differential element of the beam (Fig. 2) acted on by a

forcing function w = w(x,t).



w(x,t)dx

M \'M + OM ¢jx
f \ Ox
y=
\Y% otz
h-clx- V+QYdx
Ox

Fig. 2

Applying D'Alembert's Principle and considering

equilibrium

P'AOp(x)0y dx - V - OVdx + V -w(x,t)dx =
Ot2 Ox

fMAop(x) Oy = yV + w(x,t)
Otz Ox

or

0



OV - /xAop(x)Oy  w(x,t) (1)
Ox Ot2

M -M-OMdx + Vdx + OV (dx)2 +
Ox Ox

w(x,t)dx dx +/-LAOp(x)dx dx = 0
2 2

and dividing by dx and passing to the limit

V =O0OM (2)
Ox

Considering the assumptions previously stated, the

deflection curve of the beam may be represented by the



differential equation

- M =El Oy (3)
Ox2

and substituting wvalues from equations (1) and (2) in

equation (3)

~

"/'"® Oy + uw,Aop(x)0" = w(x,t) (4
E1* dxz 0ta

which is the differential equation of motion for the beam

acted upon by the forcing function w.

For free vibration the equation of motion reduces to

ELQ: + u. AoP(x)0y = 0 (5)
DX 0x2 atZ

It is convenient to introduce a dimensionless length

parameter 73 , defined as

(6)

Tl

I
2

Substituting equation (6) in equation (5) and

denoting differentiation with respect to Tj by primes and



with respect to time by dots gives

A7) v + /XAJ4y = 0 (7)
P(771) EL

A constant k i1s defined as

k4 = £i-AQ M ®)
EL

The dimensionless differential equation of motion

becomes

1| \/I' + kdy = 0 (9)

Equation (9) can be solved by the separation of

variables by letting

y = ¥(77)- T(t) 10)

where Y 1is the normal function, a function of Tj alone;
and T is the harmonic function, a function of time alone.
Substituting equation (10) in equation (9), and

separating the wvariables yields

10



which can be satisfied for all time and all T7j , if and only

if each side of equation (11) is respectively equal to a

constant which is denoted as p Therefore, equation (11)

may be divided into two parts:

k4 T. and @2)

Writing equation (12) in standard form and letting

the natural circular frequency

we find



12

£+ cozT = 0(15)

the solution of which is well known as

T = Bsinoit + Ccos cut (16)

where B and C are constants to be determined from initial

conditions.

Substituting the value of from equation (8) in

zZ
equation (14), the square of the natural frequency CO is

co2 = p4EI0 (17)
jU-AJ4

Letting the constant,

coo = TTI4 /EI1
2 - > A0 (18)

the natural frequency O becomes

co - P o (19)
7TZ
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The second part of the equation of motion, equation

(13), when written in standard form is

- pp4Y =0 (20)

which is a linear, homogeneous, fourth order differential
equation with wvariable coefficients, the solution of which

is of the general form

Y =4 t (71 ,p) + a2f2(71 ,p) + a5f3(7i,p) + a~f, (7i,p)
1)
where the f* 1s are transcendental functions of Tj and p
and where the a”ls are constantsto be determined from the
boundary conditions.
The most common boundary conditions encountered are
the clamped, free, and simply supported end. The boundary

conditions of each being homogeneous and of the form:

1. Clamped: y =0;, y' =0 (22a)
2. Free: Ely” = 0; (Ely”) =0 (22b)

3. Simply Supported: vy = 0; Ely" = 0 (22¢c)
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Any combination of the boundary conditions, equations (22),
when substituted in equation (21) yields four, linear,
homogeneous simultaneous equations to be solved for the

a; 1s of the form

a, F,i (p) +a%F,1 (p) + asF” (p) + adFH (p) (23a)
a | FZI (?) +a2FZ2. (p) + ajF2i (?2) + adF2-v(P) (23b)
a, k31 (D) +a2F32 (p) + a3Fts(P) + ad4F34 (p) (23c)
a, F4dl (p) +a2r4z (p) + a3F4s(P) + adF44. (p) (23d)

where the Fy 1s are transcendental functions of p.
In order to obtain a non-trivial solution for the
constants a ", the determinant D(p) of the coefficients of

the a”'s must be zero, Iie.

F F 12 F,! F 4

F2J F24
E = D(p) = 0 (24)

FJ, F 32 F» F34

F4a2 F43 Fee

Expansion of the determinant, equation (24), leads to a
single transcendental equation to be solved for the
parameter p. This single equation is commonly referred to

as the frequency equation. In general there will be an
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infinite number of p's which are roots of the frequency
equation and which will define the natural frequencies of
vibration through equation (19) .

Upon substitution of a particular value of p in
equations (23) there then exists four, homogeneous simul-
taneous equations to be solved for the particular a; con-
stants. But of the four equations, only three are indepen-
dent. Thus it is only possible to determine three of the

constants in terms of the fourth.

The ratios Db are defined as:
W* = JSju. (25a)
a»
b%g = and (25b)
a <5
b4s ™ (25¢)
316

where the subscript numbers denote the appropriate constant,

and the subscript letter s denotes the appropriate s root
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(pS) of the frequency equation.
Upon substitution of bn® and ainto equation (21)

the normal function Y becomes

Yb = a [f (7",p) + bzsf2(Tj,P) +
b3sf3 (7" jp) + bds ~ (77 ,p)] (26)
The normal mode shapes gxre defined as
<£,(77) = £, (17,p) + b21 £2 (77 ,p) + bI5E£3(T5 ,p)
+ b4~ £4 (77 ,p) (277)

where » s(77) is the normal mode of vibration compatible
with the s th root of the frequency equation and which
satisfies the prevailing geometric boundary conditions.

The normal function Yb is now expressible as

Y5 = a4l « <P£7)) (28)

Substituting the values of Y6 and T into equation

(10) gives

= ai46 0 ) CB sin o)5t + C cos a)st] (29)
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or

y* = <> (77) [Ks sin CUst + L g cos CL5t] (30)

For a linear differential equation, the total solution
is a linear combination of all the elementary solutions.

The total solution for the deflection y, therefore, becomes

CD

y =537(77) K"sino”t 4+ Lb5cosu) st (31)
5=1



ORTHOGONALITY CONDITIONS
For future considerations, it is advantageous to
develop the orthogonality conditions of the mode shapes.

Considering specific values of Y, the differential

equations defining Y. and Yj may be written as
VARSI - PP?\ = 0 and (32)
Yym" - pp4dV = 0 (33)

Replacing the Y 1s by their values in terms of the mode shapes

equations (32) and (33) become



Multiplying equation (34) by (), equation (35) by <)

and subtracting gives

P (P4 - Pj4) "~ 7 0 (36)

Integrating equation (36) over the beam length yields

i

(P4-P4) 1p (37)

m/

The left side of equation (37) when integrated by parts

becomes

- <% o« (38)

19
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After rewriting the boundary conditions, equations

(22), in terms of the mode shapes,

1. Clamped: cf} = 0 >= 0 (39a)
2. Free: El =0 El<b ) = 0
;! h (39%)
3. Simply Supported: P =0 E1Q = 0
" < (39¢)

it is apparent that for any combination of the common

boundary conditions, equations (39), that the respective

terms of (38), when evaluated at the indicated limits,

will always be zero for i different than j. And since p.

does not equal p *

dv = 0 and (40)

The orthogonality conditions are obtained by multiplying

equation (34) by (j} ; and integrating over the beam length.

* p's are assumed to be distinct.



£ </'<g"] CI77 - p*fp4d> 0 (42)

But from equation (40), equation (42) reduces to

1

g V<€~ d77 0 (43)

and the orthogonality conditions may be written in the form

<£ dT* = 0 and (44)

for i different than j.
When 1 equals Jj, equations (34) and (35) become
identical. Multiplying equation (34) by (ﬂ and integrating
i

over the beam length yields



Integrating the left side of equation (46) and regarding

only the first two terms of this integration gives

Considering the boundary conditions, equations (39), it is

evident that (47), when evaluated at the designated limits,

will be =zero. Therefore,
i i
JV fclT? = P4 (48)
For future use, it is convenient to define
i
S, - JP4>ar (49)

Given initial conditions appropriate for a given

problem, it is possible, by using the orthogonality con-

ditions stipulated in equations (44)

and (45) , to evaluate

the constants Ks and Ls of equation (31).

Multiplying equation (31) by p o" and integrating

over the beam length gives



23
i i

Jpy<f>d7) = £i£p<* [Kisina>% + Lsos cust d 7/

(50)
o 5"1

Assuming that the integration and summation may be inter-

changed and using the orthogonality conditions, the right

side of equation (50) will be non-zero only when s is equal

to 1. Therefore,

JpycfydT] =K.sinoi.t + L.cos CI77d (51)

Assuming initial conditions of the form:

1. y(x,0) =y (52a)

2. y(x,00 = ¥ (52b)

and utilizing the results of equation (49) , the constants

and may be calculated from

Ki = < & J p<k'y°av <53>
o

fp "~y 0dl>»



SIMPLY SUPPORTED BEAM - CONSTANT A AND T
To demonstrate how an exact solution is obtained,
a beam of constant A and I, ie. p (7)) =1 = is
considered.
The harmonic function remains as
T =B sinU)t + C cos Ot (16)
but the differential equation defining the normal function
is now
Y,m- p4dY = 0 (55)
the solution of which defines the transcendental functions
f* and gives
Y = a"sin pjj + a2cos + a3sinh pjj
+ a”cosh pT" (56)
Substitution of equation (56) in the boundary

conditions for a simply supported beam yields:

0 +az + 0 + a” =0 (57)
0 - a2 + 0 + a® =0
at sin ptaz cos p+ a3sinh p+ a*cosh p= 0

- al sin p-a2cos p+ al3sinh p+ a“~cosh p= 0

from which a2, aand a" equal zero, and

24
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al sin p =0 (58)
For a non-trivial solution of equation (58)

p = DTT (59)

The D th natural frequency then is
COn= n20/ (60)

and the corresponding mode shape is
© = sin nTTTj (61)

The deflection curve y becomes

e}
y =y >n n’7r7 K,sin n2xu't + L”%cos naj't (62)
¥l
and
1
Gn = %in HTTT77 d?7 = 12 (63)

The coefficients Kn and L n depend on the specific prescribed

initial conditions, and may be calculated from
1

K 2 fy Sin ATT77 dT) and (64)
n2o0j'Jd 0 ! '

I

L, 2J yo sin n7T77 (65)



RAYLEIGH-RITZ SOLUTION

It is apparent that the exact solution of the problem

depends upon the ability of ascertaining the mode shapes.

Because the differential equation defining the mode
shapes, equation (34), is virtually impossible to solve
exactly for realistic distributions of mass and stiffness,
approximate methods of solution must be used.

The approximate method used in this thesis is the
Rayleigh-Ritz method. The mode shapes of the non-uniform
beam are expanded in an infinite series, and Rayleigh's
Principle 1is used to derive an infinite set of equations -
the Rayleigh-Ritz equations - to be solved for the natural
frequencies and the series expansion coefficients which de-
fine the corresponding mode shapes.

The Rayleigh-Ritz equations are developed from

energy considerations. It is assumed that ideal frictionless

constraints are imposed on the beam such that the beam is

forced to vibrate as a single degree of freedom system.

During free vibration the deflection curve of the constrained

beam may be expressed as

26



Y = N(x) e T(t) (66)

where N(x) 1s determined by the constraints which have
been imposed. For this thesis it is assumed that N(x)
satisfies the boundary conditions of the unconstrained
non-uniform beam and that N(x) is a smooth function

which can be expressed as a linear combination of the mode

shapes of the unconstrained non-uniform beam in the form

N(x) (67)

These restrictions on N(x) are not particularly severe.
The harmonic function T(t) for a single degree of
freedom is
T(t) = A sin (CUt + Q, ) (68)
For a conservative single degree of freedom system,
the natural frequency is determined by equating the maximum
potential energy to the maximum kinetic energy. These maxi-

mum energies are written as:

1. Potential Energy:
PE (69)
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2. Kinetic Energy: KE = JLlmy"*"dx (70)
With y and T(t) being defined by equations (66) and (68)
respectively, the maximized derivatives appearing in the

potential and kinetic energies are

y" max An" (x) and (71)

y max A C<IN(x) (72)
Substituting equations (71) and (72) 1in equations (69)
and (70) respectively, equating the maximum energies, and

solving for the square of the natural frequency gives

The right side of equation (73) 1s referred to as the
Rayleigh Quotient.
The Rayleigh Quotient indicates for a given beam that

the natural frequency () is a function of the N(x) function.
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If a random configuration of vibration is chosen, ie., a
random value of N(x) is chosen, the Rayleigh Quotient yields
the natural frequency of vibration consistent with the chosen
random configuration.

If N(x) is chosen in particular to be proportional
to one of the mode shapes Cp of the unconstrained non-
uniform system, equation (73) will define a natural
frequency CO equal to CO- , and this 00 will be stationary.
The fact that CO is stationary when N(x) 1is proportional
to one of the mode shapes can be verified by treating CO
as a function of N(x) andapplying the methods of the cal-
culus of variations to equation (73).

For further calculations it is convenient to expand

the mode shapes in an infinite series of the form

&> =2 .bin (74)
' H J

where the Cp ls form a complete set of functions, chosen to
]

satisfy the geometric boundary conditions. The expansion

coefficients bj are so chosen to guarantee upon substitution

of the infinite series, equation (74), in the Rayleigh

Quotient, equation (73), for the N(x) terms, that the
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generated natural frequency will be stationary.
When the infinite series, equation (74), 1is sub-
stituted in the Rayleigh Quotient, equation (73), for the
N(x) functions and the summation and integration are inter-

changed, equation (73) becomes

2 bjb / El<£'<g'd
co = j'K1 J 1

The condition that the square of the natural frequency

c1)2be stationary requires that

Xa) = 2 frr® *Sb, = 0 (76

abD«
for all Sb” , and therefore,

(Kool) . 0 (77)
0bt

If equation (75) 1is written as
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to = O.
o. Us8>
where
Q, = Z.bjbJ E1* <) dX and (79)
P 4 £ J K
(o]
I
°? = Zb-b. |m * *dx (80)

2
and the square of the natural frequency CO is partially
differentiated with respect to , equation (77) reduces to
@0* - 0Qi = 0 (si)
dbt clb
1=1, 2, 3, ... c>

Differentiating- equations (79) and (80) with respect

to b% and substituting in equation (81l) gives
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U zc b K 5d, ,bK =0 (92)
Kl k ~ M %
1 =1, 2, 3, ...oa
where
i
Z
CK = Cw = I s/ ><fdkand (83)
T
d,K a* Ei~""'"dx (84)

The infinite set of homogeneous equations, equations
(82), are the Rayleigh - Ritz equations. The solution of
the infinite set of equations yields the natural frequencies
CO{ and the coefficients which when substituted in
equation (74) yield the mode shapes. In principle, the
solution for the mode shapes is exact. An approximation
arises when only a finite number of equations (82) are

considered.



Because the Rayleigh - Ritz equations are homogeneous,
non-trivial solutions for the bKls exist only when CO takes
on particular values. These particular values of CO are the
natural frequencies of the beam.
If a value of the natural frequency is designated as
@~ and the corresponding b's are designated as b”* , then
the Rayleigh - Ritz equations and the mode shape equations

are more properly written as

W ;ZZCi,KbK B bK = 0 and (85)
I@

1 =1, 2, 3, ...cx?

where (86)

i=1 2, 3, ... 00

Using the technique of R.P.N. Jones and S. Malalingem
it is convenient to choose the (jo functions to be the

mode shapes of a uniform beam which has the same boundary



conditions as the non-uniform beam.

JonesC7) further states that if the mass and inertia
of the non-uniform system vary only slightly from the uniform
system, the coefficients clk and d[Kare small in comparison
to cn 'and d,, . Hence the ith mode shape of the uniform
system may be regarded as a first approximation to the i”h
mode shape of the non-uniform system.

The form of the governing equation, equation (85),
"has the advantage that any of the higher frequencies and
mode shapes may be calculated directly, without first cal-
culating the lower mode shapes."(7)

To determine any mode shape (p and the correspond-
ing natural frequency U)r , br is taken equal to one and a
first approximation for Cp and COr is obtained by neglect-
ing the products of small quantities. Successive approxi-
mations are obtained by considering an increasing number
of equations and the previously neglected small quantities.

"This iteration method, though based on the assump-
tion of small differences between the non-uniform and uni-
form systems, may often be used successfully in cases where
the mass and inertia distributions of the two systems differ

considerably." (")



PROBLEMS CONSIDERED

The problems specifically considered in this thesis
are simply-supported beams of constant width and depths
which vary lineary and parabolically along the length of the
beam.

Due to the depth variations, the area and moment of
inertia functions, and such form, that
the differential equation of motion, equation (5), was
virtually impossible to solve exactly.

Because of the impossibility of solving the differ-
ential equation of motion exactly, the Rayleigh-Ritz method
and the Jones technique”) were used to generate the low
order natural frequencies and the series expansion coeffic-
ients which defined the corresponding mode shapes.

The equations used to calculate, the low order frequen

cies and mode shapes were:

1 =1, 2, 3, ...cCxXp

and

35
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(6]
4> =  y.bi4d> (86)
| k-1 K
i=1 2, 3, ... 00
where
CK = m<p (f>clxand (83)
i'k
o
i
d ik = I El (ﬁdx (84)
T o
The (p functions for a simply-supported beam are
sin H7T7" - see derivation of equation (61). Due to the

variation in m and I, the general formulas for coefficients
clK and dK were extremely complicated - see Appendix B -
and as a result, equations (85) could not be solved in general
terms.

Solutions were obtained for simply-supported beams
symmetrically haunched about the beam centerline and with
specifically assigned depth ratios (T) of 1.0, 1.4, 1.8,

2.2, 2.6, and 3.0 (Figs. 3a and 3b).



Depth Ratio T =h1l/h0
Linear Taper » Symmetric Beam

Fig. 3a

Depth Ratio T =h,/h0

Parabolic Taper - Symmetric Beam

Fig. 3b

37
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It was found - see Appendix C for derivation - that
the results generated for the symmetric beams could be used
for certain simply-supported unsymmetrie beams (Figs. 4a

and 4b) .

Ik O

Depth Ratio T =hl/hQ
Linear Taper - Unsymmetrie Beam

Fig. 4a

I>.D

Depth Ratio T =hl/hG
Parabolic Taper - Unsymmetrie Beam

Fig. 4b



RESULTS

With the beam configurations and depth rgtios_thus
specified, the evaluation of the ¢4 and d éoéfficients
and the iterative solution of the simultaneous equétions
(85) weré programmed for and calculated by an IBM 7072
computer; |

The Cbmputer'was ?rogrammed to solve the first

twenty equations of equatipns (85). The computer results

are given iﬁ graphical.an; tabular form as follows:
lehé fréquency.rét;9 ;jdépth ratio cur&es:(Figé, 5-8)
indicate,thefyériatipn of?iﬁélldw'order frequéhcies:(first“
six for the symmetric bea;é‘and first threé for the uhéymmet-
ric beamSjiéé the depth tggid is ¢Hanged. The freqﬁehcy
ratios beéqméipractically ;deﬁfica¥ at frequencies hiéher
_ﬁhan_the’Séééﬁﬂ natural fﬁgdﬁéﬁti és evidencedfsy tﬁé ‘
groupingqu'ﬁﬁe curves, zéédeepth ratios betﬁeen one and -
three and fgr beams of thé'ébnfiguration shown, Figures
5-8 may be ﬁ$§d to calculé%e-fhe-low ofder natural fre-
quencies of é.hon-uﬁiform¥5éaﬁ by ﬁsing the apprépriéte
numerical Qaiﬁe of thé’fféﬁuency:ratio and multiplyihg by

the corresponding natural frequency for a simply-supported
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uniform beam of depth h,.

Tables 1-10 are tabulations of the bé coefficients
of series (86) which defines the mode shapes of the non-
ﬁnifbrm'beam, The coefficients are tabulaéed for the first
six mode shapes for ﬁhe symmetric beams. The coefficients
for thé first three modé shapes of the‘uﬁsymmetric beams
are calculated frém Tables 1~lO by using the second, fourth,
and sixth mode shape valﬁéé for the symmetric beam, half of
which is the particular unsymmetric beam. The tabulated
coefficients,vérify Jones'(7),theory that thevresulting
coefficients are smaller than the pérticular coefficient
chosén to be unity, ie” the rth mode shape of the uniform
beam is a good first approximation for the rth mode shape
of fhe non-uniform beam, )

Figures 9~l6~show_graphica1 representations of the
first three mode shapes far all the considered beams for
depth ratios of 2.2 and 3.0.

Tables 11-18 are listings of the values used-to'plot
Figs. 9-16. The values iﬁiTablés 11-18 were found by sum-
ming the first twenty terﬁs.of series (86). - |

Figures 17-20 indicate the distortion of the first

mode shape for all four beams studied as compared to the
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TABLES 1-10

General notes

1. The Series Expansion Coefficients are for the

series
20

2. All the even coefficients (b?, , ...) are zero
for the odd mode shapes(i = 1, 3, 95).

3. All the odd coefficients(bj, b, ...) arezero
for theeven mode shapes(i = 2, 4, 6).
4. Interpretation of table values:

~3.60789E-02 = -3.60789 x 10 2



Table 1

- SERIES EXPANSION COEFFICIENTS

Linear Taper - Symmetric Beam - Depth Ratio T = 1.4

0dd ﬁven First Mode Second Mode | Third'Mode Fourth Mode Fifth Mode Sixth Mode
Modes | Modes | 1. 1 =1 i=2 i=3 i=6 i =5 i=6
by b, 1.00000E 00 | 1.00000E 00 |-5,06351E-02 |-1,60111E-02 8.24471E-03 | 2.93781E-04
by | b, | -2,12806E-02 | -4.43028E-02 | 1.00000E 00 | 1,00000E 00 | 4.79722E-03 | 2.72103E-02
bg by 1.97054E-03 | 2.75292E-03 |-7,37376E-02 |-9,22762E-02 | 1.00000E 00 | 1.00000E 00
b, bg || -6.02056E-04 | -1.08062E-03 | 6.86287E-03 | 7,59110E-03 | -1,16456E-01 |-1,33588E-01
by Bio | 1.90845E-04 | 1,97969E-04 |-3.02538E-03 |-3.47796E-03 | 1.20314E-02 | 1.34028E-02
by | ®iz2 | -9.45717E-05 | -1.36429E-04 | 8,40601E-04 | 6,88132E-04 | -5.65567E-03 | -6.13828E-03
by | Py | 4.406208-05 3.59873E-05 | -5,52704E-04  |-5.46595E-04 | '1.4976IE-03-| 1.32270E-03
bys | bie | -2.65009E-05 | -3.17306E-05 | 2,23773E-04 | 1.436358-04 | -1.11247E-03 | -1.08171E-03
bis | Pig | 1.47077E-05 | 9.86215E-06 |-1.67096E-04 |-1.43551E-04 | &.14029E-04 | 2.95745E-04
big | Py -8.66167E-06 | -9.50083E-06 | 6.86487E-05 | 3.23726E-05 | -3.24660E-04 |-2.92951E-04 |




Table 2 ' \

SERIES EXPANSION COEFFICIENTS

Linear Taper - Symmetric Beam - Depth Ratio 7= 1.8
0dd | Even Pirst Mode Second Mode | Third Mode Fourth Mode | Fifth Mode Sixth Mode
Modes | Modes i=1 i=2 i=23 i=4 i=25 i=6
by b, | 1.00000E 00 | 1.00000E 00 |-9.41569E-02 -2.74406E£02 1.68144E-02 8.86653E-04
b3 ba -3.58246E-02 | -7.68860E-02 1.00000E 00 1.00000E 00 | 5.99982E-03 .4.76065E-02
b5 b6 4.63601E-03 8.28722E-03 | -1.27102E-01 |-1.59894E-01 | 1.0000CE 00 | 1.000C0E 00
b7 bB -1.34813E-03 | -2.536%6E-03 1.86005E-02 | 2.27963E-02 | -2.01531E-01 |-2,32014E-01
b9 blO’ . &.76081E-04 | 6.78377E-04 | -6.81268E-03  |-8.12719E-03 | 3.44135E-02 | 4.03644E-02
| bll bl2 . -2.23328E-04 | -3.39081E-04 i 2.33285E703' 2.3506QE:03 -1.31873E-02 -~1.4884OE-02
b13 b14 1.10322E-04 | 1.27399E-04 »-1.28601E-03 -1.31744E-03 | 4.50409E-03 “A,60033E-03
bis LI -6.28508E-05 | ~7.95585E-05 | 5.99708E-04 | 4.99764E-04 | -2.61371E-03 {-2.64208E-03 "
by | b18 3.54692E-05 | 3.44165E-05 -3.797673-04.(-3.37937E-0& 1.16531E-03 | 1.02202E-03
b19 b20 -1.81813E-05 | -2.11400E-05 1.60456E-04 | 1.07899E-04 | -6.76429E-04 | -6.34124E-04




Table 3

SERIES EXPANSION COEFFICIENTS

Linear Taper - Symmetric Beam - Depth Ratio T = 2.2

Odd | Even First Mode Second Mode | Third Mode |Fourth Mode | Fifth Mode Sixth Mode
Modes | Modes { =1 i=2 1 =3 i=6 i=5 i=6
by b, 1.00000E 00 | 1.00000E 00 |-1.31929E-01 _3,599455-02'_ 2.54576E-02 | 1.57462E-03
b, b, | -4-64658E-02 | -1.02337E-O1 | 1.00000E 00 | 1.00000E 00 | 5.05428E-03 | 6.39656E-02
L b, 7.29988E-03 | 1.467328-02 |-1.68029E-01 |-2.12439E-01 | 1.00000E 00 | 1.00000E 00
b, by ~2.17939E-03 | -4.39048E-03 | 3.14690E-02 | 4.02472E-02 | -2.67379E~01 -3109074E-01
by big 8.15363E-04 | 1.36859E-03 |-1.12806E-02 |-1.39984E-02 | 5.95974E-02 | 7.14887E-02
b by, | =3-80298E-04 | -6.30508E-04 | 4.24763E-03 | 4.72242E-03 -2.249713-02 -2.62774E-02
by, LI 1.92362E-04 | 2.67736E-04 |-2.21068E-03 |-2.39268E-03 | 8.56804E-03 9.38748E-03
b, « b, || ~1.07414E-04 | -1.50327E-04 | 1.08586E-03 | 1.03109E-03 -4.57023E-03 |-4.85259E-03
by g blg 6.00421E-05 | 7.14959E-05 -6:37023E-g4‘,56.051875-04 2.15344E-03 2,09338E-03
by byg || ~2-82958E-05 | -3.62912E-05 | 2.65235E-04 2.13513E-04 | -1.07333E-03 —1.05933E-03

gy



Table 4
SERIES EXPANSION COEFFICIENTS

Linear Taper - Symmetric Beam - Depth Ratio T = 2.6

Odd | Even Pirst Mode Second Mode | Third Mode Fourth Mede | Fifth Mode | Sixth Mode

Modes | Modes Lt =1 i =2 i =3 i=4 | i =35 i=6
bl bZ_ 1.06600E 00 1.00000E 00 |-1.65018E-01 ‘4.261973-02 3.40454E-02 2.28194E-03
b3 bé . -5.46066E-02 | -1.23014E-01 1.00000E 00 1.000G0E 06 | 2.70455E-03 7.76293E-02
bS b6 9.76290E-03 2.11873E-02 | -2.00633E-01 |-2,54884E-01 | 1.00000E 0O 1.00000E 00
b7 b8 ~3.03196E-03 | -6.51679E-03 4.41293E-02 5.79393E-02 -3.20271E-01 |-3.71802E-01
b9 b10 1.18210E-03 2.22099E-03 /| ~1.61173E-02 —2.06819E~02 - 8.47755E-02 | 1.03228E-01
bll bIZ -5.55687E-04 ~1.00538E-03? 6.43502E-03 7.627248-03 | -3.28769E-02 |-3.94554E-02
bl3 blhl .2.85053E-04 | 4.53403E-04 |-3.28541E-03 {-3.74961E-03 1.33668E-02 1.53432E-02
b15 b16 -1.57671E-04 | -2.44546E-04 | 1.65317E-03 | 1.71557E-03 -6.90292E-03 {-7.66556E-03
biy’ Ab18 8.68968E-05 | 1.20144E-04 | -9.28135E-04 |-9.42692E-04 | 3.31577E-03 | 3.45785E-03
blg ) 3 bZO ~3.86424E-05 | -5.49859E-05 | 3.77542E-04 | 3.42822E-04 -1.50754E-03 |-1.56826E-03




Table 5
SERIES EXPANSION COEFFICIENTS

Linear Taper - Symme»trié Beam - Depth Ratio T = 3.0

0dd | Even | First Mode | Second Mode | Third Mode |Fourth Mode | Fifth Mode Sixth Mode
Modes | Modes i =1 1= 2 i=3 i-= AA Lt =5 i =6
b, b, | 1.00000E 00 | 1.00000E 00 |-1.94257E-01 |-4.78887E-02 | 4.25067E-02 | 2.97697E-03
by b, |-6.10362E-02 | -1,40288E-01 | 1.00000E 0C | 1.00000E 00 | -6.15867E-04 | 8.93553E-02
bg | by || 1.19790E-02 | 2.75359E-02 |-2.27318E-01 |-2.90131E-OL | 1.00000E 00 | 1.00000E 00
b, bg | -3-86666E-03 | -8.80461E-03 | 5.60834E-02 | 7.50683E-02 |-3.63862E-01 |-4.24265E-01
by bio | 1-55787E-03 | 3.19395E-03 |-2.10767E-02 |-2.78146E-02 | 1.08827E-01 | 1.34108E-01-
biy | Pz |77-40976E-04 | -1.45296E-03 | 8.77858E-03 | 1.09117E-02 | -4.37315E-02 |-5.36474E-02
by | Pyy | 3-84064E-04 | 6.79322E-04 |-4.46236E-03 |-5.33786E-03 | 1.86244E-02 | 2.21402E-02 |
byg | by ||-2-11330E-04 | -3.60459E-04 | 2.27583E-03 | 2.52791E-03 | -9.50312E-03 |-1.09677E-02
byy | Dbyg || 1-14867E-04 | 1.79158E-04 |-1.24157E-03 |-1.34037E-03 | 4.59653E-03 | 5.05758E-03
big | Ppo | 4-89238E-05 | -7.68557E-05 | 4.93395E-04 | 4.90560E-04 | -1.96562E-03 |-2.14262E-03

05




SERIES EXPANSION COEFFICIENTS

Table 6

Parabolic Taper - Symmetric Beam - Depth Ratio 7 = 1.4

0dd | Even First Mode Sécond Mode | Third Mode Fourth 5‘de9 Fifth Mode © Sixth Mode
Modes | Modes ||~ 1 =1 i =2 i =3 i=4 i=5 i=6
Py b, | 1.00000E 00 | 1.00000E 00 |-3.98207E-02 |-1.81896E-02 _-9.026893503 -9.02867E-03
b, b, |/-1.61894E-02 |-4.49969E-02 | 1.00000E 00 | 1.00000E 00 | 5.91093E-03 | 2.84601E-02
by b, -3.15838E-04 |-1.43532E-03 |-7.14725E-02 |-9.52596E-02 | 1.00000E 00 | 1.00000E 00
b, by ||-7.35773E-05 |-3.82882E-04 |-2.64051E-03 |-3.50243E-03 | -1.17435E-01 |-1.38659E-01
by by |-2.04980E-05 | -1.19585E-04 |-8.34545E-04 |-1.31825E-03 | -3.92355E-03 |-3.89625E-03
by | ®yy [~7-46576E-06 |-4.71030E-05 |-2.84201E-04 |-4.79279E-04 | -1.78652E-03 1-2.22121E-03
by | Py, |-3-23059E-06 |-2.15016E-05 |-1.18958E-04 -2.10884E-04 | -6.83671E-04 |-8.83147E-04
bys | By |-1-58284E-06 |-1.09943E-05 |-5.71235E-05 |-1.05213E-04 | -3.14424E-04 -4.20507E-04
by | byg |-8-58175E-07 | -6.15940E-06 |-3.05356E-05 .|-5.79725E-05 -1.63411E-04 |-2.24646E-04
big | byg |-5-83339E-07 |-4.31633E-06 |-2.05797E-05 |-4.01107E-05 | -1.07902E-04 |-1.51980E-04

N
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Table 7

SERIES EXPANSION COEFFICIENTS

Parabolic Taper - Symmetric Beam - Depth Ratio 7 = 1.8

First Mode

0dd Even Second Mode Third Mode Fourth Mode Fifth Mode Sixth Mode
Modes | Modes 1 =1 i =2 1=3 i=24 - i=5 i =256
| P2 1.00000E 00 | 1.00000E 00 -7.70116E-02 -3.43121E-02 | -1.66776E-02 | -1.63466E-02
by | b, |[-2.76052E-02 | -7.90381E-02 | 1.00000E 00 | 1.00000E CO| 1.05420E-02 | 5.17269E-02
by | by | 4.47486E-04 | 1.210058-03 |-1.26574E-01 |-1.69195E-01 | 1.00000E 00 | 1.00000E 00
b, | bg | -7.59317E-05 | -4.18786E-04 | 2.47153E-03 | 4.73144E-03 | -2.09253E-01 | -2.48060E-01
by by | ~1.53893E-05 | -1.04653E-04 |-9.67294E-04 |-1.61804E-03.| 8.17399E-03 | 1.28595E-02
o0 | Pyp | -5.96802E-06 | -4.30027E-05 ;| -2.62606E-04 |-4.50225K-04 | -2.34248E-03 | -3.14535E-03
by | Py, | -2-60636E-06 | -1.98245E-05 |-1.14997E-04 |-2.08916E-04 | -6.43357E-04 | -8.23662E-04
bic | byg | -1.28544E-06 | -1.02080E-05 |-5.56887E-05 |-1.05135E-04 | -3.16684E-04 | -4.28199E-04
b, | Pyg | -6.90081E-07 4 -5.64725E~06 | -2.94607E-0S '|-5.73399E-05 | -1.63158E-04 | -2.26661E-04
bog | Pyy | -5.52957E-07 | -4.66777E-06 | -2.33692E-05 |-4.68173E-05 | -1.27078E-04

-1.81556E-04/




| Table 8

SERIES EXPANSION COEFFICIENTS

Parabolic Taper.— Symmetric Beam —ADepth Ratio T = 2,2

0dd

Even

Fourth Mode T

Fifth Mode

First Mode Second Mode Third Mode Sixth Mode
Modes | Modes i =1 i=2 i=3" i=4 i =5 i=6

by b, 1.00000E 00 | 1.00000E 00 [-1.11595E-01 -4.85950&?62'-2.336403-02 -2.26072E-02
by b, 1-3.62209E-02 |-1.06239E-01 | 1,00000E 00 1.00000E 00} 1.45167E-02 7.18741E-02
bg b, I 1.60371E-03 | 5.67405E-03 |-1.71200E-01 -2.293658-01| 1.00000E 00 1.00000E 00
bs bg ||-1.34187E-04 | -6.72517E-04 | 1.12098E-02 1.85349E-02/ -2.84565E-01 -3.38783E-01
by | bjg |-5-97701E-06 | -6.05610E-05"|-1.56700E-03 | -2.76185E-03| 2.79992E-02 | 3.98020E-02
b11 blz'g-4.56657E-06 -3.60577E-05 |-1.63160804 ' | -2.71994E-04| -4.29659E-03 | -6.24605E-03
byg | Py |[-1.87568E-06 |-1.60247E-05 |-1,00720E-04" | -1.87908E-04| -3.55168E-04 | -3.82481E-04
bys | By | -9.43095E-07 | -8.37961E-06 -|-4,73307E-05 | -9.12150E-05| -2.93131E-04 | -4.07839E-04
bys | byg | -4.87079E-07 | -4.45202E-06 -|-2.42716E-05 | -4.82040E-05 -1.37620E-04 | -1.92834E-04)
big | by |-4-56607E-07 | -4.31365E-06 |-2,24979E-05 | -4.61212E-05( -1.26490E-04 | -1.83468E-04




SERIES' EXPANSION COEFFICIENTS

Table 9

Parabolic Taper - Symmetric Beam - Depth Ratio T = 2.6

- 0dd | Even First Mode Second Mode | Third Mode - | Fourth Mode | Fifth Mode Sixth Mode

Modes | Modes i=1 i=2 i=3 i= éfffi i =5 1 =6
hl b2 '1.00000E 00 l.OOOOOE GO ~1.43751E-01 -6.13269ETQZ ~-2.93340E-02 ~2.81511E-02
b3 b4 -4 ,30197E-02 | -1.28764E-01 | 1.00000E 00 I'OOOOOE;QQF» 1.80927E-02 | 8.99249E-02
bS b6 2.88939E-03 '1.09717E-02 | -2.08530E-01 -2.79889?{&;?i 1.00000E 00 | 1.00000E 00
b7 b8 -2 .60603E-04 | -1.24695E-03 | 2.17048E-02 | 3.50778E-§2“ -3.48312E-01 |-4.16502E-01
b9 blO I 1.06365E-05 2.31485Ej05 -2.86806E-03 -5.12052?&931 5.17286E~02 | 7.21103E-02
b11 ‘biZ' - ~4.60721E-06 --3,54997g-05;: 3.69810E-05 1.04313E;04 -8.16470E-03 ,-1.22929E—02

' b13 blé .~1.25973E-06 | -1.23173E-05 | -1.00878E-04 |-1.94522E-04 | 2.81904E-04 | 6.31257E-04
h15 b16 -7.07044E~07 | -6.89052E-06 | ~3.83993E-05 {-7.51065E-05 | -3.20197E-04 | -4.74167E-04
b17 b18 -3.38576E-07 | -3.40326E-06 | -1.94603E-05 |-3.93263E-05-| -1.058518-04 | -1.46958E-04
big | by | -3-70753E-07 | -3.86353E-06 | -2.08662E-05 |-4.36227E-05 | ~1.215658-04 | -1.79211E-04

s



SERIES EXPANSION COEFFICIENTS

Table 10

Parabolic Taper - Symmetric Beam - Depth Ratio 7 = 3.0

Odd

 Sixth Mode

Even First Mode Second Mode | Third Mode Fourth Mede | Fifth Mode
Modes | Modes i =1 i =2 i=3 i=246 i = 5 i =6
b, | b, | 1.00000E 00 | 1.00000E 00 |-1.73685E-O1 |-7.27607E-02 | -3.47479E-02 |-3.31783E-02
b, | b, | -4.85565E-02 | -1.47890E-01 | 1.00000E 00 | 1.00000F 00 | 2.13897E-02 | 1.06460E-01
bg be 4.19177E-03 | 1.66210E-02 | -2.40482E-01 |-3.23273E-01 .. 1.00000E 00 | 1.00000E 00
b, by | -4.43783E-04 | -2.12309E-03 | 3.30123E-02 | 5.29131E-02 | -4.03503E-01 | -4.84634E-01
by big | 3-77053E-05 | 1.64788E-04 |-4.84502E-03 |-8.64453E-03 | 7.73979E-02 | 1.07289E-01
by | Pip || -6-85269E-06 | -4.67585E-05 | 3.80644E-04 | 7.56296E-04 | -1.38651E-02 |-2.09071E-02
big | Pys || ~5-62587E-07 | -7.93653E-06 { -1.30462E-04 |-2.59041E-04 | 1.39836E-03 | 2.43095E-03
by | by | -5-77910E-07 | -5.95854E-06 | -2.72527E-05 |-5.34076E-05 | -4.51348E-04 |-7.16896E-04
b | byg | ~2.33815E-07 | -2.56838E-06 | ~1.604108-05 |-3.29680E-05 | -6.20586E-05 | ~7.69522E-05
big | Png || ~3-03558E-07 | -3.44841E-06 | -1.91463E-05 ~1.17723E-04 | -1.77131E-04

~4.07144E-05

ss
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Table 11
' MODE SHAPE ORDINATES -- FIRST THREE MODES

Llnear Taper ='ijﬁiﬁetric Beam - Depth Ratio T = 2,2

g Pirst Second " Third

Mode Shape .| Mode Shape Mode Shape

B Ordinate . | Ordinate Ordinate
0,00 0.0000 - 0.0000 0.0000
0.0% 0.1113 0.2066 0.2695
0.08 0.2222 0.4067 0.5157
0.12 0.3320 0.5928 0.7125
0,16 0.4399 | 0.7559 0.8323

0,20 0.5451 0.8860 0.8511

0.24 0.6464 0.9728 0.7507
0.28 0.7422 | 1.0057 0.5256
0.32 0.8307 . | .0.9755 0.1872
0.36 0.9097 - 0.8748 -0.2337
0.40 0.9759 0.7008 -0.6793
0.44 1.0257 0.4577 -1.0734
0.48 1.0538 - 0.1600 -1.3176
0.52 1.0538 -0.1600 -1.3176
0,56 1.0257 -0.4577 -1.0734
0.60 0.9759 -0.7008 -0.6793
0.64 0.9097 -0.8748 -0.2337
0.68 0.8307 | -0.9755 0.1872
0.72 0.7422 . | -1.0057 0.5256
0.76 0.6464 -0.9728 - 0.7507
0.80 0.5451 -0.8860 - 0.8511
0.84 0.4399 -0.7559 0.8323
0.88 | 0.3320 -0.5928 0.7125
0.92 0.2222 20.4067 0.5157
0.96 0.1113 .| -0.2066 0.2695
1,00 0.0000 0.0000 0.0000




Table 12

MDDE SHAPE DRDINATES ~-- FIRST THREE MODES

Linear Taper - Symmetxlc Beam - Depth Ratio T = 3.0

:

" . Second . Third .
Mede Shape Mode Shape . |
Ordinate Ordimnate
0.00 0.0000. " 0.0000 0.0000
0.04 0.1079 ~ 0.1945 0.2399
0,08 0.2155 0.3844 0.4620
0.12 0.3224 0.5637 0.6452
0.16 0.4283 0.7252 0.7649
0.20 0.5323 1 0.8598 0.7977
0.24 0.6339. . 0.9578 0.7212
0,28 0.7316 .1.0074 0.5221
0.32 0.8239 . 0.9969 0.1999
0,36 0.9087 0.9145 -0.2277
0.40 0.9824 0.7506 -0.7097
0.44 1.0406 0.5023 . -1.1685
0:48 1.0752 0.1785 -1.4728
0,52 1.0752 . -0.1785 -1.4728
0,56 1.0406 -0.5023 -1.1685
0:60 - 0.9824 ~0.7506 -0.7097
0.64 ©0.9087 . -0.9145 ©-0.2277
0.68 0.8239 - -0.9969 0.1999
0.72 0.7316 | -1.0074 £ 0.5221
076 - 0.6339. % :| -0.9578 0.7212
1 0.80 0.5323 - 4 . -0.8598 0.7977
©0.84 0.4283 ° | “1-0.7252 . 0.7649
" 0.88 0.3224 | -+D.5637 0.6452 .
0.92: 0.2155 +'=0.3844 0.4620
0,96 0.1079 -0.1945 . 0.2399
1.00 0.0000 - ~ 0.0000 . 0.0000
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| ', Table 13-
MODE SHAPE ORDINATES -- FIRST THREE MODES |

:Paraboliciﬁaper - Symmé ric Beam - Depth Ratio Tfé;2,2

Pitgt | Second |  Third
Mode Shape | Mode Shape | Nede Shape |
Ordisate Ordinate Ordinate |

0.0000 . | 0.0000 © 0.0000 -
0.1128 | 0.2007 0.2604
0.2253 - ,0.3971 0.5038 -
0.3368 _0.15829 0.7070 |
0.4466 1 0.7495. - 0.8411
0.5535 0.8859 1 . 0.8756 -
"0.6558 - 0.9792 . . 0.7844
0.7516 - " | - 1.0161 " |. " 0.5557 °
0.8382 - [ 0.9847 10,2011
0.9128 - | - 0.8774 70,2368
0.9723; .} 0.6946 -0.6859.
1.0138° . |- 0.4466 -1.0572. *
1.0352 | . 0.1542 -1.2679 .
1.0352 | ~0.1542 -1.2679
1.0138 | -0.4466 - -1.0572
0.9723 . | ~0.6946 .. =0.6859
-0
-0
-1
-0
-0
-0
-0
-0
-0
00

o- "o -1 o - o .0 o -] © -4 9
o mvesScowd®ES

o o . o

o

0.9128 | -0.8774 -0.2368 .
0.8382. |- ;«0.9847 0.2011 "
0.7516  ~{. -1.0161 0.5557. %
0.6558 | .9792 "~ 0.7844. -
0.5535 " - -0.8859 . 0.8756 " .
0.4466 . |  "-0.7495 . 0.8411
0.3368 - | .5829 1.0 0.7070
0.2253. | .3971 . 0.5038
0.1128 | .2007 - 0.2608 .-
0.0000. - | .0000 0.0000 -
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- Table 14
MODE SHAPE ORDINATES -- FIRST THREE MODES =~

ParabolibETaper ~.Symmé£ric Beam - Depth Ratio T = 3.0

T Pivsk Second Third = |

Rk Mode Shape | Mode Shape Mode Shape |

B Ordinateé | Ordinate Ordimate -
0.00 0.0000. . |. 0.0000 0.0000
0.04 0.1096 " 0.1871 0.2262
0.08 0.2190 - 0.3717 0.4415
0.12 0.3280 0.5494 0.6291
0,16 ¢ 0.4359 .. - | 0.7141 0.7653
0.20 0.5420- 0.8563 0.8205

- 0.24 0.6451 - 0.9638 0.7632

0.28 0.7432 . 1.0214 0.5677
- 0.32 0.8340 - | . 1.0125 - 0.2278
036 0.9140 - | 0.9228 -0.2284
0.40 0.9793 . 0.7455 -0.7285 . -
0:44 1.0258 0.4867 -1.1636
0.48 1.0501 . - 0.169%4 -1.4187
0.52 1.0501 -0.1694 -1.4187
0,56 1.0258 | -0.4867 -1.1636
0.60 0 0.9793 | -0.7455 . -0,7285
0.64 0.9140 - | -0.9228 -0.2284
0,68 0.8340 . .| -1.0125 0.2278
0.72 0.7432° | ~1.0214 0.5677
0.76 0.6451 .- |  -0.9638 0.7632 .
0.80 0.5420 . | ~0.8563 0.8205 -
0.84 0.4359 . .| .<0.7141 0.7653
0.88 0.3280 . | '~0.5494 . 0.6291 -
0.92 0.2190- . -.| -0.3717 - 0.4415
0.96 0.1096 .~ | -0,1871 0.2263
1,00 0.0000 - | - 0.0000 - 0.0000



i .Table 15
MODE SHAPE ORDINATES -- FIRST THREE MODES

Linear‘-"l‘éper - Unsymr_i,étrfic Beam - Depth Ratio T= 2.2

R ; Second - Third :
ey .| Mode Shepe | Mode Shape |
Coae 1 - Ordinate Ordinate |
0,00 " 0.0000 0.0000
-0:04 0.1791 0.2634
0,08 0.3510 - 0.5024
0,12 0.5086 0.6925
0.16 0.6442 ~0.8111
0.20- ~ 0.7504 0.8410
C 0,24 - .0,8200 0.7738 . .-
0:28 . 0.8472 0.6107
0,32 - 0.8280 0.3643
- 036 . 0.7599 . 0.0581
- 0.40 0.8860 . 0.6432 ~0.2734
0.4k 0.9355 10,4805 - -0.5882
0.48 0.9728. . 0.2778 -0.8425
0.52 0.9966.. | 0.0444 -0.9964
- 0.56 1.,0057 : | -0.2076 -1.0185 .
0.60 0.9990 . | -0.4636 -0.8922
0.64 0.9755 -0.7069 . -0.6208
0.68 0.9343 | -0.9191 - -0.2326
0.72 ‘0.8748 | -1.0814 0.2210
0.76 0.7969.0 [ . -1.1767 0.6715
0.80 0.7008 . -1.1915 1.0426 -
0.84 0.5873 . | -1.1165 1.2595 -
0,88 0.4577 -~ | - -0.9481 1.2623
0,92 0.3142.  -0.6920 1.0252
0.96 0.1600. | -0.3657 © 0,5657
1.00 0.0000 0.0000 . 0.0000




Table 16
MODE SHAPE ORDINATES -- FIRST THREE MODES

Linear Taper - Unsymmetrlc Beam - Depth Ratio T' 3.0

x First' Second Third |
1T Mode Shape Mode Shape Mode Shape
e Ordingte Ordinate Ordinate
0.00 0.0000 - " 0.0000 0.0000
0.04 0.0975 0.1604 0.2388
0.08 0.1945 0.3154 0.4586
0.12 0.2904 0.4591 0.6392
0.16 0.3844 0.5855 0.7605
0.20 0.4758 0.6881 0.8063
0.24 0.5637 0.7604 0.7669
0.28 0.6472 - 0.7966 0.6393
0.32 0.7252 " 0.,7920 0.4289
0.36 0.7965 - 0.7433 - 0.1516
0,40 0.8598 - 0.6484 - ~0.1653
0.44 0.9141 © 0.5076 -0.4850
0.48 0.9578- - 0.3242 -0.7665 .
0.52 0.9894 0.1047 -0.9685
0.56 1.0074 -0.1415 -1.0524

0,60 1.0104 -0.4022 -0.9882
0.64 0.9969 -0.6617 -0.7639
.68 0.9654 -0.9010 -0.3943
0,72 " 0.9145 © -1.0983 0.0783
0.76 0.8431 -1.2327 0.5881
1 0.80 0.7506 -1.2846 1.0512
0.84 0.6369 -1.2369 1.3698
0.88 0.5023 -1,0767 1.4466
0.92 0.3482 -0.8019 - .1.2184
0.96 0.1785 -0.4294 ©0.6992
1,00 0.0000 © 0.0000 - 0.0000




 fT8ble 17
MODE SHAPE ORDINATES -=- FIRST THREE MODES

Parabolic Taper = Unsymmetric Beam = Depth Ratio T = 2.2

ik Pirst Second Third
e T Mode Shape | Mode Shape Mode Shape
L Ordinate | Ordinate Ordinate
0.00 0.0000 0.0000 0.0000
0.04 0.1006 0.1650 0.2381
0.08 0.2007 0.3251 " 0.4581
0.12 0.2998 0.4747 0.6406"
0.16 0.3971 - 0.6073 0.7647
¢.20 0.4918 0.7157 0.8115
0.24 0.5829 . 0.7924 0.7672
0.28 0.6692 - ~ 0.8303 0.6265
0.32 0.7495 0.8233 0.3954
0.36 0.8222 0.7667. 0.0924
0.40 0.8859 . 0.6585 -0.2506
- 0,44 0.9388" - .0.4996 -0,.5901
0.48 0.9792 - 0.2949 -0.8758
0.52 1.0056 ©.0.0537 -1.0579
0.56 1.0161 -0.2109 -1.0960
0.60 1.0096 ~-0.4814 -0.9681
0.64 0.9847 ~0.7376 -0.6780
0.68 0.9407 -0.9578 ~0.2593
Q.72 0.8774 -1.1209 0.2261
0,76 0.7950 -1.2088 0.6965
0.80 0.6946 . --1.2087 1.0650
0,86 0.5777- "-1.1150 1.2570
0.88 0.4466 .-0.9310 1.2279
0.92 0.3043 ~-0.6690 0.9744
0.96 0.1542 -0.3497 0.5384
1.00 0.0000 0.0000 0.0000
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,Table 18
MODE SHAPE ORDINATES ~-- FIRST THREE MODES

Parabolic Taper - Unsymmetricheam - Depth Ratio 7 =3.0

ok Flrst - Second Third
=T Mode Shape Mode Shape Mode Shape
o Ordindtce Ordinate Ordinate
0.00 0.0000 0.0000 0.0000
0.04 0.0937 0.1412 0.2067
- 0,08 0.1871 0.2792 0.4011
S 0.12 0.2799 0.4103 0.5689
0.16 0.3717 ' 0.5297 0.6938
0.20 0.4617 -~ 0.6318 0.7586
0.24 0.5494 ' 0.7103 0.7487
0.28 0.6339 - "0.7585 0.6538
0.32 0.7141 1.7 0.7699 0.4713
0.36 0.7887 - . 0.7383 0.2086
0.40 0.8563 . 0.6589 ~-0.1138
0.44 0.9153 0.5291 -0.4619
0.48 0.9638" - 0.3494 -0.7892
0.32 0.9999 - 0.1245 -1.0420
0.56 1.0214 - =0.1361 -1.1670
0.60 1.0262 - -0.4175 . -1.1219
0.64 1.0125 -0,6995 -0.8872
- 0.68 0.9784 ' | -0.9578 ~0.4774
0.72 0.9228 | -1,1657 - 0.0537
0.76 0.8451 | -1.2975 . 0.6166
0,80 0.7455 | -1.3317 . 1.0999
- 0.84 0.6252 -1.2550 1.3948
0.88 0.4867 -1.0656 1.4227
0.92 0.3333: - ~0.7750 1.1602
0.96 0.1694 - -0.4081 0.6509
1,00 0.0000 0.0000 0.0000
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Fig . 17
FIRST MODE - GI13E CURVE

Linear Taper - Symmetric Dean - Depth Ratio T = 3.0
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Fig. 18
FIRST MODE - SI2?B CURVE

Parabolic Taper - Syciaetric Beats - Depth Ratio t ~ 3.0
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76
fundamental sine curve. Only a dépth ratio of 3.0 was
considered as this depth ratio resulted in the greatest
distortion.

Tables 19 and 20 indicate changes in the frequency
ratios as the number of equations (85) wés increased from
twenty to fifty. This compérison was necéssary as conver-
gence of the iterative prbéess did not necessaril& indicate
convergence to the exact solution.. Equations were added
until negligible changes in the b; coefficients occured,
Tables 19 and 20 indicate that solutions using the first
twenty equations yield low-error approximations to the low

order mode shapes and natural frequencies.



Table 19

FREQUENCY RATIO VARIATIONS

Linear Taper - Symmetric Beam - Depth Ratio T
Terms in *1 *3 m5
Series 21 %3 25
10 1.25004 1.54656 1.54568
15 1.24983 1.54637 1.54545
20 1.24978 1.54634 1.54540
25 1.24977 1.54633 1.54539

Percent Change
Between
10 and 25 Terras

0.022

0.015

0.019

2.

2
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Teras in
Series

10
15
20
25

Percent Change
Between
10 and 25 Terms

FREQUENCY RATIO VARIATIONS

Table 20

Linear Taper - Symmetric Beam - Depth Ratio T=
*1 *2 *3 *4 *5
$1 tio2 *o03 ~4 *05
1.35233 1.82232 1.90013 1.89626 1.88370
1.35140 1.82224 1.89936 1.89602 1.88267
1.35117 1.82224 1.89920 1.89601 1.88247
1.35110 1.82224 1.89916 1.89601 1.38242
0.091 0.005 0.052 0.014 0.078

3.0

*6

1.88537
1.88488
1.88483
1.88482

0.030



EXPERIMENTAL RESULTS

An experimental model was made and a test performed
in an attempt to verify the theoretical results.

An aluminum beam was milled with a parabolic
variation to a depth ratio of 2.21 - see Appendix D fér
calculations. The beam length was sixty inches and the
width and maximum depth were one inch.

The beam was simply-supported and set in motion in'
an attempt to simulate the first mode of vibration. A
Sanborne chart recorder was used to record the strain
variation at the beam center. Peaks thfough a given time
_interval were counted, and the first natural frequency was
determined experimentally as 77;82 radians per second.

This compares to the 77.43 radians per second calcﬁlated
from Figure 6,

The error of 0.6% indicates that the theoretical

equations developed will likely yield extremely low-error

results for the low-order natural frequencies,
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CONTENTS OF THE APPENDICES

The contents of the respective appendices are as

follows:

Appendix

Appendix

Appendix

Appendix

Appendix

development of cBand dms for simply-
supported beams.

mass distribution, stiffness, and
evaluation of the crs and drs integrals
for the linear and parabolic tapered
beams.

development of equations for the
unsymmetric beams.

example of calculation using frequency
ratio-depth ratio curve for the
experimental beam.

the flow diagram and print-out sheet

for the iteration routine.
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APPENDIX A

The c_ ,and d_ equations are:
I

dx and (A-1)

o .
1

drs = I Eicp g> dx (A-2)

Using Jones'(7) technique, the & functions for a

simply-supported beam are

6 = sin rT7TTx (A-3)
1

Therefore, the cms and dir¥equations are

crs = Im sin r77~x sin sTTx dx and (A-4)
1 1

drs= (rsf JIT4 | ,El1 sin rTTx sin sTTx dx (

e

A-5)

where the evaluation of the above integrals depends on the

forms of the mass(m) and stiffness(El) functions.
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APPENDIX B

I. Linear Taper

Depth Ratio T = h1l/hO0

Fig. A-1

A. Mass Distribution

m = mO[T - 2(1 -T) "] A'6)

B. Stiffness

EI = EL[a(i-TJ3* 3 + /arci-r)*1l +

6t2(1l-t)” + t 'J (A=T)

C. Coefficients: all crsand dmscoefficients are
zero for (r £ s) equal to an odd number. For
(r £ s) equal to an even number:



3.
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- eir?> -
(r-s)1tt2  c-rts** "nz
-1 g (A-8)
Cr+s*-n2
S
m. "o.sor + (1-1)/"" + L -
W Zr2n2
c-Dr (3-9)
Zr'-B
d,! = Ll,ir
4Tt2C'r-5)1
z -3 G
4 TT2 t,)1 (ntjV )
(.')rjtZ’* T 6
Cr-5)4TT4 (rts/TTA4
[ (.r=-5)1irz (TTIyri?2
6T20-t) ( Cd1lt - Cc-1)~»
(A-10)
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II. Parabolic Taper

IND

Depth Ratio T = h4fhi

Fig. A-2

A. Mass Distribution

m = mO T + AT -3

0 — 1 (A-12)

B. Stiffness

EI = EIO[64(T-1)57 & - 192(T-j)3* +

~32CM) 1(ST-2)y +
12t (t-1) (5t-4)~ -nva—i) *} -t 5

(A-13)
C. Coefficients: all crs and d*scoefficients are

zero for (rx s) equal to an odd number. For
(rt s) equal to an even number:

L & = 4m,,CT-1) (J— - - JL
TT1 (r-t b) St

(A-14)
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t.. = m. [0.50T »
(A-15)
drl = UoTT"
15 360 - D -is
cnr " N = N 6TTfel!
15 360 M -1 - 192 CT-1)
(.hts)4!"™1 t>+s)', Tr
t S
5 15 + 120 2,
iTT1 c.r-i. )4 rr< O-'"""n'-
13 - 120 vV-0"
iGCr yv?* Cs™ 4 Or+ts)rnij
120 120 4_46Ct—l)2Cst—A)
Cr”) "™ 'Ho Cr-*)e6"
[/ I — t - .U ~ + fol - , T
([20=») cr- tupl/ 5" Tl
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X 2+ 6 _ © of
o IX Cr-s TT+  (r-tsjln
. . . r+3
12t(r-1)csr-1)rc-0" _ z,
121 2 . CD™ .
Cr-s)zTT (r +s""TT* Cr- 0 <TI2'
(a-16)
dr = ELTI? o.so@—f)3C1 .4C +
Y V rzirx
rl
1T QO - 220 .
r4 T rén
Go 120
rdw't TeL
l.so Ct-1) Cl 4 4
5 vV iTI2-
2(1-0 _
11 -Dr £
MTT5 r5 /i2 TT
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APPENDIX C

This appendix indicates how the frequencies and
mode shapes of the unsymmetric beams are related to those
of the symmetric beams.

1

The Rayleigh-Ritz equations for the unsymmetric

beams are of the form:

sI—1, 2, ... 00O
where 1' is the length of the unsymmetric beam.
In terms of the length(l) of the symmetric beams,

1' 1is

1" = (A-19)

1
2
Therefore, the <> functions for the unsymmetric

beams are
= sin 2r'TTx ’ (A-20)

Substituting the @tfunctions into the Rayleigh-Rirz

equations gives
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AZb./msin 2rrrV
o
1677"V b (rs') | EI'Sin 2r7r” sin 287177 = o
(A-21)
4 ~ J
o
S -1, 2_7 YV oee: (IR
where the u subscript denotes the frequency for the
unsymmetrie beam.
For the unsymmetrie case
GQ'*= 1677~"EI,, (A-22)

r Mg

and substituting for El1 and A, the square of the natural

frequency for the unsymmetric beam is

@ = k277 sin 28'7177d77
—Lii o (A-23)
\ re

4<b-'/ P(x)sin2r'7T77'Sin 2s'Tnj dr]

sl=1, 2, 3, ... oo



The corresponding equation for the natural freqg-

uency for the symmetric beam is

2 r
u)z; = a/*b/rs)J vV/(x)sin nrT*sin STTTJ 6-q
- sim (A-24)
o0 & "

/p(xX)sin nr17-sin srrr) dr]
r1 o)
s 1y 27 3”7 ese 00

For the unsymmetric beam, the square of the natural
frequency for a uniform beam is

a/. = 16k"47T4 Ela (A-25)
14 - Mo

The corresponding equation for the symmetric beam is

= kl7r EIO (A-20)
4 ' Mo
Therefore, the values of the frequency ratios,

and for the symmetric and unsymmetric beams
~OK

will beequal when k1 is one and k is two, when k' is two

and k isfour, and when k' is three and k is six,
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APPENDIX D

The experimental beam used was

0.43z
1
1°n
30-

60.

Fig. A-3
Depth Ratio T = 0.997 = 2.21 (A-27)

0.452

From Fig. 6, the frequency ratio for the first mode

shape is
= 1.09 (A-28)
al
Therefore,
tv, = i.09 (A-29)
I? Mo
From calculations
cny = 1007T2 t/6. 7128 = 7.19777” radians/second
a 36" ! (A-30)

therefore,

@)l = 77.43 radians/second (A-31)
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APPENDIX E

The equations used in the iteration scheme were

put in the form:

n

£(btd - yahxj= o (a—32)
i=1,2,3, ... n where
y = . collTl U E L
m 0 (n—-34)
(A-35)
1
ay = N(T?) <N (T77) d?7 ; (A-36)
CpiT5) = the 1 th mode shape of the uniform
1 beam.

and



number of equations, also equals the number of terms
from the series expansion,

number of values of y that are desired; k < n

test number to determine when iterationis to be
stopped.

number of cycles of iteration; *<100.

difference between y when iteration is stopped, and

the value of y from the preceeding iteration.

where: x* = x—at the end of s iterations

x"',= x*at the end of s-1
iterations.

c, xs, ys are used for temporary storage
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Flow diagram for iteration to determine the

frequencies and mode shapes:

START

Read

Read Db;:

Read a-

GO TO COMPUTOR

ROUTINE

"Bookkeeping" to get
data into computer and
prepare for computing.



COMPUTOR ROUTINE

i<n

E>E k100
Print 9.9999

E<E

Print:

Print: x

Print:

Print:

START
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= O w N

11

12

25

30

35

40

45
46
477

49

50

54

PRINT-OUT OF ITERATION ROUTINE

Dimension B(30,30),A(30,30

Format (214,1PE14.5)
Format (1P5E14.5)
Format (214,1P3E14.5)
Format (1I4)

Read 2,N,KMAX,ET
N=N

Do 11 1=1,N

Read 3, (B(I,J) ,J=1,N)
Do 12 1=1,N

Read 3, (A(I,J),J=1,N)
Go to 25

Do 30 1=1,N

BT (I)=B(I,I)

B(I,I) =0.

AL(I) = A(I,I)
A(I,I) = 0.

K =20

L=0

Do 40 1=1,N

X(I) =0.

K=K+1

X(K)=1.0
Y=BT (K) /AL (K)

E =0.

C=0.

Go to 45

Do 551=1,N

Do 47 J=1,N

C=C+(B(I,J)-Y*A(I,J))*X(J)

If(I-K)49,50,49
XS=C/ (Y*AL(I)-BT(I))
E=E+ABSF (XS-X(I))
X(I) =XS

Go to 54
YS=(C+BT (K) ) /AL (K)
EY =ABSF (YS-Y)

Y=YS

Continue

C=0.

)

,BT (30)

;AL (30)

»X(30)
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55

60
65
66

70
80
81
82
83

85

Continue

L = L+1
(100-1)85,65,65
(E-ET) 70,70, 66
E=0.

Go to 45

Go to 80
Print4,N,K,E,EY,Y
Prints, (X(I),1=1,N)
Print3, (BT (I),1=1,N)
Print 5,L

If (K-KMAX) 35,10, 10
P=9.9999

Print 3,P,P,P,P,P

If
If
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