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 ABSTRACT

The buckliﬁg pressure of uniformly loaded clamped
spherical caps is determined expe.rimentally by testing a statist-
ically sufficient number of shells fof each of five different values
of a ratio representing the rise of the shell divided by the thick-
ness. A technique leading to the forming of the plastic shells
using a vacuum former is preéented and discussed. The variation
of the measured quantities of buckling pressure, radius of curva-
ture and thickness at the point of buckling for each sheet of
bma.terial and for each shape of spherical cap is noted. The
ex_perimentally determined buckling pressure is compared to other
experimental results and theoretical investigations. This comi)ar—
ison indicates reasonably good agreement. The von Karman-Tsien
theory shows the best agreement throughout the range of testing.
Results of the tests indicates that the ratio of radius of curvature

-divided by thickness has a more significant effect onl the buckling
pressure than does the degree of shallowness of the spherical caps.
This inve_stigétion shows that spherical shells formed by a vacuum
former technique can give reliable results for the buckling pressui’e
when tested. It is also demonstrated that the experimental

determination of buckling pressures of spherical caps is feasible

viii



and it is thus expected that this procedure can be extended to more

complicated situations.
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CHAPTER ONE

INTRODUCTION

A shell structure results when a material is formed
into a curved surface which is required to transmit loads and
respective displacements. The middle surface of the shell is that
surface which bisects the thickness. If the form of this middle
surface is known, as well as the normal thickness, the géometry‘
of the shell is completely defined. When the thickness is small as
compared to the other dimensions, the principle action of the forces
in the shell is that of a membrane, that is, a state of direct forces
which may be a combination of tension, compression, and shear,
the directions of which lie parallél to the plane of the middle
surface. In certain.cases, however, the situation is complicated
by the boundary disturbances which may lead to the condition Wheré
bending and normal shearing forces become dominant rather than
rieglible .

The history of the use of these structures in building
construction is a relatively long éne. However, in the past few
decades engineers have been able to place greater emphasis on the

application of shell structures, not only in the building



construction field, but in other areas as well. One reason for the
'mcreas‘ed use of shell structures has been caused by a better
understanding of the theoretical shell action. This has been
brought about by mathematical analyses which are based on ideal-
ized conditions.

Many mathematical models of each of the different shell
types have been developed by engineers or mathematicians, and the
results of these analyses are readily available. It is noted that
these analyses usually contain approximations or as 'sumptions which
are made in order to formulate the mathematical model in a Way
which ;dmits a solution. When one takes into account these limi-
tations and present construction practices, it is not unreasonable to
expect a lack of agreement between the theoretical and the true
behavior of shell structures.

The phenomenon of the buckling of a shell is a particularly
difficult situation to formulate mathematically. To develop workable
equations, a symmetrical type of deflection is usually assumed
along with the assumption that the shell is shallow. Even with these
simplifications, the solutions of the nonlinear differential equations
which result are generally difficult and lengthy, if at all possible.
Moreover, the simplifications often made in order to obtain a
solution may or may not be acceptable in the light of the actual

physical behavior of the shell.



As a possible alternate approach, it is suggested that the
buckling problem be formulated experimentally rather than mathe-
matically. If it proves feasible to obtain buckling pressures through
this experimental approach for a simple case, the procedure might
be extended to more difficult situations.

The particular problem to be discussed here is that of the
buckling of clamped spherical caps subjecfed to uniform pressure.
The spherical cap is a segment of ‘a sphere. If one had a complete
spheré and removed a segment by passing any plane through the
sphere, and then hollowed out the inside portion, a spherical cap
would result. The term thin, in thin spherical caps, refers to the
thickness of the material. For the majority of applications‘, Vthis
thickness is small compaz;ed to the radius of curvature of the shell,
and the general assumptions of thin shell theory are applicable. It
is also observed that this thickness is usually uniform. The term
shallow refers to the rise of the peak of the shell from the base
plane. A shallow shell would have a small rise as compared to the
radius of the base plane. The parts of the spherical cap, as well
as some <le the ﬁotation to be used, are indicated in Figure 1.

The classical theory of the bucklin‘g of spherical shells
assumes that a complete‘, initially perfect spherical shell which is

subjected to external pressure contracts in size with little bending
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until the critical buc’kli_ng pressure is reached. Practically
speaking, initial geometrical imperfections in the complete shell
and changes in the radius due to membrane strains permit bending
to start immediately upon the application of pressure. As a conse-
guence, experimentation shows that buckling pressures of complete
shells are generally lower than the theoretical buckling pressures
for ideally perfect shapes under the usual assumptions.

Spherical .caps may distort axisymmetrically out of éhape
at the beginning due to the application of pressure. In this manner
the pressure may make its own "initial"' imperfections in addition to
the geometrical ones which may already be pfes ent. However, it
does not necessarily follow that the lowest buckling pressure is
related to an ax.isymmetrical buckling situation. There exists the
bpos sibility of an instability associated with unsymmetrical distortions
which may occur prior fo the reachihg of the axisymmetrical
buckling. It is also possible that the unsymmetrical initial imper-
fections might have a more significant effect tilan the axisy“mmetrical
ones.

As Archer! explains the buckling criterion, it is assumed
that a given state of equilibrium becomes unstable when there ‘are
equilibrium positions infinitesimally near to that state of equilibrium

for the same external load. To obtain a solution, it is necessary



to obtain the pressure-deflection relationships for a given problem
and to interpret properly the buckling pressure according to the
above criterion. In the work of Simons ,2 the center deflection to
pressure relationship is generalized by interpreting buckling from
a maximum deflection to pressure relationship in order to reveal
the buckling in cases where the deflection modes become more
involved.

Another explanation of the buckling of spherical caps is
that of von Karman, Dunn, and Tsien. 3 They consider the case of
a curved bar under the action of a single concentrated load P at the
center with the ends laterally restrained as shown in Figure 2.
Starting from the undeformed position, P is gradually increased,
and a symmetrical type of deflection is assumed. During this
initial stage the bar behaves in a manner similar to that of a straight
beam under the action of a concentrated load. That is, the load
increases with the center deflection. However, large deflections in
a curved bar with fixed ends produces a shortening of the centroidal
axis and consequently an increase in compréssiohl. This is contrary
to the case of a straight beam with fixed ends where large deflections
produce tension. A beam under end compres sion is much weaker in
sustaining a lateral load than one without end compression'. In fact,

when the end compression in a straight beam reaches the Euler load,



FIGURE 2

Curved Bar



the beam loses all its ability to sustain a lateral load. This general
property applies also to curved bars. Thus, witﬁ increasing com-
pression in the bar due to an increasing deflection at the center, the
effective rigidity of the bar to sustain the lateral load P is gradually
reduced. In other words, the slope of the load versus deflection
curve decreases with increasing deflection. Thus, as the load P is
increased, a point will be reached where the slope is zero.
Therefore a maximum load P is obtained.

Beyond this point the load P will decrease with increasing
deflection. That is, this part of the load versus deflection curve
indicates that the structure is unstable. If the material is elastic,
this instability will continue until the actual shape of the bar has
a curvature oppésite to that of the undeformed ar. In other words,
if the undeformed bar is curved downward, the bar has to be
deformed so far as to curve upward before the decreasing process
of the load stops. The reason for this phenomenon can be explained
by the change in the end compression in the bar. Once the curvature
of the bar is reversed, then the increase of the deflection will
decrease the compreésion in the bar. This decrease in the end

compression will increase its ability to carry lateral loads.
For slender bars the situation is further complicated by the

appearance of an anti-symmetrical type of deflection. Marguerre,



as reported by von Karman, Dunn and Tsien, 3 found that when the
end compression in the curved bar reaches a value which is four
times the Euler load for a straight bar, an anti-symmetrical
deflection appears together with the symmetrical one. In the load-
deflection curve, Figure 3, the loading will start from the origin
and follow the curve corresponding to a symmetrical deflection up
to point A,y . Then the anti—symmétrical component sets in, and the
.bar follows the straight line to point B'. From then on, the deflection
- of the bar is symmetrical. In a testing machine, the bar will
actually "jump" frlom point Ao to some point C, depending upon the
- rigidity of the machine, with violent vibration due to a sudden re-
lease of energy.

It is evident the load-deflection relationship is highly
complicated and not linear. The buckling phenomenon may occur com-
pletely ” within the elastic range. The load-deflection relationship
for the structure is nonlinear even though the stress-strain
‘relationship for the material is linear.

Consider now a spherical éhell under external pressure
with clamped edges as shown in Figure 4. The action is similar to
: the curved bar. Assuming that the bending stiffness, which is
proportional to the cube of the thickness,. can be ﬁeglected, the

strain energy consists only of the energy due to extension or



FIGURE 3

Load-Deflection Curve



FIGURE 4

Spherical Shell Cross Section
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12
compression of the shell. The strain energy is zero in the deflection
position 3, if it is zero in the undeflected position 1. It is in equil-
ibrium in position 3 without the aid of external pressure.

Above position 2, the intermediate positions involve com-
pression of the shell. The shell can be held in equilibrium in these
positions only by an external pressure. However, as with the curved
bar, the compression in the shell elements tends to reduce its
pressure-carrying ability. Thus, if only a rotationally symmetrical
type of deflection is considered, the initial part of the pressure
versus maximum deflection éurve again has a decreasing slope with
increasing deflection. When the deflection goes beyond position 2
and above position 3, a negative external pressure is nécessary to
maintain equilibrium as the compressed elements tend to force the
shell to take the equilibrium position 3. .The pressure-deflection
curve under the assumption of negligible bending stiffness and
symmetrical deflection is of the form of curve Al , of Figure 5.

The effect of the bending stiffness is to increase the positive external
pressure necessary to hold the shell in equilibrium. In other words,
the pressure-deflection curves with increasing bending stiffness are

of the form of curves A A3, etc.

2}

With an anti~-symmetrical type of deflection in a spherical

cap, the instability might occur before the peak is reached, as in the



FIGURE 5

Pressure-Deflection Curves
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14
curved bar. Furthermore, without care in the laboratory, the
"jump' might occur as with the curved bar. In any event, the
load-deflection curve is not a straight line and has an unstable
portion within the elastic range.

The investigation of nonlinear buckling of thin spherical

caps under uniform pressure had its 'beginniﬁgs immediately prior
to World War II through the investigation of von Karman and Tsien.?
This theory was based upon energy criteria for determining buckling
loads. Archer! used a similar set of eqqations that were solved by

2 solved the nonlinear

means of a perturbation technique. Simons
equations by means of a power series. A numerical procedure

empioying finite differences was formulated by Keller and Reiss. 7

Solutions by power series were made by Reiss, Greenberg and

11

Keller8 as well as by Weinitschke. 10 Murray and Wright
proposed a theory based on power series expansion to circumvent
the singularity at the initial boundary and then a step-by~step
integration procedure. Other theories have been developed, but
these generally follow one of the above mentioned approaches.
Many investigators make note of discrepancies between
various theories. Since thére is more than one way to develop a
theory, either through energy minimization, power series,

perturbations, wave action, linearization, to name a few, it is not



pafticularly s.urprising that the results are in some disagreement.
It is noted that each‘ of these procedures, of necessity, contains
somé simplification so that the problem can be solved.

What also seems significant is the lack of agreement
between experimental results and developed theories. This is of
great concern since any :;.ctual shell construction or fabrication
might be expected to conform more closely to well conducted exper-
imental results rather than certain theoretical ones. Those who
have developed the various theories have noted these discrepancies
and have sﬁggested plausible causes for the lack of agreement.
Some of these reasoﬂs include initial impe rfections', such és thick-
"ness or curvature variations, a failure to.achie\'fe full.fixity around
the edge, or a failure to meet some other initial assumption of
idealizea behavior. This then raises the question as to whether an
ideal shell can actually be achieved. If it cannot, then the theories
are at best a guide and, depending upon the simplifications, few can
be expécted to vield accurate results.

The purpose of this paper is to approach the problem
through the experimental route. A statistically sufficient number of
models was constructed and tested. Shells with different radii of
curvature were included to determine the effect of the assumption

of shallowness, which most of the theories demand. There are no



16
assumptions of ideal conditions; thus the results should indicate
realistic behaviors rather than idealized ones.

It is hoped that the techniques developed may be applied to
more complex situations with confidence as a result of the success

. of this investigation.



CHAPTER TWO
REVIEW OF LITERATURE

The purpose of this chapter is to summarize a few of the
significant publications on the buckling of clamped spherical caps.
Appendix A discusses the theorie>s in so-mewhat greater depth.

Apparently, the first theoretical publication én the
buc;kling of clamped spherical caps under a uniform load was that
of von Karman and Tsien.? An expres sion for the total energy was
developed, with certain assumptions, and this expression was
minimized. .This yvielded the minimum buckling load which is that
load required to keep the shell in a deflected shape. By modifying
the strain energy expression to include the effects of uniform com-
pression prior to buckling, the authors again obtained the lower
buckling load. In addition they discussed an upper buckling load
which is the highest value on the load-deflection curve. The
necessity of extreme care in the experimental determination of the
upper value was pointed out.

A subsequent publication by Friedrichs® discussed the

vertical deflection assumption made by von Karman and Tsien.

17



18
Friedrichs found that the influence of this as sumption was to double
the buckling load.

6

Tsien~ later modified the original theory to account for the
findings of Friedrichs. He obtained a somewhat different value for
the minimum value of the buckling stress. A later publication by

12 giscussed the lower buckling load and how it may differ

Tsien
from what has previously been observed.

Chienl3 developed a theory which did not require all of the
assumptions of the von Karman-Tsien theory. This led to funda-
. mental equations for the determination of the buckling pressure of a
small éegment of a spherical shell. The neglecting of two terms in
the equation yielded the same equation as that of von Karman and
Tsien.

Reissner‘sl4'l7

major contribution to this subject involved
the development of general equations. Starting with the Marguerre
equilibrium equations}, he obtained equations for stresses and dis- -
placements as well as strain quantities. Reissner also developed
equations for the symmetrical bending of thin elastic shallow shells.
The experimental work of von Kloppel and Jungbluth, on

non-shallow shells, as reported by Reiss, 18 indicated the buckle

formed near the boundary rather than the symmetrical case which



19
is generally assumed. Initial stresses and thickness variations

were felt to be the cause of the unsymmetrical situation.

2 14

Simons“ used the equations developed by Reissner™ ™ and a

series solution to obtain a buckling criterion. His conditions indi-
cated that instability cannot occur for a flat plate nor for a shell
which is very shallow. He determined a critical load parameter in
terms of Poisson's ratio. This load parameter is a function of the
uniform pressure. There was a lack of agreement between the
theory of Simons and the results of Kaplan and Fung. 19
Reiss has contributed several publications to the field, both

18,20

as a sole aﬁthor, and in conjunction with Greenberg and

7,8

Keller. Using different loading and geometric parameters, he

uncovered modes of buckling in the theory of Kaplan and Fung. 19
This led to a better correlation between the theoretical and experi-
mental results of Kaplan and Fung. Using the equations developed

by Chien, :3

a theory was developed which yielded critical buckling
pressures which verified the previously mentioned buckling modes .A
A linearized theory was reported in a different publication, 18 which
indicated similar buckling modes. In comparing his, theories to
experimental results of others, Reiss noted fair agreement and

attributed the discrepancies to initial imperfections, difficulties in

measuring the radius of curvature in shallow shells, a small



experimental error in determination of the geometric parameter
leading to a large error in the buckling pressufe, the shallow shell
assumption and the failure to achieve a completely clamped edge
condition. Reiss indicated the need for additional experimentation.
Klein®!s22
mental and theoretical results through the use of an eccentrigity
parameter. This parameter was a function of both initial thicknesé
and curvature variations.
Archer1 worked with the equilibrium equétions developed by
Reissnerl4 énd a power series solution to determine a buckling cri-
terion and a critical buckling pressure. Comparison with the works
of Ka,plan-}f"u.ng19 and Tsien6 was satisfactory at particular points,
but not throughout the range of the geometric parameter. Archer
attributed the discrepancy to the "jumping' of the shell during |
testing.

The approach of Weinitschke? 10

was through the equations
developed by Reissner, 14 power series, and an iterative technique
on a digital computer. He indicated agreement between his work
and previous theoretical results for low values of the geometric
parameter, that is, for very shallow shells. The lack of agreement

with previous experimental results was attributed to initial dis-

2 .
crepancies. In a different publication, 3 Weinitschke supports

20

attempted to reduce the scatter between experi- . ‘



21
Klein®? in his claim that initial irregularities are responsible for
the scatter between ﬁheory and experiment.

Von Willich?? derived energy equations and then used an
application of the principle of minimum potential energy to obtain
the critical buckling pressures. He solved the problem only for
small values of the geometric parameter.

Budiansky25 began with the equilibrium equations of
Reissner. 14 Simplifications were made, and the use of bperators
and transformations yielded two integral equations. These equations
were solved numérically by an iterative technique which yielded
values of critical buckling pressure in terms of the geometric para-
meter. Budiansky also developed a theory based on initial imper-~
fections. The procedure was the same as previously mentioned for
the shell with no initial imperfections. This again yielded values of
critical buckling pressure in terms of the geometric parameter,

A publication coauthored by Budiansky and Weinits Chk626
indicated their stability curves were in agreement despite the dif-
ferences in the two independent theories. A lack of agreement with
the Kapla,n-Fungl9 results was noted.

Experimental work by the Avco Corporation, carried out by

27

Homewood, Brine and Johnson, resulted in buckling pressures for

caps of various radius-thickness ratios. They found no important



22
differences in buckling characteristics between shailow and non-
shallow caps. The buckling occurred abruptly and the majority of
the buckles remained when the pressure was released. The shells
were hot rolled steel which were formed by spinning. A later publi-
cation by Johnson and Homewood?® indicated work on forming plastic
shells by a vacuum snapback technique.

C‘rrigolyuk‘?‘9 worked with the Marguerre equilibfium
equations, a power series expansion, and Bubnov's method i:o obtain
two nonlinear equations. Solution of these equatioﬁs yvielded the
expression for the critical buckling pressure.

Nash and Modeer30 developed a theory for the buckling of
clamped, uniformly loaded spherical caps by two different approxi-
mations. The first neglected the second invariant of the middle
surface strains, while the other retained only the linear terms in
the second invariant. The approach was based Aon minimiziang the
total energy expression. The advantage of either of'these assump-
tions was that the governing nonlinear equations were uncoupled.

Murray and V\friglrﬂ:11 developed a theory by a step-by-step
integration of the differential equilibrium equations. They elimi-
nated many of the usual assumptions and claimed a higher accuracy.

For a specific radius of curvature and thickness, the upper buckling

load as well as the minimum one was obtained. Comparison with the



23
von Karman-Tsien? results indicated a difference by a factor of
two. It was concluded that the results of the Rayleigh-Ritz solution
by von Karman and Tsien did not satisfy equilibrium. Good agree-
ment was obtained in comparing their results with those of Keller
and Reiss.( However, these results did not agree with the
Kaplan-Fung results, 19

14

Thurston>? began with the Reissner~™ equilibrium equations

and obtained a final solution by assuming an approximate solution
and then solving for a correction, thereby obtaining upper and lower

buckling curves. The upper curve agreed with Weintschke? and

25 7

Budiansky™~ while the lower curve agreed with the Keller-Reiss

9 experimental results were between the

results. The Kapla.n-Fungl
two curves.

Gjelsvik and Bodner34 developed a theory for the nonsym-
metrical snap buckling of uniformly loaded clamped spherical caps.
They used an energy minimization procedure to determine an upper
buckling load and an energy load for both the symmetrical and non-
symmetrical cases, that is, with or without consideration of the
effects of the boundary layer. The energy load corresponds to a

minimum or lower buckling load. They also developed an expression

 for the minimum value of the geometric parameter at which snap



buckling can occur. Their work is limited to shallow caps where
the ratio of the rise of the shell to the radius of curvature is 1/8 or

less.
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CHAPTER THREE
EXPERIMENTAL INVESTIGATION

This chapter contains the description of the author’'s
experimental inve stiga’;ion. The first part is concerned with the
determination of the best technique for formirig spherical caps with
a vacuum former. The second part consists of the resulfs obtained
from the buckling test of each shell as well as a description of

these tests.
Forming Technique

In an investigation of this type, it is necessary to fabri-
cate many nearly identical shells. A vacuum former is ideally
suited sin;e many shells> can be formed rapidly at a minimum
expense. Of even greater importance is the knowledge that each
shell formed will be similar to it‘s predecessor, assuming there has
been no change in the machine settings.

The operation of the vacuum former is to heat the material
and then to form the plastic to the desired shape by means of the
vacuum. There are many variations which enter into the forming
technique such as the deé_ision of whether to use a concave or convex

25
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mold, the mold material, the shell material, the amount of heat,
whether to allow the material to partially form to the shape of the
mold before the application of the vacuum, as well as others. For
this investigation, it was decided to use an aluminum mold, in part
because of the ease of machining in forming the other mold shapes.
The shell material, chosen because of its reported good thickness
tolerances and properties, was a polyvinyl chloride, Boltron 6200
Normal Impact Type 1, obtained in sheets from the General Tire
and Rubber Company. Each sheet was approximately 30 by 60
inches. |

Five different shapes were considered in this investigation.
The radius of the base plane of the mold was kept constant and the
radius of curvature varied by decreasing the rise of the shell above
the base plane. Figure 6 is a sketch showing the five formed shapes
with the corresponding values of radius of curvature and rise.

The forming technique was determined by working with the
shell with the gr'eatest curvature, that is, the hemisphere. When
the best technique was developed, all subsequent shells were formed
with a similar procedure, not only for the hemisphere, but for all
shells formed.

The shell forming operation is illustrated by F;gures 7, 8,

and 9, In Figure 7, the mold with the collar attached is shown
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SHAPE
7. OZ IN 1

U
1
v
A\

FIGURE 6

Geometry of Formed Shapes

R in in.
3.51
3.78
4.21

5. 33
9.64

H in in
3.51
2.65
2.12

1.53
0.96
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FIGURE 7

Forming Mold in Vacuum Chamber



FIGURE 8

Vacuum Former with Heating Element Forward
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FIGURE 9

Formed Shell in Frame of Vacuum Former
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sitting on top of the platform in the vacuum chamber. Figure 8
shows the former with the heating element forward heating the
plastic prior to the actual forming. When the heating cycle is com-
pleted the heating element returps to the rear position and the frame
holding the heated plastic moves down over the mold. The final
forming is accomplished by applying the vacuum. Figure 9 shows
the formed éhell in the frame of the vacuum former. Figure- 10
shows the five different shapes which were formed and Figure 11
shows the array of shells which were formed for the buckling tests.

The variables of the vacuum former which can be varied
during the forming operation are:

1. percentage of time the he‘:aU:J'.ng:;r element is on

length of time the heating element is over the plastic

o~

3. height of the stops which control the distance the
frame comes down
4. distance of the mold platform from the machine base
5. amount of vacuum
Several tests were run to determine the combinations which yvielded
the best shells. To compare forming techni_qﬁes, the radius of
curvature and thickness were measured at twenty-~five grid points

on the shell as shown in Figure 12.



FIGURE 10

The Five Different Formed Shapes
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FIGURE 11

Formed Shells for Test Program
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FIGURE 12

Grid Points on Shell
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The radius of curvature was measured by the device
shown on the left in Figure 13. The three points, two fixed and the
third attached to the dial éage, were placed on the shell surface and
the minimum gage reading recorded. The radius of curvature of

the middle surface of the shell was then R = g + _}_ -t where R is

2 8g 2
the radius of curvature, g is the gage reading and t is the thickness

of the shell at that point.

The thickness was measured by the device shown on the
right in Figure 13. The apparatus was held in a vise and the shell
placed between the point on the frame and the pointer attached to the
dial gage at the position where the thickness was desired. f‘or each
point, the shell was rotated until a minimum dial reading was
obtained. This reading was the normal thickness at the point in
ques'tion. |

Average values and standaﬁ:d deviations of thickness and
radius of cui‘vature were computed for each forming technique and
are included in Appendix C.

Because it is desirable to have the models of uniform fhick-
ness and curvature, various techniques of forming were investigated.,
It was not difficult to obtain consistent curvatures because the
formed plastic adhered very clps ely to the mold which had been

machined to a hemispherical shape. However, keeping the



FIGURE 13

Measuring Devices
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thickness constant represented a more difficult problem. In each |
of the formings, the shell was thickest at the peak and thinnest at
the base of the mold. Several combinations of the variable set‘cings
were attempted to obtain a minimum thickness variation.

It became apparent that a short heating cycle and a low
"percent on' of the heating element resulted in less flowing of the
plastic during the drapiﬁg of the plastic over the mold. Using the
heat on 35% of the time with a heating cycle of 50 seconds resulted
in the least amount of thickness variation.

The elevation of the platform holding the mold above the
machine base had an effect upon the thickness variation. The higher
the mold the more the drape, and this larger drape caused a thinning
out of the plastic near the base-of the mold thus resulting in larger
thickness variations. Hence, a lower platform elevation was
decided to be advantageous. There was a minimum value for this
elevation, because too low a setting required more draw for a sharp
edge at the shell boundary than could be accomplished during the
vacuurﬁ operation. An elevation of 5.33 inches above the base of
the machine was an acceptable compromise.

The collar between the platform and the mold had two
purposes. It provided an edge for the clamping of the shells during

the buckling tests, and it allowed for a lower setting of the
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mold platform., Without the collar, it was necessary to use a
higher platform setting to obtain a sharp araw between the shell
and the mold platform.

The height of the stops, which controlled the amount that
the frame holding the plastic moved down, was important since a
good air seal was necessary between the plastic and the top of the
vacuum chamber. This was determined by a trial and adjustméxglt
procedure.

Application of the vacuum was another important operation.
Of the several variations in the vacuum technique attempted, it
appeared the thickness variation was a minimum when the vacuum
was applied as the plastic moved down toward the mold after the
heating cycle. The vacuum was left on until the plastic had drawn
as much as possible. The plastic was then allowed to cool before
it was removed from the mold and the frame.

In summary then, the best forming technique had these
settings:

1. heat on - 35% of the time

2. heating cycle - 50 seconds

3. vacuum time - a burst of about 10 seconds beginning

as the plastic moved down toward the mold

4. platform elevation above the machine base - 5.33 inches
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5. mold - sitting on top of a collar on the platform
Testing of Shells

The buckling of each shell was accomplAished by placing
it in a test chamber and applying air pressure to a water chamber.
It was the water in the test chamber under pressure which buckled
the shell. Figure 14 is a photograph showing the buckling test
apparatus before the shell is positioned. Figure 15 shows the shell
in position with the tapered collar and brackets in place. The
tapered colla;r is the same collar that was used in the forming
technique. The plate on top of the test chamber had a similar tapery
thus with the shell in position and the collar attached, a clamped
- edge condition was achieved.

Two quantities were determined directly from the test on
each shell. One was the mercury level in the manometer, and the
other was the volume change in the water chamber. The first can
be related to pressure and is therefore the critical buckling
pressure. The second gives an insight into the buckling action.

In addition to these observations, the point on the shell at which
buckling occurs was recorded. This allowed for the measurement
of the thickness and radius of curvature at the point of buckling using

the devices shown in Figure 13.



FIGURE 14

Buckling Test Apparatus

40



FIGURE 15

Test Chamber with Shell in Test Position
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" ‘Fach shell was t.ested'., and the results of these tests are
shown in Appendix D Table 1 is a summary of these results.
Measured quanti£ies such as p the buckling pressure in poun_ds per
square inch, R the radius of curvature of the middle surface of the °
shell at the point of buckling in inches, and t the thickness of the
shell at the point of buckling in inches are listed for each sheet..
Table 2 is a summary of the res‘ults for each shape.

For each of the shapes formed after the hemisphere, three
sheets of the plastic were used. This resulted in the formation of
approximately thirty-three shells of each shape. This number of
shells and subsequent tests was the result of an examination of the
variation of the quantity p (R/t)2 for the hemispherical shépe.

Table 3 shows the average value and standard deviation of this

quantity, and Table 4 indicates the value of t; which was determined
after each sheet of shells was tested. The t; is Student's t which is
used to compare.sample mean values. Values of tl are tabulated in

most books on statistics in terms of the confidence level and the

number of degrees of freedom. 1:1 is calculated by the relationship, 32

2
1

2, where k is the sample size, S% is the variance and d is

t.“ = kd®/s
the magnitude of the desired bound. A total of fifty-‘one shells were

“buckled, but it was seen that 1:1 decreased after the third sheet of



SHEET

10
'11
12
13
14
15
16
17
18
19
20

21

Test Results for Each Sheet

NUMBER OF
SHELILS

10

11

11

10

10

11

10

11

11

11

10

11

11

11

10

TABLE 1

P
in

AVERAGE VALUES

R
in

.57
.53
.48
.47
.53
.78
77
.78
.30
.19
13
.41
.28
.32
.64
.64

.64

t
in

.023
.025
.025
.025
.021
.024
.025
.026
.028
.028
.028
.032
.031
.031
.031
.031

.032

R/t

159

143

140

140

167

160

149

148

156

148

150

172

173

172

312

307

297
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STANDARD
DE;VIAg}tONS
in
57 11.
.34 5.
.91 4.
.57 5.
.54 5.
.37 9.
.34 6.
.39 6.
.30 3.
.35 6.
.26 5.
.15 6.
.09 4,
24 4,
.07 8.
.04 8.
.04 4.



44
TABLE 2

Test Results for Each Shape

STANDARD

NUMBER OF AVERAGE VALUES DEVIATION
SHAPE  SHELLS P R t R/t P R/t
: n in in in
1 51 4.9  3.51 .024 149  1.01  12.9
11 31 4.7  3.78  .025 152 .57 9.6
I1I 33 4.7  4.21 .028 151 .33 6.4
v 29 3.3  5.33 .03l 172 .18 5.2

v 32 1.1  9.64 .032 306 .06 9.7



SHEET

NUMBER OF
SHELLS

9

19

30

41

51

TABLE 3

AVERAGE
psi

11.0 x 102

10.6 x 10%

10,7 x 104

10.9 x 10%

10.8 x 10%

Values of p(R/t)Z After Each Sheet Tested of Shape I

STANDARD DEVIATION
psi

1.15 x 10%"
1.29 x 10%

1.57 x 10%

1.51 x 10%

1.53 x 104
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TABLE 4

Values of t; After Each Sheet Tested of Shape 1

SHEETS TESTED NUMBER TESTED t,
5 | 9 .96
5-6 19 1.01
5.7 30 1.02
5-8 41 | .99

5-9 51 .98
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shells tested. Therefore, about thirty shells of the other shapes
were expected to give reliable results.

To determine fhe relationship between pressure and volume
change, intermediate readings were made on some of the shells
during the loading. The reading of water level in the water
chamber and mercury level in the manometer, which are directly
related to volume change and pressure, are in Appendix E. Figure
16 is a typical plot of water level versus mercury level for the
shells where these quantities were measured. The curves for the
other shells tested are in Appendix E. The point whose coordinates
represent the maximum water drop and highest mercury level, that
is the total volume change and buckling pressure, was plotted but
was not connected to the rest of the points because there was a
slight volume chaﬁge after the buckling pressure had been reached.
This was apparently the volume of water that occupied the buckle
itself. Due to the nature of the test operation, it was not practical
to stop the flow of wa.ter from the wéter chamber to the test
chamber at the instant that buckling occurred. Pressure-volume
readings were not obtained on Shape V because the total volume

change was much smaller than the other shapes.



of Water

Inches

wl- 10

Inches of Mercury

FIGURE 16

Typical Pressure-Volume Curve
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The total volume change was measured on all shells.
Table 5 is the average volume change in cubic inches of water and
the standard deviation for each shape.

rFigure 17 is a plot of log p versus log R/t using the exper-~
imental results of each sheet tested. Many publications indicate a
general relationship of the form p = A (R/'c)b where p is the buckling
pressure, R is the radius of curvéture, t the thickness and A and
b are constants. The curve indicates a linear relationship, within
experimental accuracy, between the quantities.

The variation of experimental results within each >shape
was cietermined by an examination of the quantity p(R/t)2 . Table 6
shows the average value and standard deviatioﬁ for all shapes.
Figures 18 through 22 indicate the fréquency and Figures 23 through

27 show the distribution on a probability plot, for each shape, of

p(R/t)z.
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TABLE 5

Volume Change for Each Shape

SHAPE AVERAGE VOLUME CHANGE STANDARD ]?)DEVIATION

in mn

1 | 2.6 .90

11 4.3 .95
111 4.1 .52
v ’ 3.0 .77

v _ 1.1 .24



n psi

Buckling Pressure

Z0O0

zZ 00

R/t

FIGURE 17

Log p versus Log R/t
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TABLE 6

Values of p(R/‘c)2 for Each Shape

SHAPE AVERAGE VALUE OF p(R/’c)2 STANDARD DEVIATION

psi . psi
1 . 10.8 x 10% 1.53 x 10%
11 10.7 x 104 1.14 x 10%
o 10.7 x 104 .97 x 10%
v 9.8 x 10% | .62 x 10%

% 10.2 x 10% .72 x 104



in Each Range

Number

20.
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|
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o«

Standard Deviation

FIGURE 18

Frequency Histogram of p(R/t)* for Shape I



in Each Range

Number

20_

10.

Standard Deviation

FIGURE 19

2
Frequency Histogram of p(R/t) for Shape II



in Each Range

Number

20
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Standard Deviation

FIGURE 20

Frequency Histogram of p(R/t)* for Shape III



in Each Range

Number

Standard Deviation

FIGURE 21

2
Frequency Histogram of p(R/t) for Shape IV



in Each Range

Number

Standard Deviation

FIGURE 22

Frequency Histogram of p(R/1)2 for Shape V
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FIGURE 23

Distribution Diagram of p(R/t)* for Shape I
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of Deviations at or below the Given Deviation

Percentage

FIGURE 24

Distribution Diagram of p(R/t)* for Shape II
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a or below the Given Deviation

of Deviations

Percentage
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FIGURE 25

Distribution Diagram of p(R/t)~ for Shape III
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FIGURE 26

Distribution Diagram of p(R/t)2 for Shape IV
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Distribution Diagram of p(R/t)* for Shape V



CHAPTER FOUR
COMPARISON OF RESULTS

It is the purpose of this chapter to compare the experi-
mental results of this investigation with other experimentation as
well as with the results of theoretical investigations. The chapte.r
is divided into two parts; the first i's concerned with the comparison
of results between this investigation and previous publications, and
the second part consists of the development, with modifications, of
the theory or theories showing the best agreement with this

experimental investigation throughout the range of testing.
Comparison

For purposes of comparison, the material properties of
the formed shells must be determined. Testing revealed the
modulus of elasticity to be 2.79 x 165 pounds pe.r square inch and
Poisson's ratio to be 0.47. The results of this test are in
Appendix B. It is assumed that, within the accuracy of the determ-
ination of the buckling pressures, the variation of the material

property values from sheet to sheet is insignificant.
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The material properties of polyvinyl chloride have been
determined in another investigation32 and indicate some. disagree-
ment. The modulus of elasticity was found to be in the range
430,000 to 500,000 psi and Poisson's ratio to be about 0.4, It is
also noted that the observed modulus waé very strongly dependent
on the length of the sample, long specimens having twice the
modulus of short specimens. In the same publication it is shown
that 4/9 of the variance in the buckling pressure of spherical shells
is due to errors in measuring the thickness, 4/9 due to erroz;s in
- measuring the radius of curvature and only 1/9 is due to errors in
measuri_ng the modulus of elasticity. |

There is a problem in the consistency of notation when
comparing to results of other publications. Most authors refer to a
geometric parameter and a load.ing parameter. However, these
are defined differently in the different investigations. Not only does
one encounter the parameters defined differently, it is not uncommon
to find the same symbol used for a parameter by two d.ifferent
ax\xtho-rs but the paramé ter itself defined differently in each develop—
ment, Furthermore, the use of symbols for radius of curvature,
thick_ness, etc., has not been lstandardized, When referring to a
. publication, the notation and param-eters referred to will be those

originally adopted by the author.
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Not all of the references mentioned in the Introduction or
in Appendix A contain independent theories or experimental results.
There are several publications which contain background material
/or material of general interest on the problem of the buckling of
the clamped spherical cap.

In the development of some of the theories, the authors
limit their investigation to a shallow spherical cap. Therefore,
there is a maximum value of their geometric parameter for which
their theory is applicable. If the shallowest shell £ested in this
investigation has a geometric parameter value exceeding these
maximum values, it is not possible to make any comparison. In
the theories of Budiansky,25 Keller and Reiss ,7 Murray and
Wright, 11 Reiss, 18 Reiss, Greenberg and Keller, 8 Simons, 2

Thurston, 3! Weinitschke?: 10 and von Willich%?

the largest per-
missible value of their geometric parameter is smaller tlﬁan the
smallest one of this present study. Therefore, no real agreement
. is possible with these publications, although reasonableness of
results can be compared if the values of the geometric parameter
are relatively close.

There are at least two theories which suggest a possible

modification to meet the experimental conditions of this paper.
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. 2¢ .21 . .
Those of Budiansky and Klein suggest a function relating the
departure of thickness and curvature of the actual shell from a
true shell.
Budiansky” uses a geometric parameter of Z =2
and a load parameter of qcr/qo. where qcr is the buckling pressure,

qo = , His the rise above the base plane, t is the

thickness , J/ is Poisson's ratio and R is the radius of curvature

of the middle surface of the shell. The value of this parameter for

the shallowest shell tested is ~ =13. For this value qcr/qo =0.30
For ~ =12, Budiansky obtains qcr/qo = 0.96, which exceeds the

value found experimentally. However, the Budiansky value is based
on a true shell. Introducing the surface equation as

Z70= Hjh ~€/-y1 Jj , where H is the rise of the shell above

the base plane whose radius is a, he obtains qcr/qo0 - 0.83 and 0.75
for values of 6 equal to 0.025 and 0.050 respectively. Therefore,
it might be possible to extend Budianskyis theory for the slightly
imperfect shell by using a larger value of £

21

Klein does not develop a theory for the problem, but he

does propose plotting PcrR x 10 versus R/t to reduce the scatter.
~2tE
The range of R/t considered is from 175 to 800 which includes the

shallowest shell of this paper where R/t = 306. At this value of
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R/t, Klein obtains a’r x IO8 =0.8 for - L- =0.025 where R
E \JRt

is the radius of curvature of the middle surface, t is the thickness,
Pcr is the critical buckling pressure and e 1is the average
maximum initial departure from the mean shell radius. This
yields p”~ = 1.5 psi and the experimental value is pcr =1.1 for
this R/t ratio. So again the possibility exists of using a larger
value of the error function to obtain predicted results comparable
with the observed results through the plot proposed by Klein.

Simons” does not indicate the range of the geometric
parameter for which his theory is valid. He does make the assump-
tion of a shallow shell, however. When comparing the results of
critical buckling pressure with his theory, one finds the observed
value to be about 1/4000 of the theoretical value for the hemisphere.
The discrepancy decreases with the shallower shells. For the
shallowest one tested in this investigation, the observed value is
about 1/5 of the theoretical value. Thus it appears the Simon's
theory is for shallow shells only, even shallower than the shallowest
one tested. Simons does obtain a minimum value of the geometric
parameter for which buckling can occur. In the experimental
investigation, the shallowest shell buckled at a value larger than

the minimum. Thus there is agreement with this portion of the

theory of Simons .
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Because of the shallowness assumption of Gjelsvik and
Bodner,33 the only shape for which comparison is possible is the
shallowest one of this investigation where the geometric parameter
is Z =13. At this point they determine the loading parameter
to be 0.41 for the energy load without the boundary layer and 0.14
when including the effect of the boundary layer. The appropriate
value of 0.30 of this investigation is between the two values of
Gjelsvik and Bodner.

There arc two known theories , the results of which,
when evaluated at comparable points in this investigation, indicate
a discrepancy. Archer * uses an H/h ratio of from 1 to 35,
where H is the rise above the base plane and h is the thickness .
The shallowest shell tested had an H/h of 30 which is within this

range . For this value Archer obtains p = =0.95, where

ecr = 'z IN , C is the buckling pressure, /1 is

Poisson's ratio and a is the radius of curvature. For the shallowest
shell tested, p =0.30. Reiss ** uses a geometric parameter of

2 A where k = # A is the semi-angle
opening, h is half the thickness and R is the radius of curvature.
His linear theory predicts Fcr - ; 78.2 ~ C 158.5,

for  (JIY . The only shell
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of this investigation falling within the range of the geometric para-
meter is the shallowest one where * =92. Reiss predicts Pcr =
1.15 for this shape whereas the experimental value is Pcr = 0.78.

A search of the literature discloses three previous experi-
mental investigations on the buckling of clamped spherical caps.

It is fortunate that the same geometric and loading parameters are
used in each. The geometric parameter is - 2 (.~ 2il4 (N

and the loading parameter is p/qcr = where
h is the rise above the base plane, t is the thickness, R is the radius
of curvature, is Poisson’s ratio and p is the buckling pressure.
Table 7 shows the value of the geometric and loading parameter for
the five shapes tested in this study.

Homewood, Brine and Johnson tested shells for which
the geometric parameter was as high as 20.5. This range includes
the two shallowest ones of this investigation and is close to the third
shape. The values of the loading parameter which are applicable
are listed in Table 8. There is a discrepancy indicated for the
fourth shape, but the third and fifth shapes are in good agreement.

Kaplan and Fung” obtain values of the loading parameter
for a geometric parameter only as high as A =10. At this point,
they find p/qcr = 0.33. This is in general agreement with the

shallowest shell of this study where Z' =13 and p/qcr =0.30.
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TABLE 7

Values of Geometric Parameter and Loading
Parameter for Each Shape

SHAPE A p/ Ay
1 28 .30
11 25 .30
111 20 .29
v 16 A .27

v 13 ' .28



TABLE 8

Geometric and Loading Parameter Results
of Homewood, Brine and JohnsonZ7

)\ | p/qCI'
13.1 | .32
14.0 .18
14.0 .29
14.3 A .22
16.0 .43

20.5 .29
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Homewood, Brine and Johnson 7 report that von Kloppel
and Jungbluth obtained values of 7% in the higher ranges of the
geometric parameter . Their values of the loading parameter for
corresponding values of the geometric parameter which are appli-
cable are indicated in Table 9. The largest four values of the
geometric parameter of this investigation lie in the range of the
study of von Kloppel and Jungbluth. There is general agreement
although the results of this investigation slightly exceed those of
von Kloppel and Jungbluth at each corresponding point.

The two theories showing the best agreement with the
experimental results of this study are the publications by von Karman
and Tsien4 and the later modification by Tsien. ® In the first paper,
the authors obtain an expression for the lower buckling stress
of cr =0.18258 Et/R where (~ =pR/2t, p is the buckling
pressure, R is the radius of curvature and t is the thickness.

Table 10 shows the observed and predicted values of the buckling
pressure for the values of the geometric parameter of the five
shapes tested in this investigation. In the revision of the theory by
Tsien,” expressions for both the upper and lower buckling stresses
are given. The same notation is used as in the original publication.
The values of the lower buckling pressure as predicted by Tsien

for the five shapes are shown in Table 11. The agreement with the



TABLE 9

Geometric and Loading Parameter Results

»
29
29
28
27
24
22
22
21
21
20
20

18

of von Kloppel and Jungbluth

p/qC
.19
14
.16
.18
.22
.22
.25
.19
.26
.23
.19

.20

r
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TABLE 10

Comparison with von Karman and ’I‘sien4 Results

SHAPE | R/t p (observed) p (predicted)
psi psi
I 149 4.9 , 4.6
I 152 4.7 4.4
111 151 4.7 4.5
v 172 3.3 3.4

v 306 1.1 1.1
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TABLE 11

6

Geometric and Loading Parameter Results of Tsien

SHAPE R/t BUCKLING PRESSURE
psi
I 149 Not Applicable
I 152 2.9
II1 | 151 2.9
v 172 2.5

v 306 1.1
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larger values of the geometric parameter in this investigation is
not as good as with the original von Karman-Tsien theory; however,
the agreement in the lower range of the parameter is ?easonably
good.

To indicate the disagreements in other publications,
Table 12 shows the predicted and observed buckling pressures for
one particular shape, for theories which are applicable or nearly
applicable. The shape chosen is shape V in this study, where the
geometric parameter is 7 =13, because more theories are
found to'be near this value of the geometric parameter than any
other. For purposes of analysis, results of theories when 7 s
close to 13 are included and the nearest value of the geometric
parameter is noted. It is seen that there is disagreement of a sig-
nificant nature. Not only is there a lack of agr"eement with the
results of this investigation where the buckling pressure was 1.1
psi, but the several theories and experimental results are not in
agreement.

In comparing the results of this investigation to other pub-
lications, the following concluéions can be reached:

1. Some of the theories are not comparable to even the

shallowest shell tested because of the shallowness

assumption.
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TABLE 12

Buckling Pressure for / = 13 and R/t = 306

BUCKLING PRESSURE SOURCE
psi
3.7 Archerl
2.9 Budiansky2? ( 7 = 12)
1.2 Homewood, Brivne and J'ohnson27
0.6 Gjelsvik and Bodner>3 ( > =11.4)
1.3 Kaplan and JE‘ungl9 ( 7 =10)
1.1 von Karman and Tsien?
1.5 Klein?!
0.8 von Kloppel and Jung‘blut;hz‘7 ( 7 =18)
1.7 Murray and Wright‘l1 (R/t = 362.5)
1.6 ' Reiss!®
5.1 Simons?
1.1 Tsien6
2.6 WeinitschkelO (> = 12)
2.8 von Willich?% ( 7~ =9.5)

1.1 This experimental investigation



2. The theories of Archer1 and of Reissl8 are in-
disagreement. At applicable values of the geometric
parameter, Archer predicts a buckling pressure of
about three times the observed pressure, while Reiss
predicts a pressure about one and one-half times the

observed pressure,

25 21

3. The ”el"ror functions' of Budiansky™ ™ and Klein
could allow for agreement with a particular value for
the departure from an "exact' condition.

4. Published experimental results , that of Homewood,

19

Brine and Johnson, 21 Kaplan and Fung, and von

Kloppel and Jungblu.th,z7 are in substantial agreement.

4 and the Tsien6

5. The original von Karman-Tsien theory

modification are in satisfactory agreement.

Figure 28 shows the results of this investigation for the
loading parameter versus the geometric para%neter compared to the
experimental results of Kaplan and Fung, von Kloppel and Jungbluth,
and Homewood, Brine and Johnson. The parameters have been
previously defined. It should be pointed out that the five plots of

this investigation represent averages for each shape while the other

points represent the results of a single test.
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Theoretical Development

On the basis of a comparison of the results of this investi-
gation with other publications, it is now considered possible to
support an existing theory with experimental verification. The
von Karman-Tsicn” theory was found to be in the best agreement
throughout the range of the geometric parameter in this study.

This theory is based on developing an expression for the minimum
buckling pressure through the Rayleigh-Ritz method with an assumed
deflection form. The simplifications involve the assumption of
axially symmetrical deflections with the deflections being parallel

to the axis of rotational symmetry, and small angle approximations.

The total energy W is equal to W#, the strain energy due to
axial forces , the strain energy due to bending, and W* the
potential energy corresponding to the work done by the external
pressure . The strain energy due to the axial forces is of the general

form, W, =/~ dV or N AN . Consider the element

from Figure 29a. Sketches b and ¢ show that the length before

deformation is — r— and after deformation is A g
cos ex cos

Assuming the deflection is rotationally symmetrical and the

deflection of any element is parallel to the axis of symmetry, the
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d>- _ dr
strain in the meridian direction is £ - cos ex! - —
' dr Cos &
CoS of

There is also an additional strain due to that produced by the

uniform compression prior to buckling; < - or ~ 2t

The two strains are of opposite sign, hence the total strain is

p=c¢ —-f =Coscx _|_pPR - Cos<x-Cos 9 _DbR
VA Cos e ZEt Cos e 2Et *

Using the Taylor series for the cosine expressions and dropping

terms higher than the third power yields,

0 'f2) - ISl - -ex*+ Q2 _ bR
/-a2 2Et 2 ZEt )
2 2
and assuming 0 to be small, ¢ = Q
The element of volume is d V=2 ttr ¢ — or since
Cos oc

r=RS,Noc * dr- R Cos o< doc

dV- 2 TIR 5INecx ER A S¥G c/or = 27TR2t SIN ¢< cio<
Cos or

or again using the small angle approximation, d V- ?TrRzt cx d <

Now WI =| 2U RZt

- ifty
The strain energy due to bending is of the general form

~ ; where 270 is the change of curvature



and the moment M = EJla 0 = Ez 40 b . The element
12

of volume is again 2 TT R t S//ve* dor . The change in

curvature consists of the change in the meridian section o,

plus the change in the section orthogonal to the meridian section

A . For each section the original curvature is 1/R.

In Figure 29d,

do
1 r d O _ Jor
K d 5 c/5
] ~ r— 1 d celr r R (To S ex 1
Cos ©
So — — do
Cos© clev
ard i- i =* (ka ~5
In Figure 29c,
K,=SA\: - RS AV
50 1 "1 =
A/ow UA - M 40 C £ 1 2TTR2 do
7 aT O L 2f J
- Et3TT / [ C os 0 do | A Id,"e i 5hvo<d <X
12 LB 'C o S O dot J k 5 /IV ex'
or VW2 =E /ff A -1)2+ /O -1j2 Xclo,
7R3 2W vy Ador 1 J

where the small angle approximations have again been used.
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The potential energy corresponding to the work done by
the external pressure is equal to the pressure p times the volume
enclosed between the initial and deflected surface of the shell.
This volume is composed of two parts: V *, the volume between the
initial surface and the plane of the circular edge, and V*, the

volume between the deflected surface and the plane.

/ - /1 A=f Rz Sin2<x (- R Sza/ o< dcx )

0 2

b
- TTR J2 Sim ex. Tm-v cx Cos cxd <

, N 2 9 9
V2 =/ 2TTr?dr - Trr 2 - Jd TTr dr-
0

—0 -J TR 5a>20< Ta/v 0 R Co s ord c<

39 2
- —1mR J Sim ck CoOSor Ta/v @(Jcx.
/
/Vow V- - Vp~ TIRy S/Iv2 exxCos < Talu @ "Tan <x<)d <<
3 7/ .
/»/oVVg- TT R p y SIM2cx C os<x C HRB/v S~~Tam *» ) vci<X
,;r Wq - b/ A0 - o<

using the small angle approximations.
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Now the total energy is the sum of W1 » W, and W3;
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The assumed deflection form for the Rayleigh-Ritz method is

©= or [ -K(!- ‘:BQ:)] which satisfies the boundary conditions

of 87 O ar o7=0 : 6= B ar = 8.

¥ [ = X HER T /"‘R
= e b o] VHERE d &)
Y /c E 2¢
B et f L i@ e e o o
ANO e -c< [é = - Kcx {[' iy ) + WS {\I’w—_,/ = -
2 E ¢ e E
\ . _4“ bO< 1 /3 3 5 TN 7
or_]:~/ ( = + ~4fax” +o¢ ) -K (ex®-3= +Te -=x
5 4 g G4 g€ g* & as
& 71 y - oy
FKE(exB-2e” v o) - ok (P-2uf v o) regl (- <2 )
ez . @' E gey- g E G*

50

2
o <><} r}-<
Ez

I,- kK'e* - Kk’6°+ K e” _rK‘e'+rK6"+o_~;§z,
840 120 60 29F 6E Vg

o

2 2|
Now Iz:/e[% -I) +(§(_—l)} or dor

2 9
(22 2, (0 1) K (2B +io=)

or @

85



solj / K*(Por- 8 /o oxS)
or 1 2 =
A/Ow Igr Y cx2(S-cx)cicx"'

Q- ex'- ft (- o< -h c<3)

SO I,= / ~K (- 3~QV5JJor
» "2
Or I = ~K1*
3 /2

Tne equ/l i0r/UM poszt/o/v is dIvrO - Et dl.t f" d Tz + b dI-,

7 k r Ik /T73 T*
- <3p6 - Kg _ecrirr4 > e
z/o 40 3o /2 E 6& J

cLTz = A
JK 3
23 -
j/f 'Z
so 0 = (K1 A2 to J +<rt?z(2-K) i-Et\ _cto'

R z/o 40 30 I2R wI?
Or AT — _gf (4K2-21« 42.8) + 4 {*L— .

E 70 i/?2to2

.
9

86



87
To simplify this expression, K is expressed in terms of { and

the maximum center deflection &

AFTER DEFORMATION THE CENTER DEFLECTION IS,
B g ,
J:=/ dr TA~9=/ R Cosex Tan 8 der
o o
4 S -
or &= 2,-& =R/ Coser ( Tan e<-Tan 8) dor

g
so &= R/ (x-0©)dec UsinG A SMALL ANGLE APPROXIMATION.
(]

4

Now cr-©:= ch(l’%—f)

s & : ; . &
so &=RK [ (er-=7)dec= RKE* orK =44
3 Ch 9 R@°
2 I_ > o~ ]
Now L= B854/ 168°) -2114& ) +28 | +4t°
E- 76 L (Regv/ |\ Rre* . 3rfg?
S Sl aP i L iR s B
i Ay sk 92(3p2 3582/
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. % is the minimum buckling pressure
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CHAPTER FIVE
SUMMARY AND CONCLUSIONS

This investigation has been concerned with the develop-
ment and evaluation of a new technique for the reliable experimental
determination of critical buckling pressures for shell structures.
The specific types of shell structure on which this technique was
performed were uniformly loaded clamped spherical caps. In
addition, this investigation has attempted to contribute knowledge to
a topic on which the previous works have not been‘ in complete
agreement. The reasons for the discrei)ancies, noted in Table 12,
have not been the purpose of this presentation. It is sufficient to
mention the existence of theée discrepancies, however, in order
to indicate that some of the theories are not applicable in certain
ranges

From a statistical viewpoint, because of the large number
of shells of each shape tested in this study, it is felt tﬁat more
reliance can be placed on these results than on those obtained from
an experimental program where only one shell of each shape is

tested. The experimental results of this investigation indicate a
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reasonably good agreement with previous experimentation on shells
having the same loading and boundary conditions. The theoretical
development showing the best agreement with this investigation is
the von Karman-~Tsien theory4 which, because of this, has been
analyzed in detail.

The buckling action for each of the shells was similar in
all cases. The buckle dimple occurred suddenly at a point about
one-third of the distanée from the edge to the center. When the
pressure was released, this buckle disappeared. When the
pressure was reapplied to the shell, a slightly lower critical
pressure resulted although the buckle occurred at the same point.
When this pressure was increased past the critical value, the
buckle increased in size until a "crinkling' resulted. The occur-
rence of the buckle was more abrupt for shells with a higher rise
above the base plane as compared to the shallower shells. The
pressure-volume data indicates a relationship which is approxi-
ﬁately linear, up to the point of buckling. This was true for all
shapes tested.

For the shapes tested, there was no evidence of any
shallowness effect, a condition which is often assumed. This obser-
vation confirms those of Homewood, Brine and Johnson.27 It is

noted that all shells of each shape behaved in a similar manner in .
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this regard. Jtis possible, however, that the effect of shallowness
would be noticed in the region where the geometric parameter

is smaller than that of the
shallowest shell tested in this investigation.

Shapes II and III resulted in approximately the same value
of the ratio of radius of curvature to thickness. This unplanned
situation occurred because shape Il had a smaller radius of curva-
ture but a larger rise above the base plane than the corresponding
values for shape III. Since shape III was shallower, there was less
thinning out of the material during the forming process . The
result was that the buckling pressure, and hence the loading
parameter p/qecr was
approximately the same despite the fact that the geometric
parameter Z: was different for the two shapes of spherical caps.

Based on this investigation of uniformly loaded clamped
spherical shells, the following conclusions may be made:

1. A reasonable value for the critical buckling pressure
of a shell can be determined experimentally with
confidence for a simple case by testing a sufficient
number of models .

2. An adequate technique for forming many nearly identical

shells can be developed by use of a vacuum former.
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3. The relationship between pressure and volume change
is approximately linear up to the point of buckling.
4, The effect of the shallowness of the shell on the
buckling pressure is insignificant as compared to the
effect of the ratio of radius of curvature divided by
thickness.
5. The von Kariman-Tsien theory appears to give results
which are most consistent with reliable experimental

observations.



APPENDIX A

This section is an alphabetic list of recent publications
which are pertinent to the problem of the buckling of uniformly
loaded clamped spherical caps. None of the theories are developed
in detail, but rather the general approach, limitations, assump-
tions and soiution are discussed. The theory which agrees best
with the experimental results of this paper is thoroughly analyzed

in Chapter Four.

Archer, Robert R. 1

Archer notes that the previous work on buckling of spher- A
ical shells falls into two parts. One part represents the work of
von Karman—Tsien,4 Friedrich55 and others and involves the
buckling pressure determination by minimizing a potential energy
expression with respect to a deflection function. The other part
represents the work of Kaplan-Fung, 19 Simons s 2 and others and
is based on integration of the nonlinear differential equations.

Archer uses the ''classical criterion,' as opposed to the
"energy criterion,! whereby a given state of equilibrium becomes
unstable when there are equilibrium positions infinitesimally near

to that state of equilibrium for the same external load.
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Beginning with the equations for finite deflections of shallow
spherical shells under uniform radial pressure as derived by
Reissner ,14 he puts the equations into a non-dimension form with
new variables; - P/per where pGr is the minimum buckling
pressure for the corresponding complete sphere from the linear
theory, per >-1£— JAj2 and /[= 7
In these expressions a is the radius of curvature, h is the thickness,
m*- 12 (I~ and is one half of the opening angle of the
shell.

The problem then is to obtain the solution of the two dif-
ferential equations in @ and 'f with appropriate boundary
conditions. Archer expands the variables and the pressure into a
power series in terms of W, a perturbation parameter. This leads
to a system of linear differential equations. Use of Bessel functions
and boundary conditions yields the coefficients . The buckling
pressure is determined from 2 p= (2-1' pf by the con-
dition /d W =0

Archer numerically determines the value of p by computing
the expansion coefficients through use of a digital computer. He
then compares his results based on two terms in the perturbation
series with:

a. the theoretical results of Kaplan and Fung *

b. the experiments of Kaplan and Fung?®

94



95

c. the theoretical results of Tsien”
and d. the experiments of Tsien.”
He found no real agreement throughout the range of / although

certain values of p versus / agree with previous work.
Archer accounts for the increased deviation between his
results and previous experimentation as / increases, by the shell
jumping to a nearby buckled state before reaching the buckling
pressure predictated theoretically. The cause of the jumping is
attributed to outside disturbances during testing. The theory allows

for only a continuous load-deflection relation.

Budiansky, B .”*

Budiansky makes the usual assumption of an axisymmetric
buckling for the uniform pressure on a shallow portion of a clamped
spherical shell. He notes the lack of agreement among existing
theories and attributes this , at least in part, to the waviness of
shell distortions, which tend to increase with decreasing shell
thickness .

His approach is to begin with the three equilibrium equa-
tions and use force-distortion relations and a stress function to
simplify the equations. Further development is made through the
use of a shallowness assumption and the boundary conditions. The

shallowness assumption is F=HC . This is the repre-

sentation of the spherical shape by a parabolic curve.
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Budiansky introduces a geometrical parameter Z1 and
non-dimensional variables to obtain two differential equations. The
manipulation of these differential equations is through the use of
operators , the Hankel transformation and Fourier transforms , the
inversion formula, Kelvin functions , and the boundary conditions.
The two integral equations which result are solved numerically by
an iterative procedure, either by regarding the pressure parameter
as prescribed and monotonically increasing or by regarding the
average deflection as specified. Values of per are tabulated for
ranges of A from 3.5 to 13.

Budiansky also develops values for pcr based on initial
imperfections where the shape of the surface with the initial imper-
fection is Zo=H/*=( -fef'-ij where e) - Cl- (0! J and
£ is taken as plus or minus 0.025 and 0.05. The procedure for
the solution is the same as for the initially perfect shell. Values of

er are tabulated for ranges of Z from 4 to 12.

Chien, Wei-Zang* »

Chien assumes a shell with a small curvature and constant
thickness. Using equilibrium equations in spherical polar coordi-
nates, and then making small angle approximations , he classifies
the problem as to a particular type using tensor notation. Chien

then obtains two nonlinear partial differential equations in two
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unknowns . By assuming rotational symmetry, two differential
equations are developed. These equations involve c¢x , the slope
of the meridian line in the strained state and &/o which is the

radial membrane stress.

0 55" ? 5“9 + P°Tu* O

+171-i -i +

In these equations , P° is the sum of the boundaryforces on the

upper and lower surface, the thickness is Zh, N ~R *0

27" R* ji and o0=1" ,,

Chien notes that these equations are the fundamental ones for the
determination of the buckling pressure of a small segment of a
spherical shell.

Neglecting two terms in these equations results in the

equation developed by von Karman and Tsien:

0 dj? + do< _ O r hR2 0 Of ('of2- &7) - P Q R
do* dG o 0 > D

Friedrichs, K. O.*
The purpose of this theory is to examine one ofthe assump-
tionsmade in a previousdevelopment by von KarmanandTsien.

The assumption being that the displacement is vertical, that is it is

parallel to the axis of symmetry.
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By linearizing the probleﬁ, Friedrichs finds the influence
of the vertical deflection as sumption is so strong as to double the
buckling load. The von Karman-Tsien assumption alters the order
of magnitude of the minimum buckling load with respect to the shell
thickness.

Friedrichs purposes a somewhat different procedure for
obtaining the buckling load. He uses a boundary layerv action which
has the advantage of buckling no longer being restricted to only a
segment of the shell. A rotationally symmetric deflection is still
assumed. Friedrichs does not obtain final results, however, and
notes that the correct asymptotic situation for buckled shells is still
unknown.

In discussing the minimum and intermediate buckling loads,
he notes that von Karman and Tsien found stable states of equilibrium
different from zero when the pressure was above a certain minimum
value and below the theoretical buckling pressure. Friedrichs
questions why the shell should leave the stable unbuckled state and

jump to a state with higher potential energy and remain there.

Gjelsvik A. and S. R. Bodner33
Gjelsvek and Bodner develop an energy expression for
both symmetrical and nonsymmetrical snap buckling of uniformly

loaded clamped spherical caps. The difference in the two cases is



the inclusion of more terms in the strain and curvature change
relations of the non-symmetrical situation making the membrane
and bending strain energy expressions more complicated.

The means of obtaining a solution is identical for each case
The total energy expression is obtained in terms of an assumed
deflection function and the resulting expression minimized to yield

the upper buckling load and the equal-cnergy load which corresponds

to the lower buckling load. Theupper buckling pressure is:
P ~w72)2 ["& * (~s '"sr?) |
and the equal energy pressure is p = 2 [~jo o * 1

They also find a minimum value for which buckling can occur of
S22 —10 . In these expressions §- @B , pis the buckling
pressure, E is the modulus of elasticity, R is the radius of curva-
ture, t is the thickness and @ is half the opening angle. The
development implies a restriction of ashallow shell. It is noted
that the upper buckling load increases with the geometric parameter
indicating an unbounded pressure value .

The final equations for the nonsymmetric situation are not

included although it is noted the development is similar.

Grigolyuk, E. 1.4
From the equations of Marguerre on equilibrium of shallow

shells and through a change of variables, polar coordinates ,
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boundary conditions , power series , and Bubnov's method,
Grigolyuk arrives at two nonlinear equations. He assumes

ur =p7-/)2C  Hiv CosnQ) for the deflection function. In
this expression p=r\2 where r is the radius of the base of the
piece middle surface and b is the radius of the parallel circle. The

two equations are: p* = K IMf i Suo fK w” *15 W,2

and O=W, C " 12vv,2 »L3 *L4ivo2 )

In these equations W\~ | V/ = , P sP ,
H H £HH
where w is the middle surface deflection, h is the thickness ,H is

the rise above the base plane, H- R ocj ,and pis the pressure.

27
Homewood, R. H., Brine, A. C., and Johnson, A. E. Jr.

This publication concerns the results of experimental work
on spherical caps. Eight spun shells of hot rolled steel were tested.
The shells were thickest at the center and thinnest at the edge.
Thickness variations were determined by ultrasonic means. Two
types of shells were used with the two radii being 40 inches and 78
inches. The ratio of radius to thickness varied from 160 to 1250.

A shell was considered shallow if the height to base radius ratio was
less than 1/8. However , the authors note that there were no
important differences in buckling characteristics or results which

could be attributed to "non shallow" shells .
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An 0il pressure was applied to the convex surface of the
shell With pressures measured with Bourdon-tube pressure gages
or electronic pressure transducers. Buckling occurred abruptly
and the buckles remained for most shells after removal of the
pressure. Tests on shells returning to the original position caused
buckling to reoccur at the same location and at bapproximately the
same pressure.

For small values of the geometric parameter, the authors
note the deformqtion mode is a single half-wave across the shell
with a maximum defléction at the center. As the value of this
parameter increases slightly, the maximum deflection shifts to
both sides of the center with a slightly reduced center deflection.
The center deflection is reduced considerably in the intermediate
range of the geometric parameter to the point where the deformation
mode is essentially two half-waves across the shell. For the
larger values of j:he parameter, the deformation mode changes to
three half-waves across the shell.

They suggest an asymmetrical buckle pattern is possibly
more critical than the symmetrical one. This may account in part
for the unconservative theoretical results since all the theories are
based on symmetrical buckling. The authors used high speed motion
pictures to show that although the final buckled shapé may be sym-

~metric, the intermediate stages of buckling are antisymmetric.
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In another development, 33 where tests were carried out
at the same laboratory, the authors discuss the relative merits of
plastic as a model material. They point out that the advant;ges are
a low modulus of elasticity and an excellent thickness tolerance in
thin sheets for cellulose nitrate and polyvinyl chloride. The disad-
vantages mentioned are those of creep and sensitivity to temperature
and humidity changes.

. They indicate an uncorrected value of about 400,000 psi for
the modulus of elasticity. However, there was a large scatter which
they could not attribute solely to temperature effects. Poisson's
ratio was found to be 0.35. To account for the effect of creep,
they used a six minute waiting period between application of the load
and taking of strain data.

The authors used 3/16 inch thick sheets of methyl
methnaylate, Plexiglas II-UVA. The shell had a radius of 40 inches 4
and the section had a radius of 16.1 inches. The shells were
formed to a spherical shape from a flat sheet of plastic by the
vacuum snapback method. A considerable thickness variation was

noted with the shells thickest at the edge and thinnest at the center.

von Karman, Theodore and Tsien, Hsue—Shen4

The authors note, even at this early data, a discrepancy

between prediction of the theory and experimental evidence.
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They mention a linear theory for a complete spherical shell

based on the work of Love which is

fer = Et/ft = . 606 Et for 1~ O3
R

They believe there is an essential difference between the
physical process of the buckling of a flat plate and a curved shell
which is not embraced by previous theory.

Consider the load deflection curve for a spherical cap
under external pressure, as shown in Figure 30. The cap starts in
position 1 and assumes position 3 through the action of pressure.
The strain energy is zero in either position but cannot be zero for an
intermediate position. Neglecting bending stiffness, the load deflec-
tion curve is as pictured in Figure 31, or with the edges clamped it
has the lower shape. An anti-symmetrical deformation or initial
irregularities may alter the shape of the curve.

In the test of shells, it is likely the point B is observed
experimentally while it is point A which the theory predicts . This
explains some of the discrepancy. Thus great care must be taken
in the experimental work to accurately determine point A.

To develop a theory, the authors make the following
assumptions:

1. The solid angle of the segment is small.

2. The deflection is rotationally symmetric.

3. The deflection of any element of the shell is parallel

to the axis of rotational symmetry.



FIGURE 30

Spherical Cap



FIGURE 31

Load-Deflection Curves
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4. Poisson's ratio can be neglected.

They develop a relationship for the total energy of the system
and then minimize this to obtain an equilibrium position. Using
boundary conditions and a shallow shell assumption yields a non-
linear second order differential equation. The load deflection curve
is calculated using the Rayleigh-Ritz method after assuming a

deflection function satisfying the boundary conditions. The equation

3 o Frae Ba g t°s In thi i
LSBT K O . In this expression,
£ 5( R “Ri@ " 7R? e’) T A P

0~ is the uniform compressive stress produced by p ( o = F?tR_ ) I8
R is the radius of curvature, d& is the center deflection, t is the
thickness, and @ 1is half the angle of the shell.

This expression is minimized by differentiating it with

respect to 62 . The value of 62 making _E.' a minimum is then

substituted back into the expression yielding:

3 18
CIR e i)

7y 24 /& 2
£ M‘tu 5 C lrsg(t.)

This gives an envelope curve whose maximum is o= .4 9085?f

which is the smallest value, for any peak, through which the load
passes, for the shell to collapse. The minimum value of the load

keeping the shell in a deflected shape is ¢=.2 377%

When the energy expression is modified to include the
strain produced by uniform compression prior to buckling, von
Karman and Tsien find the upper value as o= 1.4606Et while

R
I
the lower one is o =.18258 Et .| For the lower stress 8=3.8218’(Tl;).Z
R
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The authors emphasize that the upper buckling load can be
approached experimentally only if extreme precaution is taken both
in the manufacture of the specimen and in the testing. With the im -
perfections and tolerances in engineering practice, they claim the
buckling load will invariably be very near the lower buckling load.
They also note that it is the lower buckling value which is specified
for design. This is because of their hypothesis that the shell
jumps to the lower buckling value without reaching the classic

buckling load.

Klein, Bertram”" 1%22
Klein uses different parameters in an attempt to reduce
/

the scatter shown by previous theories and experiments . In the
past, plots of K versus R/t have been used. In this, K is the
variable coefficient in the equation K£r lR . E,I,. is the reduced
modulus of elasticity, <‘r= pcr~L is the initial collapse stress,
R is the radius of curvature, h is the rise of the shell above the
base plane, and t is the thickness. Note that for a perfect shell,
K =0.606.

Klein suggests use of an eccentricity parameter as f /

where e is the average maximum initial departure from the mean

radius of the shell. Thus the eccentricity is a function of both
thickness and curvature variations . Plotting JT versus K then

reduces the scatter.
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Murray, F. J. and Wright, Frank W.11

These authors discuss previous theoretical works pointing
out the methods of solving the basic differential equations and the
difficulties with éach approach. They propose a step-by-step
method of. integrating the differential equations. Murray and Wright
eliminate the small angle assumption, do not drop any terms, and
thus claim a higher accuracy. /

The normalized pressure parameter is u = pR/2Et, where
p is the pressure, R is the radius of curvature, t is the thickness,
and E is the modulus of elasticity. Numerical computations are
carried out in complete detail for a clamped spherical cap with
R/t = 362.5. Values are obtained for the upper buckling load and
the minimum buckling load.

The authors discuss the von Karman-Tsien” energy
equations and point out the nonlinear terms which were dropped
cannot truly be neglected.

The upper and minimum buckling loads are explained as
follows: The upper buckling load is the point when buckling occurs
as the pressure increases. As the pressure is decreased and the
shell jumps back to the unbuckled state, the minimum buckling load
is the pressure at which the buckle disappears.

Computing machine limitations make it difficult to determine

values for shells with an opening of greater than 23°.



Murray and Wright show that for the R/t ratio they used,
the von Karman-Tsien minimum buckling load is about half of theirs
They also point out discrepancies between their results and those of
Kaplan and Fung. # They do indicate good agreement with the
results of Keller and Reiss7 for the plot of critical buckling loads,
P versus

The results of Murray and Wright indicate that for B above
0.10, where B =T*~N9 and 9 is one half of the angle opening,
the critical buckling loads are independent of the angle opening.

The authors conclude that the critical buckling loads are
independent of the angle opening of the shell when the angle opening
is greater than the solid angle of the dimple. They also conclude
that the results of the Rayleigh-Ritz solution by von Karman and

Tsien does not satisfy the equations of equilibrium.

Nash, William A. andModeer, James R.M""

Nash and Modeer make two different approximations in
order to develop a theory for the buckling of clamped shallow spher-
ical shells uniformly loaded on the convex side. The first approxi-
mation is the neglect of the second invariant of the middle surface
strains in the expression for the total potential energy. The second
approximation retains only the linear terms of the second invariant

in the same expression.
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"The procedure 1n their development begins with the strain
displacements Which are attributed to Marguerre. The transfor-
mation to polar coordinates yields the expressions for the first and
second invariants. The total potential energy is formulated by
adding the membrane and bending energies and the potential energy
of the pressure.

This energy expression is based on the neglect of the
second invariant. Applying the Euler variational equations to this
expression yields two differential equations in terms of the dis-
placements u and w, the solution of which involves Bessel functions.

The authors show that the load-deflection relations obtained
by the neglect of the second invariant are in good agreement with
results obtained by more established methods.

The development using the second assumption, which
retains only the linear terms in the second invariant, agrees with
the experimentation of Kaplan and Fung. 19

Either of the approxirﬁations is extremely desirable
because they uncouple the governing nonlinear equations, thus
reducing the computing time.

Nash and Modeer point out that the same approximation
has been employed by Reiss utilizing an entirely different approach

to the problem of buckling of shallow spherical caps.
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Reiss , Edward L ,,8,18, 20

Reiss introduces new parameters as ”"~c , the
geometric parameter, and Q:j , the loading parameter.
In these expressions C = } R is the radius of the
shell, the semi-included angle, h is half the thickness , and q

is the uniform pressure. He relates his parameters to those used
by Kaplan and Fung as p - 2 *772 and Q =4CK=

Through the plotting of the results of Kaplan and Fung *#
with these parameters , Reiss uncovers modes of buckling. That is
there is an oscillatory behavior between Gcr and £ with peaks
occurring at transition points. For £ greater than six and less
than twenty, the shell deforms with a single maximum deflection
point at the center. For ( greater than twenty and less than
fifty-five, the shell deforms with a local minimum deflection point
at the center and a local maximum deflection point between the
center and the edge. For greater than fifty-five, the shell
deforms with two local maximum deflection points, one at the
center and the other between the center and the edge.

He notes that with these new parameters there is a greater

correlation between the theoretical and experimental results of

Kaplan and Fung. Reiss also notes the need of further experimental

results , particularly at the transition regions and for large values

of e o
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In a theory written with Greenberg and Keller,o the
authors take the equations used by Chien* 3 and solve them through
power series expansions. They make the assumption of shallow
shells but note a lack of knowledge as to the effect of the assumption
on the nonshallow shell. The assumptions of thin shells and
rotational symmetry are used to simplify the equations.

Differential operators and boundary conditions are
employed as well as new variables Y and ¢K before the variables
are expanded in a power series in © . Recursion formulas are

developed through which a pair of simultaneous equations are solved

for each vi. and cx< for each given P and £ . P is the loading
parameter P and £ is the geometric para-
meter &- K 2Zi . In these expressions k =" f s

h is half the shell thickness , R is the radius of the middle surface,
and * is the semi-angle of the shell opening.

A digital computer technique is developed in order to
generate a solution. Since an iterative procedure is used for each
value of (p by increasing P, in effect an "experimental" test is
performed. For = 11.312, which would be in the middle of the
first buckling mode, the radial deflection peaked at the center and
fell off at the edge. For (P =23.5, the deformations arc similar
to the first mode for low loads. However, at higher loads the

maximum deflection is located somewhere between the center and
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the edge. With p =32, the action is similar to =23.5. At

p =52.2, another transition is observed.

The authors compare a plot of P versus reduced center
deflection for their results with the work of Kaplan and Fung for
various values of the geometric parameter. They note only a fair
agreement for low values , but a better agreement at higher values .
They attribute the difficulty at low values to the increased importance
of initial imperfections in shallow shells and also the difficulty in
measuring the radius properly in shallow shells . They still indicate
the presence of transition points. The lack of theoretical and
experimental agreement is explained as being due to the situation
where a small error in experimental determination of the geometric
parameter leads to a large error in Pcr- They note that in some
cases the numerical results predict greater Pcr than the experi-
ments while in other cases the opposite is true .

In a publication written with Keller, ’vthe authors consider
the pressure deflection curve for a shallow spherical cap as shown
in Figure 32. They point out that for H ~P ~ M , there exists
three possible equilibrium states for each pressure, but only one
state outside the range for each pressure. The various branches are
explained as follows: OU-unbuckled, LN-buckled, UL-unstable .

Pj and Pu are then the lower and upper buckling loads .

They point out previously used methods of solving the



FIGURE 32

Pressure-Deflection Curve
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buckling problem of a clamped spherical cap by using perturbation
methods, power series, and linerizations . Keller and Reiss propose
solving by iterations of a finite difference approximation of the
boundary value problem.

The assumptions of a thin shallow shell as well as small
strains and finite but small deflections are made. The differential
equations are formulated as well as the difference equations .

Results indicate that (0 , the value which separates caps
that can buckle from those that cannot, must lie between six and
eight. They determine and Py for values of the geometric para-
meter up to twenty. The intermediate buckling load Pm is
determined from the point of intersection of the curves of potential
energy versus P for the buckled and unbuckled states.

In a different publication concerning the modes of defor-
mation , Reiss points out that in modes I and III, the curvatures
at the center are positive, while for mode II, the curvature is
negative at the center . Thus there must exist values of the geometric
parameter for which the curvature vanishes.

As to the situation of symmetric or nonsymmetric buckling,
Reiss points out that the results of Kaplan and Fung were nearly all
symmetric which they attributed to large initial symmetric irregu-
larities . In the experimental work of Kloppel and Jungbluth on non-

shallow shells, the buckles formed at the boundary. This they
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attributed to initial stress and thickness variations which were
large near the boundary.

In another theory, ** Reiss's approach is to linearize the
original nonlinear problem. lie develops two linearized problems;
the first called the linear eigenvalue problem is obtained by assuming
the stress is constant and that the total vertical force at a particular
point is equal to the vertical force produced along the edge by the
external pressure. This yields Per= where (f-x *=S?R
and wu*; PN

Problem B, the linear elasticity problem for the bending
of a shallow spherical cap, determines the transitional values of
L . He is able to obtain expressions for Pcr for various ranges
of the geometrical parameter.

Reiss notes agreement with previous work except for the
transitional values being higher than previously observed. He
attributes the discrepancy to the failure to achieve a truly clamped
edge in experimentation and the assumption of a shallow shell. He
then suggests empirical formulas which modify the original expres-

sions for Pcr.

Reissner , Eric * ~ *
Reissner does not specifically solve the buckling problem,

but he has developed general equations which can be applied to
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particular pl;oblefhs., -such as the buckling of clamped spherical caps.
In one development, 15 he begins with the equations of the linear
theory of shallow shells, attributed to Marguerre. By manipulation,
three differential equations are obtained in terms of the displacement
components. Neglectiﬁg the 1_ongi-‘cudinal inertia effect and intro-
.du_cin'g a stress function, Reissner obtains two differential equations
in terms of the stress function and the vertical displacement. He
then analyzes the effect of the inertia terms thro.ugh an order of
magnitude analysis and determines the conditions_ under which the
effect of longitudinal inertia is negligible compared to the effect of
the transverse inertia.

In another theory, 16 he is concerned primarily with vibra-
tions rather than buckling. The original equations are useful,
however.

In a different publication, 17 Reissner develops equations
for symmetrical bending of thin elastic shallow shells.

In an additional development, 14 Reissner obtains equations
of equilibrium for shallow spherical shells as well as relationships
between strain and stress resultants and strain and displacement
quantities. Neglecting transverse shearing forces and introducing
a stress function along with a load potential, he obtains two fourth
order differential equations in terms of stress resultants and

vertical displacements. He then reduces the governing differential
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equations to two independent second order equations . In this paper
he solves the equations for certain particular types of loading and

edge conditions .

Simons , Roger M. "

Simons starts with the differential equations for small
finite deflections of a thin shallow spherical shell of uniform thick-
ness subjected to a uniform normal pressure which Reissner**
developed. Using stress resultants , geometric and load para-
meters , boundary conditions and a change of variables , he manip-
ulates the equations to a more favorable form. The geometric
parameter is yv =m. B. o , and the load parameter is
y=mb 3 .In these expressions m is

Y
R is the base radius, h is the thickness , c¢x is half the opening
angle, and % is the uniform normal pressure. Simons uses a
series form for the new variables and obtains recursion formulas
for the coefficients. To obtain the leading coefficients he expresses
the solution in a closed form in terms of Kelvin functions assuming
the loading parameter is zero. He also develops a method for
making the leading coefficients successively more accurate .

Simons explains the unstable state as being that state of the
smallest inward pressure for which a decrease of pressure is
accompanied by an increase of center deflection. Thus there is an

assumption of symmetric buckling.
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Introducing W, where W = w(o)/h, the ratio of the center
deflection to the thickness, and W is a function of both the load

parameter and the geometric parameter, the buckling criteria

dw

becomes v

= oo . The smallest ¥ satisfying this is the

critical value. Using a power series for W and manipulation,

1> 3Ccq

Simons determines the instability condition as _« il SN
£3 . ~3€,04

That is, instability occurs only if the inequality is satisfied.
Instability cannot occur for a flat plate nor for a shell which is too

shallow. The critical value of ¢, is:

3
i Bonirs {cz [(2cf-9¢cc,) ut-9c.c) -2 [ (cE-30.05) 0300 '}
In these expressions C=2(4-«); C,= -3(13-32); Cz= 9(5-V),
C4=2304(1-V); Cs=576(1-v)
He notes the classical buckling pressure for a complete sphere
is "/l—(4 s

In comparing his results with those of Kaplan and Fung, 19
he notes a lack of agreement which he attributes to his assumption of

¥ and _« both being small. Therefore, his results are valid

only for small values of these parameters.

Thurston, G. A3l
Thurston explains the disagreement with previous results
as being caused by the fact that the solution for the nonlinear prob-

lem must be formulated as a sequence of linear problems. This
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makes it difficult to distinguish between instability in the sequence
of numerical calculations and points of instability of the differential
equations which correspond to the classical buckling theory.

He begins with the equations of Reissner” and introduces

parameters and new variables. The geometric parameter is

rmza®<£ = H and the load parameter is
h n
y. n . In these expressions a is the radius, ex- is
4 Eh4

half the opening angle, h is the thickness, H is the rise above the
base plane, and is the pressure.

The equations are solved by assuming an approximate
solution and then solving for the corrections. By this procedure,
the nonlinear terms can be neglected since they are small as com -
pared to the linear ones . A repeated application through a computer
program leads to the solution.

Both the upper and lower buckling load curves are obtained.
He notes the upper one agrees with s udiansky~ and Weinitschke?
while the lower one agrees with Keller and Reiss. 7 The experiments

of Kaplan and Fung” lie between the two curves .

Tsien, Hsue-Shen"'?

Due to objections raised in a publication by Friedrichs,
Tsien® revises an earlier theory of von Karman and Tsien. *

Starting with the energy expression for the difference
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between the sum of the additional strain energies of extension and
bending and the virtual work of the external pressure, assuming a
radial displacement function and minimizing the energy function,
Tsien obtains a minimum value of the buckling stress when the
amplitude of the buckle is small.

He notes the volume change due to an incompressible fluid
pressure in a closed chamber is Y £ £(zf-/i§ sC

In this expression v is the volume change per unit area of shell

surface, Z' is the ratio of the area of a hemisphere with radius R

to the area of a spherical segment; Z* jlco6a )~ ~~ ~ and
£ - fR when the radial displacement is defined as

24 2
n f or f is the ratio of the maximum radial

displacement at the center of the buckle to the radius of the shell.
Using the condition that the unbuckled and buckled equilib-
rium states have the same strain energy and the same volume
change, Tsien obtains a curve of initial buckling stress and final
buckling stress versus — . This curve shows the failing stress
parameter actually decreases with increasing values of R/t
if Z remains constant.
He notes results of tests at California Institute of Technology,
using water pressure on a clamped spherical cap where 0= 17°4S

show agreement with his curves .

If a shell segment is loaded by fluid pressure when the fluid
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is drawn from a large reservoir with a free surface, the small
change of volume during buckling will not appreciably alter the fluid
level in the reservoir . This hypothesis of Tsien leads to a different

buckling stress parameter which is constant:
(*JE =\IZZil2r

In another theory, 12 Tsien presents an explanation of the
strain energy versus deflection curve, Figure 33. Through this
study a lower buckling load is observed. If a typical curve is
considered, branches OC and AD correspond to stable equilibrium
configurations and branch DC corresponds to an unstable configur-
ation. Point B is seen to be a transition point from stable to
unstable equilibrium.

Tsien states that previous work indicated that the load
corresponding to point A was the lower buckling load. The energy
represented by the vertical distance from A to the curve DC is the
minimum external excitation required to cause buckling at point A.
However, if the external excitation is large, buckling can occur at
B' and the minimum external excitation required is the vertical
distance from B'to B. This amount of energy is absorbed by the

structure during buckling. Therefore, the lower buckling load is

the load corresponding to point B 1.
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FIGURE 33

Strain Energy versus Deflection Coordinate
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von Willich, Gideon P. R. "

von Willich makes assumptions regarding material proper-
ties that are of the usual type: homogeneous, isotropic and linearly
elastic with the same modulus of elasticity in tension as in com -
pression. The shell is assumed to have a constant thickness and
this thickness is small. Further, he assumes that the deflections
arc symmetric about the axis and that the shell is shallow. In
addition, the Euler-Bernoulli hypothesis is adopted, that is,
normals to the middle surface before deformation remain normal
after deformation and are inextensional.

Based upon these limitations, von Willich derives the energy
equations for bending of the middle surface, extension of the middle
surface and the potential energy of the applied pressure. He then
assumes a deflected shape with the energy expression containing
unknown parameters. An application of the principle of minimum
potential energy yields these parameters.

Throughout the development, von Willich uses the para-
bolic equation Z = rZ) to define the surface of the shell.

von Willich determines critical values only for small values

of the geometric parameter.

Weinitschke , Hubertus9,10,23

Weinitschke lists the following simplifying assumptions:



a. Euler-Bernoulli hypothesis

b. Deformations are rotationally symmetric

c. Tangential displacements of the middle surface are
small compared with normal displacements

d. The radius of curvature is large compared to the
shell length making the shells shallow

e. Uniform normal pressure isthe only load

f. The thickness is uniform

Weinitschke uses the equations developed by Reissncr #

with dimensionless variables. The geometric parameter is

/A 2m2H - mzac*'1 , and the load parameter is
h h
y=mn_-5e p . In these expressions , a is the radius of

curvature , o< is the semiangle opening, h is the thickness , H is
the riseof the shell from the base plane, mp= [\2(I-LyP)] p ,
and €& is the uniform normal pressure. He also uses a parameter
p where p= (y/ = . Q is the buckling load of a complete
spherical shell under uniform pressure given by the linear theory.
Introducing W where W ( "*)= , the normal deflec-

tion at the apex divided by the thickness, the buckling criteria is

125

=0 and Yc is a relative maximum of the function Y(W7.

JLV

He discusses the solution of the problem through use of
power series with an iteration procedure applicable to a digital

computer .
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Weinitschke indicates agreement between his work and all
previous theoretical results for low values of the geometric para-
meter. He notes a lack of agreement with experimental results and
indicates the irregularities in shape and fhickness account for the
discrepancy. He is not able to account for these irregularities
always producing lower buckling loads, however. HHe mentions the
pos sibility of an instability associated with nonsymmetrical buc.kling
or a wrinkling.

A previous developrnent23 notes the purpose being to apply
the power series method used by Simons? for shallow shells., This
paper uses a much smaller range of the geometric parameter.

In another previous publication, 10 Weinitschke comments
on the discussion of apparent scattering in test data for the critical
load. He notes that Klein21 attributes the scatter fo initial specimen
irregularities and Reisszo interprets the scatter on the basis of
sudden changes of the shape of the normal deflection of the shell.
That is that there is an oscillation of Py the dimensionless
buckling load, with peaks at the transition values. Weinitschke
presents results which support Klein.

Budiansky and Weinitschke?® have written a publication

which shows their stability curves to be in agreement despite the
differences in their independent theories. A lack of agreement with

the experimelntal results of Kaplan and ]F‘ung19 is mentioned. They
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indicate the need for a theoretical analysis assuming unsymmetrical

buckling and unsymmetrical imperfections.



APPENDIX B

This section includes the test of an axial specimen with

longitudinal and lateral strain gages in order to determine the mod-

ulus of elasticity and Poisson's ratio for the material.

Gage - A7

Gage Factor - 1.99
Transverse Sensitivity - -0.01

LOAD  STRESS

pounds psi 1ongitud_ié1a1

x 10

5Q 163. 12-1722
60 196 1841
70 228 1956 |

| 80 261 14- 72
90 294 192
100 326 311
80 261 72
70 228 12-1956
60 196 1840
50 163 1724
60 196 1840 -
80 261 14- 76

AXIAL TEST DATA

Width - 0.976 in.

Thickness - 0.031 in.
Area - 0.03065 in.?2

GAGE READINGS
late rag).
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x 10

10-767
761
756
751
745
739
750
757
761
766
761

752

STRAINS
longitq?&nal 1ater?é
x 10 x 10
0 0
119 -6
234 -11
350 -16
470 -22
589 -28
352 -17
234 -10
118 -6
2 -1
118 -6
354 -12 -



LOAD STRESS GAGE READINGS
pounds psi 1ongitudié1a1 lateral
- -6
x 10 x 10
100 326 316 739
120 457 879 713
140 522 1265 gage fail
176 specimen failed
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STRAINS
1ongitudiéla1 lateral
x 107 x 107"
594 -28
1157 -54

ed 1543

A linear relationship exists between load and strain up

to about 90 pounds of load.

Modulus of elasticity E = 294-196
(470-119) x 10”

Poisson's ratio = -(-22-0) = 0.47
470

= 2.79 x 10° psi



APPENDIX C

This section contains the results of tests run on the
vacuum former to develop the best forming technique. The various
techniques are discussed in Chapter Three. The following data
sheets consist of the thickness and radius of curvature measure-
ments at each of the grid points as well as the values of standard
deviation of thickness and radius of curvature. Actually the radius
of curvature measurements are gage readings of the outer surface
of the shell which can be converted to the radius of curvature of

-

the middle surface of the shell by the formula R = g/2 +_1_-1:/2,
8g
.where R is the radius of curvature of the middle surface, g is the

gage reading and t is the thickness of the shell at that point.

Variable settings are included on each data sheet.

130
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FORMING TECHNIQUE DATA SHEET

TEST: 1 : ’ CYCLE TIME: 100 Sec

PER CENT ON: 75% ’ DISTANCE OF FORM FROM
PLATFORM: 6.3 in

VACUUM TIME: Abt 3 Sec OTHER COMMENTS: Holes in

SET TIME: Abt 10 Sec : plate too small. Plexiglass
) plate unsatisfactory. Shell

MATERIAL SHEET: 1 reheated and reformed
_ ' ) adjusting frame height.

Wood 3/4'" below chamber.

Average Thickness: .025 in
Average Curvature: .035 in
Thickness Standard Deviation: .0025 in
Curvature Standard Deviation: .0025 in

POINT THICKNESS CURVATURE
in x 10-3 inx 10-3
1 27 24
2 25 ' . 36
3 28 36
4 28 ' 33
5 28 35
6 28 36
7 29 _ 36
8 26 ‘ 36
9 26 37
10 25 ' 35
11 23 37
12 25 36
13 26 35
14 26 36
15 26 35
16 25 35
17 25 35
18 24 37
19 20 35
20 19 32
21 16 35
22 24 35
23 24 35
24 27 36

48]
w

20 35
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FORMING TECHNIQUE DATA SHEET

TEST: 2 CYCLE TIME: 100 Sec

PER CENT ON: 75% DISTANCE OF FORM FROM
' PLATFORM: 6 in
VACUUM TIME: Abt 3 Sec
OTHER COMMENTS: Material
SET TIME: Abt 10 Sec not hot enough.

MATERIAL SHEET: 1

Average Thickness: .022 in.
Average Curvature: .035 in.
Thickness Standard Deviation: .0042 in.
Curvature Standard Deviation: .0018 in.

POINT THICKNESS CURVATURE
in x 10-3 in x 10-92
1 27 27
2 27 37
3 28 37
4 28 36
5 28 35
6 28 36
7 27 35
8 26 36
9 27 35
10 22 36
11 21 36
12 23 35
13 23 34
14 22 35
15 22 35
16 21 34
17 21 34
18 19 36
19 17 35
20 18 34
21 17 35
22 17 35
23 17 34
24 17 35

oo
31

17 35
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FORMING TECHNIQUE DATA SHEET

TEST: 3 CYCLE TIME: 80 Sec

PER CENT ON: 75% DISTANCE OF FORM FROM
' PLATFORM: 6 in
VACUUM TIME: Abt 3 Sec
OTHER COMMENTS: Plastic
SET TIME: Abt 10 Sec too hot.

MATERIAL SHEET: 1

Average Thickness: .021 in
Average Curvature: .034 in
Thickness Standard Deviation: .0059 in
Curvature Standard Deviation: .0026 in

POINT THICKNESS CURVATURE
in x 10-3 in x 103
1 29 27
2 .29 38
3 26 35
4 26 35
5 27 36
6 26 37
7 28 36
8 28 36
9 29 35
10 23 37
11 22 36
12 23 35
13- 21 34
14 18 33
15 ' 19 33
16 24 35
17 A 25 36
18 14 34
19 17 34
20 12 31
21 11 30
22 14 : 31
23 15 31
24 15 ' 37

25 : , 13 31
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FORMING TECHNIQUE DATA SHEET

TEST: 4 CYCLE TIME: 40 Sec

PER CENT ON: 50% DISTANCE OF FORM FROM
PLATFORM: 6 in
VACUUM TIME: Abt 5 Sec
OTHER COMMENTS: Not hot
SET TIME: Abt 15 Sec enough.

MATERIAL SHEET: 1

Average Thickness: .024 in
Average Curvature: .035 in
Thickness Standard Deviation: .0041 in
Curvature Standard Deviation: .0018 in

POINT THICKNESS CURVATURE

inx 10-3 inx 10-3
1 30 27
2 28 35
3 29 36
4 29 35
5 . 29 35
6 29 35
7 29 36
8 29 36
9 28 36
10 24 : 34
11 23 35
12 24 34
13 , 24 35
14 24 35
15 23 35
16 22 34
17 22 . 35
18 18 35
19 19 35
20 20 35
21 20 35
22 19 34
23 20 37
24 19 34

25 19 36
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FORMING TECHNIQUE DATA SHEET
TEST: 5 ‘ CYCLE TIME: 120 Sec

- PER CENT ON: 50% DISTANCE OF FORM FROM
PLATFORM: 6 in
VACUUM TIME: Abt 5 Sec
‘ OTHER COMMENTS: Too hot,
SET TIME: Abt 15 Sec holes on edge.

MATERIAL SHEET: 1

Average Thickness: .024 in
Average Curvature: .035 in
Thickness Standard Deviation: .0043 in
Curvature Standard Deviation: .0018 in

POINT THICKNESS CURVATURE
inx 109 in x 10-3
1 30 28
2 29 36
3 29 36
4 29 36
5 29 36
6 . 28 36
7 28 35
8 30 : 35
9 29 35
10 24 35
11 23 34
12 22 34
13 22 34
14 22 36
15 24 36
16 25 , 36
17 25 37
18 20 35
19 20 34
20 19 35
21 18 36
22 18 ' 36
23 19 36
24 18 38

25 ' 18 36
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FORMING TECHNIQUE DATA SHEET

TEST: 6 CYCLE TIME: 60 Sec

PER CENT ON: 50% DISTANCE OF FORM FROM
PLATFORM: 6 in
VACUUM TIME: Abt 5 Sec
OTHER COMMENTS: Not a
SET TIME: Abt 15 Sec sharp edge.

MATERIAL SHEET: 1

Average Thickness: .023 in
Average Curvature: .035 in
Thickness Standard Deviation: .0043 in
Curvature Standard Deviation: .0020 in

POINT THICKNESS CURVATURE
inx 10-3 in x 10-3
1 29 27
2 28 35
3 28 36
4 28 37
5 28 38
6 28 37
7 27 37
8 29 36
9 27 36
10 23 36
11 22 35
12 21 34
13 22 35
14 22 36
15 A 23 35
16 24 36
17 23 34
18 18 38
19 18 35
20 18 36
21 18 35
22 18 34
23 17 35
24 17 35

25 18 35
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FORMING TECHNIQUE DATA SHEET

TEST: 7 CYCLE TIME: 30 Sec

PER CENT ON: 85% DISTANCE OF FORM FROM

PLATFORM: 6 in
VACUUM TIME: Abt 5 Sec :
OTHER COMMENTS: Not a
SET TIME: Abt 15 Sec sharp edge.

MATERIAL SHEET: 1

Average Thickness: .023 in
Average Curvature: .035 in
Thickness Standard Deviation: .0043 in
Curvature Standard Deviation: .0018 in

POINT THICKNESS CURVATURE
in x 109 in x 10-5
1 29 28
2 28 36
3 28 36
4 28 36
5 28 36
6 27 36
7 27 37
8 27 37
9 28 37
10 23 35
11 24 : 35
12 24 36
13 23 34
14 22 35
i5 21 34
16 21 34
17 22 34
18 18 35
19 18 35
20 18 35
21 17 36
22 17 36
23 17 34
24 18 33

18 ‘ 36

[n%]
(o)}
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FORMING TECHNIQUE DATA SHEET

TEST: 8 CYCLE TIME: 80 Sec

PER CENT ON: 50% DISTANCE OF FORM FROM
PLATFORM: 6 in
VACUUM TIME: Abt 5 Sec
OTHER COMMENTS: Too hot,
SET TIME: Abt 15 Sec holes on edge.

MATERIAL SHEET: 1

Average Thickness: .023 in
Average Curvature: .035 in
Thickness Standard Deviation: .0047 in
Curvature Standard Deviation: .0019 in

POINT THICKNESS CURVATURE
1 29 | 27
2 29 36
3 29 37
4 28 35
5 29 36
6 30 37
7 29 36
8 28 37
9 29 ‘ 37

10 24 36
11 23 36
12 | 23 - 34
13 o 24 34
14 23 35
15 23 35
16 ' 22 . 34
17 23 35
18 18 36
19 17 35
20 18 35
21 - 19 35
22 17 35
23 17 35
24 17 34

25 18 37
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FORMING TECHNIQUE DATA SHEET

TEST: 9 ' CYCLE TIME: 30 Sec

PER CENT ON: 35% DISTANCE OF FORM FROM
PLATFORM: 6 in
VACUUM TIME: Abt 5 Sec
OTHER COMMENTS: Edges
SET TIME: Abt 15 Sec not sharp.

MATERIAIL SHEET: 1

Average Thickness: .025 in
Average Curvature: .035 in
Thickness Standard Deviation: .0039 in
Curvature Standard Deviation: .0019 in

POINT THICKNESS CURVATURE
in x 10=3 in x 10~3
1 31 27
2 30 35
3 30 35
4 29 36
5 30 : 36
6 29 35
7 29 36
8 29 35
9 29 36
10 24 35
11 25 36
12 24 '35
13 24 : 35
14 24 35
15 24 34
16 24 34
17 24 35
18 20 38
19 20 36
20 20 37
21 20 37
22 21 35
23 20 34
24 20 ' 35

25 21 35



TEST: 10

PER CENT ON:

FORMING TECHNIQUE DATA SHEET

CYCLE TIME:

DISTANCE OF FORM FROM

PLATFORM:

VACUUM TIME:

SET TIME:
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‘OTHER COMMENTS: Unformed
flat disk. ‘

MATERIAL SHEET: 2

POINT

O W00 U W e

Average Thickness: .0314 in
Average Curvature:

Thickness Standard Deviation:
Curvature Standard Deviation:

THICKNESS
inx 10-3

32
32
32
31
31
31
31
32
32
32
32
31
31
31
32
32
31
31
32
31
31
31
31
31
31

.0005 in

CURVATURE

in x 10-2

Not Measured

"
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FORMING TECHNIQUE DATA SHEET

TEST: 11 CYCLE TIME: 30 Sec

PER CENT ON: 40% DISTANCE OF FORM FROM
PLATFORM: 6 in
VACUUM TIME: Abt 5 Sec
, OTHER COMMENTS: Rim added,
SET TIME: Abt 10 Sec ) plaster added to top, not
enough vacuum.
MATERIAL SHEET: 2

Average Thickness: .025 in
Average Curvature: ,033 in
Thickness Standard Deviation: .0045 in
Curvature Standard Deviation: .0032 in

POINT ' THICKNESS CURVATURE
in x 10-9 in x 10=3
1 31 . 33
2 29 , 26
3 31 30
4 29 32
5 26 33
6 28 ’ 28
7 29 26
8 29 31
9 29 27
10 24 36
11 24 34
12 23 35
13 23 34
14 , 25 35
15 25 36
16 26 36
17 25 35
18 19 36
19 ' 20 _ 34
20 19 36
21 18 34
22 18 36
23 19 ‘ . 34
24 18 34

25 : 18 35
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FORMING TECHNIQUE DATA SHEET

TEST: 12 CYCLE TIME: 30 Sec

PER CENT ON: 30% DISTANCE OF FORM FROM
PLATFORM: 6 in
VACUUM TIME: Abt 5 Sec
OTHER COMMENTS: Holes in
SET TIME: Abt 10 Sec plate made larger, edge
‘ did not hold. ’
MATERIAL SHEET: 2

Average Thickness: .023 in

Average Curvature:

Thickness Standard Deviation: .0040 in
Curvature Standard Deviation:

POINT  THICKNESS CURVATURE

in x 10-3
1 30 Not Measured
2 28 "
3 26 "
4 27 : "
5 28 "
6 28 "
7 27 "
8 27 "
9 27 . 1§
10 24 "
11 24 i
12 23 "
13 25 "
14 22 "
15 23 "
16 24 "
17 25 "
18 ' 17 "
19 19 1"
20 19 "
21 18 " "
22 18 "
23 19 "
24 18 "

25 18 "
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FORMING TECHNIQUE DATA SHEET

TEST: 13 ' CYCLE TIME: 80 Sec

PER CENT ON: 50% DISTANCE OF FORM FROM
PLATFORM: 5.75 in
VACUUM TIME: Abt b Sec
OTHER COMMENTS: This was
SET TIME: Abt 10 Sec : reheated and developed a
hole in the edge.
MATERIAL SHEET: 2 :

Average Thickness: .024 in
Average Curvature: .033 in
Thickness Standard Deviation: .0035 in
Curvature Standard Deviation: .0026 in

POINT THICKNESS CURVATURE
: inx 1072 inx 10-°
1 27 32
2 28 30
3 29 32
4 28 30
5 29 30
6 28 30
7 28 30
8 28 29
9 29 29
10 24 35
11 26 37
12 23 35
13 23 34
14 23 _ 34
15 24 34
16 . 25 35
17 24 35
18 20 36
19 20 : 36
20 19 36
21 20 35
22 20 34
23 20 35
24 20 36

25 . 20 36



144

FORMING TECHNIQUE DATA SHEET
TEST: 14 CYCLE TIME: 40 Sec

PER CENT ON: 40% DISTANCE OF FORM FROM
PLATFORM: 6.25in
VACUUM TIME: Abt 5 Sec
OTHER COMMENTS: Vacuum
SET TIME: Abt 10 Sec applied quickly. Still not
a sharp edge.
MATERIAL SHEET: 2

Average Thickness: .023 in
Average Curvature: .032 in
Thickness Standard Deviation: .0042 in
Curvature Standard Deviation: .0028 in

POINT THICKNESS CURVATURE
inx 10-3 inx 10-2
1 29 32
2 27 27
3 27 26
4 26 29
5 26 28
6 28 28
7 28 ~ 29
8 28 30
9 28 31
10 23 34
11 24 34
12 24 34
13 24 34
14 24 34
15 23 34
16 23 33
17 22 33
18 18 35
19 17 34
20 17 . 34
21 17 34
22 Co 16 36
23 ' 17 35
24 » 18 34

25 18 34
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FORMING TECHNIQUE DATA SHEET
TEST: 15 CYCLE TIME: 40 Sec

PER CENT ON: 40% DISTANCE OF FORM FROM
PLATFORM: 6.3 in
VACUUM TIME: Abt 5 Sec
OTHER COMMENTS: Hump at
SET TIME: Abt 10 Sec top sanded, not a sharp
edge.
MATERIAL SHEET: 2

Average Thickness: .023 in
Average Curvature: .033 in
Thickness Standard Deviation: .0048 in
Curvature Standard Deviation: .0032 in

POINT THICKNESS CURVATURE
inx 10-9 inx 10-23
1 29 34
2 29 35
3 28 35
4 29 28
5 28 25
6 28 24
7 28 - 27
8 29 35
9 28 35
10 22 34
11 24 35
12 24 . 34
13 24 35
14 24 35
15 23 35
16 24 34
17 23 33
18 18 34
19 17 33
20 17 34
21 17 33
22 17 . 34
23 16 35
24 17 35

25 17 34
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FORMING TECHNIQUE DATA SHEET

TEST: 16 CYCLE TIME: 80 Sec

PER CENT ON: 40% DISTANCE OF FORM FROM
PLATFORM: 5.32 in
VACUUM TIME: Abt 5 Sec
OTHER COMMENTS: Silicone

SET TIME: Abt 10 Sec helped a little in release; it
. was reheated since first
MATERIAL SHEET: 2 forming was not a sharp edge.

Average Thickness: .025 in
Average Curvature: .033 in
Thickness Standard Deviation: .0028 in
Curvature Standard Deviation: .0030 in

POINT THICKNESS CURVATURE
inx 10-2 in x 10-3
1 28 32
2 28 33
3 28 ) 26
4 27 26
5 28 26
6 29 33
7 29 35
8 29 36
9 29 35
10 25 34
11 26 34
12 26 35
13 26 35
14 24 35
15 24 34
16 24 33
17 24 34
18 22 34
19 22 33
20 22 35
21 22 34
22 21 36
23 22 36
24 22 36

22 35

o~
o
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FORMING TECHNIQUE DATA SHEET

TEST: 17-25 ~ CYCLE TIME: Reheated 240 Sec ' *

PER CENT ON: 30% DISTANCE OF FORM FROM
PLATFORM: 6.25

VACUUM TIME: 5 Sec :

: OTHER COMMENTS: Still not

SET TIME: Abt 15 Sec a sharp edge. '

'MATERIAL SHEET: 2
Average Thickness: .026 in

Average Curvature: .034 in
Thickness Standard Deviation: .0043 in

Curvature Standard Deviation: .0016 in
POINT THICKNESS CURVATURE
' in x 10-3 in x 10=23

1 32 27
2 30 34
3 31 34
4 30 33
5 30 35
6 30 35
7 30 35
8 30 35
9 ’ 30 : 35
10 25 33
11 26 34
12 28 35
13 26 34
14 26 33
15 25 34
16 24 34
17 25 34
18 21 34
19 19 33
20 19 33
21 21 33
22 20 34
23 20 33
24 : 20 34

25 21 34
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FORMING TECHNIQUE DATA SHEET

TEST: 26-28 CYCLE TIME: 60 Sec

PER CENT ON: 60% DISTANCE OF FORM FROM
PLATFORM: 5.6 in

VACUUM TIME: Abt 5 Sec
OTHER COMMENTS: Reheated, -

SET TIME: Abt 10 Sec changing amount of heat on
and plate height. Holes de-
MATERIAL SHEET: 2 veloped on edge.

Average Thickness: .027 in
Average Curvature: .035 in
Thickness Standard Deviation: .0027 in
Curvature Standard Deviation: .0014 in

POINT THICKNESS CURVATURE
in x 10-3 in x 10-3
1 30 32
2 29 36
3 30 37
4 30 ' 37
5 30 37
6 29 37
7 30 35
8 30 , 36
9 _ 29 35
10 25 35
11 24 34
12 22 34
13 24 34
14 26 34
15 25 36
16 , 25 35
17 25 ' 36
18
19
20
21
22
23
24
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FORMING TECHNIQUE DATA SHEET

TEST: 29 CYCLE TIME: 40 Sec

PER CENT ON: 60% DISTANCE OF FORM FROM
PLATFORM: 5.6 in
VACUUM TIME: Abt 5 Sec ’
OTHER COMMENTS: Hole on
SET TIME: Abt 10 Sec edge but forming complete.

MATERIAL SHEET: 2

Average Thickness: .026 in
Average Curvature: .035 in
Thickness Standard Deviation: .0042 in
Curvature Standard Deviation: .0008 in

POINT THICKNESS CURVATURE
inx 10-3 in x 10-°
1 30 33
2 30 35
3 29 36
4 30 36
5 30 36
6 30 ' 36
7 30 35
8 31 35
9 30 35
10 25 34
11 24 35
12 23 35
13 24 34
14 26 34
15 25 34
16 26 35
17 26 34
18 21 36
19 21 35
20 19 36
21 20 35
22 20 35
23 21 35
24 20 34

25 20 34
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FORMING TECHNIQUE DATA SHEET

TEST: 30-31 ‘ CYCLE TIME: 60 Sec

PER CENT ON: 60% DISTANCE OF FORM FROM
PLATFORM: 5.8 in
VACUUM TIME: Abt 5 Sec
OTHER COMMENTS: Frame

SET TIME: Abt 10 Sec: moved on #30 so reheated.
Edge holes caused incom-
MATERIAL SHEET: 2 plete forming.

Average Thickness: .027 in
Average Curvature: .035 in
Thickness Standard Deviation: .0030 in
Curvature Standard Deviation: .0009 in

POINT THICKNESS CURVATURE
in x 10-3 in x 10-3

1 30 35
2 29 " 36
3 30 37
4 30 ' 36
5 29 36
6 30 37
7 28 36
8 29 36
9 29 35

10 . 24 35

11 23 35

12 23 35

13 24 34

14 24 35

15 23 35

16 24 , 34

17 23 35

18

19

20

21

22

23

24
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FORMING TECHNIQUE DATA SHEET

TEST: 32-33 CYCLE TIME: 60 Sec

PER CENT ON: 50% DISTANCE OF FORM FROM
PLATFORM: 6 in

VACUUM TIME: Abt 5 Sec
OTHER COMMENTS: #32 re-

SET TIME: Abt 10 Sec heated with plate raised.
_ Holes on edge of #33 caused
MATERIAL SHEET: 2 incomplete forming.

Average Thickness: .027 in
Average Curvature: .035 in
Thickness Standard Deviation: .0027 in
Curvature Standard Deviation: .0013 in

POINT THICKNESS CURVATURE
in x 10-3 in x 10=2

1 30 , 33
2 29 36
3 29 ' 36
4 29 36
5 29 36
6 30 35
7 29 38
8 28 37
9 29 37

10 24 35

11 25 34

12 25 34

13 24 36

14 23 35

15 24 35

16 23 36

17 23 34

18 -

19

20

21

22

23

24
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FORMING TECHNIQUE DATA SHEET

TEST: 34 CYCLE TIME: 40 Sec

PER CENT ON: 50% DISTANCE OF FORM FROM
PLATFORM: 6 in
VACUUM TIME: Abt 5 Sec
OTHER COMMENTS: #16
SET TIME: Abt 10 Sec reheated, holes in edge.

MATERIAL SHEET: 2

Average Thickness: .024 in
Average Curvature: .036 in
Thickness Standard Deviation: .0031 in
Curvature Standard Deviation: .0015 in

POINT THICKNESS CURVATURE
inx 10-9 inx 10-95
1 28 32
2 27 36
.3 28 36
4 29 36
5 29 : 36
6 28 36
7 28 37
8 29 37
9 28 37
10 23 34
11 23 35
12 24 35
13 24 35
14 24 34 .
15 23 34
16 23 34
17 , 23 34
18 21 36
19 21 37
20 21 37
21 21 36
22 20 34
23 21 38
24 ‘22 36

25 22 37
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FORMING TECHNIQUE DATA SHEET

TEST: 35 CYCLE TIME: 50 Sec

PER CENT ON: 50% ‘ DISTANCE OF FORM FROM
PLATFORM: 6.25 in
VACUUM TIME: Abt 5 Sec
OTHER COMMENTS: #15
SET TIME: Abt 10 Sec reheated.

MATERIAL SHEET: 2

' Average Thickness: .024 in
Average Curvature: .035 in
Thickness Standard Deviation: .0043 in
Curvature Standard Deviation: .0009 in

POINT THICKNESS CURVATURE
in x 10-3 inx 10-3
1 29 35
2 28 37
3 28 35
4 28 36
5 27 35
6 28 35
7 28 36
8 28 37
9 28 37
10 21 36
11 25 36
12 24 35
13 24 35
14 24 36
15 23 35
16 23 , 35
17 22 35
18 20 34
19 19 35
20 18 35
21 18 35
22 18 35
23 19 35
24 19 36

25 18 34
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FORMING TECHNIQUE DATA SHEET
TEST: 36 _ CYCLE TIME: 50 Sec
PER CENT ON: 50% DISTANCE OF FORM FROM

PLLATFORM: 6 in
VACUUM TIME: 5 Sec after ’

plastic drapes OTHER COMMENTS: #14 re-
heated, hump sanded slightly.
SET TIME: Abt 10 Sec Forming looked good until
‘ hole formed causing a
MATERIAL SHEET: 2 rounding at edge.

Average Thickness: .026 in
Average Curvature: .034 in
Thickness Standard Deviation: .0025 in
Curvature Standard Deviation: .0021 in

POINT THICKNESS CURVATURE
in x 10-2 inx 10-2

1 26 27
2 28 35
3 28 34
4 28 33
5 28 34
6 28 36
7 28 : 36
8 28 37
9 28 36
10 23 33
11 24 34
12 24 35

13 24 35
14 23 35
15 22 34
16 22 34
17 22 34
18

19

20

21

22

23

24
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FORMING TECHNIQUE DATA SHEET

TEST: 37 CYCLE TIME: 50 Sec
PER CENT ON: 50% DISTANCE OF FORM FROM

PLATFORM: 6 in
VACUUM TIME: 10 Sec - As

frame comes down OTHER COMMENTS: #11 re-
formed. It was tight
SET TIME: Abt 10 Sec before hole formed.

MATERIAL SHEET: 2

Average Thickness: .025 in
Average Curvature: .035 in
Thickness Standard Deviation: .0041 in
Curvature Standard Deviation: .0011 in

POINT THICKNESS CURVATURE
in x 10-9 inx 1073
1 30 33
2 30 36
3 30 37
4 30 37
5 30 36
6 30 35
7 30 35
8 31 ‘ 37
9 30 ' 36
10 24 34
11 25 35
12 24 35
13 24 34
14 25 35
15 26 36
16 24 35
17 24 34
18 21 36
19 21 37
20 21 36
21 19 35
22 20 : 36
23 21 35
24 20 35

25 20 36
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FORMING TECHNIQUE DATA SHEET

TEST: 38 . CYCLE TIME: 50 Sec
PER CENT ON: 40% DISTANCE OF FORM FROM

PLATFORM: 5.33 in
VACUUM TIME: 5 Sec - After

shell drapes OTHER COMMENTS: #9 re-
heated, hump sanded slightly.
SET TIME: Abt 10 Sec Hole in edge again.

MATERIAL SHEET: 1

Average Thickness: .026 in
Average Curvature: .035 in
Thickness Standard Deviation: .0027 in
Curvature Standard Deviation: .0014 in

POINT THICKNESS CURVATURE
inx 10-2 in x 10-3

1 28 30
2 29 35
3 . 28 36
4 29 36
5 29 36
6 29 36
7 29 36
8 29 35
9 30 35
10 24 35
11 24 35
12 23 35
13 23 34
14 24 : 36
15 24 36
16 23 35
17 25 35
18

19

20

21

22

23

24

48]
w
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FORMING TECHNIQUE DATA SHEET
TEST: 39 |  CYCLE TIME: 50 Sec
PER CENT ON: 40% DISTANCE OF FORM FROM

PLATFORM: 5.33 in
VACUUM TIME: Abt 10 Sec -

As frame comes down OTHER COMMENTS: - #7 re-
: heated. Looked close until
SET TIME: Abt 10 Sec edge hole developed.

MATERIAL SHEET: 1

Average Thickness: .024 in
Ave ragé Curvature: .034 in
Thickness Standard Deviation: .0032 in
Curvature Standard Deviation: .0018 in

POINT THICKNESS CURVATURE
inx 10-2 ' in x 10-3
1 27 28
2 29 . 35
3 28 34
4 28 35
5 28 36
6 28 36
7 28 , 35
8 27 36
9 28 35
10 24 34
11 25 35
12 25 35
13 24 ' 35
14 23 33
15 23 32
16 22 32
17 23 33
18 21 33
19 20 35
20 21 35
21 20 : 36
22 20 ‘ 35
23 20 36
24 20 34

N
U1

21 35



FORMING TECHNIQUE DATA SHEET

TEST: 40
PER CENT ON: 40%

VACUUM TIME: 1 Sec as
frame comes down

SET TIME: Abt 10 Sec

MATERIAL SHEET: 1

Average Thickness:
Average Curvature:
Thickness Standard Deviation:
Curvature Standard Deviation:

CYCLE TIME: 50 Sec

DISTANCE OF FORM FROM
PLATFORM: 5.33in

OTHER COMMENTS: #6 re-
heated, hump sanded

again.

.024 in
.035 in

POINT - THICKNESS
inx 10-3
1 25
2 27
3 28
4 27
5 28
6 28
7 26
8 28
9 26
10 26
11 25
12 25
13 25
14 25
15 26
16 26
17 26
18 20
19 20
20 20
21 20
22 20
23 20
24 20

v
2]

20

.0031 in
.0015 in

CURVATURE
in x 10-2

29
34
36
37
35
35
35
34
33
35
34
34
34
33
35
35
35
35
35
36
35
36
35
34
34

158
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FORMING TECHNIQUE DATA SHEET

TEST: 41 CYCLE TIME: 50 Sec

PER CENT ON: 50% DISTANCE OF FORM FROM
PLATFORM: 6 in
VACUUM TIME: 1 Sec after
it drapes OTHER COMMENTS: #4 re-
heated. Hole in edge.
SET TIME: 10 Sec

MATERIAL SHEET: 1

Average Thickness: .027 in
Average Curvature: .035 in
Thickness Standard Deviation: .0019 in
Curvature Standard Deviation: .0008 in

POINT THICKNESS CURVATURE
inx 10-3 in x 10=2

1 29 37
2 29 36
3 29 : 35
4 28 34
5 27 35
6 29 34
7 28 35
8 29 35
9 29 34
10 25 35
11 24 34
12 25 34
13 25 , 35
14 26 35
15 : 26 35
16 25 36
17 24 35
18 19

19 20

20 20

21 20

22 19

23 19

24 19

25 19



FORMING TECHNIQUE DATA SHEET

TEST: 42
PER CENT ON: 35%

VACUUM TIME: 2 Sec as
frame comes down

SET TIME: Abt 15 Sec

MATERIAL SHEET: 3

Average Thickness:
Average Curvature:

Thickness Standard Deviation:
Curvature Standard Deviation:

CYCLE TIME: 60 Sec

DISTANCE OF FORM FROM

PLATFORM: 5.33in

OTHER COMMENTS: Reheated

.028 in
.035 in

POINT THICKNESS
in x 10-2
1 32
2 31
3 32
4 32
5 33
6 31
7 32
8 32
9 33
10 27
11 28
12 28
13 29
14 29
15 29
16 28
17 27
18 25
19 24
20 25
21 24
22 25
23 25
24 25

25

.0031 in
.0016 in

CURVATURE

inx 10-3

29
36
36
35
36
35
36
36
36
34
35
35
35
35
35
34
33
36
38
35
33
35
35
37
35

160



FORMING TECHNIQUE DATA SHEET

TEST: 43-44
PER CENT ON: 50%

VACUUM TIME: 5 Sec as
frame comes down

SET TIME: Abt 15 Sec

MATERIAL SHEET: 3

Average Thickness:
Average Curvature:

Thickness Standard Deviation:
Curvature Standard Deviation:

CYCLE TIME: 60 Sec

DISTANCE OF FORM FROM

PLATFORM: 5.33in

OTHER COMMENTS: Reheated

.027 in
.035 in

POINT THICKNESS
inx 10-3
1 30
2 31
3 31
4 31
5 32
6 31
7 31
8 30
9 31
10 26
11 26
12 26
13 25
14 27
15 26
16 26
17 26
18 23
19 22
20 23
21 23
22 ) 25
23 24
24 23

25

.0032 in
.0013 in

CURVATURE

inx 10-2

32
36
36
36
36
36
36
36
36
33
33
34
33
34
33
34
34
36
34
35
35
37
36
35
36

161



FORMING TECHNIQUE DATA SHEET

TEST: 45
PER CENT ON: 35%

VACUUM TIME: 5 Sec as
frame comes down

SET TIME: Abt'15 Sec

MATERIAL SHEET: 3

Average Thickness:
Average Curvature:

. Thickness Standard Deviation:

CYCLE TIME: 50 Sec

DISTANCE OF FORM FROM

PLATFORM: 5.33 in

OTHER COMMENTS: Loss of
air due to improper ad-

justment.

.026 in
.034 in

.0036 in

Curvature Standard Deviation:‘ .0019 in

POINT THICKNESS
inx 10-2

1 29
2 30
3 31
4 31
5 30
6 30
7 30
8 32
9 30
10 25
11 24
12 26
13 26
14 27
15 26
16 26
17 25
18 21
19 21
20 21
21 22
22 24
23 23
24 22

22

CURVATURE

in x 10-9

27
36
36
36
35
34
34
35
35
33
32
32
33
34
34
34
33
35
36
35
36
34
33
35
35
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APPENDIX D

This section contains the results of the buckling tests for
each of the shell types. The description of the testing is in
Chapter Three. This section includes the buckling pressure and

volume change for each shell tested.
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BUCKLING TEST DATA SHEET

Shape: 1 Sheet: 5 Rise: 3.51 in.

Shell Buckling Pressure Radius of Curvature Thickness Vol. Change

Number p in psi » R in inches tin in. Vin in.3
1 5.1 3.60 -.023 -
2 5.0 3.41 .023 -
3 4.0 3.50 .022 -
4 5.0 3.41 .024 -
5 3.6 3.70 .023 -
6 4.8 3.70 .023 -
7 4.3 3.60 .024 -
8 3.9 | 3.60 .021 2.5
9 - 3.7 3.60 .020 1.4

10 - ; ; i

11 - - - -



BUCKLING TEST DATA SHEET

Sheet: 6

165

Shape: I Rise: 3.51 in.
| Shell Buckling Pressure Radius of Curvature Thickness Vol. Chanfoe
Number p in psi R in inches t in in. V in in.
1 4.4 3.41 .025 -
2 5.3 3.50 .024 2.8
3 4.7 3.50 .025 2.8
4 5.3 3.50 .024 4.4
5 5.0 3.50 .024 -
f; 5.2 3.50 .025 3.8
7 5.1 3.70 .024 3.3
| 8 5.1 3.50 .026 -
9 4.5 3.50 .025 -
10 5.5 3.70 .025 -

11



Shape: I

Shell

BUCKLING TEST DATA SHEET

Sheet:

7

Rise: 3.51 in.

166

Buckling Pressure Radius of Curvature Thickness Vol. Change

t in in.

Nﬁnnber p in psi R in inches V in in.
1 6.1 3.41 .025 2.0
2 6.2 3.41 .024 2.1
3 6.4 3.50 .025 2.4
4 5.9 3.50 .024 1.7
5 5.3 3.50 . 024 2.6
6 6.6 3.50 .026 3.6
7 3.9 3.50 .025
8 6.0 3.50 %026 4.2
9 5.9 3.50 .024

10 3.9 3.41 .025 3.0
11 4.8 3.50 .026
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BUCKLING TEST DATA SHEET

Shape: I Sheet: 8 Rise: 3.51 in.

Shell Buckling Pressure Radius of Curvature Thickness Vol. Change

Number p in psi R id inches t in in. V in in.
1 6.4 3.50 .024 2.1
2 6.0 3.50 .025 2.0
3 6.4 3.50 .026 2.1
4 5.7 3.41 | .025 -
5 4.5 3.41 .024 1.6
6 6.0 3.50 .025 2.3
7 6.3 3.50 .025 2.0
8 5.2 3.50 .023 3.9
9 . 6.2 3.41 .026 -

10 5.7 3.41 .025 3.1

11 6.4 3.50 .025 4.8



168
BUCKLING TEST DATA SHEET

Shape: 1 Sheet: 9 Rise: 3.51 in.

Shell Buckling Pressure Radius of Curvature Thickness Vol. Change

Number p in psi R in inches tin in. V in in.
1 Leak - - -
2 4.7 3.60 .021 -
3 2.7 . 3.60 .021 1.9
4 3.8 3.60 .021 -
5 3.2 3.60 .021 2.3
6 3.4 . 3.41 .021 2.7
7 3.8 3.60 .021 -
8 3.8 . 3.60 .621 -
9 3.01 3.41 .020 1.4

10 3.4 3.50 021 -

11 4.3 - 3.41 .022 1.8



169
BUCKLING TEST DATA SHEET

Shape: 1I Sheet: 10 Rise: 2.65 in.

Shell Buckling Pressure Radius of Curvature Thickness Vol. Change

Number p in psi R in inches t in in. V in in.3
1 Leak - - -
2 3.4 3.96 .023 -
3 4.1 3.97 .024 -
4 4.5 3.60 . 024 o
5 3.6 3.96 .023 -
6 4.1 : 3.60 .024 2.6
7 4.7 3.97 .024 -
8 4.0 3.96 .023 3.9
9 3.8 3.60 . 024 3.5
10 4.2 3.60 .023 4.9

11 4.0 3.60. .024 -



BUCKLING TEST DATA SHEET

170

Shape: 1I Sheet: 11 Rise: 2.65 in.

Shell Buckling Pressure Radius of Curvature Thickness Vol. Chan%e
Number p in psi R in inches t in in. V in in.
1 4.7 3.97 .026 -

2 4.8 3.97 .025 -
3 5.6 3.60 .025 5.7
4 5.3 3.60 025 5.2
5 5.4 3.60 . 025 3.5
&) 4.4 3.60 .025 4.2
7 5.0 3.97 .026 4.3
8 4.8 .3.60 .026 3.9
9 5.3 3.97 .026 5.6
10 5.1 3.60 .7025‘ 5.8
11 5.0 3.97 .025 -
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BUCKLING TEST DATA SHEET

Shape: 1I Sheet: 12 Rise: 2.65 in.

Shell Buckling Pressure Radius of Curvature Thickness Vol. Change

‘Number p in psi R in inches t in in. V in in.
1 4.3 3}97 .026 - 5.6
2 4.9 3.97 026 4.8
3 5.4 3.60 .026 -
4 5.5 3,60 .025 -
5 4.6 | 3.60 .025 3.1
6 4.4 3.97 .025 3.1
7 4.5 3.60 .025 3.8
8 4.8 | 3.97 026 3.6
9 5.1 3.60 .026 4.2
10 5.1 | 3.97 .026 -

11 Leak - - -



BUCKLING TEST DATA SHEET

172

ge

Shape: III Sheet: 13 Rise: 2.12 in.
Shell  Buckling Pressure Radius of Curvature Thickness Vol. Chan
Number p in psi R in inches tin in. - Vin in.

1 4.6 4,34 .028 3.1

2 4.5 4,34 .028 3.6

3 4.2 4.34 .027 3.5

4 4.1 4.20 .027 4.1

5 4.7 4.34 .028 4.6

6 4.6 4.34 .029 4.0

7 4,2 4,34 .027 4.0

8 4.4 4,20 .028 4.5

9 4.9 4.20 .028 5.5

10 4.8 4.34 .028 4.8

11 5.1 4,34 . 027 4.6
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BUCKLING TEST DATA SHEET

Shape: II Sheet: 14 Rise: 2.12 in.

Shell Buckling Pressure Radius of Curvature Thickness Vol. Change

Number p in psi R in inches t in in. V in in.
1 4.5 4.34 .028 -
2 4.5 4.34 .028 -
3 4.9 4.20 .029 3.6
4 5.4 4.34 . .029 3.6
5 4.3, 4.‘20 .028 3.7
6 5.4 4,20 .029 4:,_6
7 4.9 - 4.20 .028 3.6
8 4.5 . 4.20 .027 3.9
9 4.7 4.20 .028 -

10 4.9 3.94 .029 3.9

11 5.0 3.94 .029 3.8



BUCKLING TEST DATA SHEET
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Shape: III Sheet: 15 Rise: 2.12 in.
Shell Buckling Pressure Radius of Curvature Thickness Vol. Change
Number p in psi R in inches t in in, V in in.
1 4.4 3.94 .027 4.2
2 4.9 4.20 .027 4.1
3 4.3 4.34 .028 4.3
4 4.9 4,20 .028 4.2
5 4.9 4.20 .027 -
6 4.9 4.20 .029 -
7 4.6 4,34 .028 -
8 4.3 3.94 .028 4.4
9 4.5 3.82 .027 4.6
10 4.9 3.94 .027 3.4
’11 4.3 4.34 .028 3.6
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BUCKLING TEST DATA SHEET

Shape: IV Sheet: 16 Rise: 1.53 in.

Shell Buckling Pressure Radius of Curvature Thickness Vol. Charége

Number p in psi R in inches t in in, V in in.
1 3.3 5.46 -.032 3.2
2 Leak - - -
3 3.4 5.46 .032 3.9
4 3.4 5.24 .033 3.3
5 3.2 5.46 .031 3.0
6 3.4 5.46 .032 2.8
7 Leak - | - -
8l Leak - - -
9 3.6 5.24 .031 -

10 3.1 5.46 .030 3.6

11 3.4 5.46 .031 3.7
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BUCKLING TEST DATA SHEET

Shape: IV Sheet: 17 Rise: 1.55 in.

Shell Buckling Pressure Radius of Curvature Thickness Vol. Change

Number p in psi R in inches t in in. V in in.
1 Leak - - -
2 3.3 5.24 .032 4.5
3 3.3 : | 5.24 .031 -
4 3.1 5.46 .032 -
5 3.3 _ ~5.24 .030 3.8
6 : 3.2 5.24 .030 -
7 3.1 5.24 .030 -
8 3.3 _5.24 .030 2.2
9 3.3 5.24 .031 2.2

10 3.2 5.24 .030 -

11 3.3 5.46 .030 3.7



BUCKLING TEST DATA SHEET
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Shape: IV Sheet: 18 Rise: 1.53 in.
Shell © Buckling Pressure Radius of Curvature Thickness Vol. Change
Number p in psi R in inches t in in. V in in.

1 3.5 5.24 .031 2.4

2 3.2 5.24 .031 2.2

3 3.6 5.24 .032 2.4

4 3.6 5.24 .031

5 3.5 5.46 .031 2.1

6 3.2 5.46 .031 2.1

7 3.2 5.24 .031

8 3.3 5.24 .031 200

9 3.4 5.46 .031 2.0

10 3.0 5.46 .031 3.8

11 2.8 5.24 .030 3.5



Shape:

v

BUCKLING TEST DATA SHEET

Sheet: 19

Rise:

0.96 in.

178

Shell Buckling Pressure Radius of Curvature Thickness Vol. Change

Number p in psi R in inches t in in. V in in.
1 1.1 9.64 .031 1.2
2 1.1 9.64 .031 .9
3 1.0 9.64 .030 -
4 1.1 9.64 .031 1.1
5 1.0 9.64 .030 1.1
6 1.0 9.64 .030 .9
7 1.0 9.64 .032 1.0
8 1.1 9.64 .031 1.8
9 1.1 9.64 .030 -
10 1.0 9.64 .031 -

11 1.0 9.64 .033 -



BUCKLING TEST DATA SHEET

179

Shape: V Sheet: 20 Rise: 0.96 in.
Shell Buckling Pressure Radius of Curvature Thickness Vol. Change
Number P in psi R in inches t in in. V in in.

1 1.1 9.64 .031 .9

2 1.1 9.64 031 1.2

3 1.1 9.64 031 .9

4 1.2 9.64 .032 1.0

5 1.1 9.64 .030 1.0

6 1.1 9.64 .032 1.0

7 1.2 9.64 .032 1.4

8 1.1 9.64 .030 -

9 1.1 9.64 .033 -

10 1.1 9.64 .031 1.0

11 1.1 9.64 .032 -9



BUCKLING TEST DATA SHEET
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Shape: V Sheet: 21 Rise: 0.96 in.
Shell Buckling Pressure Radius of Curvature Thickness Vol. Change
Number p in psi R in inches tin in. V in in.
1 1.0 9.64 .033 1.7
2 1.1 9.64 .033 .9
3 1.1 9.64 .033 -9
4 1.1 9.64 .033 .9
5 1.1 é.64 .032 1.0
) 1.2 9.64 .032 .9
7 1.1 9.64 .032 -
8 1.1 9.64 .032 .9
9 1.1 9.64 .032 1.2
10 1.1 9.64 .032 .9
11 Leak - -



APPENDIX E

This section contains the results of the pressure-volume
readings. The data sheets indicate the mercury level in the man-
ometer for a corresponding water level in the watgr chamber for
shell-s where these quantities were recorded. The mercury level
is related to pressure and the water level is related to volume
change. The curves show the pressure-volume relation for each

shape.
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PRESSURE-VOLUME DATA SHEET

Shell Number 5-5

WATER LEVEL MERCURY LEVEL
in inches in inches

.5 0

2.0 7

3.0 1.3
4.0 1.7

5.0 2.3

6.0 2.8

8.0 3.5



PRESSURE-VOLUME DATA SHEET

Shell Number

WATER LEVEL

in inches

10.

11.

12.

12.

W4

5-6

MERCURY LEVEL
in inches

.1
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PRESSURE-VOLUME DATA SHEET

Shell Number 6-6

WATER LEVEL MERCURY LEVEL
in inches in inches

0 L2

1.0 1.2
2.0 2.3
3.0 o 3.3
4.0 4.5
4.9 5.2

Shell Number 6-7

WATER LEVEL MERCURY LEVEL
in inches in inches
0 : L1
1.0 1.5
2.0 2.5
3.0 3.6
4.0 4.9
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PRESSURE-VOLUME DATA SHEET

Shell Number 10-10

WATER LEVEL MERCURY LEVEL
in inches in inches
0 .4
1.0 1.7
2.0 2.6
3.0 2.8
4.0 3.3
5.0 3.6
6.0 4.0
6.3 4.1

Shell Number 10-11

WATER LEVEL ‘ MERCURY LEVEL
in inches in inches

.8 1
1.0 .6
2.0 1.4
3.0 2.1
4.0 2.5
5.0 3.7



PRESSURE-VOLUME DATA SHEET

WATER LEVEL

Shell Number 11-10

in inches
0
1. 1
2.
3.
4.
5.
6.
7. -4,
7.

WATER LEVEL

MERCURY LEVEL
in inches

Shell Number 11-11

.4

.0

MERCURY LEVEL
in inches

w

in inches
0
1.
2. 1
3. 1
4, 2
5.
6.
7.
8.

o O & W & 0

¢ T N N

.4
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PRESSURE-VOLUME DATA SHEET

Shell Number 12-10

WATER LEVEL MERCURY LEVEL
in inches in inches
0 : .2
1.0 .6
2.0 1.1
3.0 1.6
4.0 2.1
5.0 2.6
6.0 3.1
7.0 3.7
8.0 4.3
9.0 4.9
9.6 5.1

Shell Number 13-9

WATER LEVEL - MERCURY LEVEL
in inches in inches
0 .3
1.0 : 1.1
2.0 1.9
3.0 2.7
4.0 3.5
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PRESSURE-VOLUME DATA SHEET

Shell Number 14-9

WATER LEVEL MERCURY LEVEL
in inches in inches

.1 1
1.0 7
2.0 1.5
3.0 2.2
4.0 3.0
5.0 3.7
6.7 4.6

_ Shell Number 15-9

WATER LEVEL MERCURY LEVEL
in inches in inches

0 .2
1.0 1.1
2.0 1.9
3.0 2.7
4.0 3.4
5.0 4.0



PRESSURE-VOLUME DATA SHEET

Shell Number 16-10

WATER LEVEL MERCURY LEVEL -
in inches in inches

0 .2

1.0 1.2

2.0 1.9

3.0 2.6
4.0 2.9

4.6 3.0

Shell Number 16-11

WATER LEVEL MERCURY LEVEL
in inches in inches
0 4
1.0 A 1.4
2.0 2.3
3.0 3.0
4.0 3.3
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PRESSURE-VOLUME DATA SHEET

Shell Number 17-10

WATER LEVEL MERCURY LEVEL
in inches in inches
.3 1
1.0 1.0
2.0 2.0
3.0 2.8
3.8 3.1

Shell Number 17-11

WATER LEVEL MERCURY LEVEL

in inches : in inches
0 .4
1.0 1.3
2.0 2.0
3.0‘ 2.7
4.0 3.2



191
PRESSURE-VOLUME DATA SHEET

Shell Number 18-10

WATER LEVEL MERCURY LEVEL
in inches in inches

0 | 4
1.0 1.0
2.0 1.6
3.0 2,2
4.0 2.7
4.8 2.9

Shell Number 18-11

WATER LEVEL MERCURY LEVEL
in inches in inches
0 .3
1.0 1.0
2.0 1.6
3.0 2.1
4.0 2.5
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FIGURE 34

Pressure-Volume Curves for Shape I
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—20-10
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FIGURE 35

Pressure -Volume Curves for Shape II
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15-9

FIGURE 36

Pres sure-Volume Curves for Shape III
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17- 11

FIGURE 37

Pres sure-Volume Curves for Shape IV
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