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My wonderfile wife Gina deserves most of the credit for this being completed at all.
Thanks babe.



4

Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2. Background and Site Description . . . . . . . . . . . . . 12
2.1. Geography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2. Geology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3. Hydrogeology and previous modeling efforts . . . . . . . . . . . . . . 14
2.4. Conceptual model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5. The Ferron coalbed methane play . . . . . . . . . . . . . . . . . . . . 17
2.6. Injection and extraction system . . . . . . . . . . . . . . . . . . . . . 18
2.7. Observation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1. DIRECT and multi-model approach . . . . . . . . . . . . . . . . . . . 21
3.2. Telescoping model approach . . . . . . . . . . . . . . . . . . . . . . . 22
3.3. Regional flow model . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4. Groundwater residence time simulation . . . . . . . . . . . . . . . . . 29
3.5. Advective transport model . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6. Cost, bias, and uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1. Regional flow model . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2. Groundwater residence time modeling . . . . . . . . . . . . . . . . . . 44
4.3. Advective transport model . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4. Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5. Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6. Uncertainty analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.7. Bias analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1. Typical approach vs DIRECT . . . . . . . . . . . . . . . . . . . . . . 70
5.2. Importance of economic cost functions . . . . . . . . . . . . . . . . . 71
5.3. Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4. Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 73



Table of Contents—Continued

5

Appendix A. Advective Transport Model MATLAB Code . . . . . 75

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



6

List of Figures

Figure 2.1. Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 2.2. Generalized Stratigraphy . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2.3. Generalized Cross-Section of Anna (2003) Conceptual Model . . 15
Figure 2.4. Tree Digram of Alternate Conceptual Models . . . . . . . . . . 16

Figure 3.1. Regional Flow Model Domain . . . . . . . . . . . . . . . . . . . 24
Figure 3.2. Regional Flow Model Cross Section with Zones . . . . . . . . . 26

Figure 4.1. Flow Objective Function Values . . . . . . . . . . . . . . . . . . 40
Figure 4.2. Head Objective Function Values . . . . . . . . . . . . . . . . . 40
Figure 4.3. Mean Flow Magnitude of Subarea . . . . . . . . . . . . . . . . . 41
Figure 4.4. Mean Flow Direction of Subarea . . . . . . . . . . . . . . . . . 42
Figure 4.5. Standard Deviation of Flow Magnitude of Subarea . . . . . . . 43
Figure 4.6. Standard Deviation of Flow Direction of Subarea . . . . . . . . 43
Figure 4.7. Log10 Mean Residence Times in the Middle Model Layer . . . . 44
Figure 4.8. Residence Time Distributions at Six Model Cells . . . . . . . . 47
Figure 4.9. Residence Times at Observation Point A for Models with and

without Flow in Shale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 4.10. Residence Times at Observation Point D for Models with and

without Flow in Shale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 4.11. Likelihood Distributions of Models with and without Flow in Shale 50
Figure 4.12. Advective Transport Paths for Two Designs Under Two Flow

Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 4.13. Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 4.14. Cost Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 4.15. Costs Curves with Notable Design Decisions and Associated Costs 63
Figure 4.16. Contour Plot of the Cost Increase of Ignoring Uncertainty . . . 65
Figure 4.17. Biased and Unbiased Cost Curves with Notable Design Decisions

and Associated Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 4.18. Contour Plot of the Cost Increase of Ignoring Uncertainty . . . 68



7

List of Tables

Table 3.1. Regional Flow Model Parameters and Ranges . . . . . . . . . . . 27
Table 3.2. Residence Time Model Transport Parameters and Ranges . . . . 30
Table 3.3. Drawdown Parameters of Advective Transport Model . . . . . . 32



8

Abstract

Groundwater models are often developed as tools for environmental decision-making.
However, sparse data availability can limit a models effectiveness by confounding ef-
forts to select a single structural representation of a system or to find a unique and
optimal set of model parameters. As a result, estimates of prediction uncertainty
and the value that further data collection may provide can be important results of a
modeling effort. The Discrimination/Inference to Reduce Expected Cost Technique
(DIRECT) is a new method for developing an ensemble of models that collectively
define prediction uncertainty in a manner that supports risk-based decision making
and monitoring network design optimization. We apply aspects of DIRECT to a
modeling investigation of an aquifer system in Central Utah where a major Coalbed
Methane gas field is located and a new approach for stimulating gas production is
being explored. In the first stage of this study we develop an ensemble of regional
MODFLOW models and calculate their relative likelihood using a set of observation
data. These regional results and likelihoods are then transferred to a regional MT3D
residence time model and to a local advective transport model to provide further in-
formation for the gas stimulation design. A cost function is applied to the advective
transport results to assess the relative expected costs of several proposed well field
designs. The set of hydrologic results and associated likelihoods from the ensemble
are combined into cost curves that allow for the selection of designs that minimize
expected costs. These curves were found to be a useful tool for visualizing the ways
that design decisions and hydrologic results interact to generate costs. Furthermore,
these curves reveal different ways in which uncertainty can add to the cost of im-
plementing a design. A final analysis explored the cost added by uncertainty with
varying magnitudes of uncertainty by applying and manipulating synthetic likelihood
distributions to the advective transport results. These results suggest, in a general
way, the value that may be added by reducing uncertainty through data collection.
Overall, the application of DIRECT was found to provide a rich set of information
that is not available when ensemble methods and cost consideration are not included
in a modeling study.
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Chapter 1

Introduction

Groundwater models have become important tools in the fields of planning, envi-

ronmental management, and mining, where they are typically used to predict the

response of a groundwater system to future applied stresses and environmental con-

ditions. These conditions may be a combination of changes in the environment, such

as changes in evapotranspiration or recharge, or human induced stresses, such as in-

creased pumping. Ultimately, the predictions made by groundwater models are used

to help inform the decision making process.

Despite many advances in hydrologic modeling and measurement methods, the

ability of a model to provide useful results for decision making is limited by un-

certainty in model predictions. Structural (or conceptual model) uncertainty, input

data uncertainty, and parameter uncertainty are inherent in any model and transfer

into uncertainty in the predictions made by the model. Structural model uncertainty

arises from the inability to know which of the possible simplified representations of

the system is most accurate. Input data uncertainty arises from the limited precision

of physical quantities that are used as input to the model. Parameter uncertainty

arises from the inability to identify the single set of parameter values that allow the

model to best represent the behavior of the physical system. While the resulting

prediction uncertainty is always present, an understanding of its sources, magnitude,

and the impacts it may have on decision making can help the modeler communicate

model results more meaningfully and assess strategies aimed at reducing uncertainty.

At a minimum, groundwater modelers should make an effort to define their prediction

uncertainties in ways that are most immediately useful for decision makers.

Several different approaches have been proposed for constructing and using models
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under the presence of uncertainty. The Discrimination/Inference to Reduce Expected

Cost Technique (DIRECT ) is a framework for developing an ensemble of models that

collectively define prediction uncertainty in a manner that supports risk-based deci-

sion making and monitoring network design optimization. DIRECT may involve

using both multiple conceptual models and multiple parameter realizations to make

predictions. Risk-based decision making is applied by using each model variation to

predict the costs of different management actions and weighting these costs by the

likelihood of their associated models. This calculation results in an estimate of the

expected cost of each action. By basing the comparison on expected costs (or bene-

fits), competing actions can be assessed in a way that acknowledges the presence of

uncertainty in the hydrologic models. DIRECT can also suggest how additional data

collection can be designed to have the greatest likelihood of reducing the components

of the expected costs that are due to discrepancies in model predictions. That is,

decisions and monitoring network design can be made from a more informed posi-

tion. This study will apply aspects of DIRECT to a real world groundwater modeling

problem, and will include additional hypothetical exercises to explore the utility of

DIRECT.

The major purpose of this study is to investigate hydrologic conditions related to

optimizing coal-bed methane (CBM) production. To serve this end, a groundwater

flow model is developed and explored for the Ferron Sandstone aquifer system in

the Castle Valley of north central Utah. The Ferron Sandstone contains coal deposits

that have been important and heavily developed sources of coal bed methane over the

last two decades. This region has been the subject of several studies including a 2003

study by the USGS (Anna 2003) in which a MODFLOW groundwater flow model was

developed. Annas 2003 model serves as the starting point for this study. However, the

goals of this study differ from Annas and the conceptual model has been modified to

suite these goals. Additional interests of this study are to explore regional residence

time distributions, localized transport dynamics, and the sources and propagation of
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uncertainties and economic costs. These interests are addressed by constructing local-

scale transport models that are informed by the regional groundwater flow model.

This study is well suited to take advantage of many of the capabilities of DIRECT.

First, parameter and conceptual model uncertainty are present and very little data are

available for constraining the model. As a result, model predictions can be expected

to suffer from large uncertainty. Second, the study is framed around choosing between

competing strategies of injection and extraction. Therefore, the hydrologic models can

give direct insight into the likely performance of different strategies with consideration

of the hydrologic uncertainty. DIRECT can provide a number of benefits under

this difficult decision-making environment. Its multi-model approach can incorporate

identifiable sources of uncertainty, and then allow for risk-based decision making to be

performed to select a strategy that minimizes expected costs. In addition, by nesting

a local hydrologic model within a regional model, the propagation of uncertainties

from the regional to the local scale can be considered in the choice of an optimal

operations strategy.
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Chapter 2

Background and Site Description

2.1 Geography

The study area encompasses roughly 4500 square miles of the Castle Valley area

between the Wasatch Plateau and the San Rafael Swale of Northern Utah. The

lower elevations of the valley receive 5-9 inches of precipitation annually, and the

Wasatch Plateau receives around 25-29 inches annually (PRISM Climate Group 2012).

Several streams flow eastward from the Wastach Plateau, and intersect the outcrop

of the Ferron Sandstone on the eastern edge of the study area. Records from stream

flow gages (U.S. Geological Survey 2011) near the eastern edge of the study area

indicate that flow is perennial those stream reaches. Coalbed methane gas extraction

is the most significant economic activity in the area and is the reason for most of the

development of the Ferron Sandstone aquifer, especially in the northern portion of

the basin. The rough boundaries of the Helper and Drunkards Wash gas fields are

outlined on figure 2.1. The town of Emery in the southern portion of the study area

draws its municipal supply from the aquifer. In this area, the aquifer is shallower,

nearer to the outcrop, and has better water quality than in the portions within the

coalbed methane gas fields.

2.2 Geology

The Ferron Sandstone Member of the Mancos Shale is overlain by the Bluegate Shale

and underlain by the Tununk Shale. It consists of sedimentary rocks that were de-

posited in advancing and retreating deltas located along the Cretaceous interior sea-

way (Rice 2003). It is comprised of series of clastic wedges of marine and shoreline
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Figure 2.1. Study Area. The orange lines mark the rough boundary of the Helper
and Drunkards Wash gas fields. The purple triangle marks the location of towns.
The green line outlines the model domain.

sediments including sandstones, siltstones, shales, and coals. Ferron Coals occur as

sequences of thin, separated layers, with a typical sequence consisting of 3 to 6 seams.

Individual layers have thickness of 2 to 7m within sequences that total 45 to 60 m in

thickness (Anna 2003, Lamarre 2003). A generalized stratigraphy is shown on figure

2.2. The Ferron thins from west to east, from a thickness of around 150m at the

western edge of the study are to zero where it pinches out to the east of the study

area (Anna 2003). An extensive outcrop of the Ferron is present along the eastern

edge of Castle Valley with the unit dipping West at 45m/km as it approaches the

Wasatch Plateau (Anna 2003). In the northern portion the Ferron plunges to the
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north. The north-trending Joes Valley fault system punctuates the Ferron along the

Eastern edge of the Wasatch plateau.

Figure 2.2. Generalized Stratigraphy of the Mancos Shale (left) and the Ferron
Sandstone (right)

2.3 Hydrogeology and previous modeling efforts

The conceptual and numerical flow models used in this study are based upon a prior

investigation undertaken by the USGS (Anna 2003). For one component of this study,

a regional flow model was constructed in MODFLOW (Harbaugh 2005) and used to

simulate drawdowns around the coalbed methane fields. The Ferron Sandstone was

assumed to be fully confined by the Bluegate and Tununk shales and the stratigraphy

was simplified into 7 distinct hydrogeologic units with five flow units included as

model layers. The Ferron Coals were located in the middle model layer. The system

was assumed to be at a steady state prior to 1979. For this period of the model,

water enters the system along the western boundary as recharge through the Joes

Valley fault system and exits near the eastern boundary at seven drains where major

streams intersect the Ferron outcrop. A post-1979 transient period was modeled in
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which water also exits as pumping from the well fields. A no flow condition was set

along the northern boundary where the Ferron dips into the Uintah Basin and along

the southern boundary where the Joes Valley Fault System converges with the Ferron

outcrop. A generalized depiction of this conceptual model is shown in figure 2.3.

Figure 2.3. Generalized Cross-Section of Anna (2003) Conceptual Model of the
Ferron Sandstone Hydrogeology

2.4 Conceptual model

The above conceptual model is adopted in this study with some modifications. The

stratigraphy within the sandstone is simplified further to include only two zones

of distinct hydraulic properties within three layers. These layers are composed of

homogeneous sandstone with zones of coal included in the middle layer. The influence

of faulting on permeability is introduced by defining fault zones in every layer in

cells that lay below any fault that is well-identified at the surface. In these zones,

the hydraulic properties differ from the rest of the layer only in their anisotropy.

The outflow locations are also simplified. Because stream records indicate that the

major streams flow perennially at the outcrop, the outflow locations were implemented
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as constant head nodes rather than drains. This change removed seven unknown

parameters from the model.

Figure 2.4. Tree Digram of Alternate Conceptual Models

For three of the conceptual model features - the behavior of the shale units, the

Northern boundary condition, and the coal zone extent - a choice of two alternative

conceptualizations are considered to be plausible for each feature. These alternative

conceptualizations are included alongside the set of parameter realizations as compo-

nents of the model ensemble. Two alternatives are proposed for the vertical extent

of the model. The first adopts the assumption that flow is fully confined by the

shale units. The second expands the flow domain to include the lower portion of the

Bluegate Shale and upper portion of the Tununk Shale units. The shale units were in-

cluded in order to account for the important contribution that thick low-permeability

units have on average groundwater ages. It also allows us to compare the head and

age results of these conceptualizations. In the second conceptualization, the shale ma-

terials are considered to have identical hydraulic properties. Additional modifications

were made to the boundary conditions of the model. Two conceptualizations of the

northern boundary are included. The first sets a no-flow boundary along the entire
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fault. The second allows flow into or out of the system, with rates that are considered

unknown. Two conceptualizations of the extent of the coal zone are also included.

The first takes the locations and thickness from a geologic model constructed in Ar-

cGIS. The second adjusts these layers to be consistent with mapped Ferron Coal

thicknesses (Tabet, Hucka, Sommer, 1995). The eight combinations resulting from

these alternate conceptual decisions are charted on figure 2.4.

Several notable assumptions are present in the conceptual models that were adopted.

These include: evaporation at the outflow locations is not important; the aquifer sys-

tem remains saturated and hydraulically connected to the streams; the streams are

perennial and have a constant stage; gas flow is unimportant; and all pressure declines

in the wells are from the extraction of water.

2.5 The Ferron coalbed methane play

The Ferron coalbed methane play spans a 70 mile length of the Castle Valley from the

Southeast of Emery to the North of Price, Utah. The play consists of three fields: the

Buzzards Bench to the west of Castle Dale, the Drunkards Wash west of Price, and

the Helper State north of Price. Overall the field contained over 613 wells in 2012 and

produced around 2.7 x107 MCF of gas and 5.4x106 BBL of coproduced water. Peak

gas production of over 8.6x107 MCF occurred in 2002 and peak water production

of 2.4 x107 BBL occurred in 2001 (Utah Department of Natural Resources, 2011).

The Drunkards Wash is the oldest and largest field in the area and is the proposed

location of the stimulation system discussed in this study.

Coalbed methane is a source of natural gas within coalbeds that is adsorbed to the

solid matrix of the coals. Gas is extracted from coalbeds by depressurizing the aquifer

with large withdrawals of water and allowing methane to desorb from the coals. The

gas and water then travel toward the well through fractures in the coalbed. At the

surface, the gas is collected and the water discarded. (Keith et. al. 2003) The
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coproduced water in the Drunkards Wash field is too saline to be disposed of at the

surface and must be re-injected to the deeper Navajo Sandstone aquifer (Randall

2009).

Coalbed methane gas can be thermogenic or biogenic. Biogenic gas is produced

within the coalbeds by active microbial communities, and there has been a recent

interest in stimulating this type of methane production by altering the microbial

environment (Akob et. al. 2013). The gas in the Drunkards Wash field is believed

to be partially biogenic, and with gas yields decreasing in this field, a plan is being

considered to inject a nutrient solution into the coalbeds in an attempt to stimulate

the production of the biogenic gas.

2.6 Injection and extraction system

The system being proposed for stimulating gas production in Drunkards Wash would

inject a nutrient solution into a well and extract what remains through one or more

nearby extraction wells. The two designs considered in this study are the dipole

and five-spot designs that are commonly used in oil and gas extraction. The dipole

consists of a single up-gradient injection well and a down-gradient extraction well.

The five-spot includes four equally spaced extraction wells around a single injection

well. The extraction wells are located mile away from the inject ion well in both

designs. This spacing is consistent with BLM regulations (Matava, pers. comm.).

The performance of each design (number of wells and injection and extraction

rates) is best assessed by modeling the fate and transport of the injection solution

at the local scale. Specifically, it is important to assess the ability of a design to

sweep a relatively large area while capturing all of the injection solution. At this

scale, however, no natural boundaries are present. To address this, the regional scale

model, for which natural boundaries and observation data are present, is modeled

at a coarser resolution and the calculated head at the location of the boundaries
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of the smaller model are assumed to be equal to the regional model results. This

telescoping modeling approach allows us to include regional hydrologic uncertainties

in the assessment of treatment designs. However, this approach requires that the

small model be large enough that it is reasonable to assume that the changes in head

due to pumping and extraction occurring within the smaller model do not propagate

to the model boundaries.

2.7 Observation data

Hydraulic head measurements in the aquifer are limited to a small number taken

within a relatively small area before major development of the aquifer began. For

this study, 100 data points were used, with only 11 of those collected after the first

transient stress period of 1979. Streamflow measurements were collected from six

current and historical gages near six of the eight constant head nodes (U.S. Geological

Survey, 2011). These data were not used to calibrate the model by matching baseflow

rates to the flow rates that occur between the aquifer and stream at the models

constant head nodes. Although this procedure is common, it was omitted because

none of the streams had gages upstream and downstream of the outcrop as would be

necessary to calculate the contribution of flow from the outcrop to the total stream

flow. However, because there was still a need to constrain flow rates in some way

to relieve the insensitivity and non-uniqueness that is especially present when head

observations are used alone (Anderman, Hill, Poeter, 1996) the data were used to

create flow rate upper bounds. These bounds filtered the ensemble of models by

removing any model which simulated a flow from any constant head node into its

corresponding stream with rates greater than twice the average annual flow rate

measured in the stream just downstream of the Ferron outcrop.

The data available are scarce, especially during the transient model periods. These

data will primarily constrain the alternative conceptual models and steady-state hy-
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draulic parameters. The transient storage parameters have little supporting data

and the transport parameters have none. The bases for choosing parameter ranges

are discussed below. Under these conditions it is especially important to explicitly

consider prediction uncertainty in decision-making, as DIRECT does. While it is

not an element of this study, this would also be an ideal circumstance to employ the

Discrimination/Inference component of DIRECT to optimize future data collection

efforts.
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Chapter 3

Methods

3.1 DIRECT and multi-model approach

Each stage of modeling described in the sections below employs aspects of DIRECT.

Under DIRECT, results are presented using the concept of expected outcome. This

is the outcome that is suggested by an ensemble of models, where all members are

included and weighted by likelihood. Each stage of modeling considers results from

this perspective. In addition, the local flow and transport modeling that is used

to investigate the alternative circulation system designs introduces the concept of

economic costs and seeks a design that minimizes expected costs. The generation

of expected costs, and the importance of modeling in this way, is discussed in more

detail in the cost section below.

The use of the multi-model approach employed by DIRECT allows for the inclu-

sion of both structural and parameter uncertainty in the modeling process. These

sources of uncertainty are included in each of the separate modeling steps described

below by generating ensembles of models that include combinations of alternate con-

ceptual models and sets of parameter realizations. Results are collected by running

a separate simulation for each of the thousands of models included in the ensemble.

Except for the transport model, for which no applicable data exists, the predictions

of each model run are compared to observation data to compute measures of relative

model likelihood. The uncertainty in the model predictions are viewed as a combina-

tion of the range of results produced by the ensemble and their relative likelihoods.

All transport scenarios are considered equally likely, adopting a uniform (uninformed)

prior. Details of the model ensembles are outlined in the sections below.
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3.2 Telescoping model approach

Modeling was divided into three distinct steps based upon the physical process and

geographic area being investigated. These steps were: (1) the regional flow model, (2)

the regional groundwater residence time model, and (3) the local advective transport

model. The advective transport and residence time models were both transport sim-

ulations that required flow fields to be specified in advance. For both models, results

from the regional flow model were used as inputs. The residence time model used the

results from the steady state period and from the entire model area. The advective

transport model collected the results from the end of the transient simulation and

from the geographic subarea that was covered by the advective transport model.

The models were constructed and run in sequence using the open source MATLAB

codes mflab (Olsthoorn 2011). These codes have been designed to build, run, and

manipulate different aspects of models that use MODFLOW (Harbaugh 2005) and

its companion software. These codes were edited and built upon specifically for this

study to create a system for automating the construction and execution of large model

ensembles, and for coordinating the sharing of files between the three interrelated

modeling steps.

3.3 Regional flow model

The conceptual flow models described in the previous modeling efforts section above

were translated into MODFLOW numerical flow models using mflab. These models

were used to simulate flow conditions near the proposed injection and extraction

system and to simulate groundwater residence time distributions for the entire aquifer

system.

A geological model of the Ferron Sandstone aquifer system was produced and used

to map hydrogeologic units and define the vertical discretization of the model. The

surfaces of the Bluegate Shale, Upper Ferron Sandstone, Ferron Coal, Lower Ferron
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Sandstone, Tununk Shale, and Navajo Sandstone (bottom of the Tununk Shale) were

generated by interpolating between records of formation top depths measured in bore-

holes. Formation top data was gathered from the Utah Oil and Gas Data Research

Center (Utah Department of Natural Resources, 2011), and from a dataset gathered

for a previous Ferron Sandstone hydrogeologic study (Anna 2003). Overlapping of

the generated layers was eliminated by setting minimum thicknesses to each hydroge-

ologic layer and adjusting the generated layer elevations from the surface downward.

In places where the Bluegate Shale was interpolated above the ground surface, its el-

evation was capped at the ground surface and a minimum thickness was not applied.

Surface elevation data was obtained using the National Elevation Dataset for Utah

(U.S. Geological Survey, 2011). Surface faults were collected from geologic maps re-

trieved from the Utah Geological Survey (Weiss, Witkind, Cashion, 1990; Witkind,

Weiss, 1991; Witkind, Weiss, Brown, 1987; Witkind, 1988; Doelling, Hellmut, 2004;

Doelling, 2002) and included in the geologic model.

The domain was divided horizontally into a grid of 400 by 170, mile by mile cells.

The vertical dimension was divided into 5 layers matching the stratigraphy described

above. The active flow region was bounded on all sides by no flow cells. Recharge

cells of prescribed inflow rates were located along the western side of the domain in

cells that were intersected by the Joes Valley fault system. This region was further

divided into a north and south region, and the recharge rates in the southern region

were related to the rates in the northern region by multiplier parameter. The major

model features are displayed on figure 3.1, with a coarser grid shown on the figure for

a clearer illustration.

Two conceptualizations of the northern boundary were included, (1) no flow and

(2) prescribed flow inward or outward. These were implemented by either (1) leaving

active cells bounded by no-flow cells at the boundary or (2) introducing a well at

every cell along the northern boundary, prescribing a total inflow or outflow rate,

and dividing that rate evenly between every boundary cell. Seven constant head cells
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were defined along the eastern boundary where major streams intersect the Ferron

Sandstone. For steady-state simulations with no outward flow along the northern

boundary, the constant head cells are the systems only outflow locations. The south-

ern boundary remains no-flow in all conceptualizations.

Figure 3.1. The Regional Flow Model Domain. The green line outlines the active
region. The red polygon outlines the recharge area that is divided into a north and
south sub region. The blue circles mark the location of the constant head nodes. The
blue arrow marks the location of the proposed circulation system. The orange box
locates the sub region of interest. The purple triangle marks the location of towns.

A steady-state condition with no pumping was assumed to exist prior to 1979 and

used to model the pre-development head distribution. This distribution was used to
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define a flow field for the residence time simulations and to provide an initial condition

for the transient simulation. The transient flow simulation covered the years 1979

2011 and was divided into 33 annual stress periods. The stress period length of one

year assumes that no seasonal variations take place within the groundwater system.

Only four of the hydraulic head observations were collected after 1979, and these were

not given greater weight than any other observation. As a result, the transient period

has little influence on the assessment of goodness of fit for each member of the model

ensemble.

Rates of water withdrawals from CBM wells for the years 1978-2012 were ob-

tained from the Utah Division of Oil, Gas, and Mining (Utah Department of Natural

Resources, 2011). The monthly rates were converted to annual and used to specify

pumping rates from the wells included in the simulation. The records for each well

included the name of the geologic formation in which the wells were screened. These

formations were matched to model layers and the simulated wells were placed in the

corresponding model layer.

The distribution of hydraulic properties was modeled by choosing three aquifer

material types with different hydraulic properties, and applying these materials to

distinct zones in the model. The materials are shale, sandstone, and coal. The top

and bottom layers of the model were defined as shale zones, the second and fourth

layers sandstone zones, and the third layer was a sandstone zone with several smaller

coal zones within it. In addition to these zones, fault zones were overlaid upon each

layer to represent the Joes Valley fault system. The fault zones were given different

vertical and horizontal anisotropy than the zones around them, but were otherwise

given the same hydraulic properties. This setup is shown in the example cross section

in figure 3.2 below. The blue layers represent the shale layers, the yellow represent the

Ferron Sandstone layers, the magenta represents the zones of coal within the Ferron

Sandstone, and the red represent the fault zones that cut vertically across all layers

wherever there is fault at the surface. The gray area is outside of the model.
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Figure 3.2. Hydraulic Property Zones for an Example Cross-Section of the Model.
The blue area represents the shale zones, the yellow represents the Ferron Sandstone,
the magenta represents the Ferron Coal, and the red represents the fault zones. The
gray area is outside of the model domain.

Table 3.1 lists the 13 adjustable parameters and 2 switches that were included in

the construction of the regional flow model ensemble. The parameters consisted of

specific storage, hydraulic conductivity, horizontal anisotropy, and vertical anisotropy

for each of the three material zones; vertical anisotropy, and horizontal anisotropy for

the fault zones; a recharge rate for the northern recharge region, and a multiplier for

the southern recharge region; and a northern boundary inflow rate. Each parameter

was given a range of possible values that was considered to be wide enough to include

all realistic values (Domenico and Schwartz 1990; Heath 1983; Batu 1998). Switches

were included to control the presence of flow or no-flow at the northern boundary,

and to control which of the two mapping techniques for the coal zones was used.



27

Table 3.1: Regional Flow Model Parameters and Ranges

Name Description Range of
Values

Units Unique
Realizations

HK1 Horizontal Hydraulic
Conductivity - Sandstone

10−4 − 100 feet per
day

3000

HK2 Horizontal Hydraulic
Conductivity - Coal

10−5.5−101.5 feet per
day

3000

HK3 Horizontal Hydraulic
Conductivity - Shale

10−8−10−0.5 feet per
day

3000

HKA1 Horizontal Anisotropy -
Sandstone, Coal, Shale

1/3 − 3 - 3000

HKA4 Horizontal Anisotropy -
Fault

10−2 − 102 - 3000

VK1 Vertical Anisotropy -
Sandstone, Coal, Shale

1/3 - 3 - 3000

VK4 Verticall Anisotropy - Fault 10−1 − 101 - 3000
SS1 Specific Storage -

Sandstone
5x10−6 -
5x10−5

feet−1 3000

SS2 Specific Storage - Coal 5x10−6 -
5x10−3

feet−1 3000

SS3 Specific Storage - Shale 10−6 - 10−2 feet−1 3000
RECH1 Recharge Rate - Northern 0 - 1 feet per

year
3000

RECH2 Recharge Rate - Southern 0 - 3 feet per
year

3000

Q1 Northern Boundary Flow
Rate

−0.5x103 −
102

feet3 per
day

3000

SW2 Northern Boundary Flow
Switch

0,1 - 2

SW3 Coal Zone Extent Switch 0,1 - 2

An ensemble of 12,000 models was formed by sampling from the full model space.

The full model space is made up of every possible combination of parameter values

in the model. It encompasses the full range of behaviors that are possible for the

model to exhibit. A sample of 3,000 realizations was drawn from the space of the 17

parameters, and these parameter sets were applied to each of the 4 combinations of

settings of the two switches. The sets of values for the parameters that were not used
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as switches were drawn using Latin hypercube sampling, a technique for generating

multivariate samples that stratifies the distribution of each input variable to ensure

that their entire range is represented in the sample (McKay, Beckman, Conover,

1979). For each of these non-switch parameters, the range over which samples were

drawn are shown under the Range of Values column in table 3.1.

Each model in the ensemble was run and a variety of results were collected and

analyzed. Simulated heads from the entire model domain were collected at the initial

steady-state period and the final (2011) transient stress period. The steady-state

results were used as inputs for the regional groundwater residence time model, and

the 2011 results were used to produce inputs for the local advective transport model.

The simulated equivalents of head observations were collected by saving the results

from each model cell and stress period that corresponded to an observation.

The performance of each member of the ensemble was assessed in two steps. First,

simulated flow rates at the constant head nodes were compared to average annual

streamflow rates, and any model with a simulated rate greater than 1.5 times the

observed rate was removed from consideration (assigned a likelihood of zero). With

the remaining models, a relative likelihood measure was assigned by calculating the

normalized, inverse root-mean-squared-error (RMSE) of each member:

RMSEi =

√√√√ 1

no

no∑
i=1

(hji − ĥji)2 (3.1)

Lj =
RMSE−1

j
nm∑
j=1

RMSE−1
j

(3.2)

Where: no is the number of observations, h is an observation, ĥ is the simulated

equivalent, nm is the number of models, and L is the likelihood. These likelihood mea-

sures sum to one and are used as a weight for subsequent ensemble based predictions

from the residence time model and advective transport model.
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3.4 Groundwater residence time simulation

The focus of this study is on the optimization of pumping/extraction designs. But,

the age and travel paths of groundwater in the coalbed are also of interest in un-

derstanding the timeframes and conditions under which methane is produced (Bates,

McIntosh, Lohse, Brooks 2011) and whether methane production can be stimulated.

A technique for directly simulating average groundwater ages with numerical mod-

eling is proposed by Goode (Goode 1996). This technique uses solute transport as an

analogy to the movement and mixing of groundwater of different ages, allowing one

to model the processes of diffusion, dispersion, and (possibly) adsorption along with

advection. The age-mass technique tracks the constant aging of water by calculating

the accumulation of age as a 0th order reaction, in which one unit of age is generated

per unit of time.

The commonly used 3D groundwater transport modeling code MT3DMS (Zheng,

2010) was used to simulate groundwater ages using the steady state flow field results

from the regional model. Two important options are included in MT3D to allow

this type of simulation. First, a zeroth order reaction type is included that allows

the solute phase to accumulate (or decay) at a constant rate. This allows the age-

mass phase to gain one year of age-mass per year. The second option is the steady-

state transport option for simulating long-term transport conditions where a state of

equilibrium is reached in concentration. Although this same result can be achieved

with a transient transport simulation run until concentrations do not change from step

to step, the MT3D approach is more computationally efficient, making this analysis

feasible for the large model ensemble used in this study.

The groundwater residence time simulations were implemented by running steady-

state flow simulations in MODFLOW 2005 in sequence with steady-state transport

simulations in MT3DMS 5.3. These were run for an ensemble of models that was sim-

ilar to that of the regional flow modeling described above, but with a few important
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differences. The additional transport parameters of porosity and longitudinal diffu-

sivity were applied to each zone in the same manner as hydraulic conductivity and

specific storage were applied in the regional flow model. Table 3.2 lists the additional

transport parameter and the range of values over which they were sampled. Each

parameter was given a range of possible values that was considered wide enough to

include all realistic values (Morris and Johnson 1967; Gelhar, Welty, Rehfledt 1992)

and specific parameter values were chosen in a manner similar to that described above.

Table 3.2: Residence Time Model Transport Parameters and Ranges

Name Description Range of
Values

Units Unique
Realizations

PEFF1 Effective Porosity - Sandstone 0.05 - 0.3 - 6
PEFF2 Effective Porosity - Coal 0.01 - 0.1 - 6
PEFF3 Effective Porosity - Shale 0.05 - 0.3 - 6
PEFF4 Effective Porosity - Fault 0.05 - 0.5 - 6
AL1 Longitudinal Dispersivity -

Sandstone
0.5 - 103 feet 6

AL2 Longitudinal Dispersivity -
Coal

0.05 - 104 feet 6

AL3 Longitudinal Dispersivity -
Shale

0.5 - 103 feet 6

AL4 Longitudinal Dispersivity -
Fault

0.05 - 104 feet 6

The ensemble included an additional conceptual model in which flow (and age-

mass transport) was confined entirely within the sandstone layers, and the shale

units had no influence on results. This conceptual choice was included to investigate

the impact that waters from the large low-permeability shale units have on average

groundwater ages in the more permeable materials of the adjacent aquifer. These

layers are typically treated as confining units and excluded from flow simulations,

yet Bethke (2002) proposed that mixing between large low and high permeability

layers has a significant influence on the average groundwater ages in both layers. It

was stated that omitting these layers and the phenomena of diffusion and dispersion
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could lead to a large underestimate of ages in the high permeable units. Dispersion

and diffusion were included in every simulation of flow, but the inclusion or omission

of the shale units were treated as two viable alternatives whose validity would be

tested through comparison to data.

An ensemble of 3000 flow, each of which had six transport models applied, was

produced and run in sequence as described above. The flow simulation resulted in a

steady state head distribution and values of flow at each constant head node. These

results were used as described above to filter the ensemble and to calculate likelihoods.

The transport simulation resulted in a distribution of average groundwater ages for

the entire domain of every ensemble member. The ensemble-wide results were sum-

marized by calculating likelihood weighted age distributions for the entire domain.

The likelihoods in this calculation were derived from the flow model results; all trans-

port models were considered equally likely. In addition, binned likelihood (histogram)

charts were produced for several individual cells in the domain to produce an image

of the distributions of ages throughout the model ensemble. The influence of shale

was investigated by dividing the results into shale and no-shale groups and comparing

the likelihood weighted age distributions. In addition, for each group a distribution

of the likelihood values of the models included in that group were assembled. These

likelihood distributions were then compared to assess whether either group did a bet-

ter job, on the whole, of reproducing observations of head and outflow at the constant

head nodes.

3.5 Advective transport model

Predictions of the fate and transport of the nutrient solution injected at the proposed

circulation system were simulated with an advective transport model written specifi-

cally for this study. The model covered a subset of the regional flow model and used

simplified results from the regional flow models to define initial and boundary condi-



32

tions. The advective transport model was comprised of the Theis analytical solution

of drawdown due to pumping and a particle tracking algorithm. The MATLAB code

is provided in Appendix A.

The advective transport model was applied to a three by three mile area centered

at the injection well of the circulation system. The vertical domain was simplified

into a single layer that was given the properties of uniform depth, material homo-

geneity, and full vertical confinement that are assumed in the Theis solution. A

grid was established with a cell of size of 1/16 1/16 mile and values for depth, hy-

draulic conductivity, specific storage, porosity, and aquifer thickness were specified.

In addition, values of time, pumping rate, injection rates, and were assigned. Table

refAdvectiveParameters lists all parameters and values used.

Table 3.3: Drawdown Parameters of Advective Transport Model

Name Value

Cell Length 330 ft (1/16 mi)
Hydraulic Conductivity 1 ft/yr

Specific Storage 10−5 ft−1

Aquifer Thickness 100 ft
Injection Rate 500 ft3/day

Extraction Rate 62.5 - 2000 ft3/d
Time 50 yrs

The physical modeling consists of a series of six steps. (1) A uniform background

flow field was defined by specifying the direction and magnitude of the gradient based

on the aggregated results of the regional model. (2) Wells were introduced in either a

5-spot or dipole arrangement, given pumping rates, and the Theis solution was used

to calculate the drawdown or mounding induced by each well at every cell in the

grid. (3) The resulting hydraulic head distribution was calculated by superimposing

the drawdown and mounding of every well onto the background head distribution,

assuming that the saturated thickness is great enough to allow for superposition.

(4) The gradient field was calculated from the head distribution, multiplied by the
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effective porosity parameter, and reversed in direction to produce the flow velocity

field. (5) A ring of 60 particles were placed evenly around the injection well and

tracked through the flow field until they terminated at the boundary or one of the local

minima produced by the extraction wells. (6) Capture efficiencies were calculated as

the percentage the total particles whose paths terminated at an extraction well.

The regional flow model and the advective transport model were linked by us-

ing results from the flow model to generate the background flow conditions of the

advective transport model. This was done by collecting the final (2012) transient

head results from the flow model from the 3 mi by 3 mi area around the circulation

systems injection well and calculating gradients from this distribution. Rather than

using these exact results as the background flow field, the results were summarized

by calculating the mean direction and mean magnitude of the gradient field. This

direction and gradient were then used to generate a uniform background flow field for

the advective transport model.

By translating the detailed regional flow results into two simplified parameters,

a distribution summary approach could be employed for transferring the ensemble-

wide results from the flow model to the transport model without referring to any

specific member of the flow model ensemble. Instead, probability density functions

of the background gradient direction and magnitude were approximated based upon

the flow model results and used to generate synthetic background conditions and

likelihoods. These probability functions were made by first taking the average gra-

dient direction and average gradient magnitude in the area of interest, along with

their associated likelihood values, and producing binned likelihood plots. A normal

probability function was then fit to each of these binned likelihood plots.

With this approach, a new and smaller ensemble of background flow conditions

was generated by sampling uniformly over both the direction and magnitude distribu-

tions and by taking all combinations of those sets of values to produce the full range

of behavior seen in the regional flow models. Individual probability values of each
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member of this ensemble were calculated by obtaining a pair of probability values for

both the direction and magnitude from their respective probability density functions

and taking their product. Likelihoods were then calculated by normalizing the prob-

ability of each member of the ensemble by the sum of all probabilities from the entire

ensemble, thereby generating likelihood values.

Twenty circulation system designs were proposed and the model was run to cal-

culate capture efficiencies. The twenty designs were made up of the dipole and 5-spot

each trying ten extraction to injection ratios between and 8 (extraction rate/injection

rate). For each well design, the model was run for every member in the ensemble of

background flow conditions, and the capture efficiency was calculated. Each of these,

resulting capture efficiencies was paired with the likelihood of its background flow

condition, and these likelihoods were used as weights for summarizing the results.

This analysis simplifies the hydrology in several ways. First, the use of the Theis

solution assumes uniform depth and hydraulic properties, fully penetrating wells,

fully confined flow, and an infinite horizontal extent. While these conditions were

not present exactly for the regional model, for the small sub area analyzed, they

are assumed to be approximately true. Secondly, using the hydraulic gradient to

determine the flow field assumes a horizontally isotropic aquifer. Third, dispersion is

omitted although it may be significant. Fourth, the drawdowns are calculated for the

specific elapsed time of 50 years and the particle tracking technique assumes this is a

steady-state head distribution. Fifth, a single set of hydraulic conductivity, specific

storage, and porosity values set were specified despite the parameter values being

uncertain.

Of the shortcomings listed above, it is believed that the fourth and the fifth points

are the most significant simplifications. Each point, however, could be addressed by

modifying the setup of the advective transport model. The required adjustments

would be relatively straightforward, but would greatly expand the scope of the analy-

sis and the computational effort. Alternatively, a more complete design optimization
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could be performed given site-specific solute transport property values.

The approach taken in this study was tailored to address the question of how

uncertainty and bias in regional flow conditions translates into local uncertainty, and

how DIRECT can be used to guide decision making. It was decided that this ap-

proach, despite the above shortcomings, was better suited for our interests than a

more complex numerical scheme, such as those provided by MT3D, for several rea-

sons: (1) adding additional complexity to the ensemble, through all of the additional

transport parameters, was not justified by data, (2) simulation runs were too com-

putationally expensive to allow the explore much of parameter space at a resolution

needed to achieve acceptably good representations drawdown and solute transport,

(3) this simplification allowed the effect of many parameters to be boiled down into

a few characteristics of the flow field, and (4) these savings allowed for more effort to

be spent exploring the decision aspects of this problem.

3.6 Cost, bias, and uncertainty

No model is a perfect representation of a real hydrogeologic system. Therefore, it is

important that a model or set of models be proposed that can approximately repro-

duce the full range of plausible behaviors for every aspect that is of interest to an

investigation. Different behaviors of the system are reproduced by selecting different

values for the parameters included in the model and different model conceptualiza-

tions, which together form an ensemble of models. It is likely that there will be

several parameter and conceptual model realizations that produce similar predictions

of the system behavior (non-uniqueness). But, these models may produce different

predictions of specific outcomes of interest. DIRECT assesses the relative plausibility

of the models within the ensemble by quantifying the degree of disagreement between

the measurements of the system and the corresponding predicted values from each

model. This is designed to be an objective, systematic, and reproducible measure
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of model likelihood. The model likelihoods are then applied to the specific model

predictions of interest to define the expected outcomes.

In practice, a variety of different approaches are taken to building a good model

and to using models to make predictions and analyze scenarios of interest. Histori-

cally, models were built and calibrated largely through intuition and experience of the

modeler. More recently, automated calibration and uncertainty assessment tools such

as PEST (Doherty 2005), UCODE (Hill et. al. 2005), and SCEM-UA (Vrugt et. al.

2003) have become popular. But, however sophisticated and thorough the modeling

approach, there is almost always a division drawn between the physical results of the

model and the economic or other non-hydrological considerations that face a decision

maker when choosing a course of action. Too often, the full suite of information that

is encompassed in the model ensemble and associated likelihoods is condensed into a

simplified summary of results that is communicated to a decision maker who uses it

in conjunction with several other considerations. DIRECT is designed to avoid this

step of consolidating the model information before combining it with economic con-

siderations. Rather, DIRECT carries each model prediction forward, through a cost

model or set of cost models, to an economic prediction. The contention is that this

provides richer and more meaningful results that include predicted economic costs

(or benefits) alongside the likelihood or probability of their occurrence. Providing

model results in these terms will allow for the use of risk-based decision making, an

understanding of the costs that are incurred due to uncertainty, and the evaluation

of the worth of additional proposed data collection efforts.

This study focuses on the use of risk based decision making and on the costs

associated with model and parameter uncertainty. Under risk based decision making,

one seeks to find the optimal action to take under conditions in which outcomes are

uncertain. This is done by calculating the expected cost of each action the sum of

all costs weighted by their probability and selecting the action with the minimum

expected cost (or maximum benefit). Such a calculation can only be undertaken if
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both the probability (or likelihood) and the economic costs of each result are available.

This is especially important when some models predict high cost outcomes, but with

low probability. These possible outcomes are overlooked in most standard approaches

to hydrologic modeling for decision support.

The advective transport model described above is used to test different possible

circulation system designs by calculating a cost of each result. The capture efficiency

described above is the important hydrological result derived from the model, but

two additional factors were considered to have important impacts on costs. First,

costs associated with well installation, which would be higher for the 5-spot than for

the 2-well dipole, was included. Second, the cost of extracting and disposing of the

pumped water, which varies with the extraction to injection ratio of the design, was

included. To compare the tradeoffs of these three factors, a cost function is applied

to the results of each well design, pumping rate, and capture efficiency result and

is expressed as a financial or economic cost. These cost functions and values are

artificial and for demonstration purposes only. That is, they were not designed to

imply anything about actual costs that would be incurred by installing and operating

these systems and are not informed by communication with potential operators of the

facility. We also do not make any claim about the impact that the injected solution

would or would not have on the quality of the groundwater. The cost function summed

the three individual costs of installing wells, pumping and disposing of water, and

migration of injected particles beyond the circulation system. The function had the

following form:

Ct = CwN + CpQi(1 − CE) + Ce(1 + R)Qi (3.3)

Where: Ct is total costs, Cw is the installation cost per well, N is the number of

wells, Cp is the cost of particle loss per unit of injected water (concentrations ignored),

Qi is the injection rate, CE is the capture efficiency, Ce is the extraction and disposal
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cost per unit of injected water, and R is the extraction to injection ratio.

A further analysis again for demonstration purposes only was undertaken to

explore the separate impacts that bias and uncertainty in model predictions have on

the economic costs of a circulation system design. Two sets of cost curves were created

to show how costs vary with pumping rate and choice of well arrangement. The first

set of curves is shown only for the results for the maximum likelihood model; these

being the single set of results that are associated with the model with the highest

likelihood. The second set calculated expected costs by weighting the costs from each

model by that models likelihood. These two curves were then compared in various

ways to explore the ways that additional costs may be incurred by (1) selecting a

conservative model that accounts for the uncertainty in predictions but would be

sub-optimal for the actual system behavior; (2) being over-confident and choosing a

design based on the maximum likelihood results.

The analysis was expanded further to compare the effect of errors in the estimation

of the magnitude and direction of the background flow fields. The effect of different

degrees of uncertainty in these two model components was explored by generating

an ensemble of synthetic likelihood distributions that differed in the degree of uncer-

tainty present in each component. This was done by adjusting the standard deviation

parameters of the individual probability distribution of each component. These were

compared to a reference case with a lower degree of uncertainty. Bias was analyzed

in a similar manner. First, a single unbiased location for the maximum likelihood

model was chosen. Then the medians of the individual probability distributions were

adjusted away from the unbiased cases by different degrees. The costs under each of

these cases were compared to the bias-free reference case.
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Chapter 4

Results

4.1 Regional flow model

Figure 4.1 below shows the objective function (RMSE) values for the simulated flow

rates from the constant head nodes. If a simulated flow rate from a constant head node

was more than twice the average flow rate observed downstream in the intersecting

stream, then the RMSE was calculated; if not, a value of zero was assigned. Any

model with a flow objective function of zero had no simulated flow rates greater than

1.5 times the observed streamflows in the corresponding streams. It was decided that

allowing the simulated values to be up to twice the average observed values was a

loose enough criteria that the models with objective function values of zero could

be selected as the only passing models. There were 3626 models with flow objective

function values of zero, from the ensemble of 12,000 models.

The subsequent analysis was done only on these 3626 models. The values of the

objective function of head observations for this subset of models was used to calculate

each models likelihood value. Figure 4.2 shows the hydraulic head objective function

values ordered by objective function value. There was significant overlap between

the models that passed the flow filter and the models with the lowest head objective

function value. Of the 3626 models that passed the flow filter, 43% of them were also

among the 3626 models with the lowest head objective function value.
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Figure 4.1. Distribution of Outflow Objective Function Values for the Regional
Flow Model Ensemble

Figure 4.2. Distribution of Head Objective Function for the Regional Flow Model
Ensemble
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The distributions of the average direction and magnitude of the flow fields around

the proposed circulation system are summarized in binned likelihood plots on figure

?? and figure 4.6. The likelihoods for the direction of the flow field are not distributed

normally, but they are nearly symmetric and tightly distributed around the mean of

0.65 degrees with a standard deviation of 2.5 degrees. The zero degree direction is

along the rows of the finite difference grid, and about 104 degrees from North. The

distribution of likelihood for the magnitude has a greater spread than the direction,

and is not quite a log normal distribution, but is nearly symmetric in log-space, with

a mean of -2.7 and a (log) standard deviation of -2.5.

Figure 4.3. Likelihood Distribution of Mean Flow Field Magnitude over the Sub-
region Around the Proposed Circulation System
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Figure 4.4. Likelihood Distribution of Mean Flow Field Direction over the Subre-
gion Around the Proposed Circulation System

The flow field around the circulation system is not predicted to be perfectly uni-

form in either direction or magnitude for any model. In addition to summarizing

the general flow field by calculating the average direction and magnitudes (shown for

all models on figure ?? and figure 4.6), the variability within a single models flow

field was also assessed for each model. Figure ?? and figure ?? below display binned

likelihood plots of statistics that summarize the variability within the flow fields of

individual model results. Figure ?? shows the standard deviation of the magnitudes,

and 4.6 shows the standard deviation of the directions. The mean standard deviation

of the magnitudes is about an order of magnitude smaller than the mean magnitude,

and the mean standard deviation in the directions is less than 10 degrees. It was de-

cided that these are sufficiently small variations to support the simplified assumption

of uniform background flow that underlies the advective transport model.
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Figure 4.5. Likelihood Distribution of Standard Deviation in Flow Field Magnitude
over the Subregion Around the Proposed Circulation System

Figure 4.6. Likelihood Distribution of Standard Deviation in Flow Field Direction
over the Subregion Around the Proposed Circulation System
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4.2 Groundwater residence time modeling

The groundwater residence time model provided a good opportunity to explore how

greatly the maximum likelihood model results may differ from the likelihood weighted

summary of all model results. Figure 4.7 displays a contour map of simulated average

groundwater ages, expressed in log10 years, for the third layer for all models weighted

by likelihood (left) and the maximum likelihood model (right). Ages for the likeli-

hood weighted results range from 104 years near the fault to 106.2 years in a region

of stagnation in the northeast corner of the model. The results of the maximum like-

lihood model have lower average residence times than the likelihood weighted results

showing ages from 103.2 to 105.1 years. In both cases groundwater ages in the other

model layers (not shown) display similar values and distribution patterns.

Figure 4.7. Log10 Mean Residence Times in Years Over the Middle Layer of the
Model. The left figure shows likelihood weighted results of the entire enseble. The
right figure shows results for the maximum likelihood model. The labelled diamond
markers display the locations of the residence time observations points.
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The large difference (roughly two orders of magnitude) between the maximum

likelihood and likelihood weighted results may suggest a possible pitfall of the way

the model ensemble was generated. This large difference may in part be a consequence

of the method used to sample parameter space and of the relatively limited size of

the model ensemble. The binned likelihood plots shown below on figure 4.8 reveal

roughly log-normal distributions of the ensemble ages at different points in the model

domain. Assuming that the maximum likelihood model age lies near the mode of the

distribution, it is expected that the likelihood weighted age, which is equivalent to

the mean of that distribution, will have a larger value than the maximum likelihood

age. Being a log distribution, this difference has the potential to span a several

orders of magnitude. The difference between these points may have been further

exacerbated by using the quasi-uniform latin-hypercube sampling technique with very

wide parameter ranges but only a relatively small 8000 samples. It may have only

been within a narrow band of each parameters range that the resulting flow models

produced a good fit to the data. However, with only 8000 samples the latin hypercube

sampling may have only hit the sweet spot of good models a small number of times.

This small set of good models may not have produced enough high likelihood values

to lower the relative likelihood of poor and awful model results beyond having an

influence. The effect of this on the ensemble age distributions would be to lower the

magnitude near the mode and to raise those of the tails. The use of more models

in the ensemble, tightening the parameter ranges, or using a sampling technique

that generated a greater density of high likelihood models may have produced a less

striking difference between the likelihood weighted and maximum likelihood results.

A few locations were chosen as points at which to collect and view predictions of

average groundwater ages from the entire model ensemble. The locations chosen were

(a) in the third layer where the injection well is proposed to be located; (b) the second

layer directly above (a); (c) the fourth layer directly below (a); (d) in the third layer

near the drain and down gradient of the injection location in our conceptual model of
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flow; (e) in a fault zone in the 3rd layer, in a different part of the system than (a-d);

and (f) off of the fault zone in 3rd layer near and (conceivably) down gradient of (d).

Points (a), (b), and (c) were chosen to see how ages vary vertically. Point (d) was

chosen near the outlet that was thought to be where flow from the injection well may

eventually terminate. Points (e) and (f) were chosen to see how different ages would

be on and off of the fault and recharge zone.

The results of the ensemble simulated ages at these six locations are summarized

in binned likelihood plots in figure 4.8, with age being expressed in log10 years. These

plots are produced by dividing the entire range of ages simulated by the ensemble

into a number of bins, and then for every bin summing up the likelihoods of those

models whose predicted ages fall within the bin. These plots show the distribution

of ages predicted by the ensemble in a way that accounts for model likelihoods. The

mean ages at each location are: 2.2x104 years at (a), 2.1x104 at (b), 2.1x104 at (c),

7.1x104 at (d), 2.6x104 at (e), and 3.1x104 at (f). The distribution for locations

(b) and (c) appear very similar to (a) but with a shift towards younger ages in (b)

and older ages in (c). It can be seen by comparing (d) to (a, b, c) and (f) to (e)

that ages, as expected, are shifted towards larger values away from recharge cells. In

general there is a wide spread in ages among the models in the ensemble, with ages

at location (a) ranging from 100s to almost millions of years, with the best estimate

of ages centering around 1000s to 10,000s.
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Figure 4.8. Residence Time Distributions at Six Model Cells

A comparison between models that included flow in the (Tununk and Bluegate)

shale layers and those that treated the sandstone as completely confined reveal a clear

difference in the distribution of ensemble ages. Figure 4.9 and Figure 4.10 display the

binned likelihood plots of ages for the group with the shale and the group without

the shale at the location (a) and (d). It can be seen that differences of an order of

magnitude in age are typical and the differences appear greater at point (d) near

the outlet. This comparison confirmed the expectation that large, low permeability

confining units have a great influence on average groundwater ages; raising them

significantly
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Figure 4.9. Comparison of Likelihood Distributions of Resdidence Times at Obser-
vation Point A for the Group of Models that Include Flow in the Shale Units (Top)
and the Group of Models that Do Not Include Flow in the Shale Units (Bottom)
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Figure 4.10. Comparison of Likelihood Distributions of Resdidence Times at Ob-
servation Point D for the Group of Models that Include Flow in the Shale Units (Top)
and the Group of Models that Do Not Include Flow in the Shale Units (Bottom)

It was also found that there was a significant difference in how well the shale

and non-shale groups of models reproduced observations of both flow and hydraulic

head. Figure 4.11 compares the likelihoods of the group of models that included

flow in the shale units and the group that is treated as confined between the shale

units. Each plot is a histogram of the likelihood values, with the horizontal axis

marking intervals of likelihood value and the vertical bars showing how many models

from each group have likelihoods within each interval. The no shale models (top)

have a mean likelihood of 3.8x10-4 with a standard deviation of 6.0x10-4 and the
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shale group (bottom) has a mean likelihood of 1.2x10-9 with a standard deviation

of 1.2x10-11. Along with the greatly different average likelihoods there is very little

overlap in likelihood between these two groups of models, with almost every member

of the shale group having higher likelihoods than the best of the non-shale group.

This indicates that the models including the shale units do a more accurate job of

representing the steady-state head distribution than those without.

Figure 4.11. Comparison of Distributions of Likelihoods for the Group of Models
that Include Flow in the Shale Units (Top) and the Group of Models that Do Not
Include Flow in the Shale Units (Bottom)
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4.3 Advective transport model

Figure 4.12 below displays four examples of results obtained from the adjective trans-

port model. The solid colors represent the head values resulting from superposition

of the background flow field and the drawdowns and mounding caused by the circula-

tion system wells. The large arrow indicates the direction of the uniform background

flow field. The lines in the foreground show the paths of every particle as they travel

through this flow field. The particles originate around the injection well, at locations

marked by a pink circle, and travel until they are captured by one of the extraction

wells or exit at the boundary as escaped mass. The locations of the extraction wells

are shown with pink squares, with the dipole having one well to the right of the injec-

tion well and the 5-spot having four at each cardinal direction around the injection

well.

Figure 4.12 compares the behavior of two treatment methods applied under two

different background flow fields with the same magnitude but different directions. The

images on the left show the performance of the dipole arrangement which performs

very well if the extraction well is placed down gradient of the injection well (top)

- much better than the 5-spot under the same circumstances. If, however, the well

is instead placed off-angle from the flow direction, the plume can largely miss the

capture area of the dipole extraction well. The images on the left show that while

the 5-spot has poorer performance than the best-located dipole that could be placed

if one had high confidence in the flow direction, it is more robust and maintains good

performance even when the flow is directed between its extraction wells. These images

indicate that under conditions where the direction is unknown, or changes through

time, the selection of a treatment option would benefit from robustness or versatility,

while in conditions with greater certainty a more precise and effective treatment can

be applied. These images also show the danger of following a deterministic modeling

approach where only a single maximum likelihood model, or best calibrated model,
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is used to choose a treatment strategy. In this case, if the maximum likelihood model

was represented by the top row examples, one may choose the dipole due to its (slight)

advantage over the 5-spot. This decision, however, would be made despite the fact

that there may be other valid models that, although less likely according to data, are

more like the model represented in the bottom row examples. Under these conditions

the dipole performs very poorly while the 5-spot performance only drops a small

amount.
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Figure 4.12. Paths Simulated by the Advective Transport Model for Particles
Introduced at the Injection Well for the Dipole (Left Column) and 5-Spot (Right
Column) Circulation System Designs Under Two Different Flow Field Directions (Top
Row and Bottom Row). The color fill represents hydraulic head. The direction of the
flow fields are shown with the pink arrows and the percent of the particles captured
at the wells are shown above each panel.

The performance of each well arrangement under the maximum likelihood model

results and the likelihood weighted results are shown in the performance curves in

figure 4.13. The blue curves show the results for the dipole and the green for the

5-spot. Dashed lines are results for the maximum likelihood background flow and the

solid lines are a likelihood weighted summary of all results. Each curve shows the
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percent of the particles that are captured by the extraction wells for each extraction

rate that was simulated. One unsurprising result shown by these curves is that

more of the particles are captured as pumping increases. From the 5-spot maximum

likelihood (dashed green) curve, for example, it can be seen that the capture efficiency

is zero at extraction to injection ratios between 0 and 2.5, that it rises between 2.5

and 4.5, and that it achieves 100% capture at extraction to injection ratios above

4.5. These curves also demonstrate how the models results, and the management

decisions that they suggest, can vary substantially depending on which approach is

taken to defining optimality. For these sets of curves it can be seen that under the

maximum likelihood model, the dipole performs better than the 5-spot at all pumping

rates, and that performance increases suddenly at extraction ratios between two and

three. For this model, 100% capture can be achieved by operating the dipole with an

extraction to injection ratio of 2.5 For the likelihood weighted performance curves,

however, the designs perform similarly at extraction ratios below four and the 5-spot

performs slightly better at higher extraction rates. The likelihood weighted results

also show the performance of either design only improving gradually with increasing

pumping rates; with only about 65% of particles captured with the highest extraction

to injection ratio of 8.
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Figure 4.13. Performance Curves Plotting the Capture Efficiency of a the Extrac-
tion Wells Against the Extraction to Injection Ratio. The dipole performance is
shown in blue and the 5-spot performance is shown in green. Results of the the maxi-
mum likelihood model is signified with the dashed curves and the likelihood weighted
results of the ensemble with the solid curves.

4.4 Cost

The performance curves from figure 4.13 are converted to the cost curves of figure 4.14

below by applying the cost function to the results of each advective transport model.

This cost function was created for demonstrating one of the important features of

DIRECT. For each model result, three factors were used to collect costs: the capture

efficiency, the number of wells (5 for 5-spot, 2 for dipole), and the rate of extraction.

Each of these factors can be seen on the performance curves above, with the vertical

axis showing capture, the horizontal axis showing extraction, and the color of the

curve indicating the well design and, in turn, the number of wells.
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Figure 4.14. Cost Curves Plotting the Economic Cost of a the Extraction Wells
Against the Extraction to Injection Ratio. The dipole cost is shown in blue and
the 5-spot cost is shown in green. Results of the the maximum likelihood model are
signified with the dashed curves and the likelihood weighted results of the ensemble
with the solid curves.

The cost curves of figure 4.14 above are read similarly to the performance curves

in figure 4.13, except that the vertical axis now represents total cost. The blue curves

show the results for the dipole and the green for the 5-spot. Dashed lines are results

from the maximum likelihood background flow and the solid lines are a likelihood

weighted summary of all results. The influence of each of the three components of

the cost can be identified most easily in the behavior seen in the maximum likelihood

(dashed) curves. First, the differing cost of wells for the dipole and 5-spot can be

seen at early and late times when the curves are slightly separated and travelling

straight and parallel. At these times the costs from the other two components are

the same for each design and the cost curves only differ by the higher fixed costs

of the three additional wells that the 5-spot requires. The cost of extracting (and

disposing of) water can also be seen during these early and late time periods when

the other two factors dont vary with changes in the pumping rate and the constant

increase in costs is due entirely to the cost per unit pumping. Finally, the cost of not
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capturing the (solute) particles can be seen in the middle sections of the curves where

the costs begin dropping as the systems begin achieving greater capture efficiencies

with increase pumping rates. This continues until they reach 100% and the costs

increase again due to the cost of increasing pumping. The behavior of the middle

section of each curve can be compared easily to the behavior of the corresponding

sections of the performance curves.

Although the costs functions for this problem are not derived from any true finan-

cial or economic costs, these curves demonstrate the simple benefit that using a cost

function can provide. They combine the important factors that enter into a decision

and convert the physical results, whose importance may be ambiguous or difficult

to compare, into a single metric for identifying the least cost option. The example

above is straightforward and is the result of the simple cost function that was applied.

Given that the maximum likelihood model correctly predicted the results, the least

costly choice for this example was the dipole arrangement with the lowest pumping

rate that achieved 100% capture. Although this choice may seem obvious, it was not

inevitable. More complexity could have been added to the cost function to represent

such things as a tiered system of penalty costs for contamination or per unit costs of

pumping that rose with the total extraction rate to account for the added difficulty

of disposing of larger and larger quantities of wastewater. Such changes to the cost

function would alter the behavior of the cost curves and produce a different optimal

solution. It is even possible that the optimal design choice may have been one that

achieved less than 100% capture.

The likelihood weighted cost curves in figure 4.14 behave differently than the

maximum likelihood curves. These curves are the combinations of the cost curves that

result from every model in the ensemble, with the influence of each being weighted by

the likelihood of that model. The design with the lowest likelihood weighted costs,

or least expected cost, is the five-spot with an extraction to injection ratio of about

five to one. This optimal choice, however, does not appear greatly different than
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designs that use the dipole or different extraction to injection ratios. The influences

that shape these curves can be understood by trying to imagine all of the curves that

would be drawn for each member of the ensemble. Each of these would look more

like the maximum likelihood curves from above with the middle area, where the costs

drop, dropping at different rates and the drop taking place over different ranges of

extraction rates. The exact shape of the likelihood weighted cost curve that results

from this ensemble of curves will depend upon how much variation there is in the

model ensemble and how the likelihoods are spread among the models. The results

seen in the figure above, which are much smoother and less responsive to changes in

extraction than the individual cost curves, come about from a collection of individual

curves that have a lot of variation and for which likelihoods are not dominated by a

few members of the ensemble. If a successful data collection or model improvement

effort were undertaken, it would have the effect of altering the shape of the likelihood

weighted curves to be more like that of the maximum likelihood curves. This would

be done by reducing the overall uncertainty of the model results and elevating the

relative likelihood of the (hopefully correct) maximum likelihood model to give it a

greater influence over the aggregated results.

4.5 Uncertainty

The analysis below explores how much more costly the implementation of a plan may

become when a only single model is used to make predictions even though there is

uncertainty in how to build a model to best represent the real groundwater (or any

other natural) system. This form of error is always present in some degree in any

modeling task it is not merely the result of an unsure modeler and it can result in

outcomes that are different than those that are predicted by the model that is used

for making decisions.

When there is uncertainty about which set-up of a model is best or correct for
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representing a system there will also be uncertainty about the outcome of any action

taken in that system. If, as in the example explored in this paper, a chemical solution

is injected into an aquifer and we are uncertain about the direction of groundwater

flow, then we will also be uncertain about where the solution will be carried. It may be

problematic, and costly, if one designs a system that would capture all of the solution

under the most likely flow conditions, yet different flow conditions are present that

carry the solution in an unexpected direction. This kind of potential harm caused by

uncertainty can be guarded against by trading off efficiency in a design for robustness.

In this example, the trade-off between efficiency and robustness may be understood as

a switch from the simpler and cheaper dipole design to the larger and more expensive

5-spot design, and/or from a lower to a higher pumping rate.

The common approach to using models is to identify only the single most likely

setup of the model and to make predictions without considering alternatives. With

this approach one cannot identify a more robust design and the design may be vul-

nerable to unexpected and costly results. The chance that this type of undesirable

outcome will occur, and the amount of added cost that it may introduce, both depend

upon the degree of uncertainty that is present. It also depends upon what aspect of

the system is uncertain. In some cases the design chosen for the most likely condi-

tions may perform well even if some aspect of the system is not well known, while in

other cases unexpected results may cause huge problems. An analysis of how much

uncertainty is present in a model is not necessarily easy to find out, nor is collecting

data to reduce this uncertainty, so it may be helpful to first estimate whether, or how

much of a threat exists by ignoring uncertainty.

The analysis below is an example of how this type of information can be approxi-

mated. In this example uncertainty can originate from two aspects of the groundwater

system that are represented in the model: (1) the magnitude and (2) the direction

of the background flow field. If no uncertainty is present, the exact magnitude and

direction of the flow field will be known and the most efficient design can be chosen.
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If there is uncertainty in either the direction or magnitude of flow, then the chosen

design may result in a variety of different possible outcomes, each one having different

costs. These possible costs are summarized as an expected cost and this expected cost

will be higher than the outcome that was anticipated when choosing the design. To

estimate how much higher this expected cost is with different degrees of uncertainty,

a single flow direction and magnitude were chosen (this would be from the most likely

model) and a design was selected that performed best under these conditions. This

design is a dipole with an extraction rate roughly three times greater than the ex-

traction rate. Artificial uncertainty was then added (as described in greater detail

below) by considering conditions that were more and more different than those that

exist in the chosen model and looking at how the chosen design would perform under

those conditions. This was done for the direction and magnitude individually and in

combination.

The results are shown as a contour map of additional costs calculated from these

different levels of uncertainty in both the direction and magnitude of flow. This

contour map is shown on figure 4.16 and discussed in greater detail below. These

results show that, for this example, a significant amount of additional cost may be

incurred by ignoring uncertainty in either the direction or magnitude of flow. It

appears, however, that being uncertain about the direction can cause much greater

harm than being uncertain about the magnitude of flow. In addition, while the largest

added expected costs are incurred under very large, and possibly unrealistic levels of

uncertainty, even modest levels of uncertainty can raise the expect costs by 50 to 100

percent. This result may help justify a further investigation of where uncertainty is

actually present in the model and how one may act to reduce this uncertainty.

The presence of bias in model results is a hazard similar to uncertainty which

may also complicate a models use in decision making. The choice to proceed with

model results without considering whether or not there is a bias may lead to the same

type of regrettable outcomes as are described above for uncertain model results. The



61

ways in which additional costs may be incurred as a result of biased model results is

explored in greater detail following the uncertainty section below.

4.6 Uncertainty analysis

In the context of uncertainty, the likelihood weighted cost curves of figure 4.14 are

curves of expected costs. For this study, the source of uncertainty that is considered

is caused by the background flow conditions not being perfectly known. Each of the

models that were considered in the ensemble produced background flow conditions

that, if they were the true conditions, would results in particular cost curves of oper-

ating the circulation system. If each of these conditions, and associated cost curves,

are considered possible, and the relative likelihood of each is expressed by the mea-

sure of likelihood that was calculated above, then a single cost curve can be created

that accounts for all of the different possible results. This is found by calculating

the likelihood weighted mean of every cost curve - producing the curve of expected

cost. Finding the point on this curve that produces the lowest possible expected cost

is how one can choose a robust design that performs fairly across the many possible

true flow conditions. This design, however, is unlikely to produce the best results for

the actual conditions it is simply a balanced choice made when the actual conditions

are not known. The actual cost of uncertainty can only be determined by comparing

the cost of the strategy chosen based on expected cost to the true optimal design with

perfect knowledge of the true system.

The alternate strategy of choosing the optimal design from the single cost curve

that is the most likely to be true may provide the best design for the actual condi-

tions, assuming that one of the models produces true results. This will only happen,

however, if there is a true model in the ensemble and if it is correctly (and uniquely)

identified as the model with the maximum likelihood. If there is uncertainty about

this then there are many different ways in which this design could end up perform-
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ing very poorly, depending upon which alternative background conditions are truly

present.

Differences between these two approaches (maximum likelihood or likelihood weighted

optimal design) and the type of costs that may result from following either one are

demonstrated on figure 4.15. This figure shows the same two sets of cost curves as

figure 4.14 with a few important designs and costs highlighted. These points are

selected and compared with the purpose of showing the expected costs that could

be incurred by ignoring uncertainty and the costs that could be incurred by having

uncertainty. First, if the optimal point from the maximum likelihood curve is used

to select a design (point I), the cost that this design would have if this model were

the true model is cost A. This may be the cost that is anticipated if the maximum

likelihood model is expected to be true, but if there is uncertainty in actual condi-

tions then this design may have very different costs depending upon which alternate

conditions are actually present. The expected cost of this design across all of these

possible conditions (that were considered) is cost B. The difference between costs B

and A is the expected additional cost over what is anticipated from the maximum

likelihood results.

The design shown on point II minimizes the expected cost curve with the cost

shown as cost C. The difference between cost A and costs C is the expected addi-

tional cost that is incurred by ignoring (or grossly underestimating) uncertainty and

selecting the best design from the maximum likelihood cost curve rather than the

robust design from the expected cost curve.

These two sets of curves can also demonstrate how the robust design that min-

imizes the expected cost may be non-optimal for the actual true conditions. This

is done by assuming for the moment that the dashed cost curves actually represent

the costs that would occur under true conditions. Point II, the robust design which

results in the minimum expected cost of C, would end up producing the actual costs

of D under the true conditions. The difference between points D and C is a cost
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that results from selecting a design that is robust under uncertainty, but non-optimal

for the actual conditions. This cost results from the need to trade off efficiency for

robustness when a choosing a design that guards against acknowledged uncertainty.

A final comparison can be made to show the total cost that is added by uncer-

tainty, even when it is recognized. If we assume that the dashed curves are the true

conditions, that one of the models in the ensemble predicts these true conditions ex-

actly, and that this model would have a likelihood value of one given perfect data,

then this model would allow us to choose the truly optimal design of point I. Compar-

ing the cost A of this best design with the cost of the robust design cost of C (which

is chosen from the expected cost curve without knowing what the true conditions

are), can be thought of as both an added cost of having uncertainty and the expected

possible benefit of reducing uncertainty to zero. This is the additional possible sav-

ings that could be achieved by improving the certainty of the model through data

collection.

Figure 4.15. Costs Curves with Notable Design Decisions and Associated Costs

In this study, uncertainty in the regional model was transferred to the advective

transport model through the magnitude and direction of the background flow field.
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As described in the methods sections, the impact of each of these two sources of

uncertainty were explored by creating synthetic likelihood functions for each com-

ponent of the uniform background flow, perturbing the variance in these functions

by different degrees, and calculating the added cost of ignoring uncertainty for each

synthetic likelihood realization. Figure 4.16 below is a contour plot of these results,

normalized by the minimum possible cost that could be achieved if true conditions

were perfectly represented by one of the choices of background flow conditions in the

ensemble. For these calculations, the background flow conditions that were selected to

represent true conditions are a flow magnitude of 0.1 and angle of 10 degrees. These

were artificial conditions chosen because they provided a clear demonstration of the

impact that uncertainty can have on costs. These conditions are selected as true for

this exercise only. The results of the flow model suggest a different mean angle and

magnitude. It is not believed that the actual flow system is completely uniform over

such a large area or that it was perfectly represented by any of the members of the

regional flow model ensemble. In the context of the costs shown on figure 4.15 above,

the calculation being performed is: (B-A)/A. The horizontal axis marks the standard

deviation in the synthetic likelihood function of the flow fields magnitude, and the

vertical axis marks the same for the direction. Costs rise in both directions, and are

greater for the highest uncertainties in the direction that were considered than they

were for the highest uncertainties in magnitude that were considered. Costs always

rise with increases in direction uncertainty, but they do not increase monotonically

with magnitude when uncertainties are high in both. This is likely due to the flat-

tening of the expected cost curve that occurs with high uncertainty as was discussed

in the cost section and shown on figure 4.14 and figure 4.15.

It is important to note that these results are for the particular background condi-

tions chosen (magnitude of 0.1 and angle of 10 degrees), for which the selected design

(I) is the dipole. A different set of true background conditions with a different least

cost design would generate a different set of results. If, for example, the background
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conditions chosen had indicated that the five-spot would be a better design, the fea-

tures of figure 4.16 would likely show less sensitivity to the uncertainty in the angle of

the background gradient. This is because the five-spot is a more robust design under

the full range of possible flow directions.

Figure 4.16. A Contour Plot of the Cost Increase of Ignoring Uncertainty Nor-
malized by The Minimum Possible Costs with No Uncertainty. Results are plotted
against the uncertainty in the magnitude and angle of the background flow field.

4.7 Bias analysis

The above exercise explored a sythetic example of a model ensemble for which the

available data could only provide an imprecise identification of the best model of the
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physical system. Though uncertain, it was assumed that the likelihood distribution

was centered around the true or best model; that there was, in other words, no bias

in the parameter and model identification. The presence of bias in the likelihood

distribution is a possibility that, like uncertainty, can lead to the misidentification of

the minimum expected cost design and to an added actual cost of implementation.

The effects of bias upon design costs were explored using a similar approach to

that employed in the uncertainty analysis above. In this case, however, the synthetic

likelihood functions of the background flow fields direction and magnitude were given

fixed levels of uncertainty and it was the mean values of these functions that were

perturbed to generate different levels of bias in each component. A single likelihood

distribution was identified as the unbiased case, and every other one was deemed

biased.The uncertainty was fixed and designs were selected by choosing the robust

design from the minimum of the expected cost curves.

Figure 4.17 shows two sets of cost curves: one set generated from the unbiased

likelihood distribution and one set generated from one of the biased distribution.

The solid curves represent unbiased and the dashed curves represent biased. The

maximum likelihood model curves are not used in this analysis and are not shown.

The expected additional cost created by bias was calculated by identifying the least

cost design (point I) from the biased curves, finding the expected cost of this design

for the unbiased curves (point A) and comparing it to the mimimum expected cost

of the unbiased curves (point B).
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Figure 4.17. Biased and Unbiased Cost Curves with Notable Design Decisions and
Associated Costs

This calculation was done for every artificially biased likelihood distribution that

was generated by perturbing the mean of the flow field magnitude and direction

likelihood distributions (individually and in combination) by different degrees. Figure

4.18 below is a contour plot of these results, normalized by the minimum expected cost

with no bias, and expressed as a percent. The horizontal axis marks the perturbation

in the mean of the synthetic likelihood function of the flow fields magnitude, and the

vertical axis marks the same for the direction. The unbiased case is located in the

center of the horizontal axis and the bottom of the vertical axis, and can be seen to

have an added cost of zero.
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Figure 4.18. A Contour Map of the Cost Increase of Model Bias Normalized by
The Expected Cost of the Unbiased Model. Results are plotted against the bias in
the magnitude and angle of the background flow field.

The pattern and overall magnitude of the costs below are dependent upon the

levels of uncertainty set in the synthetic likelihood functions. For the case above, the

uncertainties were high and robust designs were chosen most of the time. As a result,

the added costs that were calculated did not become very great as the robust designs

performance is much less sensitive to differences in the background from conditions. If

the uncertainty were lessened, more efficient designs would have been selected with a

greater vulnerability to biased results, and much greater variation in costs would have

been seen. It is generally expected that the greatest added costs will be experienced

under low levels of uncertainty and high levels of bias. No analysis was undertaken

to identify the degree of bias in the regional flow model results.

These costs differ in several ways from the expected additional costs of ignoring

uncertainty that were shown in figure 4.16 above. Because of these differences figure

4.16 and figure 4.18 should not be used for direct comparison. In each case, the figure
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is generated to explore how the effect of bias or uncertainty in the degree and angle

of the background flow compare to one another and to see how they interact. With

true cost curves, these and similar plots may be generated to diagnose how the model

may be improved, or to decide how comfortable one is with the levels of uncertainty

and bias in their cost estimates.
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Chapter 5

Conclusion

The Discrimination/Inference to Reduce Expected Cost Technique (DIRECT) is a

new modeling framework designed to allow risk-based decision making and monitoring

network design optimization to be included in modeling studies that are beset by

prediction uncertainty. We applied aspects of DIRECT to a set of regional and

local groundwater models with a focus on the how uncertainty is transferred from the

regional scale to the local scale and the impact that this uncertainty has on the design

of a system of injection and extraction wells. Throughout the study, the utility of

DIRECT was considered by exploring the unique set of information it provides and

by comparing its modeling approach to the traditional single-model approach.

Two important aspects of DIRECT were explored in this study. First, model pre-

dictions were made using multiple models from an ensemble with varying conceptual

models and many parameter realizations. The summarized results of the ensemble

were compared to the results of the single model that was identified to produce the

most accurate results given the observation data. Second, an economic cost function

was applied to modelled predictions of interest and the potential circulation system

designs were compared based on their predicted costs.

5.1 Typical approach vs DIRECT

The inclusion of multiple models in the analysis of potential circulation system designs

was used to compare decisions made using two different approaches: (1) the typical

approach of selecting a design based upon the single model that best matches observed

conditions; and (2) an approach that considers the results from an entire ensemble of

model results based upon their relative likelihood (as in DIRECT). The comparison
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of these two approaches revealed a potential for reaching widely different conclusions.

It was demonstrated that the typical approach may select a design that performs

very poorly if conditions differ from those predicted by the model. Because this

approach draws conclusions based on only one model, the potential that the conditions

set by the modeler differ from those in the actual system can produce inaccurate

results. The more robust DIRECT guards against this danger by using many different

models to capture the inherent uncertainty in the system. By expanding the range

of the ensemble of models, we have a greater chance of capturing both the reality

of the situation and uncovering possibilities that may be less-likely given the data,

but ultimately more important in terms of the possibly costly results they predict.

However, in using a summary of many results, the design chosen with DIRECT may

perform sub-optimally compared to a design selected for known actual conditions.

Because we do not have the means to perfectly predict hydrologic system responses,

DIRECT is generally a better way of selecting designs under uncertainty.

Both of these points suggest the importance of reducing uncertainty by collecting

additional data. This will lessen the chance that the typical approach selects a poorly

performing model while also allowing the robust design chosen with DIRECT to

perform better under true conditions.

5.2 Importance of economic cost functions

Including economic costs in the modeling process is a critical aspect of DIRECT that

enriches the information that models can provide for environmental decision making.

This study included several analyses that took advantage of the additional layer of

information that the cost function revealed.

Using an economic cost function condenses many important design considerations

into a common metric that can be used to compare potential actions. A cost function

can be difficult to define, but it offers the modeler an opportunity to identify the role
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the model ultimately has in decision making. In this study, the economic cost function

for the potential circulation systems included terms for total pumping and disposal,

well installation, and a penalty for the loss of the injected solution. The form of the

function itself was artificial, but the primary considerations were realistic concerns.

Furthermore, the interactions among the different factors was clearly revealed by the

cost curves, which varied as the designs were changed to increase pumping, add wells,

and capture more solution. These simple results offered utility in transferring the

hydrological results into a form more directly useful for decision making.

5.3 Uncertainty

The two aspects of DIRECT that were applied in this study modeling with an

ensemble and including economic costs provided a flexible way to explore predictive

uncertainty and how it impacts decisions and costs. The probabilistic nature of the

ensemble provided a way to introduce structural and parameter uncertainty into the

analysis and to estimate prediction uncertainty. The inclusion of the cost function

allowed us to explore not just where uncertainty exists in model predictions, but how

these uncertainties affect the relative and absolute costs of designs.

When testing potential actions using a model, DIRECT advocates choosing a

design that minimizes expected costs. While the artificial nature of the cost function

used in this study prevented a specific best design from being selected for the real

system, the framework allowed for a useful comparison and demonstration of the

ways in which prediction uncertainty can add to the cost of a design. The most

useful result from this study for demonstrating uncertainty costs was the cost curves.

These show the cost of every design option as they are predicted by the typical

single-model approach and by the expected costs summary of the entire ensemble.

The figures clearly demonstrate how (1) the designs and costs differ when using the

typical single model approach versus DIRECT; (2) the expected cost of an efficient
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design chosen with the single model can be higher than is predicted by the single

model; (3) the lowest expected cost can be higher than the lowest cost predicted

by the single model; (4) the lowest expected cost design may perform sub-optimally

under actual conditions; and (5) the designs and costs may all converge upon the

true optimal design as uncertainty is reduced if the ensemble includes an accurate

prediction of the actual system. If made with real cost functions, these comparisons

would allow a modeler to explicitly view the impact that uncertainty can have on

decisions, and to decide whether or how much to compromise a designs efficiency to

include robustness.

The final aspect of DIRECT - that of defining the worth of new data and devising

data acquisition strategies - was not included in this study. However, the technique

of transferring uncertainty from the regional flow model to the local transport model

through simplified statistical models provided an alternate way of addressing the

question of data worth. Combining these simple models with cost curves provided a

flexible tool for modeling the relationship between uncertainty in model inputs and

costs. The example analysis included in this study estimated the additional costs that

could be expected to beset the efficient designs when different degrees of uncertainty

are present in model inputs. This result could be used to aid data collection strategies.

Ultimately, the analyses performed in this study provide a glimpse into level of

information that can be provided with DIRECT and the information that is lost

when ensemble methods and cost consideration are omitted from a modeling project.

5.4 Practical Considerations

It should be emphasized that the expected cost of a specific design refers to a prob-

abilistic expected value. This is the average cost that would be achieved if cost is

considered to be a random variable and the design were implemented innumerable

times. Importantly, the expected cost is not the cost that one should expect to occur
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for one implementation of a design. As a result, implementation of DIRECT offers no

guarantee of making a better decision for any single application. Rather, it is aimed

at using all available information, quantitatively, to balance a design to account for

both the more likely, but less costly, outcome and rare but potentially disastrous

conditions or events.

The possibility that risk-based decision making may choose designs that are fre-

quently found to be unnecessarily cautious may make risk-based decision making a

difficult strategy to defend for fields in which it is not already accepted. Not only

will one be citing a cost (expected cost) that will probably not be experienced, but

under most situations one will also be choosing a design that underperforms the more

straight forward maximum likelihood design. It is in the larger view that this design

strategy can be seen to have its advantage. Countless decisions are being made every

day without full knowledge of what will occur. Without a consideration of risks many

of these decisions will fail and be found to have recklessly ignored low probability but

highly undesirable outcomes. With such a large number of decisions being made in

every discipline, risk-based decision making is the strategy that will produce the best

average outcomes overall. While it may be difficult for any individual to see the in-

centive to spearhead this change of thinking, the overall advantage it offers is difficult

to dispute. This study touched upon the benefit of risk based decision making for

contaminant treatment design, which is an application of subsurface hydrology where

the strategy may be particularly beneficial. Specifically, the extra price of a robust

design may be easy to justify to decision makers who understand the extremely high

cost that can result from a release of contaminants into the environment.
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Appendix A

Advective Transport Model MATLAB Code

% MainAdvectiveTransport

==================================================

% Code for using the Theis solution and particle tracking to

evaluate the

% performance of different well orientations under different

hydrogeological

% conditions

%% Initialization

% USER INPUTS

-------------------------------------------------------------

O.Loop1 =0; % Hydrologic model loop

if O.Loop1

clear all

close all

O.Loop1 =1;

D.fig=0;

end

O.Loop2 =0; % Grouping , summarizing , and likelihood loop

O.Initialize =0;

if O.Initialize;

% Define grid and solution options

O.DistCrit0 = 2.5; % (cell) distance away from wells in

particle ’capture ’ zone

O.LMax = 1.25*5280; % (ft) define size of domain

O.LRes = 1320/4; % (ft) cell length

O.PartDist = 1; % (cell) distance from injection well to

place particles

O.PartNum = 61; % number of particles to place

O.ModelNumber =0; % choose the model numbers , 0 is all , if

higher than number of models it is final

O.ModelNumberL =0; % choose a Likelihood model number , 0 is

for all

O.GroupBy={’Scenario ’,’QRat ’};

% Select which sets of figures to produce

O.Plot1 =0; % head contours with streamlines

O.Plot2 =0; % pumping effiency contour maps

O.Plot3 =1; % Qrat vs. pumping effiency & cost
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O.Plot4 =0; % Bias analysis plots

O.Plot5 =0; % Variance analysis plots

O.Plot6 =0; % Variance analysis ’cost of ignoring

uncertainty ’

% Define costs and cost function

P.CostW =0.05 e5; % Cost of installing wells

P.CostP =160; % Cost of pumping and injecting water

P.CostC =200; % Cost of ’contamination ’ (percent

boundary)

Cost1 = inline(’CostWell .* NumWell+CostCont .*( QInj.* PerLost)+

CostPump .*( QInj+QExt) ’);

% Define parameters and input variables

P.Time = 100; % (yr)

P.Q = 125*365;%500*365; % (ft3 yr -1)

P.Scenario = [2 4]’; % Well scenario (defined below)

P.QRat = linspace (1/2 ,8 ,10) ’;%linspace (1/2 ,10 ,40) ’; % Total

extraction to injection ratio

P.K = 10^0; % (ft yr -1)

P.Ss = 10^-5; % (ft -1)

P.GradAng = linspace(0,pi ,5) ’; % Direction of gradient

P.GradMag = linspace (10^-3,1 ,10) ’;%linspace (10^-3,1 ,30) ’;% (ft

ft -1) Magnitude of gradient

P.Thick = 100; % (ft)

% Define parameter probability distribution parameters (if

uniform , don ’t define)

P.Prob =[];

P.Prob(end+1).Name=’GradAng ’;

P.Prob(end).Distribution=’Normal ’;

P.Prob(end).mu=P.GradAng(end);%P.GradAng;

P.Prob(end).sig=linspace (1e-4,pi/2,5) ’;%linspace (1e-4,pi/2 ,15) ’;

P.Prob(end).true.mu=P.GradAng(end);

P.Prob(end).true.sig=pi/8;

P.Prob(end+1).Name=’GradMag ’;

P.Prob(end).Distribution=’Normal ’;

P.Prob(end).mu=median(P.GradMag);%P.GradMag;

P.Prob(end).sig=linspace (1e-2 ,1.5* std(P.GradMag) ,5) ’;%linspace (1

e-3 ,1.5* std(P.GradMag) ,15) ’;

P.Prob(end).true.mu=median(P.GradMag);

P.Prob(end).true.sig =0.005;

% Define the well scenarios

O.Scenario (1).Name=’Single Pumping Well ’;

O.Scenario (1).WellType =[ -1];

O.Scenario (1).WellLoc =[0 0]; %(ft)
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O.Scenario (2).Name=’Dipole ’;

O.Scenario (2).WellType =[ -1;1];

O.Scenario (2).WellLoc=sqrt (2)*[0 0;0.25 0]*5280; %(ft)

O.Scenario (3).Name=’5-spot ’;

O.Scenario (3).WellType =[ -1;1;1;1;1];

O.Scenario (3).WellLoc =[0 0; -.25 -.25; -.25 .25;.25 -.25;.25

.25]*5280; %(ft)

O.Scenario (4).Name=’5-spot shifted pi/4’;

O.Scenario (4).WellType =[ -1;1;1;1;1];

O.Scenario (4).WellLoc=sqrt (2)*[0 0; -.25 0;0 .25;.0 -.25;.25

0]*5280; %(ft)

% CREATE VARIABLES BEFORE MAIN LOOP

----------------------------------------

% Initialize variables

D.PartLoc=O.LRes*O.PartDist *[cos(linspace (0,2*pi,O.PartNum))’,

sin(linspace (0,2*pi ,O.PartNum)) ’];

D.DistCrit0=O.LRes*O.DistCrit0;

D.k0=0;

% Create the model ensemble

M.All=allcomb(P.K,P.Ss,P.Q,P.QRat ,P.GradAng ,P.GradMag ,P.Scenario

,P.Time ,P.Thick);

M.AllNames={’K’,’Ss’,’Q’,’QRat ’,’GradAng ’,’GradMag ’,’Scenario ’,’

Time ’,’Thick ’};

for i0=1: size(M.AllNames ,2)

eval([’M.’,M.AllNames{i0},’=M.All(:,’,num2str(i0),’);’]);

end

% Post processing of model ensemble

%SubPostProcessing;

% Use O.Model number to define a single model to run , or run all

if = 0

if O.ModelNumber ==0

D.Models =(1: size(M.All ,1)) ’;

elseif O.ModelNumber >size(M.All ,1)

D.Models=size(M.All ,1);

else

D.Models=O.ModelNumber;

end

D.DispFreq=max(1,round(length(D.Models)/25));

end %if O.Initialize

%% Calculation

tic

% LOOP OVER THE MODEL ENSEMBLE

---------------------------------------------



78

if O.Loop1

% Initialize other variables

M.NExt=zeros(size(M.All ,1) ,1);

M.NInj=zeros(size(M.All ,1) ,1);

R.PerBound=zeros(size(M.All ,1) ,1);

R.PerWells=zeros(size(M.All ,1) ,1);

% Find largest number of wells from O.Scenario for determining

the # of

% columns for R.PerWellsInd

D.A0=0;

for j0=P.Scenario ’

D.A0=max(D.A0 ,size(O.Scenario(j0).WellLoc ,1) -1);

end

R.PerWellsInd=zeros(size(M.All ,1),D.A0);

% BEGIN LOOP --------------

for i0 = D.Models ’

D.k0=D.k0+1;

% Define the Scenario

D.WellType=O.Scenario(M.Scenario(i0)).WellType;

D.A0=sum(D.WellType ==-1); %Number of injection wells in

scenario

D.A1=max(sum(D.WellType ==1) ,1); %Number of extraction wells

in scenario

D.QRat =-1*(D.WellType ==-1)+(D.WellType ==1)*M.QRat(i0)*D.A0/D

.A1;

D.Q=M.Q(i0)*D.QRat;

D.WellLoc=O.Scenario(M.Scenario(i0)).WellLoc;

D.ExtWellLoc=D.WellLoc;

D.ExtWellLoc (1,:) =[];

M.NExt(i0)=D.A1;

M.NInj(i0)=D.A0;

% Create the grid

D.A0=ceil(O.LMax+max(abs(D.WellLoc (:))));

D.x=-D.A0:O.LRes:D.A0;D.x=sort(unique ([D.x,D.WellLoc (:,1) ’])

);

D.y=(D.A0:-O.LRes:-D.A0) ’;D.y=flipud(sort(unique ([D.y;D.

WellLoc (:,2)])));

[D.X1 ,D.Y1]= meshgrid(D.x,D.y);

D.rr=zeros([size(D.X1),size(D.WellLoc ,1)]);

D.QQ=zeros([size(D.X1),size(D.WellLoc ,1)]);

% Put some of the Theis parameters on spatial grid

for j0=1: size(D.WellLoc ,1);

D.rr(:,:,j0)=sqrt((D.X1 -D.WellLoc(j0 ,1)).^2+(D.Y1-D.

WellLoc(j0 ,2)).^2);
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D.QQ(:,:,j0)=D.Q(j0)*ones(size(D.X1));

end

% Create background head distribution

Sub3DPlane=inline(’m*cos(angle)*X+m*sin(angle)*Y’);

D.InitialHead = Sub3DPlane(D.X1,D.Y1,M.GradAng(i0),M.GradMag

(i0));

% Calculate drawdown with Theis

D.Drawdown = TheisSolution(D.QQ,M.Time(i0),D.rr,M.Ss(i0),M.K

(i0),M.Thick(i0));

% Eliminate infinite values at wells

D.Drawdown(D.Drawdown ==Inf)=max(D.Drawdown(D.Drawdown ~=Inf))

;

D.Drawdown(D.Drawdown==-Inf)=min(D.Drawdown(D.Drawdown~=-Inf

));

% Sum drawdown and background head distribution

D.FinalHead = D.InitialHead -D.Drawdown;

% Calculate gradient

[D.GradX D.GradY ]= gradient(D.FinalHead ,D.x,D.y);

% Caclulate streamlines placed around injection well

D.Streamlines=stream2(D.x,D.y,-D.GradX ,-D.GradY ,D.PartLoc

(:,1),D.PartLoc (:,2));

% Collect the streamline destinations , classify as well or

boundary , and calculate percentages

% Loop over each streamline

for j0=1: size(D.Streamlines ,2)

% Collects the destination by extracting the last row

from D.Streamlines that is

% not NaN

D.Dest(j0 ,:)=(D.Streamlines{j0}(find(isnan(sum(D.

Streamlines{j0},2))==0,1,’last ’) ,:));

% Assign a code for destination

% Default is to remain at initial position (code:-1)

D.Code(j0)=-1;

% Well

for j1=1: size(D.ExtWellLoc ,1)

if sum((abs(D.Dest(j0 ,:)-D.ExtWellLoc(j1 ,:))<D.

DistCrit0))==2

D.Code(j0)=j1;

end

end

% Boundary

if max((abs(D.Dest(j0 ,:) -[max(D.x) max(D.y)])<D.
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DistCrit0)+

(abs(D.Dest(j0 ,:) -[min(D.x) min(D.y)])<D.DistCrit0)) >0

D.Code(j0)=0;

end

end %j0

% Calculate percentage of particles ending at different

locations

R.PerBound(i0)=100* sum(D.Code ==0)/sum(D.Code ~=-1);

R.PerWells(i0)=100* sum(D.Code >0)/sum(D.Code ~=-1);

for j0=1: size(D.ExtWellLoc ,1)

R.PerWellsInd(i0,j0)=100* sum(D.Code==j0)/sum(D.Code ~=-1)

;

end

% Save any other desired variables to the the results

structure R

% Display the time and the percent completed

if rem(D.k0 ,D.DispFreq)==0

display ([ num2str (100*D.k0/length(D.Models)),’% complete

’])

toc

end

end %i0

end %if O.Loop1

%END LOOP ----------------------------------

% Calculate Cost of models

R.Cost1=Cost1(P.CostC ,P.CostP ,P.CostW ,(M.NInj+M.NExt),R.PerBound ,M.Q

.*M.NInj.*

M.QRat ,M.NInj.*M.Q);

R.Cost1Wells=Cost1(0,0,P.CostW ,(M.NInj+M.NExt),R.PerBound ,M.Q.*M.

NInj.*M.QRat ,M.NInj.*M.Q);

R.Cost1Pump=Cost1(0,P.CostP ,0,(M.NInj+M.NExt),R.PerBound ,M.Q.*M.NInj

.*M.QRat ,M.NInj.*M.Q);

R.Cost1Cont=Cost1(P.CostC ,0,0,(M.NInj+M.NExt),R.PerBound ,M.Q.*M.NInj

.*M.QRat ,M.NInj.*M.Q);

% GROUP RESULTS BY O.GroupBy AND ANALYZE RESULTS OF GROUPS

-----------------

% Create fields in structure that group () will be looking for (that

function could be improved)

D.all=M.All; D.all_names=M.AllNames;

% Find groups

R.Groups = group(D,O.GroupBy ,[]);

% CREATE LIKELIHOOD "ENSEMBLE", LOOP OVER ENSEMBLE AND COLLECT
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RSummary

% ARRAYS

% Create the likelihood ensemble

D.LikeParTypes=fields(P.Prob (1).true);

P.Like.All ={};

D.k0=0;

for i0=1: size(D.LikeParTypes ,1)

P.Like.Trues{i0}=[];

P.Like.TruesType{i0}=D.LikeParTypes{i0};

for i1=1: size(P.Prob ,2)

D.k0=D.k0+1;

P.Like.Name{D.k0}=[D.LikeParTypes{i0},P.Prob(i1).Name];

P.Like.TruesName{i0}{i1}=P.Like.Name{D.k0};

P.Like.Type{D.k0}=D.LikeParTypes{i0};

P.Like.ParName{D.k0}=P.Prob(i1).Name;

% Get full vectors and true values of likelihood model

parameters

eval([’D.LikeArray=P.Prob(i1).’,P.Like.Type{D.k0},’;’])

eval([’D.LikeTrue=P.Prob(i1).true.’,P.Like.Type{D.k0},’;’])

% Change them to column vectors if they aren ’t

if size(D.LikeArray ,1) ==1

D.LikeArray=D.LikeArray ’;

end

if size(D.LikeTrue ,1) ==1

D.LikeTrue=D.LikeTrue ’;

end

% If the true value is empty , make the true value equal to

the full

% vector

if isempty(D.LikeTrue)

D.LikeTrue=D.LikeArray;

else

D.LikeArray=unique ([D.LikeTrue;D.LikeArray ]);

end

% Make true values set for each parameter type

P.Like.Trues{i0}= RowCombinations(P.Like.Trues{i0},D.LikeTrue

);

% Make an array of all likelihood parameter values made up

of all

% combinations of the parameter vectors , will be trimmed

later

P.Like.All=RowCombinations(P.Like.All ,D.LikeArray);

end

end

D.A0=zeros(size(P.Like.All ,1) ,1);

D.c1=0;

% Filter P.Like.All to only include those that have one of the ’true

’ sets

% of each likelihood parameter type
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for i0=1: size(P.Like.Trues ,2)

D.c0=D.c1+1;

D.c1=D.c0+size(P.Like.Trues{i0},2) -1;

D.A0=D.A0+ismember(P.Like.All(:,D.c0:D.c1),P.Like.Trues{i0},’

rows ’);

end

P.Like.All=P.Like.All((D.A0 >0) ,:);

% LOOP over likelihood "ensemble"

D.DispFreq=max(1,round(size(P.Like.All ,1) /25));

D.k0=0;

tic

D.LikeLoop =1: size(P.Like.All ,1);

if O.ModelNumberL ~=0

D.LikeLoop=D.LikeLoop(O.ModelNumberL);

end

if O.Loop2

display(’Likelihood Loop ’)

for i0=D.LikeLoop

D.k0=D.k0+1;

% Calculate model likelihoods for current likelihood "model"

D.A0=ones(size(M.All ,1) ,1);

for i1=1: size(P.Prob ,2)

D.Type=P.Prob(i1).Distribution;

eval([’D.A1=M.’,P.Prob(i1).Name ,’;’]);

switch D.Type

case ’Normal ’

D.c0=find(ismember(P.Like.ParName ,P.Prob(i1).

Name).* ismember(P.Like.Type ,’mu ’));

D.mu=P.Like.All(i0,D.c0);

D.c0=find(ismember(P.Like.ParName ,P.Prob(i1).

Name).* ismember(P.Like.Type ,’sig ’));

D.sig=P.Like.All(i0,D.c0);

D.A0=D.A0.* normpdf(D.A1,D.mu,D.sig);

end

end %i1

R.Likelihood=D.A0/sum(D.A0);

% CREATE STRUCTURE RGrouped TO HOLD GROUPED RESULTS AND

MODEL INFORMATION --

RGrouped = SubRGrouped(R,M,O.GroupBy);

% CREATE STRUCTRE RSummary to combine results of the

different pumping

% arrangements

D.ScenNum=unique(M.Scenario);

D.Fields={’QRat ’,’LWPerWells ’,’StdLWPerWells ’,’LWPerBound ’,’

StdLWPerBound ’...

,’LWCost1 ’,’StdLWCost1 ’,’BestFitCost1 ’,’BestFitPerWells
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’};

RSummary = SubRSummary(RGrouped ,D.Fields ,D.ScenNum ,O);

% COLLECT SUMMARY DATA in --- structure

for i1=1: size(RSummary ,2)

RSummaryLikeEns(i1).ScenarioName=RSummary(i1).

ScenarioName;

RSummaryLikeEns(i1).Scenario=RSummary(i1).Scenario;

for i2=1: size(P.Like.All ,2)

eval([’ RSummaryLikeEns(i1).’,P.Like.Name{i2},’=P.

Like.All(:,i2);’])

end

D.fields=fields(RSummary);

D.fields(ismember(D.fields ,{’ScenarioName ’,’Scenario ’}))

=[];

for i2=1: size(D.fields ,1)

if i0==1

eval([’ RSummaryLikeEns(i1).’,D.fields{i2},’=

zeros(size(P.Like.All ,1),length(RSummary(i1).QRat (:)));’])

end

eval([’ RSummaryLikeEns(i1).’,D.fields{i2},’(i0 ,:)=

RSummary(i1).’,D.fields{i2},’;’])

end

RSummaryLikeEns(i1).MinLWCost1=min(RSummaryLikeEns(i1).

LWCost1 ,[],2);

D.A0=RSummaryLikeEns(i1).MinLWCost1*ones(1,size(

RSummaryLikeEns(i1).LWCost1 ,2));

D.A1=(D.A0== RSummaryLikeEns(i1).LWCost1);

RSummaryLikeEns(i1).QRatMinLWCost1=sum(RSummaryLikeEns(

i1).QRat.*D.A1 ,2);

end %i1

% Display the time and the percent completed

if rem(D.k0 ,D.DispFreq)==0

display ([ num2str (100*D.k0/size(P.Like.All ,1)),’%

complete ’])

toc

end

end

for i2=D.LikeLoop

D.MaxL=zeros(size(RSummary ,2),size(RSummary (1).QRat ,1));

%CHeck

%[r,c]=find(D.MaxL==min(D.MaxL (:)),1,’first ’);

D.LW=zeros(size(RSummary ,2),size(RSummary (1).QRat ,1));

for i1=1: size(RSummary ,2)

D.MaxL(i1 ,:)=RSummaryLikeEns(i1).BestFitCost1(i2 ,:);

D.LW(i1 ,:)=RSummaryLikeEns(i1).LWCost1(i2 ,:);
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end

D.A0=min(D.LW(:));

if i2==D.LikeLoop (1)

D.overallLWMin=D.A0;

elseif D.A0 <D.overallLWMin

D.overallLWMin=D.A0;

end

end

for i2=D.LikeLoop

% Get cost of ignoring uncertainty

D.MaxL=zeros(size(RSummary ,2),size(RSummary (1).QRat ,1));

%CHeck

%[r,c]=find(D.MaxL==min(D.MaxL (:)),1,’first ’);

D.LW=zeros(size(RSummary ,2),size(RSummary (1).QRat ,1));

for i1=1: size(RSummary ,2)

D.MaxL(i1 ,:)=RSummaryLikeEns(i1).BestFitCost1(i2 ,:);

D.LW(i1 ,:)=RSummaryLikeEns(i1).LWCost1(i2 ,:);

end

[D.r,D.c]=find(D.MaxL==min(D.MaxL (:)) ,1,’first ’);

[D.r1 ,D.c1]=find(D.LW==min(D.LW(:)) ,1,’first ’);

for i1=1: size(RSummaryLikeEns ,2)

RSummaryLikeEns(i1).DetermCost1(i2 ,1)=D.LW(D.r,D.c)-min(

D.LW(:));

RSummaryLikeEns(i1).PerDetermCost1(i2 ,1)=(D.LW(D.r,D.c)-

min(D.LW(:)))./D.overallLWMin;

RSummaryLikeEns(i1).PerDetermCost1a(i2 ,1)=(D.LW(D.r,D.c)

-min(D.LW(:)))./min(D.LW(:));

RSummaryLikeEns(i1).DetermChoice(i2 ,1)=D.r;

RSummaryLikeEns(i1).CostLWTreat2Det(i2 ,1)=D.MaxL(D.r1,D.

c1)-min(D.MaxL (:));

RSummaryLikeEns(i1).PerCostLWTreat2Det(i2 ,1)=

(D.MaxL(D.r1,D.c1)-min(D.MaxL (:)))./min(D.MaxL (:));

RSummaryLikeEns(i1).DetermCost2(i2 ,1)=D.LW(D.r,D.c)-min(

D.MaxL (:));

RSummaryLikeEns(i1).PerDetermCost2(i2 ,1)=(D.LW(D.r,D.c)-

min(D.MaxL (:)))./min(D.MaxL (:));

RSummaryLikeEns(i1).PerDetermCost2a(i2 ,1)=(D.LW(D.r,D.c)

-min(D.MaxL (:)))./D.overallLWMin;

end

end

if length(D.LikeLoop (:))>1

% RUN VARIANCE ANALYSIS

SubVarianceAnalysis;

% RUN BIAS ANALYSIS

SubBiasAnalysis;

end
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end %if O.Loop2

\end{verbatim}

%% Figures

\begin{verbatim}

% SubRGrouped

========================================================

function RR = SubRGrouped(R,M,GroupBy)

% Function that takes the results from R, separates them by the

fields

% specified and calculates new arrays for the grouped results

%% Initialization

% Preallocate RGrouped

RGrouped(size(R.Groups ,2)).Group =[];

% Get the field names from M and R and filter out grouped by and non

-parameter fields

D.MFieldNames=fieldnames(M);

D.RFieldNames=fieldnames(R);

D.A2=ones(size(D.MFieldNames));

D.A3=ones(size(D.RFieldNames));

%% Calculations

% Find those fields that aren ’t nModels in length

for i1=1: size(D.MFieldNames ,1)

D.A0=D.MFieldNames{i1};

eval([’D.A1=size(M.’,D.A0 ,’,1);’]);

D.A2(i1)=(D.A1==size(M.All ,1));

end

for i1=1: size(D.RFieldNames ,1)

D.A0=D.RFieldNames{i1};

eval([’D.A1=size(R.’,D.A0 ,’,1);’]);

D.A3(i1)=(D.A1==size(M.All ,1));

end

% Eliminate those that grouping was based upon

D.A2=D.A2-ismember(D.MFieldNames ,GroupBy);

% Filter field list

D.MFieldNames=D.MFieldNames(D.A2==1);

D.RFieldNames=D.RFieldNames(D.A3==1);

% Loop through number of groups

for i0=1: size(R.Groups ,2)

% List group members by position in full ensemble in R

RGrouped(i0).Group=R.Groups{i0};
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% Create fields from GroupBy to values of the groups shared

% characteristics

RGrouped(i0).GroupBy=GroupBy;

for i1=1: size(GroupBy ,2)

D.A0=GroupBy{i1};

eval([’RGrouped(i0).’,D.A0 ,’=unique(M.’,D.A0 ,’(R.Groups{i0})

);’]);

end %i1

% Get parameter values from fields

RGrouped(i0).AllNames=M.AllNames;

for i1=1: size(D.MFieldNames ,1)

D.A0=D.MFieldNames{i1};

eval([’RGrouped(i0).M.’,D.A0 ,’=M.’,D.A0 ,’(R.Groups{i0});’]);

end

for i1=1: size(D.RFieldNames ,1)

D.A0=D.RFieldNames{i1};

eval([’RGrouped(i0).R.’,D.A0 ,’=R.’,D.A0 ,’(R.Groups{i0});’]);

end

% Re -normalize likelihoods

RGrouped(i0).R.Likelihood=RGrouped(i0).R.Likelihood/sum(RGrouped

(i0).R.Likelihood);

% Get Likelihood Weighted Results

D.A0=fieldnames(RGrouped(i0).R);

D.A0(ismember(D.A0,’Likelihood ’))=[];

for i1=1: size(D.A0 ,1)

if isempty(strfind(D.A0{i1},’LW ’)) && isempty(strfind(D.A0{

i1},’BestFit ’))

D.A4=RGrouped(i0).R.Likelihood;

eval([’D.A1=RGrouped(i0).R.’,D.A0{i1},’;’]);

D.A2=sum(D.A1.*D.A4);

D.A3=sqrt(sum(D.A4.*(D.A1 -mean(D.A1)).^2));

eval([’RGrouped(i0).R.LW ’,D.A0{i1},’=D.A2;’]);

eval([’RGrouped(i0).R.StdLW ’,D.A0{i1},’=D.A3;’]);

end

end %i1

% Get best -fit model results

D.A0=fieldnames(RGrouped(i0).R);

D.A0(ismember(D.A0,’Likelihood ’))=[];

for i1=1: size(D.A0 ,1)

if isempty(strfind(D.A0{i1},’BestFit ’)) && isempty(strfind(D

.A0{i1},’LW ’))

D.A4=find(RGrouped(i0).R.Likelihood ==max(RGrouped(i0).R.

Likelihood));

eval([’D.A1=RGrouped(i0).R.’,D.A0{i1},’;’]);
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D.A2=mean(D.A1(D.A4));

eval([’RGrouped(i0).R.BestFit ’,D.A0{i1},’=D.A2;’]);

end

end %i1

% Get Cost1(LW results)

D.NInj=unique(M.NInj(RGrouped(i0).Group));

D.NExt=unique(M.NInj(RGrouped(i0).Group));

D.PerBound=RGrouped(i0).R.LWPerBound;

D.Q=unique(M.Q(RGrouped(i0).Group));

D.QRat=unique(M.QRat(RGrouped(i0).Group));

% RGrouped(i0).R.Cost1LWResults=Cost1(O.CostC ,O.CostP ,O.CostW ,(D

.NInj+D.NExt),D.PerBound ,D.Q.*D.NInj.*D.QRat ,D.NInj.*D.Q);

% Create matrices of Results (PerWells ,PerBound ,etc.) versus

parameter

% values

RGrouped(i0).ResMats=ResultsVsParams(RGrouped(i0).R,RGrouped(i0)

.M,size(RGrouped(i0).Group ,1));

end %i0

%% Output

RR = RGrouped;

%SubRSummary ========================================================

function RR = SubRSummary(RGrouped ,fields ,ScenNum ,O)

% Function that summarizes the results from RGrouped

%% Initialization

% Create a table for indexing the scenario numbers from 1 to

nScenario

numScen=length(ScenNum);

D.ScenNum =[ScenNum ,cumsum(ones(numScen ,1))];

D.k1=zeros(size(D.ScenNum ,1) ,1);

D.n1=size(RGrouped ,2)/size(D.k1 ,1);

% Preallocate RSummary and fields

RSummary(size(D.k1 ,1)).ScenarioName =[];

RSummary(size(D.k1 ,1)).Scenario =0;

for i0=1: size(fields ,2)

eval([’RSummary(size(D.k1 ,1)).’,fields{i0},’=zeros(D.n1 ,1);’]);

end

%% Calculations

for i0=1: size(RGrouped ,2)
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% Get scenario number

D.A0=RGrouped(i0).Scenario;

% Get index number of RSummary , based on scenario number , and

advance

% D.k1 counter

D.A1=find(D.ScenNum (:,1)==D.A0);

D.k1(D.A1)=D.k1(D.A1)+1;

% Define scenario and name

RSummary(D.A1).Scenario=D.A0;

RSummary(D.A1).ScenarioName=O.Scenario(D.A0).Name;

% Get results

for i1=1: size(fields ,2)

if strcmp(fields{i1},’QRat ’)

eval([’RSummary(D.A1).’,fields{i1},’(D.k1(D.A1) ,1)=

RGrouped(i0).’,fields{i1},’;’]);

else

eval([’RSummary(D.A1).’,fields{i1},’(D.k1(D.A1) ,1)=

RGrouped(i0).R.’,fields{i1},’;’]);

end

end

end %i0

%% Output

RR = RSummary;

%SubBiasAnalysis

=======================================================

% SubVarianceAnalysis

% A subroutine that uses the capture efficiencies and costs from the

flow

% models calculated in MainTheisAnalysis , and makes changes in the

% likelihood fields to analyze how natural variability , bias , and

uncertainty

% affect design decisions and the costs that arise from actions

taken under

% uncertainty

%% Initialization

% Input Structure

R0=RSummaryLikeEns;

% Specify fields

D.ScenarioFields ={’Scenario ’,’ScenarioName ’};

%% Calculation

% Create a matrix to be used by group for select groupings

D.all=P.Like.All;
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D.all_names=P.Like.Name;

% Find the fields to group by

D.GroupBy=P.Like.Name(strncmpi(’sig ’,P.Like.Name ,2));

% Create cell arrays of different categories of fields in

RSummaryLikeEns

D.AllFields=fields(R0);

D.MFields=D.AllFields(ismember(D.AllFields ,P.Like.Name));

D.RFields=D.AllFields (( ismember(D.AllFields ,P.Like.Name)+ismember(D.

AllFields ,D.ScenarioFields))==0);

D.RTemp=rmfield(R0,D.ScenarioFields);

% Create a structure of the ’Result ’ arrays

D.R=rmfield(D.RTemp ,D.MFields);

% Create a structure of the likelihood ’model ensemble ’ arrays

D.M=rmfield(D.RTemp ,D.RFields);

% Find groups

D.Groups=group(D,D.GroupBy ,’’);

% Only keep those with more than one entry

D.Groups=D.Groups(cellfun(@length ,D.Groups) >1);

% Loop over the number of elements in R0

for i0 = 1:size(R0 ,2)

D.A0=find(strcmp(P.Like.TruesType ,’mu ’));

R1(i0).Trues=P.Like.Trues{D.A0};

R1(i0).TruesName=P.Like.TruesName{D.A0};

for i1=1: size(D.ScenarioFields ,2)

eval([’R1(i0).’, D.ScenarioFields{i1},’=R0(i0).’,D.

ScenarioFields{i1},’;’])

end

for i1=1: size(D.Groups ,2)

for i2=1: size(D.GroupBy ,2)

eval([’R1(i0).Grouped(i1).’,D.GroupBy{i2},’=unique(R0(i0

).’,D.GroupBy{i2},’(D.Groups{i1}));’]);

end

R1(i0).Grouped(i1).GroupBy=D.GroupBy;

R1(i0).Grouped(i1).Group=D.Groups{i1};

for i2=1: size(D.MFields ,1)

eval([’R1(i0).Grouped(i1).M.’,D.MFields{i2},’=R0(i0).’,D

.MFields{i2},’(D.Groups{i1});’]);

end

for i2=1: size(D.RFields ,1)

eval([’R1(i0).Grouped(i1).R.’,D.RFields{i2},’=R0(i0).’,D

.RFields{i2},’(D.Groups{i1},:);’]);

end

D.QQ=R1(i0).Grouped(i1).R.QRat;

D.QMin=R1(i0).Grouped(i1).R.QRatMinLWCost1*ones(1,size(D.QQ

,2));

D.True=ones(size(D.QQ ,1) ,1);

for i2=1: size(R1(i0).Trues ,2)

D.val=R1(i0).Trues(i2);
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D.nam=R1(i0).TruesName{i2};

eval([’D.A0=R1(i0).Grouped.M.’,D.nam ,’==D.val;’]);

D.True=D.True.*D.A0;

end

D.TrueCost=ones(size(D.QQ ,1) ,1)*R1(i0).Grouped(i1).R.LWCost1

(D.True ==1,:);

R1(i0).Grouped(i1).R.TrueCaseLWCost1=min(D.TrueCost (:));

R1(i0).Grouped(i1).R.ActionCost=sum(D.TrueCost .*(D.QQ==D.

QMin) ,2);

R1(i0).Grouped(i1).R.BiasExtraCost=

-R1(i0).Grouped(i1).R.TrueCaseLWCost1+R1(i0).Grouped(i1).R.

ActionCost;

%R1(i0).Grouped(i1).ResMats=

%ResultsVsParams(R1(i0).Grouped(i1).R,R1(i0).Grouped(i1).M,size(D.QQ

,1));

end %i1

end %i0

% Get BIAS cost 2 (the cost of guessing the wrong model (fixed) for

every

% possible correct model)

for i0=1: size(R1(1).Grouped ,2)

% Find the row of the ’true ’ or selected model

D.a0=[R1(1).Grouped(i0).muGradAng ,R1(1).Grouped(i0).muGradMag ];

D.a1=[R1(1).Grouped(i0).M.muGradAng ,R1(1).Grouped(i0).M.

muGradMag ];

D.a2=find(sum(ones(size(D.a1 ,1) ,1)*D.a0==D.a1 ,2)==2,1,’first ’);

% Get the treatment details (as a row , column location) as the

least

% cost from the selected model

D.A0=zeros(size(R1 ,2),size(R1(1).Grouped(i0).R.QRat ,2));

for i2=1: size(R1 ,2)

D.A0(i2 ,:)=R1(i2).Grouped(i0).R.LWCost1(D.a2 ,:);

end

[D.r,D.c]=find(D.A0==min(D.A0(:)) ,1,’first ’);

for i1=1: size(R1(1).Grouped(i0).R.QRat ,1);

D.A0=zeros(size(R1 ,2),size(R1(1).Grouped(i0).R.QRat ,2));

for i2=1: size(R1 ,2)

D.A0(i2 ,:)=R1(i2).Grouped(i0).R.LWCost1(i1 ,:);

end

D.BiasCost(i1 ,1)=D.A0(D.r,D.c);

end %i1

for i2=1: size(R1 ,2)

R1(i2).Grouped(i0).R.BiasCost=D.BiasCost;

end

end %i0
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for i0 = 1:size(R0 ,2)

for i1=1: size(D.Groups ,2)

R1(i0).Grouped(i1).ResMats=

ResultsVsParams(R1(i0).Grouped(i1).R,R1(i0).Grouped(i1).M,size(D.QQ

,1));

end %i1

end %i0

%% Output

RBias=R1;

%SubVarianceAnalysis

=====================================================

% SubVarianceAnalysis

% A subroutine that uses the capture efficiencies and costs from the

flow

% models calculated in MainTheisAnalysis , and makes changes in the

% likelihood fields to analyze how natural variability , bias , and

uncertainty

% affect design decisions and the costs that arise from actions

taken under

% uncertainty

%% Initialization

% Input Structure

R0=RSummaryLikeEns;

% Specify fields

D.ScenarioFields ={’Scenario ’,’ScenarioName ’};

%% Calculation

% Create a matrix to be used by group for select groupings

D.all=P.Like.All;

D.all_names=P.Like.Name;

% Find the fields to group by

D.GroupBy=P.Like.Name(strncmpi(’mu’,P.Like.Name ,2));

% Create cell arrays of different categories of fields in

RSummaryLikeEns

D.AllFields=fields(R0);

D.MFields=D.AllFields(ismember(D.AllFields ,P.Like.Name));

D.RFields=D.AllFields (( ismember(D.AllFields ,P.Like.Name)+

ismember(D.AllFields ,D.ScenarioFields))==0);

D.RTemp=rmfield(R0,D.ScenarioFields);

% Create a structure of the ’Result ’ arrays

D.R=rmfield(D.RTemp ,D.MFields);
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% Create a structure of the likelihood ’model ensemble ’ arrays

D.M=rmfield(D.RTemp ,D.RFields);

% Find groups

D.Groups=group(D,D.GroupBy ,’’);

% Only keep those with more than one entry

D.Groups=D.Groups(cellfun(@length ,D.Groups) >1);

% Loop over the number of elements in R0

for i0 = 1:size(R0 ,2)

for i1=1: size(D.ScenarioFields ,2)

eval([’R1(i0).’, D.ScenarioFields{i1},’=R0(i0).’,D.

ScenarioFields{i1},’;’])

end

for i1=1: size(D.Groups ,2)

R1(i0).Grouped(i1).Group=D.Groups{i1};

R1(i0).Grouped(i1).GroupBy=D.GroupBy;

for i2=1: size(D.GroupBy ,2)

eval([’R1(i0).Grouped(i1).’,D.GroupBy{i2},’=unique(R0(i0

).’,D.GroupBy{i2},’(D.Groups{i1}));’]);

end

for i2=1: size(D.MFields ,1)

eval([’R1(i0).Grouped(i1).M.’,D.MFields{i2},’=R0(i0).’,D

.MFields{i2},’(D.Groups{i1});’]);

end

for i2=1: size(D.RFields ,1)

eval([’R1(i0).Grouped(i1).R.’,D.RFields{i2},’=R0(i0).’,D

.RFields{i2},’(D.Groups{i1},:);’]);

end

end %i1

R1(i0).Grouped(i1).ResMats=

ResultsVsParams(R1(i0).Grouped(i1).R,R1(i0).Grouped(i1).M,size(D.

Groups{i1},1));

end %i0

%% Output

RVariance=R1;
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