
NATURAL FREQUENCIES OF 

- NON-UNIFORM BEAMS

by
Thomas J, Ballen, Jr.

A Thesis Submitted to the Faculty of the

DEPARTMENT OF CIVIL ENGINEERING

In Partial Fulfillment of the Requirements 
For the Degree of

MASTER OF SCIENCE

In the Graduate College

• V '  THE UNIVERSITY OF ARIZONA

1 9  6 4



STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment 
of requirements for an advanced degree at The University of 
Arizona and is deposited in ?he University Library to be made 
available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable with­
out special permission, provided that accurate acknowledgment 
of source is made. Requests for permission for extended 
quotation from or reproduction of this manuscript in whole 
or in part may be granted by the head of the major department 
or the Dean of the Graduate College when in their judgment 
the proposed use of the material is in the interests of 
scholarship. In all other instances, however, permission 
must be obtained from the author.

SIGNED:

APPROVAL BY THESIS DIRECTOR 

This thesis has been approved on the date shown below:

Mjzm.'M, ____________ Ahy
' ( M.W„ SELF ft / Date

Associate Professor of Civil Engineering



ACKNOWLEDGEMENT

I wish to thank Dr. Donald DaDeppo for his inspir­
ation and guidance5 not only in this thesis, but during 
the entirety of my graduate studies. Thanks also to 
Dr. M.W. Self, who in the final stages provided council 
and aid and the much-needed "let’s get it done" atmosphere.

And last, but never least, grateful thanks to my 
wife who typed her way through a text which was literally 
5 greek’.

T.J. Ballen



NOTATION
A - cross-sectional area 

B - constant 

C - constant

D - determinant of coefficients

E - modulus of elasticity

F - transcendental function of p

G - defined as Jp<t>* dvj - 
0

I - moment of inertia 

K - constant 

L - constant

M - moment at a given section 

N - N(x) = t=i
Q - function in the Rayleigh-Ritz solution 

T - harmonic function

V - shear at a given section

Y - normal function 

a - constant

b - ratio of constants

f - transcendental function of j jand p

iv



k - constant 

1 - length

p - numerical variable 

t - t ime

w - forcing function 

x - rectangular coordinate 

y - rectangular coordinate 

Tj - dimensionless length parameter 

jX - mass density 

p  - dimensionless area function 

T- depth ratio: h,/hQ ; h, > h0

<̂ >- natural mode of vibration 

Ip - dimensionless moment of inertia function 

CO - natural frequency
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INTRODUCTION
The problem to be considered in this thesis is that 

of transverse vibrations of beams of variable cross-section.

A linear sma11-deflection theory is utilized for the solution.
f Because the linear small-deflection theory has long 

been well developed, many attempts have been made to solve the 

the transverse vibration problem for beams of variable cross- 

section. In fact exact solutions for specific cross-sectional 

forms have been obtained Unfortunately, the

governing differential equation for the transverse vibration 

problem is not conducive to rapid or exact solution even 

when shear and rotary inertia effects are neglected. 

Consequently, most of the exact solutions thus far generated 

are for somewhat unrealistic variations in cross-section.

In order to obtain solutions for cross-sections
f  '  .

commonly encountered in structural engineering, one is 

virtually forced to use approximate methods of solution. 

Certain approximate solutions have been obtained for the 

natural frequencies and mode shapes by the use of the 

Rayleigh-Ritz method (7), by replacing the continuous

* Numbers refer to references in the Bibliography.



system by a. 1' lumpe d - pa rame ter" system (2»4)# an(j by finite 

difference techniques (5).

This thesis is concerned with the determination of 

the low order natural frequencies and mode shapes for 

simply-supported beams with constant width and depths which 

vary linearly and parabolically along the length of the 

beam. Solutions are obtained by the Rayleigh-Ritz method.

In applying the Rayleigh-Ritz method, the mode shapes for 

the specific beam are expanded in an infinite series. 

Substitution of this series into the Rayleigh-Ritz equations 

yields an infinite set of equations, the terms of which are 

expanded in terms of infinite series, to be solved for the 

natural frequencies and, the constants which define the 

corresponding mode shapes.



NEGLECTED PHENOMENA

Before proceeding to the analysis, it must be noted 
that the effects of shear, rotary inertia, and damping are 
omitted in this thesis.

Omission of the above factors is necessary in order 
to obtain a relatively simple governing equation, which 
though simplified yet reflects the principle features of . 
the problem, ie., the variation of mass and stiffness of the 
beam. It is not, however, unreasonable to omit consideration 
of shear, rotary inertia, and damping when the beam is 
relatively long and the damping effect is small.

For the case of the uniform simply-supported beam, 
the shear distortion and rotary inertia affect only the 
natural frequencies. On the basis of energy considerations, 
it can be shown that the effect of both shear and rotary 
inertia is to reduce the natural frequencies.

For other than the short and stubby beam, the effects, 
of shear and rotary inertia are only appreciable in eases 
of relatively short wave lengths, ie., in the higher modes 
of vibration.(12)

3



In general damping has a two-fold effect on the 

vibration characteristics of a linear system. Damping, 

first tends to reduce the frequency of vibration, and second, 

tends tq distort, ie. change, the mode shapes. The extent 

to which the frequencies and mode shapes are changed is in 

effect a measure of the damping.



DERIVATION OF THE EQUATIONS OF MOTION

In the derivation of the equations of motion which 
follows, these listed assumptions are made:

1. The beam under consideration is long and slender, 
such that any cross-sectional dimension is very 
email when compared to the beam length.

2. There is linear elastic behavior throughout.
3. The beam has a plane of symmetry, and the 

vibration occurs in this plane.
4. The oscillations are so small that the use of 

small angle geometry is valid.

5. Plane sections remain plane.
6. Strain in the transverse direction is zero.
7. There is no damping. •

Considering the foregoing assumptions, it is possible; 
without inducing appreciable error, to ignore the effects 
of shear and rotary inertia.

5



The equations of motion are derived for a beam

(Fig. 1)

w (x,t)

Fig. 1

of length 1, having a cross-sectional area A = A0p(x), 

a moment of inertia I = , a constant modulus of

elasticity E, and a constant mass density p.

The functions p(x) and ^P(x) are dimensionless 

functions of the length-measuring co-ordinate x, and Ac 

and I0 are the area and moment of inertia respectively 

at some suitably chosen section of the beam.

To derive the equations of motion, consider a 

differential element of the beam (Fig. 2) acted on by a 

forcing function w = w(x,t).



w (x ,t)dx

Mf
V

h-clx-

\  M + OM cjx 
\  Ox

V + QYdx 
Ox

y=
o t z

Fig. 2

Applying D'Alembert's Principle and considering 

equilibrium

P ' A 0p ( x ) O y  d x  -  V -  OV dx + V - w(x,t)dx = 0
O t2 Ox

fMAop(x) Oy = y V  + w(x,t)  
O t z Ox

or
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OV - /xAop(x)Oy _ w(x,t)  
Ox O t2

(i)

E M  = 0

M - M - OM_dx + Vdx + OV (dx)2 +
Ox Ox

w (x,t)dx  dx + /-LA0p(x)dx  dx = 02 2

and dividing by dx and passing to the limit

V = OM (2)
Ox

Considering the assumptions previously stated, the 

deflection curve of the beam may be represented by the
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differential equation

-  M = El Oy 
Ox2

(3)

and substituting values from equations (1) and (2) in 

equation (3)

El*
'/'(X) O y

dxz
+ u,Aop ( x ) 0 ^  = w(x,t)  

0 ta
(4)

which is the differential equation of motion for the beam 

acted upon by the forcing function w.

For free vibration the equation of motion reduces to

e l q :
0 X ‘ Ox2

+ u. AoP (x )0 y  = 0
at2 (5)

It is convenient to introduce a dimensionless length 

parameter 73 , defined as

77 = X. (6)

Substituting equation (6) in equation (5) and 

denoting differentiation with respect to Tj by primes and



with respect to time by dots gives
10

P(7?l)
^(771) y"] + / X A J 4 y  = 0

EL
(7)

A constant k is defined as

k4 = .fi-AQ I4 
E L (8)

The dimensionless differential equation of motion

becomes

i[V]' + k4 y = 0 (9)

Equation (9) can be solved by the separation of 

variables by letting

y  = ¥(77)- T(t) (10)

where Y is the normal function, a function of Tj alone; 
and T is the harmonic function, a function of time alone.

Substituting equation (10) in equation (9), and 

separating the variables yields



which can be satisfied for all time and all Tj , if and only 

if each side of equation (11) is respectively equal to a 

constant which is denoted as p . Therefore, equation (11) 

may be divided into two parts:

k4 T. 
T

and (12)

2. (13)

Writing equation (12) in standard form and letting 

the natural circular frequency

CO = Zp\2 (14)(0
we find
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f  + cjzT = 0  (15)

the solution of which is well known as

T = B s in o i t  + C c o s  cut (16)

where B and C are constants to be determined from initial 

conditions.

Substituting the value of from equation (8) in
zequation (14), the square of the natural frequency CO is

co2 = p4EI0 (17)
jU-AJ4

Letting the constant,

co' = TT4 / E l
2 - > A 0 (18)

the natural frequency CO becomes

CO - P CO (19)
7TZ
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The second part of the equation of motion, equation 

(13), when written in standard form is

- p p 4Y = 0  (20)

which is a linear, homogeneous, fourth order differential 

equation with variable coefficients, the solution of which 

is of the general form

Y = a, t, (71 ,p) + a2f2(71 ,p) + a5f3(7i ,p) + a^f, (7i,p)
(21)

where the f̂  1 s are transcendental functions of Tj and p

and where the a ̂ 1s are constants to be determined from the

boundary conditions.

The most common boundary conditions encountered are 

the clamped, free, and simply supported end. The boundary 

conditions of each being homogeneous and of the form:

1. Clamped: y = 0; y' = 0 (22a)

2. Free: Ely” = 0; (Ely”)' = 0 (22b)

3. Simply Supported: y = 0; Ely" = 0 (22c)
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Any combination of the boundary conditions, equations (22), 

when substituted in equation (21) yields four, linear, 

homogeneous simultaneous equations to be solved for the 

a; 1s of the form

a, F,i (p) + a%F,i (p) + asF^ (p) + a4FH (p)

a | F ZI ( ? )  +  a 2.F Z2. ( p )  +  a j F 2 i  ( ? )  +  a 4 F 2 - v ( P )

a , F 3 l  (p) + a2F32 (p) + a3Fts(P) + a4F34 (p)

a, F4l (p) + a 2 F 4 Z (p) + a3F4s(P) + a4F44.(p)

(23a)

(23b)

(23c)

(23d)

where the Fy 1s are transcendental functions of p.

In order to obtain a non-trivial solution for the 

constants a ̂ , the determinant D(p) of the coefficients of 

the a^'s must be zero, ie.

F „ F 12 F,! F ,4

F2J F24

FJ, F 32 F » F 34

F42 F43 F 4 4

F; = D(p) = 0 (24)

Expansion of the determinant, equation (24), leads to a 

single transcendental equation to be solved for the 

parameter p. This single equation is commonly referred to 

as the frequency equation. In general there will be an
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infinite number of p's which are roots of the frequency 

equation and which will define the natural frequencies of 

vibration through equation (19).

Upon substitution of a particular value of p in 

equations (23) there then exists four, homogeneous simul­

taneous equations to be solved for the particular a; con­

stants. But of the four equations, only three are indepen­

dent. Thus it is only possible to determine three of the 

constants in terms of the fourth.

The ratios b are defined as:

W* = jSju. (25a)
a.»

b3i = and (25b)
<6

3i> a

b4s “ (25c)
3 16

where the subscript numbers denote the appropriate constant, 

and the subscript letter s denotes the appropriate s root
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(p5) of the frequency equation.

Upon substitution of bn̂  and a i n t o  equation (21) 

the normal function Y becomes

Yb = a [ f, ( 7̂  ,p) + bzsf2( Tj ,P) +

b3s f3(7̂  jp) + b4s ̂ (77 ,p)] (26)

The normal mode shapes (pare defined as

<£,(77) = f, ( 17,p) + b21 f2( 77 ,p) + bj5 f 3( Tj ,p)

+ b4  ̂f4 (77 ,p) (27)

where ^ s(77) is the normal mode of vibration compatible 

with the s th root of the frequency equation and which 

satisfies the prevailing geometric boundary conditions.

The normal function Yb is now expressible as

Y5 = a41 • <P £7)) (28)

Substituting the values of Y 6 and T into equation 

(10) gives

= a 46 0  ) C B sin o)5t + C cos a)st] (29)
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or

y* = <̂> (77 ) [ K s sin CUst + L <, cos Cl)5 t] (30)

For a linear differential equation, the total solution 

is a linear combination of all the elementary solutions.

The total solution for the deflection y, therefore, becomes

CD

5= 1
y =53^(77) K^sino^t + L 5cosu)st (31)



ORTHOGONALITY CONDITIONS

For future considerations, it is advantageous to 

develop the orthogonality conditions of the mode shapes.

Considering specific values of Y, the differential 

equations defining Y. and Yj may be written as

V'X")" - P P ? \  = 0  and (32)

Y")" - pp 4V = 0  (33)

Replacing the Y 1s by their values in terms of the mode shapes 

equations (32) and (33) become
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Multiplying equation (34) by (J) , equation (35) by <̂) 

and subtracting gives

4>, $

P (Pi4 - Pj4) ^  ^  = O

Integrating equation (36) over the beam length yields
i

/

■ /
(P4 - P 4 ) lp

The left side of equation (37) when integrated by parts 

becomes

- < £ -  *

(36)

(37)

(38)



20
After rewriting the boundary conditions, equations 

(22), in terms of the mode shapes,

1. Clamped: cf} = 0  (̂> = 0  (39a)

2. Free: El = 0  (E]<jb ) = 0
, '  ̂ (39̂ )3. Simply Supported: (p = Q  El Q  = 0
" < (39c)

it is apparent that for any combination of the common 

boundary conditions, equations (39), that the respective 

terms of (38), when evaluated at the indicated limits, 

will always be zero for i different than j. And since p.

does not equal p *

i
d v  = 0  and (40)

The orthogonality conditions are obtained by multiplying 

equation (34) by (j} ; and integrating over the beam length.

* p's are assumed to be distinct.



f  </'<£'] CI77 - p * f p 4 > 0  (42)

But from equation (40), equation (42) reduces to
1

J [ V' <£'] ^  d77 0  (43)

and the orthogonality conditions may be written in the form

/ f

<£ dT^ = 0  and (44)

1

J  4>di7 = 0 (45)

for i different than j.

When i equals j, equations (34) and (35) become

identical. Multiplying equation (34) by (7) and integrating' i
over the beam length yields
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Integrating the left side of equation (46) and regarding 

only the first two terms of this integration gives

$ <£' (47)

Considering the boundary conditions, equations (39), it is 

evident that (47), when evaluated at the designated limits, 

will be zero. Therefore,

i i

J V f c l T ?  = PL4 (48)

For future use, it is convenient to define

i

s, - Jp4>> d77 (49)

Given initial conditions appropriate for a given 

problem, it is possible, by using the orthogonality con­

ditions stipulated in equations (44) and (45) , to evaluate 

the constants Ks and Ls of equation (31).

Multiplying equation (31) by p <p̂ and integrating 

over the beam length gives
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i i

Jpy<f>d7) = f £ p < ^ [ K isina>5t + Lscos cust d?7 (50)
o o 5" 1

Assuming that the integration and summation may be inter­

changed and using the orthogonality conditions, the right 

side of equation (50) will be non-zero only when s is equal 

to i. Therefore,

JpycfydT] = K.sinoi.t + L.cos CI77J (51)

Assuming initial conditions of the form:

1. y(x,0) = y0 (52a)

2. y (x, 0) = yQ (52b)

and utilizing the results of equation (49) , the constants 

and may be calculated from

Ki = < & J p<k‘y° a v  <53>o

L , = ^  f p ^ y 0 d1? (54)



SIMPLY SUPPORTED BEAM - CONSTANT A AND I

To demonstrate how an exact solution is obtained, 

a beam of constant A and I, ie. p (7  ̂) = 1 = is

considered.

The harmonic function remains as

T = B sin U)t + C cos CO t (16)

but the differential equation defining the normal function 

is now

Y,m - p4Y = 0 (55)

the solution of which defines the transcendental functions 

f̂  and gives

Y = â  sin pjj + a2cos + a3sinh pjj

+ â  cosh pt  ̂ (56)

Substitution of equation (56) in the boundary 

conditions for a simply supported beam yields:

0 + az + 0  + a^ = 0  (57)

0 - a2 + 0 + a^ = 0

a t sin p + az cos p + a 3 sinh p + a^ cosh p = 0

- a| sin p - a 2 cos p + a 3 sinh p + a^ cosh p = 0

from which a2, a a n d  â  equal zero, and
24



a| sin p = 0 

For a non-trivial solution of equation (58)

p = DTT

The D th natural frequency then is

C0n = n2o/ 

and the corresponding mode shape is

(£> = sin nTTTj 

The deflection curve y becomes

25

(58)

(59)

(60) 

(61)

OO

y = y > n  n7r77 K„sin n2cu't + L^cos naj't
r\ * 1

and
1/G n = I s in  htt77 d?7 = 12

(62)

(63)

The coefficients K n and L n depend on the specific prescribed 

initial conditions, and may be calculated from

K
1

_2 fy Sin ATT77 dT)
n2oj' J  0 ‘ '

and (64)

L,
I

2J yo sin n 7T77 (65)



RAYLEIGH-RITZ SOLUTION
It is apparent that the exact solution of the problem 

depends upon the ability of ascertaining the mode shapes.

Because the differential equation defining the mode 

shapes, equation (34), is virtually impossible to solve 

exactly for realistic distributions of mass and stiffness, 

approximate methods of solution must be used.

The approximate method used in this thesis is the 

Rayleigh-Ritz method. The mode shapes of the non-uniform 

beam are expanded in an infinite series, and Rayleigh's 

Principle is used to derive an infinite set of equations - 

the Rayleigh-Ritz equations - to be solved for the natural 

frequencies and the series expansion coefficients which de­

fine the corresponding mode shapes.

The Rayleigh-Ritz equations are developed from 

energy considerations. It is assumed that ideal frictionless 

constraints are imposed on the beam such that the beam is 

forced to vibrate as a single degree of freedom system.

During free vibration the deflection curve of the constrained 

beam may be expressed as

26
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Y = N(x)• T(t) (66)

where N(x) is determined by the constraints which have 

been imposed. For this thesis it is assumed that N(x) 

satisfies the boundary conditions of the unconstrained 

non-uniform beam and that N(x) is a smooth function 

which can be expressed as a linear combination of the mode 

shapes of the unconstrained non-uniform beam in the form

These restrictions on N(x) are not particularly severe.

The harmonic function T(t) for a single degree of 

freedom is

the natural frequency is determined by equating the maximum 

potential energy to the maximum kinetic energy. These maxi­

mum energies are written as:

N(x) (67)

T(t) = A sin ( CUt + Q, ) (68)
For a conservative single degree of freedom system,

1. Potential Energy: PE (69)

O
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2. Kinetic Energy: KE = J L l m y ^ d x  (70)'
mo* ^

With y and T(t) being defined by equations (66) and (68) 

respectively, the maximized derivatives appearing in the 

potential and kinetic energies are

y" max = A n " (x) and (71)

y max = A  C<JN(x) (72)

Substituting equations (71) and (72) in equations (69) 

and (70) respectively, equating the maximum energies, and 

solving for the square of the natural frequency gives

/ , ,2
El N (x)dx

CO2 =   (73)

/m  N 2(x)dx

The right side of equation (73) is referred to as the 

Rayleigh Quotient.

The Rayleigh Quotient indicates for a given beam that 

the natural frequency Cl) is a function of the N(x) function.
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If a random configuration of vibration is chosen, ie., a 

random value of N(x) is chosen, the Rayleigh Quotient yields 

the natural frequency of vibration consistent with the chosen 

random configuration.

If N(x) is chosen in particular to be proportional

to one of the mode shapes Cp of the unconstrained non-

uniform system, equation (73) will define a natural 

frequency CO equal to CO- , and this COj will be stationary. 

The fact that CO is stationary when N(x) is proportional 

to one of the mode shapes can be verified by treating CO

as a function of N(x) and applying the methods of the cal­

culus of variations to equation (73).

For further calculations it is convenient to expand 

the mode shapes in an infinite series of the form

cf> = 2 . bi ^  (74)‘ j=l •!

where the Cp 1s form a complete set of functions, chosen to
j

satisfy the geometric boundary conditions. The expansion 

coefficients bj are so chosen to guarantee upon substitution 

of the infinite series, equation (74), in the Rayleigh 

Quotient, equation (73), for the N(x) terms, that the
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generated natural frequency will be stationary.

When the infinite series, equation (74), is sub­

stituted in the Rayleigh Quotient, equation (73), for the 

N(x) functions and the summation and integration are inter­

changed, equation (73) becomes

2  b j b  /  El  <£'<£'cl
co = j'K!l J  1

(75)

,W'm </)</> cix
jTiot u V  J k

The condition that the square of the natural frequency 

Cl)2 be stationary requires that

5(cu2) = 2  frr^  • Sb, = o (76)
“  a D «

for all Sb^ , and therefore,

CKco1) .  o  
0 b t

1 = 1 ,  2 ,  3 ,  . . .  o o  

If equation (75) is written as

(77)
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where

to = O.
o. U 8 >

p 4
Q , = Z . b j b J  E l *  </) dX and (79)

f J K
o

I

°? = Z b - b .  | m * * d x  (80)

2and the square of the natural frequency CO is partially 

differentiated with respect to , equation (77) reduces to

CO2-0 0 * - OQi = 0 (si)
d b t cJbT"

1 = 1, 2, 3, ... c>o

Differentiating- equations (79) and (80) with respect 

to b% and substituting in equation (81) gives
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U  Z c  b K- 5 d , „ b K = 0  (92)

1 = 1, 2, 3, ... oa

K-l lk  ̂ M  %

where
i

/ Z

C|K = Cw = I m</><£dxand (83)

I

/d,K d* : Ei^'^'dx (84)

The infinite set of homogeneous equations, equations

(82), are the Rayleigh - Ritz equations. The solution of

the infinite set of equations yields the natural frequencies 
2

CO , and the coefficients which when substituted in 

equation (74) yield the mode shapes. In principle, the 

solution for the mode shapes is exact. An approximation 

arises when only a finite number of equations (82) are 

considered.



Because the Rayleigh - Ritz equations are homogeneous, 

non-trivial solutions for the bK1s exist only when CO takes 

on particular values. These particular values of CO are the 

natural frequencies of the beam.

If a value of the natural frequency is designated as 

CO- and the corresponding b's are designated as b^ , then 

the Rayleigh - Ritz equations and the mode shape equations 

are more properly written as

W ;Z2c,Kb K -K--1

1 = 1, 2, 3, ... cx?

*

Using the technique of R.P.N. Jones and S. Mala1ingem 

it is convenient to choose the (jo functions to be the 

mode shapes of a uniform beam which has the same boundary

i = 1, 2, 3, ... oo

where (86)
k=i

bK = 0  and (85)



conditions as the non-uniform beam.

JonesC7) further states that if the mass and inertia 

of the non-uniform system vary only slightly from the uniform 

system, the coefficients c|k and d|K are small in comparison 

to cn 'and d„ . Hence the ith mode shape of the uniform 

system may be regarded as a first approximation to the i^h 

mode shape of the non-uniform system.

The form of the governing equation, equation (85), 

"has the advantage that any of the higher frequencies and 

mode shapes may be calculated directly, without first cal­

culating the lower mode shapes."(7)

To determine any mode shape (p and the correspond­

ing natural frequency U)r , br is taken equal to one and a 

first approximation for Cp and C0r is obtained by neglect­

ing the products of small quantities. Successive approxi­

mations are obtained by considering an increasing number 

of equations and the previously neglected small quantities.

"This iteration method, though based on the assump­

tion of small differences between the non-uniform and uni­

form systems, may often be used successfully in cases where 

the mass and inertia distributions of the two systems differ 

considerably."(^)



PROBLEMS CONSIDERED

The problems specifically considered in this thesis 

are simply-supported beams of constant width and depths 

which vary lineary and parabolically along the length of the 

beam.

the differential equation of motion, equation (5), was 

virtually impossible to solve exactly.

Because of the impossibility of solving the differ­

ential equation of motion exactly, the Rayleigh-Ritz method

order natural frequencies and the series expansion coeffic­

ients which defined the corresponding mode shapes.

The equations used to calculate, the low order frequen 

cies and mode shapes were:

Due to the depth variations, the area and moment of

inertia functions, and such form, that

and the Jones technique^) were used to generate the low

(85)

1 = 1, 2, 3, . . . cxd

and

35
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oo

4> = y.bi4> (86)
*■ k-1 K

i = 1, 2, 3, ... oo

where

/C|K = I m<p(f>clxand (83)i 'k
o i

/d iK = I El (f> dx (84)

T o
The (p functions for a simply-supported beam are 

sin H 7T7̂  - see derivation of equation (61). Due to the

variation in m and I, the general formulas for coefficients 

c|K and d|K were extremely complicated - see Appendix B - 

and as a result, equations (85) could not be solved in general 

terms.

Solutions were obtained for simply-supported beams 

symmetrically haunched about the beam centerline and with 

specifically assigned depth ratios (T) of 1.0, 1.4, 1.8,

2.2, 2.6, and 3.0 (Figs. 3a and 3b).
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I'D
X ^
________X___________

Depth Ratio T = h1 / h0 
Linear Taper  ̂ Symmetric Beam 

Fig. 3a

I'D

Depth Ratio T = h,/ h0 

Parabolic Taper - Symmetric Beam 

Fig. 3b
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It was found - see Appendix C for derivation - that 

the results generated for the symmetric beams could be used 

for certain simply-supported unsymmetrie beams (Figs. 4a 

and 4b).

Ik □

Depth Ratio T = h1 / hQ 
Linear Taper - Unsymmetrie Beam 

Fig. 4a

I>.D

Depth Ratio T = h1 / hG 
Parabolic Taper - Unsymmetrie Beam 

Fig. 4b



RESULTS ,

With the beam configurations and depth ratios thus 

specified, the evaluation of the c,K and dIK coefficients 

and the iterative solution of the simultaneous equations 

(85) were programmed for and calculated by an IBM 7072 

computer.

The computer was programmed to solve the first 

twenty equations of equations (85). The computer results 

are given in graphical at#^tabular form as follows:

The frequency ratio - depth ratio curves (Figs. 5-8) 

indicate the variation of cthe low order frequencies (first 

six for the symmetric beams and first three for the unsymmet­

ric beams) as the depth ratio is changed. The frequency 

ratios becomd practically identical at frequencies higher 

than the secbh'd natural frequency as evidenced by the 

grouping of the curves. Fqr depth ratios between one and 

three and for beams of the configuration shown, Figures 

5-8 may be used to calculate the low order natural fre­

quencies of a non-uniform beam by using the appropriate 

numerical value of thd frequency ratio and multiplying by 

the corresponding natural frequency for a simply-supported
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uniform beam of depth hQ.

Tables 1-10 are tabulations of the b^ coefficients 

of series (86) which defines the mode shapes of the non- 

uniform beam. The coefficients are tabulated for the first 

six mode shapes for the symmetric beams. The coefficients 

for the first three mode shapes of the unsymmetric beams 

are calculated from Tables 1-10 by using the second, fourth, 

and sixth mode shape values for the symmetric beam, half of 

which is the particular unsymmetric beam. The tabulated 

coefficients verify J o n e s t h e o r y  that the resulting 

coefficients are smaller than the particular coefficient 

chosen to be unity, ie., the rth mode shape of the uniform 

beam is a good first approximation for the r^h mode shape 

of the non-uniform beam. . '

Figures 9-16 show graphical representations of the 

first three mode shapes for all the considered beams for 

depth ratios of 2.2 and 3.0.

Tables 11-18 are listings of the values used to plot 

Figs. 9-16. The values in Tables 11-18 were found by sum­

ming the first twenty terms of series (86).

Figures 17-20 indicate the distortion of the first 

mode shape for all four beams studied as compared to the
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TABLES 1 - 1 0

I. General notes

1. The Series Expansion Coefficients are for the

2. All the even coefficients(b^, , ...) are zero
for the odd mode shapes(i = 1, 3, 5).

3. All the odd coefficients(bj, b-j, ...) are zero
for the even mode shapes(i = 2, 4, 6).

4. Interpretation of table values:

series 20

i = 1, 2, 3, 4, 5, 6.

-3.60789E-02 = -3.60789 x 10-2



Table 1

SERIES EXPANSION COEFFICIENTS

Linear Taper - Symmetric Beam - Depth Ratio T = 1.4

Odd
Modes

Even
Modes

First Mode
i . 1 = 1

Second Mode 
1 = 2

Third Mode 
.1 = 3

Fourth Mode 
1 = 4.

Fifth Mode 
1 = 5

Sixth Mode 
1 = 6

bi b2 1.00000E 00 luoooo# :oo -5„0635lE-02 -1.60111E-02 8.2447IE-03 2.93781E-04
>3 b4 -2.12806E-02 -4.43028E-02 1.00000E 00 l.OdOOOE 00 4.79722E-03 2.72103E-02
b5 b6 1.97054E-03 2.75292E-03 -7.37376E-02 -9.22762E-02 1.00000E 00 1.00000E 00
b7 b8 -6.02056E-04 -1.680S3E?-03 6.86287E-03 7.591101-03 -1.16456E-01 -1.33588E-01
b9 bio 1.90845E-04 1.97969E-04 -3.02538E-03 -3.47796E-03 1.20314E-02 1.34028E-02
bll b12 t9 45717E-05 -1.36429E-04 8.406018-04 6.88132E-04 -5..855676-03' -6.138281-03
b13 b14 4.40620E-05 3.69873E-05 -5,52704E-04 -5.4659 5E-04 1,4976.11-03 1.32270E-03
b15 b16 -2.65009E-05 -3.17306E-05 2.23773E-04 1.43635E-04 -1.11247E-03.: -1.08171E-03
b17 b18 1.47077E-05 9.86215E-06 -1.67096E-04 -1.43551E-04 4.14029E-04 2.95745E-04
b19 b20 -8.66167E-06 -9.50083E-06 6.86487E-05 3.23726E-05 -3.24660E-04 -2?92951E-04

£•*O'



Table 2

SERIES EXPANSION COEFFICIENTS

Linear Taper - Symmetric Beam - Depth Ratio T = 1.8

Odd
Modes

Even
Modes

First Mode 
i = 1

Second Mode 
i = 2'

Third Mode 
i = 3

Fourth Mode 
i = 4

Fifth Mode 
1 = 5

Sixth Mode 
1 = 6

bi b2 1.00000E 00 1.00000E 00 -9.41569E-02 -2.74406E-02 1.681448-02 8.86653E-04
b3 b4 -3.58246E-02 -7.68860E-02 l.OOOOOE 00 l.OOOOOE 00 5.99982E-03 4.76065E-02
b5 b6 4.6360IE-03 8.28722E-03 -1.27102E-01 -1.59894E-01 l.OOOOOE 00 l.OOOOOE 00
b7 b8 -1.34813E-03 -2.53696E-03 1.86005E-02 2.27963E-02 -2.01531E-01 -2.32014E-01
b9 b10 4.76081E-04 6.78377E-04 -6.81268E-03 -8.12719E-03 3.44135E-02 4.03644B-02

bll b12 . -2.23328E-04 -3.39081E-04 2.33285E-03 2.35060E-03 -1.31873E-02 -1.48840E-02
b13 b14 1.10322E-04 1.27399E-04 -1.28601E-03 -1.31744E-03 4.50409E-03 4.60033E-03
b15 b16 -6.28508E-05 -7.95585E-05 5.99708E-04 4.99764E-04 -2.61371E-03 -2.642088-03
b17 bl8 3.54692E-05 3.44165E-05 -3.79767E-04 -3.37937E-04 1.16531E-03 1.022022-03
b19 b20 -1.81813E-05 -2.11400E-05 1.60456E-04 1.07899E-04 -6.76429E-04 -6.34124E-04



Table 3

SERIES EXPANSION COEFFICIENTS

Linear Taper - Symmetric Beam - Depth Ratio T =  2.2

Odd
Modes

Even
Modes

First Mode 
i = 1

Second Mode 
i - 2

Third Mode 
i = 3

Fourth Mode 
1 = 4

Fifth Mode 
1 = 5

Sixth Mode 
.1 = 6

bl b2 1.00000E 00 1.00000E 00 -1.31929E-01 -3.59945E-02 2.54576E-02 1.57462E-03

V b4 -4.64658E-02 -1.02337E-01 1.00000E 00 1.00000E 00 5.05428E-03 6.39656E-02

b5 b6 7.29988E-03 1.46732E-02 -1.68029E-01 -2.12439E-01 1.00000E 00 1.00000E 00
b7 b8 -2.17939E-03 -4.39048E-03 3.14690E-02 4.02472E-02 -2.67379E-01 -3.09074E-01

b9 bio 8.15363E-04 1.36859E-03 -1.12806E-02 -1.39984E-02 5.95974E-02 i 7.14887E-02
bll
b13

b12 -3.80298E-04 -6.30508E-04 4.24763E-03 4.72242E-03 -2.24971E-02 -2.62774E-02

b14 1.92362E-04 2.67736E-04 -2.21068E-03 -2.39268E-03 8.56804E-03 9.38748E-03

b15 bi6 -1.07414E-04 -1.50327E-04 1.08586E-03 1.03109E 03 -4.57023E-03 -4.85259E-03

b17 bl8 6.00421E-05 7.14959E-05 -6.-37023E-04 ^6.05187E-04 2.15344E-03 2.09338E-03

b19 b20 -2.82958E-05 -3.62912E-05 2.65235E-04 2.13513E-04 -1.07333E-03 -1.06033E-03



Table 4

SERIES EXPANSION COEFFICIENTS 

Linear Taper - Symmetric Beam - Depth Ratio T = 2.6

Odd
Modes

Even
Modes

First Mode 
1 =  1

Second Mode 
1 = 2

Third Mode 
1 = 3

Fourth Mode 
1 =% 4

Fifth Mode 
.1 = 5

Sixth Mode 
1 =  6

11
*13
>15
517
'l9

2

10
*12
*14
*16
*18
*20

1.00000E 00 
-5.46066E-02 
9.76290E-03 
-3.03196E-03 
1.18210E-03 
-5.55687E-04 
2.85053E-04 
-1.57671E-04 
8.68968E-05 
-3.86424E-05

1.00000E 00 
-1.23014E-01 
2.1I873E-02 
-6.51679E-03 
2.22099E-03 
-1.00588E-03 
4.534031-04: 
-2.44546E-04 
1.20144E-04 
-5.49859E-05

-1.650181-01 
1.00000E 00 
-2.00633E-01 
4.41293E-02 
-1.61173E-02 
6.43502E-03 
-3.28541E-03 
1.65317E-03 
-9.28135E-04 
3.77542E-04

-4.261971-02 
1.00000E 00 
-2.54884E-01 
5.79393E-02 
-2.068191-02 
7.627241-03 
-3.7496IE-03 
1.71557E-03 
*9.42692E-04 
3.42822E-04

3.404541-02 
2.70455E-03 
1.00000E 00 
-3.2027IE-01 
8.47755E-02 
-3.28769E-02 
1.33668E-02 
-6.90292E-03 
3.31577E-03 
-1.507541-03

2.28194E-03 
7.76293E-02 
1.00000E 00 
-3.718021-01 
1.03228E-01 
-3.945541-02 
1.53432E-02 
-7.66556E-03 
3.45785E-03 
-1.56826E-03

4>vO



Table 5

SERIES EXPANSION COEFFICIENTS

Linear Taper - Symmetric Beam - Depth Ratio T =  3.0

Odd
Modes

Even
Modes

First Mode 
i - 1

Second Mode 
1 = 2

Third Mode 
1 = 3

Fourth Mode 
1 = 4

Fifth Mode 
1 = 5

Sixth Mode 
1 = 6

bl b2 1.000G0E 00 1.00000E 00 -1.94257E-01 -4.78887E-02 4.25Q67E-02 2.97697E-03
b3 D4 . -6.10362E-02 -1.40288E-01 1.00000E 00 1.00000E 00 -6.15867E-04 8.93553E-02
b5. ■ b6 1.19790E-02 2.75359E-02 -2.27318E-01 -2.90131E-01 1.00000E 00 1.0000QE 00
b7 b8 -3.86666E-03 -8.80461E-03 5.60834E-02 7.50683E-02 -3.63862E-01 -4.24265E-01
b9 bio 1.55787E-03 3.19395E-03 -2.10 76 7E-02 -2.78146E-02 1.08827E-01 1.34108E-01
bll b12 -7.40976E-04 -1.45296E-03 8.77858E-03 1.09117E-02 -4.37315E-02 -5.36474E-02
b13 b14 3.84064E-04 6.79322E-04 -4.46236E-03 -5.33786E-03 1.86244E-02 2.21402E-02
b15 b16 -2.11330E-04 -3.60459E-04 2.27583E-03 2.5279IE-03 -9.50312E-03 -1.09677E-02
b17 b18 1.1486 7,E-04 1.79158E-04 -1.24157E-03 -1.34037E-03 4.59653E-03 5.05758E-03
b19 b20 -4.892382-05 -7.68557E-05 4.93395E-04 4.90560E-04 -1.96562E-03 -2.14262E-03



Table 6

SERIES EXPANSION COEFFICIENTS

Parabolic Taper - Symmetric Beam - Depth Ratio T =  1.4

Odd Even First Mode Second Mode Third Mode Fourth Mode Fifth Mode Sixth Mode
Modes Modes i = 1 1 = 2 cnli i = 4. i = 5 i = 6

bi b2 1.00000E 00 1.00000E 00 -3.98207E-02 -1.818966^02 .-9.02689E-03 -9.028671-03

b3 b4 -1.61894E-02 -4.49969E-02 1.00000E 00 1.00000E 00 5.910931-03 2.846011-02

b5 b6 -3.15838E-04 -1.43532E-03 -7.14725E-02 -9.52596E-02 1.00000E 00 1.00000E 00

b7 b8 -7.35773E-05 -3.82882E-04 -2.64051E-03 -3.50243E-03 -1.17435E-01 -1.38659E-01

b9 b10 -2.04980E-05 -1.19585E-04 -8.34545E-04 -1.31825E-03 -3.92355E-03 -3.89625E-03

bn b12 .-7.46576E-06 -4.71030E-05 -2.84201E-04 -4.79279B-04 -1.78652E-03 -2.22121E-03

b13 b14 -3.23059E-06 -2.15016E-05 -1.18958E-04 -2.108848-04 -6.83671E-04 -8.83147E-04

b16 -1.58284E-06 -1.09943E-05 -5.71235E-05 -1.05213E-04 -3.14424E-04 -4.20507E-04

D17 b18 -8.58175E-07 -6.15940E-06 -3.05356E-05 -5.79725E-05 -1.634111-04 -2.24646E-04

b19 b20 -5.83339E-07 -4.31633E-06 -2.05797E-05 -4.01107E-05 -1.079021-04 -1.51980E-04



Table 7

SERIES EXPANSION COEFFICIENTS

Parabolic Taper - Symmetric Beam - Depth Ratio T - 1.8

Odd
Modes

Even
Modes

First Mode 
i = 1

Second Mode 
1 = 2

Third Mode 
1 = 3

Fourth Mode 
1 = 4

Fifth Mode 
1 = 5

Sixth Mode 
1 = 6

bi ^2 1.00000E 00 1.00000E 00 -7.70116E-02 -3.43121E-02 -1.66776E-02 -1.63466E-02
b3 b4 -2.76052E-02 -7.90381E-02 1.00000E 00 1.00000E 00 1.05420E-02 5.17269E-02
b5 b6 4.474866-04 1.21005E-03 -1.26574E-01 -1.69195E-01 1.00000E 00 1.00000E 00
b7 b8 -7.59317E-05 -4.18786E-04 2.47153E-03 4.73144E-03 -2.09253E-01 -2.48060E-01
b9 bio -1.53893E-05 -1.04653E-Q4 -9.67294E-04 -1.61804^03 8.17399E-03 1.28595E-02
bll bi2 -5.96802E-06 -4.30027E-05 -2.62606E-04 -4.50225^-04 -2.3424SE-03 -3.14535E-03
b13 b14 -2.60636E-06 -1.98245E-05 -1.14997E-04 -2.08916E-Q4■ . ' ' i -6.43357E-04 -8.23662E-04
b15 b16 -1.28544E-06 -1.G2080E-05 -5.56887E-05 -1.05135E-04 -3.16684E-04 -4.28199E-04
b17 . bl8 -6.90081E-07- -5.64725E-06 -2.94607E-05 :-5.73399E-05 -1.63158E-04 -2.26661E-04

>19. i b20 -5.52957E-07 -4.66777E-06 -2.33692E-05 -4.68173E-05 -1.27078E-04 -1 81556E-04



Table 8

SERIES EXPANSION COEFFICIENTS

Parabolic Taper - Symmetric Beam - Depth Ratio T — 2.2

Odd
Modes

Even
Modes

First Mode 
i = 1

Second Mode 
1 = 2

Third Mode 
1 = 3

Fourth Mode 
1 = 4;

Fifth Mode 
1 = 5

Sixth Mode 
1 = 6

bi b2 1.00000E 00 1.000G0E 00 -1.11595E-01 -4.85950S-:02 -2.33640E-02 -2.26072E-02
b3 b4 -3.62209E-02 -1.06239E-01 1.00000E 00 1.000001 00 1.45167E-02 7.18741E-02
b5 b6 1.60371E-03 5.67405E-03 -1.712G0E-01 -2.29365E-01 1.00000E 00 1.00000E 00
b7 b8 -1.34187E-04 -6.72517E-04 1.12098E-02 1.853491-02 -2.84565E-01 -3.38783E-01
b9 b10 : -5.97701E-06 -6.05610E-05 -1.56700E-03 -2.761851-03 2.79992E-02 3.98020E-02

bil y - - '-4.56657E-06 -3.60577E-05 -1.63160E-O4; -2.71994E-04 -4.29659E-03 -6.24605E-03
b13 bl4 -1.87568E-06 -1.60247E-05 -1.00720E-04 -1.879081-04 -3.551681-04 -3.82481E-04
b15 b16 -9.43095E-07 -8.37961E-06 -4.73307E-05 -9.121501-05 -2.9313IE-04 -4'.07839E-04

b17 bl8 -4.87079E-07 -4.45202E-06 -2.42716E-05 -4.820401-05 -1.376201-04 -1.92834E-04
D19 b20 -4.56607E-07 -4.313651-06 -2.24979E-05 -4.612121-05 -1.264901-04 -1.83468E-04

■ ■ M i



Table 9

SERIES EXPANSION COEFFICIENTS

Parabolic Taper - Symmetric Beam - Depth Ratio T = 2.6

Odd
Modes

Even
Modes

First Mode 
1 = 1

Second Mode 
i = 2

Third Mode 
1 = 3

Fourth Mode
i = 4;

Fifth Mode 
1 = 5

Sixth Mode 
1 = 6

bl V 1.00000E 00 1.00000E 00 -1.43751E-01 -6.13269E-P2 -2.93340E-02 -2.81511E-02
b3 b4 -4.30197E-02 -1.28764E-01 1.00000E 00 1.00000E 00 1.80927E-02 8.99249E-02
b5 b6 2.88939E-03 1.09717E-02 -2.08530E-01 -2.79889E-01 1.000001 00 1.00000E 00
b7 b8 -2.60603E-04 -1.24695E-03 2.17048E-02 3.50778E-G2 -3.48312E-01 -4.16502E-01
b9 bio 1.06365E-05 2.31485E-05 -2.86806E-03 -5.12052E-03 5.172861-02 7.21103E-02
bn b12 -4.6072IE-06 -3.549O7E-05 3.69810E-05 1.043131-04 -8.16470E-03 -1.22029E-02

• bn bl4 -1.25973E-06 -1.23173E-05 -1.00878E-04 -1.945221-04 2.819041-04 6.31257E-04

b15 b.16 -7.07044E-07 -6.S9052E-06 -3.83993E-05 -7.51065E-05 -3.20197E-04 -4.74167E-04

b17 b18 -3.38576E-07 -3.48326E-06 -1.94603E-05 -3.93263E-05- -1.05851E-O4 -1.469581-04

b19 b20 -3.70753E-07 -3.86353E-06 -2.08662E-05 -4:362271-05 -1.2I565E-04 -1.792 H E -04



Table 10 
SERIES EXPANSION COEFFICIENTS

Parabolic Taper - Symmetric Beam - Depth Ratio T = 3.0

Odd
Modes

Even
Modes

First Mode 
i = 1

Second Mode 
i = 2

Third Mode 
1 = 3

Fourth Mode 
1 = 4

Fifth Mode 
1 = 5

Sixth Mode 
1 = 6

bl ^2 1.00000E 00 1.00000E 00 -1.73685E-01 -7.27607E>02 -3.47479E-02 -3.31783E-02
b3 b4 -4.85565E-02 -1.47890E-01 1.00000E 00 1.00000E 00 2.13897E-02 1.06460E-01
b5 b6 4.19177E-03 1.66210E-02 -2.40482E-01 -3.23273E-01 1.00000E 00 1.00000E 00
b7 b8 -4.43783E-04 -2.12309E-03 3.30123E-02 5.29131E-02 -4.03503E-01 -4.84634E-01
b9 bio 3.77053E-05 1.64788E-04 -4.84502E-03 -8.64453E-03 7.73979E-02 1.07289E-01
bll b12 -6.85269E-06 -4.67585E-05 3.80644E-04 7.56296E-04 -1.38651E-02 -2.0907IE-02
b13 b14 -5.62587E-07 «7.93653E-06 -1.30462E-04 -2.59041E-04 1.39836E-03 2.43095E-03
b15 b16 -5.77910E-07 -5.95854E-06 -2.72527E-05 -5.34076E-05 -4.51348E-04 -7.16896E-04
b17 bl8 -2.33815E-07 - 2 .56838E-06 -1.60410E-05 -3.296801-05 -6.20586E-05 ^7.69522E-05
b19 ' b20 -3.03558E-07 -3.44841E-06 -1.91463E-05 -4.07144E-05 -1.17723E-04 -1.77131E-04
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Fig. 9 
FIRST THREE MODE SHAPES 

Linear Taper - Symmetric Beam - Depth Ratio t » 2.2
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0.3 0.4 0.5

-0.5

(S) - Symmetric modes 
(A) - Antisymmetric modes

- 1 . 0

-1.5
Fig. 10
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FIRST THREE MODE SHAPES 
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Table 11

MODE SHAPE ORDINATES -- FIRST THREE MODES 

Linear Taper - Symmetric Beam - Depth Ratio T

. m Mode Shape ; 
Ordinate .

Second 
Mode Shape 
Ordinate

Third 
Mode Shape 
Ordinate

0,00 0.0000 0.0000 0.0000
6.04 0.1113 0.2066 0.2695
0.08 0.2222 0.4067 0.5157
0.12 0.3320 0.5928 0.7125
0,16 0.4399 0,7559 0.8323
0.20 0.5451 0.8860 0.8511
0.24 0.6464 0.9728 0.7507
0.28 0.7422 1.0057 0.5256
0.32 0.8307 0.9755 0.1872
0,36 0.9097 0.8748 -0.2337
0.40 0.9759 0.7008 -0.6793
0.44 1.0257 0.4577 -1.0734
0.48 1.0538 0.1600 -1.3176
0.52 1.0538 -0.1600 -1.3176
0,56 1.0257 -0.4577 -1.0734
0,60 0.9759 -0.7008 -0.6793
0.64 0.9097 -0.8748 -0.2337
0.68 0.8307 -0.9755 0.1872
0.72 0.7422 -1.0057 0.5256
0.76 0.6464 -0.9728 0.7507
0.80 0.5451 -0.8860 0.8511
0.84 0.4399 -0.7559 0.8323
0.88 ' 0.3320 -0.5928 0.7125
0.92 0.2222 -0.4067 0.5157
0.96 0.1113 -0.2066 0.2695
1.00 0.0000 0.0000 0,0000



:; Table 12
MODfi SHAPE ORDINATES —  FIRST THREE MODES 

Linear Taper - Symmetric Beam - Depth Ratio T  = 3.0

..
-

. FirS%';
Mode S;B%e . 
Ordinate

Second 
Mode Shape 
Ordinate

' Third • / / 
Mode Shape 
Ordinate

6.80 0.0000; 0.0000 0.00000.04 0.1079 0.1945 0.23990.08 0.2155 0.3844 0.46200.12 0.3224 0.5637 0.64520,16 0.4283 0.7252 0.76490,20 0.5323 0.8598 0.79770.24 0.6339 0.9578 0.72120,28 0.7316 1.0074 0.52210.32 0.8239 0,9969 0.19990,36 0.9087 0.9145 -0.22770.40 0.9824 0.7506 -0.70970.44 1.0406 0.5023 . -1.1685
0/48 1.0752 0.1785 -1.47280.52 1.0752 -0.1785 -1.47280,;56 1.0406 -0.5023 -1.16850,60 0.9824 -0.7506 -0.70970,64 0.9087 -0.9145 -0.2277
0i68 0.8239 -0.99.69 0.19990.72 0.7316 -1.0074 0.5221
0.76 0.6339, V- -0.9578 0.7212
0,80 0.5323 ; -0.8598 0.7977
0.84 0.4283 -0.7252 0.7649
0.88 0.3224 -0.5637 0.6452
0.92 0.2155 -0.3844 0.4620
0.96 0.1079 -0.1945 0.2399
1.00 0.0000 0.0000 0.0000



: : Table 13

MODE SHAPE ORDINATES -- FIRST THREE MODES 

Parabolic Taper - Symmetric Beam - Depth Ratio T  ̂  2.

■ W |  ■ w i m t i .Hod® Shape 
Ordtaste

Second 
BSsde Shape 
Ordinate

Third ; 
Mode Shape 
Ordinate

0.00 0.0000 0.0000 0.0000
0.04 0.1128 0.2007 0.2604
0.08 0.2253 ,0.3971 .0.5038
0.12 0.3368 0.7070
0.16 0.4466 rl3:7495^ 0.8411
0.20 0.5535 , 0.8859 0.8756
0.24 0.6558 . 0.9792 , 0.7844
0.28 0.7516 1.0161 0.5557
0.32 0.8382 • 0.9847 0.2011
0.36 0.9128 : . 0.8774 -0.2368
Oi40 0.9723, 0.6946 -0.6859 X

0.44 1.0138 0.4466 -1.0572
0.48 1.0352 0.1542 -1.2679
0.52 1.0352 -0.1542 -1.2679
0.56 1.0138 -0.4466 -1.0572
0.60 0.9723 -0.6946 -0.6859
0.64 0.9128 -0.8774 -0.2368
0.68 0.8382 -0.9847 0.2011
0.72 0.7516 -1.0161 0.5557 1
0.76 0.6558 -0.9792 0.7844 L
0.80 ■ 0.5535 -0.8859 0.8756
0.84 0.4466 -0.7495 0.8411
0.88 0.3368 -0.5829 0.7070
0.92 0.2253j -0.3971 0.5038
0.96 0.1128 -0.2007 0.2604
1.00 o.oOoo 00.0000 0.0000



67

: i:- Table 14

MODE SHAPE ORDINATES -- FIRST THREE MODES 

Parabolic Taper - Symmetric Beam - Depth Ratio T = 3.Q

> A f
w t x M y y r  

ISode Shape.'. 
Ordinate

Second
ISode Shape 
Ordinate

Third 
Btede Shape ■ 
Ordiaate ':

OoOO 0.0000 0.0000 0.0000
0.04 0.1096 0.1871 0.2262
0.08 0.2190 0.3717 0.4415
0.12 0.3280 0.5494 0.6291
0*16 0.4359 . 0.7141 0.7653
0.20 0.5420 0.8563 0.8205
0.24 0.6451 0.9638 0.7632
0.28 0.7432 1.0214 0.5677
0.32 0.8340 1.0125 0.2278
Os *36 0.9140 0.9228 -0.2284
0.40 0.9793 0.7455 -0.7285 v
0.44 1.0258 0.4867 -1.1636
0.48 1.0501 0.1694 -1.4187
0.52 1.0501 -0.1694 -1.4187
0.56 1.0258 -0.4867 -1.1636
0,60 0.9793 -0.7455 -0.7285
0,64 0.9140 -0.9228 -0.2284
0.68 0.8340 -1.0125 0.2278 ■
0,72 0.7432 -1.0214 0.5677
0.76 0.6451 ?• -0.9638 0.7632 ,
0*80 0.5420 : -0.8563 0.8205
0.84 0.4359 -0.7141 0.7653
0.88 0.3280 -0.5494 0.6291
0,92 0.2190 -0.3717 0.4415

' 0.96 0.1096 -0.1871 0.2263
1.00 0.0000 0.0000 0.0000
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Table 15

MODE SHAPE ORDIWES -- FIRST THREE MODES

Linear Taper - Unsymmetric Beam ~ Depth Ratio T = 2.2

# First 
Mode Shape 
OrdiBate

Second
Mode Shape ■ 
...Ordinate

third 
Mode Shape 
Ordinate

o W 0.0000 0.0000 0.0000 '■;
0.04 0.1037 : 0.1791 0.2634
0.08 0.2066 0.3510 0.5024
0.12 0.3079 0.5086 0.6925
0.16 0.4067 0.6442 0.8111
0.20 0.5020 0.7504 0.8410
0.24 0.5928 0.8200 0.7738
0.28 0.6778 .0.8472 o.6io7 :
0.32 0.7559 0.8280 0.3643
0.36 0.8257 0.7599 0.0581
0.40 0.8860 , , 0.6432 -0.2734
0.44 0.9355 ; 0.4805 -0.5882
0.48 0.9728 0.2778 -0.8425
0.52 0.9966 0.0444 -0.9964
0.56 1.0057 -0.2076 -1.0185
0.60 0.9990 -0.4636 -0.8922
0.64 0.9755 -0.7069 -0.6208
0.68 0.9343 -0.9191 -0.2326
0.72 0.8748; -1.0814 0.2210
0.76 0.7969 -1.1767 0.6715
0.80 0.7008 ■■ -1.1915 1.0426
0.84 0.5873 ; -1.1165 1.2595 "
0.88 0.4577 -0.9481 1.2623
0,92 0.3142 -0.6920 1.0252
0.96 0.1600 -0.3657 0.5657
1.00 0.0000 0.0000 0.0000
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Table 16

MODE SHAPE ORDINATES -- FIRST THREE MODES

Linear Taper - Unsymmetric Beam - Depth Ratio T - 3.0

f i f First 
Mode Shape 
Ordinate

Second
Mode Shape 
Ordinate

Third 
Mode Shape 
Ordinate

0.00 0.0000 0.0000 0.0000
0.04 0.0975 0.1604 0.2388
0.08 0.1945 0.3154 0.4586
0.12 0.2904 0.4591 0.6392
0.16 0.3844 0.5855 0.7605
0.20 0.4758 0.6881 0.8063
0.24 0.5637 0.7604 0.7669
0.28 0.6472 0.7966 0.6393
0.32 0.7252 0.7920 0.4289
0.36 0.7965 0.7433 0.1516
0.40 0.8598 0.6484 -0.1653
0.44 0.9141 0.5076 -0.4850
0.48 0.9578 0.3242 -0.7665
0.52 0.9894 0.1047 -0.9685
0.56 1.0074 -0.1415 -1.0524
0.60 1.0104 -0.4022 -0.9882
0.64 0.9969 -0.6617 -0.7639
0,68 0.9654 -0.9010 -0.3943
0.72 0.9145 -1.0983 0.0783
0.76 0.8431 -1.2327 0.5881
0.80 0.7506 -1.2846 1.0512
0.84 0.6369 -1.2369 1.3698
0.88 0.5023 -1,0767 1.4466
0,92 0.3482 -0.8019 1.2184
0.96 0.1785 -0.4294 0.6992
1.00 0.0000 • 0.0000 0.0000
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Table 17

MODE SHAPE ORDINATES -- FIRST THREE MODES

Parabolic Taper - Unsymmetric Beam - Depth Ratio T = 2.2

First 
Mode Shape 
Ordinate

Second 
Mode Shape 
Ordinate

Third 
Mode Shape 
Ordinate

0.00 0.0000 0.0000 0.0000
0.04 0.1006 0.1650 0.2381
0.08 0.2007 0.3251 0.4581
0.12 0.2998 0.4747 0.6406
0.16 0.3971 0.6073 0.7647
0.20 0.4918 0.7157 0.8115
0.24 ' 0.5829 0.7924 0.7672
0.28 0.6692 0.8303 0.6265
0.32 0.7495 0.8233 0.3954
0.36 0.8222 0.7667 0.0924
0.40 0.8859: 0.6585 -0.2506
0.44 0.9388 0.4996 -0.5901
0.48 0.9792 0.2949 -0.8758
0.52 1.0056 : 0.0537 -1.0579
0.56 1.0161 -0.2109 -1.0960
0.60 1.0096 -0.4814 -0.9681
0.64 0.9847 -0.7376 -0.6780
0.68 0.9407 -0.9578 -0.2593
0.72 0.8774 -1.1209 0.2261
0.76 0.7950 -1.2088 0.6965
0.80 0.6946 -1.2087 1.0650
0,84 0.5777 -1.1150 1.2570
0.88 0.4466 >0.9310 1.2279
0.92 0,30.43 -0.6690 0.9744
0.96 0.1542 -0.3497 0.5384
1.00 o.ooOo 0.0000 0.0000
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Table 18

MODE SHAPE ORDINATES —  FIRST THREE MODES

Parabolic Taper - Unsymmetric Beam - Depth Ratio T =3.0

Ml?-*D. First, 
Mode Shape 
Ordinate

Second 
Mode Shape 
Ordinate

Third 
Mode Shape 
Ordinate

0.00 0.0000 0.0000 0.0000
0.04 0.0937 0.1412 0.2067
0.08 0.1871 0.2792 0.4011
0.12 0.2799 0.4103 0.5689
0.16 0.3717 0.5297 0.6938
0.20 0.4617 0.6318 0.7586
0.24 0.5494 0.7103 0.7487
0.28 0.6339 0.7585 0.6538
0.32 0.7141 0.7699 0.4713
0.36 0.7887 0.7383 0.2086
0.40 0.8563 0.6589 -0.1138
0.44 0.9153 0.5291 -0.4619
0.48 0.9638 0.3494 -0.7892
0.52 0.9999 0.1245 -1.0420
0.56 1.0214 -0.1361 -1.1670
0.60 1.0262 -0.4175 -1.1219
0.64 1.0125 -0.6995 -0.8872
0.68 0.9784 -0.9578 -0.4774
0.72 0.9228 -1.1657 0.0537
0.76 0.8451 -1.2975 0.6166
0.80 0.7455 -1.3317 1.0999
0.84 0.6252 -1.2550 1.3948
0.88 0.4867 -1.0656 1.4227
0.92 0.3333 -0.7750 1.1602
0.96 0.1694 -0.4081 0.6509
1.00 o.oOoo 0.0000 0.0000
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Linear Taper - Symmetric Dean - Depth Ratio t = 3.0
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fundamental sine curve. Only a depth ratio of 3.0 was 

considered as this depth ratio resulted in the greatest 

distortion.

Tables 19 and 20 indicate changes, in the frequency 

ratios as the number of equations (85) was increased from 

twenty to fifty. This comparison was necessary as conver­

gence of the iterative process did not necessarily indicate 

convergence to the exact solution.. Equations were added 

until negligible changes in the b^ coefficients occured. 

Tables 19 and 20 indicate that solutions using the first 

twenty equations yield low-error approximations to the low . 

order mode shapes and natural frequencies.



77

Table 19 

FREQUENCY RATIO VARIATIONS 

Linear Taper - Symmetric Beam - Depth Ratio T = 2.2

Terms in *1 *3 m5
Series % 1 % 3 % 5

10 1.25004 1.54656 1.54568
15 1.24983 1.54637 1.54545
20 1.24978 1.54634 1.54540
25 1.24977 1.54633 1.54539

Percent Change
Between 0.022 0.015 0.019

10 and 25 Terras



Table 20 

FREQUENCY RATIO VARIATIONS 

Linear Taper - Symmetric Beam - Depth Ratio T= 3.0

Teras in 
Series

*1
% 1

*2
tio2

*3
*o3

*4
^ 4

*5
*05

*6

10 1.35233 1.82232 1.90013 1.89626 1.88370 1.88537
15 1.35140 1.82224 1.89936 1.89602 1.88267 1.88488
20 1.35117 1.82224 1.89920 1.89601 1.88247 1.88483
25 1.35110 1.82224 1.89916 1.89601 1.38242 1.88482

Percent Change
Between 

10 and 25 Terms
0.091 0.005 0.052 0.014 0.078 0.030



EXPERIMENTAL RESULTS

An experimental model was made and a test performed 

in an attempt to verify the theoretical results.

An aluminum beam was milled with a parabolic 

variation to a depth ratio of 2.21 - see Appendix D for 

calculations. The beam length was sixty inches and the 

width and maximum depth were one inch.

The beam was simply-supported and set in motion in 

an attempt to simulate the first mode of vibration. A 

Sanborne chart recorder was used to record the strain 

variation at the beam center. Peaks through a given time 

interval were counted, and the first natural frequency was 

determined experimentally as 77.82 radians per second.

This compares to the 77.43 radians per second calculated 

from Figure 6.

The error of 0.6% indicates that the theoretical 

equations developed will likely yield extremely low-error 

results for the low-order natural frequencies.
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CONTENTS OF THE APPENDICES

The contents of the respective appendices are as

follows:

Appendix A -- development of cr3 and drs for simply- 

supported beams.

Appendix B -- mass distribution, stiffness, and

evaluation of the crs and drs integrals 

for the linear and parabolic tapered 

beams.

Appendix C -- development of equations for the 

unsymmetric beams.

Appendix D -- example of calculation using frequency 

ratio-depth ratio curve for the 

experimental beam.

Appendix E -- the flow diagram and print-out sheet 

for the iteration routine.
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APPENDIX A

The c and d equations are:r s   rs
I

dx and (A-1)
o i

drs = I Eicp q> dx (A-2)

Using Jones'(7) technique, the (£> functions for a 

simply-supported beam are

(f) = sin rTTx (A-3)
1

Therefore, the crs and d r$ equations are

crs = I m sin r77~x sin sTTx dx and (A-4)
1 1

/drs = (rsf JTT4 | El sin rTTx sin sTTx dx (A-5) 
14

e
where the evaluation of the above integrals depends on the 

forms of the mass(m) and stiffness(El) functions.



82

APPENDIX B

I. Linear Taper

Depth Ratio T = h1/h0 

Fig. A-1

A. Mass Distribution

m  = m 0[ T  - 2(1 - T ) ^ ]  (A'6)

B. Stiffness

ei = E L [ a ( i - T J 3̂ 3 + / a r c i - r ) ^ 1 +

6 t 2(1-t)^ + t ’J (A-7)

C. Coefficients: all crs and drs coefficients are
zero for (r ± s) equal to an odd number. For 
(r ± s) equal to an even number:
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1. C

- 1

- e i r ?  -(r-s)1 tt2 c-rts^^ "n2-
 ̂ (A-8)

Cr+s^-n2̂

s

2 . m. "o.sor + (.1 -1)/"! + _L -
W  2r2n2

c-Dr
Zr'-B

(A-9)

3. d,! = Ll,ir
4Tt2C'r-5>)1

z -3 G
4 tt2 t,)1 (ntjv )

(•')rjt_*
Z, -h

Cr-5)4TT4
6
(rts/TT4'

« r Z1 2 1  ( t - r ) xr i - iy - _ .  „
[ (.r-5)lirz (TTIyri2

6 T 20-t)( C d l ±  - C-1)^

A-n *> (A-10)
U-%r-n

r * 5



3 l - O r
fl TT1

1
h,Tr*-

+ ^ c - i y  ? -h i.so t o  - 1)*-
r1 if1 j

-+ i . s o  r o - t ) r x  +

C- l)r ] + O. SO t 5

2 M V
r A tt ̂
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II. Parabolic Taper

In D

Depth Ratio T = h4fhi 

Fig. A-2

A. Mass Distribution 
m = m 0 T  + ^ ( T - j

0 — 1 (A-12)

B. Stiffness

EI = EI0 [ 6 4 ( T - 1 ) 57 fe - 192(T-j)3 ^  +
-32CM)l(ST-2)y + 

12t(t-l)(5t-4)^ - nva-i)*} - t 5]

(A-13)

C. Coefficients: all crs and d^s coefficients are 
zero for (r± s) equal to an odd number. For 
(r± s) equal to an even number:

1. (%, = 4m,, CT-1) ( J— —  - JL
TTl (r-t b)Sr

(A-14)
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2. t.. = m .  [o .50 T  »
(A -15)

3. d rl = UoTT"

15 3 6 0 - D ’-i8
c n r ^  ^ - ^ 6TTfel'

r * S15 3 6 0  M - 1) ^  - 192 C T -1)
( . h t s ) 4 !'"1 t>  + s ) ' , Tr

5 15 + 120
iTTl c.r-i. )4 tt<' O-'^n'-

t -_s 
2,
t

IS - 1 2 0  V - O "
i G C r ^ y v *  Cs ̂ 4 Or+s)r nij

120 1 2 0 4- 46Ct-l)2Cs t - ^ )
Cr^)^ "H 6 Cr-*)6^

[ / _ ! —  t - . U
( [ 2 0 - » )  Cr- rr

^  + f o 1 -  , +
trrl/ S)" T11

2 &  V - 0
Cr-̂  s V  TT̂

r_j_>2. 3 2 C t - 1 T e s t -2 )

3 _ _ G
4  (^r-S^TT2- 0-^)''TT"t

r - s
*  . +t
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+ 1X̂

r-t_S

2 -t 6 _ 6
Cr-s^TT-* (r-tsj1-!!1

•f

i 2 t ( r - i ) c s r - i ) r c - 0 ^  _ r + 3 
Z,

12 r 2
Cr-s)ZTT

*■ + 5-  C-D . __
(r + s^^TT* Cr- 0 <TT2'

(A-16)

4. d rr = E L t t^

1I Q  - ?2o
r4 TT̂  r6n

o.so C2--f)3 Cl . 4-_C_ +
r 1
r

Y V rzTrx

l.so C t - 1 )

Go _ 120
r-1 w't r̂ Tti

Cl 45 V i-̂ Tl2- 4-

-  2 ( 1 - 0  _

1 1
MTT5 r5 /i2 TT̂

- D r t



1.50 T ( T - l X s t - 0  [ >  - 2 l-l)'
r1 n
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APPENDIX C

This appendix indicates how the frequencies and 

mode shapes of the unsymmetric beams are related to those 

of the symmetric beams.
i
The Rayleigh-Ritz equations for the unsymmetric 

beams are of the form:

o
I -s — 1, 2, ... o©

where 1' is the length of the unsymmetric beam.

In terms of the length(l) of the symmetric beams,

1' is

1' = 1 (A-19)
2

Therefore, the <̂> functions for the unsymmetric 

beams are

= sin 2r'TT x , (A-20)

Substituting the (fi) tfunctions into the Rayleigh-Rirz 

equations gives
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o

^ Z b . / m s i n  2 r r r V

1677  ̂V  b (r s') |  El'Sin 2 r7 r^  sin 2s '7T77 =
I4 ^  Jo

S — 1 , 2 j y e e •  (J/Q

where the u subscript denotes the frequency for the 

unsymmetrie beam.

For the unsymmetrie case

o
(A-21)

GQ'*= 1677~̂ EI„ (A-22)
r m.o

and substituting for El and A, the square of the natural 

frequency for the unsymmetric beam is

CO* = rsj'l'(x)sin 2̂ 7 7  • sin 2s'7r77d77
-Lii o   (A-23)

V  r v2
4<b-'/ P(x)sin2r'7T77'Sin 2s'Tnj dr]

s1 = 1, 2, 3, ... 00
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The corresponding equation for the natural freq­

uency for the symmetric beam is

2 r
u)z = a / ^ b / r s ) J  V/(x)sin nrT^sin stttj 6-q

—  s-:-  (A-24)
oO & ̂

/p(x)sin n r 7 7 -sin srrr)  dr]
r-1 o

s 1 y 2 ̂ 3 ̂ • • • O'O

For the unsymmetric beam, the square of the natural 

frequency for a uniform beam is

a/. = 16k"4 7T4 El-a (A - 25)
14 - Mo

The corresponding equation for the symmetric beam is

= kl7r_EI0 (A-26)
I4 ' Mo

Therefore, the values of the frequency ratios, 

and for the symmetric and unsymmetric beams
^OK

will be equal when k 1 is one and k is two, when k ' is two

and k is four, and when k ' is three and k is six, ...
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APPENDIX D

The experimental beam used was
0.43Z

30 "

60"

i? n
Fig. A-3

(A-27)

From Fig. 6, the frequency ratio for the first mode

Depth Ratio T = 0.997 = 2.21
0.452

shape is

Therefore,

= 1.09
Ol

tv, = i.o9
I2Y  Mo

(A-28)

(A-29)

From calculations

Cl) = 1007T2 t/6. 7128 = 7.19777^ radians/second
01 3 6 "  ' (A-30)

therefore,

Cl)1 = 77.43 radians/second (A-31)
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APPENDIX E

The equations used in the iteration scheme were 

put in the form:
n

£ ( b ti - yalj)xj = 0  (a
i = 1,2,3, ... n where

= • col IT1 14E L  ; (A-33) &y  =
m 0 (A

a -'j =

1

/
(A

^(7?) <̂ (77) d?7 ; (A

CpiTj) = the i th mode shape of the uniform 
1 beam.

-32)

-34)

-35)

-36)

and
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n = number of equations, also equals the number of terms 

from the series expansion, 

k = number of values of y that are desired; k < n

Et = test number to determine when iteration is to be

stopped.

I = number of cycles of iteration; • <100.

Ey = difference between y when iteration is stopped, and

the value of y from the preceeding iteration.

E where: x* = x-at the end of s iterations 
x̂ ',= x̂  at the end of s-1 

iterations.

c, xs, ys are used for temporary storage
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Flow diagram for iteration to determine the 

frequencies and mode shapes:

START

Read a-:

Read b;:

Read

GO TO COMPUTOR

ROUTINE

"Bookkeeping" to get 
 ̂ data into computer and 

prepare for computing.



COMPUTOR ROUTINE

x

i<n

i <100E>E
Print 9.9999

E<E

Print:

Print: x;

Print:

Print:

START

96
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PRINT-OUT OF ITERATION ROUTINE

Dimension B(30,30),A(30,30 ),BT(30),AL(30) ,X(30)
2 Format (214,1PE14.5)
3 Format (1P5E14.5)
4 Format(214,1P3E14.5)
5 Format(lI4)
10 Read 2,N,KMAX,ET 

N=N
Do 11 1=1,N

11 Read 3 , (B(I,J),J=1,N)
Do 12 1=1,N

12 Read 3,(A(I,J),J=1,N)
Go to 25

25 Do 30 1=1,N
BT(I)=B(I,I)
B(I,I) =0.
AL(I) = A(I,I)

30 A(I,I) = 0.
K = 0 

35 L=0
Do 40 1=1,N 

40 X(I) =0.
K=K+1 
X(K)=1.0 
Y=BT(K)/AL(K)
E =0.
C=0.
Go to 45

45 Do 551=1,N
46 Do 47 J=1,N
47 C=C+(B(I,J)-Y*A(I,J))*X(J)

If(I-K)49,50,49
49 XS=C/(Y*AL(I)-BT(I))

E=E+ABSF(XS-X(I))
X(I) =XS
Go to 54

50 YS=(C+BT(K))/AL(K)
EY =ABSF(YS-Y)
Y=YS

54 Continue
C=0.
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60
65
66
70
80
81
82
83

85

Continue 
L = L+l
If(100-1)85,65,65
If(E-ET)70,70,66
E=0.
Go to 45 
Go to 80
Print4,N,K,E,EY,Y 
Prints,(X(I),1=1,N) 
Print3,(BT(I),1=1,N) 
Print 5,L
If(K-KMAX)35,10,10 
P=9.9999
Print 3,P,P,P,P,P
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