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ABSTRACT 

Calcium signal can be found in many types of cell. It has been treated as a life and death signal 

in cell-level for triggering life at fertilization, controlling the development and differentiation of 

cells into specialized types, mediating the subsequent activity, and finally affecting the cell death. 

In tissues, intercellular calcium wave is thought to serve as a long-range signaling, affected by 

the cell architecture. The aim of this thesis is to provide insight into the intercellular calcium 

waves in multicellular complex structures subjected to mechano- or chemical-stimuli.  

In the mechano-stimulated study, we combine the development of theoretical and 

experimental study of the propagation of calcium signals in multicellular structures composed of 

human endothelial cells. This analysis provides evidence for an effect of architecture on the 

propagation of calcium signals and the effect of single and dual stimulation on the multicellular 

structures. A simple model was established based on the calcium release/intake reaction and 

diffusion through gap junction from stimulated cell to the downstream cells. The simulation 

result shows similar results as what is shown in experiments.  

In the chemical-stimulated model, we studied computationally the interdependence 

between intracellular calcium and inositol-1,4,5-trisphosphate (IP3) pathway and cell-cell 

communication via gap junction. We investigate the influence of the microenvironment of cells 

on the frequency of intracellular calcium oscillation. The simulation result shows that the 

oscillation frequency of an isolated cell is lower than that of a cell embedded in a cell-chain. This 

phenomenon is attributed to retrograde diffusion of calcium and IP3 originating from a widening 

range of cells in the chain undergoing oscillations. It further demonstrates the important 

influence of microenvironment on the bio-signaling propagation. 
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CHAPTER 1: INTRODUCTION 

The structure/processing/properties/utilization paradigm, which is based on the specificity of bio-

molecular and bio-cellular precursors, is the foundation of a new science and engineering of 

nano-bio material and systems. It is a compelling field that through manipulation of the primary 

amino acid sequence with modern recombinant DNA and molecular biology methods, polymeric 

proteins can be designed and fabricated to meet specific materials qualifications or perform a 

particular molecular task. However, the tissue- and developmental stage-specific gene expression 

give rise to some questions that WHAT are influencing gene expressions and HOW do they 

make it?  

Researches into molecular and cellular level have provided valuable insight into solving 

the above questions. It is well known that cell behavior is regulated by the second messengers 

which are generated by thousands of external signals such as hormones, neurotransmitters, 

physical stimuli and so on. One of the most versatile and ubiquitous signaling messengers is the 

calcium ion (Ca2+), which regulates many cellular processes and was reported existing in both 

undifferentiated (oocytes and eggs) and fully differentiated cells [1]. Moreover, an increase of 

free calcium in the cytoplasm has long been thought as a part of the activation response of 

fertilized egg [2]. Previous studies reported that a range of Ca2+ signaling events following 

fertilization has long-term effects on both gene expression and development to term [3].  

As a simple ion, Ca2+ transmits information with a transient increase of the intracellular 

concentration. In tissues, intercellular calcium wave is thought to serve as a long-range signaling. 

Studies of signaling in multicellular networks have demonstrated that the architecture of these 

networks can have a significant impact on the behavior of individual cells as well as their 
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emerging collective behavior [4,5]. An understanding of intercellular calcium wave requires 

knowledge of the basic features of calcium. A brief introduction of intracellular calcium 

oscillations will be presented, followed by some summaries of associated mathematical models.  

1.1 Intracellular Ca2+ Oscillation 

Intracellular calcium waves were first observed in medaka eggs [ 6 ]. Subsequently, it was 

demonstrated existing in all cell types, as a universal signaling mode [7]. Cells display enormous 

oscillatory patterns that respond to different agonists [8]. In general it is possible to consider two 

main patterns: sinusoidal oscillations typically found in exocrine gland cells [9,10] (see Figure 1A) 

and transient oscillations found in endothelial cells [11] and rat chromaffin cells [12] (see Figure 

1B&C). Sinusoidal oscillations are usually shown on top of an elevated level of calcium and are 

insensitive to changes of agonist concentration. However, transient oscillations are a series of 

discrete spikes rising from the resting level of calcium, which is usually sensitive to variations of 

agonist type and concentration.  

 

Figure 1. Typical oscillation patterns. (A) Sinusoidal oscillations. (B & C) Transient oscillations (from [19]). 
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Such oscillations can also be categorized into two main categories depending upon 

whether they originate from the extracellular space (membrane oscillators) or from the internal 

Ca2+ store such as endothelial reticulum (cytosolic oscillators) [13]. Membrane oscillator is 

based on the alternative opening and closing of voltage-dependent calcium channels (VOC) and 

various potassium channels. The opening of VOC leads to an influx of calcium, which opens the 

calcium-activated potassium channel to hyperpolarize the cell membrane and terminate the 

calcium transient. Once the potassium channel is closed, VOC is reopened due to the 

depolarization of cell membrane. The cytosolic oscillator depends on the periodic release of 

calcium from intracellular reservoirs. It reflects complex feedback interactions for intracellular 

calcium (see Figure 2).  

 

Figure 2. Schematic of intracellular calcium dynamic. The solid and dashed lines indicate the positive and negative feedback 

mechanisms, respectively. 
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It is generally regarded that the self-generation of cytosolic Ca2+ is controlled by the 

positive feedback mechanism, which consists of two pathways: the IP3-induced Ca2+ release and 

the calcium-induced calcium release (CICR). Initially, an extracellular agonist binds with the G-

protein-coupled receptors on the cell membrane to activate the phospholipase C β (PLC β). It in 

turn, leads to the production of inositol trisphosphate (IP3) and diacylglycerol (DAG). In the IP3-

induced Ca2+ release pathway, IP3 binds to its receptor—IP3R and opens the calcium channel in 

the membrane of the ER to release the stored Ca2+ into the cytosol. When the intracellular Ca2+ 

concentration exceeds a threshold, PLC δ is activated and catalyzes the regeneration of IP3, 

which helps to release more Ca2+ from ER. In the CICR pathway, Ca2+ is released from ER by its 

action on the ryanodine receptor (RYR) on the membrane of ER. RYR is sensitive to cytosolic 

Ca2+, but insensitive to IP3. The increase of Ca2+ in cytosolic induces RYR to release more 

calcium from ER. 

The positive feedback mechanism of cytosolic Ca2+ is accompanied by the negative 

feedback condition. For example, the generation of DAG and cytosolic Ca2+ concentration 

increase activate the phosphorylation of protein kinase (PKC), which in turn is able to 

phosphorylate various cellular enzymes, receptors and perhaps the G protein [14]. Moreover, IP3 

is removed by phosphorylation or dephosphorylation through not only IP3 5-phosphatase (IP3P) 

but also IP3 3-kinase (IP3K), which is activated by Ca2+ [15]. Meanwhile, cytosolic Ca2+ is 

extruded from cells by Ca2+-ATPase pumps and the Na+-Ca2+ exchangers or transported back 

into the ER by Ca2+-ATPase pumps [16]. Figure 2 illustrates the positive and negative feedback 

mechanism of intracellular Ca2+. 

Generally, the mathematical model of calcium oscillation can be categorized into 

Receptor-controlled models and Second messenger-controlled models [8]. The former is based 
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on the various feedback mechanisms regulated oscillations in IP3. For example, Meyer and 

Stryer proposed a model in 1988 showing the crosscoupling of IP3 and Ca2+ [17]. In this model, 

IP3 is initially induced by the extracellular stimulus to increase the concentration of cytosolic 

Ca2+. The increase of cytosolic Ca2+ level, in turn, stimulates PLC to generate more IP3. Both 

Ca2+ and IP3 are oscillating. In contrast to Meyer’s model, the intracellular calcium oscillation 

model without considering the periodic variation of IP3 is called second messenger-controlled 

model. For example, Goldbeter et al. reported a model predicting the occurrence of the periodic 

Ca2+ spike in the absence of IP3 oscillation [18]. In this model, calcium is released from a IP3-

sensitive store as a result of IP3 generation induced by external stimulus. However, the 

subsequent rise of cytosolic Ca2+ is based on release of a certain amount of Ca2+ from an IP3-

insensitive but Ca2+-sensitive store through the CICR process. Moreover, because there are two 

calcium stores in this model, it can be also considered as a “two pool model” [19].  

1.2 Intercellular Ca2+ Waves 

Two decades ago, Sanderson and Dirksen carried out an incisive experiment that revealed that 

the airway ciliary beat frequency of a stimulated cell increases after applying a brief (~ 150 ms) 

mechanical stimulation [20]. More importantly, the ciliary beat frequency increases in adjacent 

cells with a short delay and the duration of this delay is proportional to the distance of the cell 

from the stimulated cell [ 21 ]. By comparing the propagation speed with electrical and 

mechanical signal, Sanderson et al. got a conclusion that the increase of ciliary activity is the 

result of intercellular communication via gap junction.  

Some subsequent experiments demonstrated that the ciliary beat frequency is increased 

with the increase of Ca2+
 concentration [22,23]. With the development of camera technique, 
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researchers were able to capture better images of variation of cytosolic Ca2+ concentration (see 

Figure 3). When a mechanical stimulus is applied on a single airway epithelial cell, the cytosolic 

Ca2+ concentration ([Ca2+]i) of this stimulated cell increases and spreads out, in a wave-like 

manner, across the stimulated cell in all directions to the cell boundary. With a short delay, a 

similar Ca2+ wave is initiated in the adjacent cells of the stimulated cell. This cell-by-cell 

communication is repeated. An increase in [Ca2+]i is propagated as an intercellular Ca2+ wave 

from the stimulated cell to all the surrounding cells.  

 

Figure 3. Intercellular calcium wave propagation in epithelial cells. (from [24]) 

There are two major pathways supporting the communication of signals between cells: 

the intercellular route with the diffusion through gap junctions and the extracellular route with 

the release of a diffusible messenger such as Adenosine Triphosphate (ATP) [24]. This thesis 

concentrates on the intercellular route based on gap junctions. Gap junction is a specialized 

intercellular connections. It plays a prominent role in calcium wave propagation in airway 
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epithelial cells [25], astrocytes [26], osteoblastic cells [27], endothelial cells [28] and so on. A 

dye-coupling study demonstrated that compounds of molecular masses of up to about 1000 

daltons are able to permeate gap junctions [ 29 ]. Therefore, many cytosolic constituents, 

satisfying this property, such as Ca2+ and IP3, may be allowed to pass through gap junction [30].  

Sneyd et al. in 1994 proposed a model for the propagation of intercellular calcium wave 

[31]. The intracellular calcium dynamic in this model is based on the two-pool model. The 

extracellular stimulus induces the generation of IP3 in stimulated cell and subsequently induces 

the calcium release from the IP3-sensitive pool. Meanwhile, only IP3 propagates through the gap 

junction to release Ca2+ from the IP3-sensitive Ca2+ pool in the adjacent cells. In this model, 

intercellular Ca2+ fluxes are not a significant part of the Ca2+ wave generation. The rate of 

propagation of the intercellular wave only depends on the diffusion and degradation 

characteristics of IP3. Permeability coefficient was introduced to control the propagation distance. 

Hofer et al. established a famous intercellular calcium wave model in 2002 [32]. This 

model is based on the gap junction-dominance propagation in rat striatal astrocytes. Both Ca2+ 

and IP3 are able to propagate from one cell to another via gap junction. Meanwhile, Ca2+ flux 

moves between the extracellular and intracellular space. Because of the effect of fast Ca2+ 

buffering, the gap-junction permeability of Ca2+ is set less than that of IP3. Based on Hofer’s 

model, Bellinger built a model taking the effect of extracellular Glu and ATP fluxes into 

consideration [33].  

1.3 Overview of This Thesis 

In chapter 2, we will present a combined theoretical and experimental study of the propagation of 

calcium signals in multicellular structures composed of human endothelial cells. We consider 
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multicellular structures composed of a single chain of cells as well as a chain of cells with a side 

branch, namely a “T” structure. In the experiments, we investigate the result of applying 

mechano-stimulation to induce signaling in the form of calcium waves along the chain and the 

effect of single and dual stimulation of the multicellular structure. The experimental results 

provide evidence of an effect of architecture on the propagation of calcium waves. Simulations 

based on a model of calcium-induced calcium release and cell-to-cell diffusion through gap 

junctions shows that the propagation of calcium waves is dependent upon the competition 

between intracellular calcium regulation and architecture-dependent intercellular diffusion. 

In chapter 3, we develop a model-based theoretical framework to shed light on the 

phenomenon of cross-level interactions in complex and dynamic multicellular structures with a 

focus on calcium signaling via calcium waves. In particular, we investigate computationally the 

interdependence between intracellular calcium and inositol-1,4,5-trisphosphate (IP3) pathway 

and cell-cell communication via gap junction intercellular diffusion of Ca2+ and IP3. Our model 

shows that the dynamics of cells embedded in a multicellular network is significantly different 

from that of an isolated cell. In particular, we have demonstrated that the transient and steady 

state frequency of calcium oscillations of a cell stimulated with an agonist depends on its 

microenvironment, in this case, its cell neighbors. The neighborhood of the stimulated cell forms 

a “signaling niche” that acts on the stimulated cell itself and dynamically regulates its oscillation 

frequency. This effect is attributed to a crosstalk between the stimulated cell and its environment 

through retrograde diffusion of calcium and IP3. 

Finally, in chapter 4, we present a conclusion of major achievement of thesis and the 

future work we can do about architecture dependent intercellular calcium wave propagation. 
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CHAPTER 2. CALCIUM WAVE PROPAGATION IN NETWORKS OF 

ENDOTHELIAL CELLS: MODEL-BASED THEORETICAL AND 

EXPERIMENTAL STUDY 

2.1 Introduction 

Multi-level organization and dynamics is a hallmark of most biological systems. This is 

particularly true in tissues in which single cells are organized into multicellular structures, which 

are further assembled into complex tissue and organs. For example, endothelial cells are 

assembled into multicellular tubes (i.e. vessels), which are connected, to each other to form a 

branched vascular tree system. Molecular signals are initiated and/or processed at the endothelial 

cell level yet influence overall tree behavior and vice-versa [34]. Central to the proper behavior 

in these biological systems is cross-level interdependence. To date, limited studies of signaling in 

multicellular networks have demonstrated that the architecture of multi-cellular systems have a 

significant impact on the behavior of individual cells as well as their emerging collective 

behavior. 

Over the past decade, questions concerning the system behavior of cellular structures 

have received increasing attention. For instance, there is strong evidence that the branching 

architecture of the mammary gland is a major regulator of normal epithelial cell signaling and 

function [4,35]. Normal organ architecture can suppress tumor formation and prevent malignant 

phenotypes even in grossly abnormal cells [5]. Tissue engineering in its attempt to construct 

functional tissues faces the challenge of arranging cells (e.g. scaffolding via decellularization of 

allograph tissue) in a three-dimensional configuration with architecture analogous to the native 

tissue to support proper spatial and temporal molecular signaling necessary to sustain appropriate 
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development and function [36]. Also, downstream and upstream signal conduction between 

endothelial cells along the walls of vessels plays an important role in microcirculatory function, 

vascular network remodeling, vasculogenesis, and neovascularization [37]. 

A particularly relevant aspect to tissue engineering is the emerging behavior of a 

multicellular architecture in which cell-level functions, such as intracellular communication, 

integrate with multicellular architectures through local cell-to-cell interactions. Central to this 

problem is that cellular networks inherently combine dynamical and structural complexity. Early 

progress on modeling coupled dynamical systems was limited to space-independent coupling or 

regular network topologies. Further progress to circumvent the difficulty of modeling associated 

with the combined complexity of the dynamics and of the architecture was achieved by taking a 

complementary approach where the dynamics of the network nodes is set aside and the emphasis 

is placed on the complexity of the network architecture [38]. Accordingly, linear solutions of 

calcium reaction/diffusion models of multicellular architectures composed of networks of chains 

of cells with grafted side branches have shown that calcium wave propagation differs in ordered 

or disordered architectures [39,40]. Similar effects have also been encountered in chains of 

endothelial cells with non-linear intracellular calcium dynamics [41]. 

To evaluate the effects of multilevel architectures on biological signal behavior, we 

modeled calcium-signal propagation in networks of endothelial cells experimentally and 

computationally. The vasculature is an ideal system for evaluating multi-scale behavior given the 

relatively simple but multi-ordered organization of the cells and tissues. Here, the behavior of a 

calcium wave moving along branched chains of endothelial cells was simulated using 

experimentally observed parameters in the computation. While there are numerous stimuli that 

can initiate calcium waves in endothelial cells, we utilized the mechanical stimulation of a single 
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endothelial cell as the wave initiator to minimize confounding issues related to multiple upstream 

and downstream effects intrinsic to diffusible (i.e. pharmacological) signals. Furthermore, 

mechanical forces play important roles in endothelial function in vivo [42]. The theoretical 

aspect leverages progress in modeling of the dynamics of complex networks and in 

microengineering of multicellular structures to generate new knowledge concerning multicellular 

architectures. 

2.2 Methods and Model 

2.2.1. Experimental method 

Our study is based on networks of human umbilical vein endothelial cells (HUVEC) (ATCC 

CRL-1730) in which intercellular calcium wave propagation is primarily dominated by gap 

junction [28]. 

Surface Patterning 

The experimental investigation of multicellular calcium ion propagation relies on organizing 

multiple cells into specific configurations via a surface patterning technique (Figure 4), which 

guided cellular attachment. Selective plasma functionalization of surfaces was employed to 

obtain the surface-patterning component of the system and consists of forming patterns of 

surface groups on biocompatible polymers [43,44,45,46,47]. The patterning is achieved via 

controlling contact of reactive plasma to a surface in order to spatially change surface chemistry. 

This process uses photolithography to first produce microscale patterns, which are designed, 

based on where cell attachment is desired.  
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Figure 4. Plasma lithography for cell patterning. (A) Photolithography is used to form a template of the desired multicellular 

network. (B) PDMS is poured over the photoresist pattern to create an initial plasma shielding model. (C) PDMS mold is 

transformed onto a Petri Dish (polystyrene). (D) The plasma surface treatment is used to produce cell-sensitive chemical pattern 

on the area of PDMS mold. (E) Cell seeding. (F) Cell stimulation. 

Patterning molds are then created by replica molding of polydimethylsiloxane (PDMS) 

onto the microscale resist structures. This produces a PDMS shape having 3D microscale 

topography. This 3D structure is then placed on the culture surface with a weight to ensure 

conformal contact and proper formation of channels between itself and the surface. The channels 

formed between the mold and culture surface ultimately determine where new functional groups 

are introduced when placed in a plasma chamber. In the case of the polystyrene substrates used 

in this work, select areas of native polystyrene come in contact with air plasma. This creates 

patterns alternating between a surface similar to tissue culture treated polystyrene, and native 

polystyrene, which, as it has not been modified by the plasma, is cell repulsive. For the current 
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experiments patterns were produced on the bottom of polystyrene Petri dishes (VWR 25384-090) 

using PDMS (Dow, Sylgard® 184) 3D shapes for shielding. The molds used to produce these 3D 

shapes were created from AZ3312 resist (AZ Electronic Materials) spun onto glass slides. The 

patterns were designed to be approximately one cell width wide and so had channel widths of 20-

30 µm. The plasma treatment took place with air plasma for ten minutes at 150 Pa using a 

Harrick plasma chamber (model PDC-001) followed by ten minutes of UV sterilization before 

seeding with cells. Cells were detached with 0.25% trypsin-EDTA (Invitrogen), seeded onto 

patterned Petri dishes and incubated with standard culture medium for one day before 

stimulation. Standard culture medium consisted of F-12K Medium (ATCC) supplemented with 

20% screened FBS (Gemini Bio-Products), 0.1 mg/ml heparin (Sigma-Aldrich), 0.035 mg/ml 

endothelial cell growth supplement (Sigma-Aldrich), and 0.1% gentamycin (GIBCO). 

Cell Stimulation 

In the current study, mechanical stimulation is used to trigger calcium release from internal 

stores in single cells (Figure 4(F)). We term the probed cell, “the stimulated cell”, and mechanical 

stimulation was achieved in either of two ways (Figure 5). The first was by probing with a force 

sensor (FemtoTools Instruments, FT-S540), which provided a measurement of force applied to 

cells during stimulation. It was used to test the influence of probing force on calcium signal 

propagation (Figure 6). The second probing method used a 30-gage syringe needle. Since the 

physical size of stainless steel needle is smaller than force probe, it was used in most of our 

experiments including the experiments shown later to get better visualization of cells during 

probing compared to probing with the force probe.  
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Figure 5. Schematic of cell stimulation. (A) Force probe stimulation. The direction of stimulation is from above the cells, 

moving 45° to the tissue culture Petri dish surface. (B) Needle stimulation. The direction of movement is from the side, parallel to 

the tissue culture Petri dish surface. 

The operation of the force probe required contact to a cell from above and would obscure 

visualization of cells adjacent to the stimulated cell. Stimulation with a syringe needle allowed 

the needle to be brought into contact with the stimulated cell from the side of the cell and 

consequently did not obscure imaging of calcium in adjacent cells. Both of these probes were 

attached to a custom three-axis micromanipulator for placement and stimulation. The probe 

would be brought near to a pattern of cells, and imaging would be initiated for baseline gathering. 

Fluorescence images would then continue to be captured during and after stimulation. 

 

Figure 6. Influence of probing force on calcium signal intensity. A capacitive force probe (Nanoscience Inc) was applied for 

mechanical stimulation of individual HUVECs. The intensity of fluorescence produced by the stimulated cell shows only very 

weak correlation with the applied force (The R square value is determined to be 0.1667 by linear regression analysis). 
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Imaging 

Fluro-3AM was loaded into cells as a Ca2+ sensitive dye to visualize the small messenger 

signaling. Once loaded, esterases cleave the dye so that it cannot leave the cell and will fluoresce 

in the presence of Ca2+. A Nikon TE2000-U inverted phase contrast and fluorescence microscope 

equipped with a Cooke SensiCam was used to capture the images. Cells were first plated on 

patterned surfaces as described above and maintained in standard culture medium. Dye loading 

was initiated by adding 5 or 10 µl of a 1 mg/ml solution of Fluo-3AM (Invitrogen) dissolved in 

dimethyl sulfoxide (DMSO), (Fisher) and 5 or 10 µl of a 10 mg/ml solution of Pluronic® F-127 

(Invitrogen) dissolved in deionized water, to the three milliliters of standard culture medium 

contained in the patterned dish. The cells were then incubated for 15 minutes at 37°C before 

being gently rinsed with standard culture medium. New culture medium was added and the cells 

were incubated for ten minutes at 37°C. Medium was then exchanged and cells were incubated 

for another ten minutes at 37°C. Finally cells were rinsed with HBSS without calcium or 

magnesium (Fisher) and the same HBSS was added for imaging, which took place on a 

microscope stage heated to 37 °C. Prior to stimulation, images were captured in phase contrast to 

visualize cell outlines and during stimulation, illumination was changed to fluorescence with a 

filter cube providing excitation at 460-500 nm and emission at 510-560 nm. Images were 

captured every 1.2 seconds and exported for later analysis. For analysis, cells were manually 

outlined in image sequences and analyzed using Image J, which exported integrated fluorescence 

versus time values for later analysis. Images and probing were obtained within ~25 minute of the 

final buffer rinse and cells were imaged at passage six or lower. 

Whole cell fluorescence intensities as a function of time are obtained by integrating the 

intensity of every pixel over the area of each cell corrected for the integrated fluorescence of a 
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background area and normalized by the initial intensity. In absence of a one-to-one 

correspondence between normalized fluorescence intensity and the level of cytosolic calcium 

concentration, and in light of the cell-to-cell variability in the intensity of the fluorescence, the 

magnitude of fluorescence is not always taken as a measure of the response of a cell. Irrespective 

of the magnitude of the fluorescence, a cell is considered to have responded when it exhibits a 

temporal fluorescence response constituted of an initial fast rising stage followed by a slower 

decline in fluorescence (see section “2.3.1-Chain Subjected to Single Stimulation: Experiments” 

for details). The response time of a cell is then determined as the time at which fluorescence 

reaches its maximum positive rate of change. For weak temporal responses that exhibit 

significant noise levels, the noise to signal ratio is improved by calculating the running average 

of the rate of change of the fluorescence. The time average is performed on four time intervals. 

Response times determined from the running average will therefore be associated with larger 

uncertainties of 1.2 s. 

2.2.2. Computational model and method 

Since we are interested in the behavior of networks of endothelial cells composed of one-

dimensional chains of cells and networks of chains of cells, a reaction/diffusion model is 

developed to gain insight into the architecture-dependence of calcium wave propagation. For the 

sake of simplicity, we only consider the dynamic of intracellular calcium and assume the 

intercellular Ca2+ is transported between cells by diffusion through gap junctions. 

Numerical Model 

The model is based on the one-dimensional time-dependent reaction/diffusion equation: 
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∂𝐶

∂𝑡
= 𝐷

∂2𝐶

∂𝑥2 + 𝑓(𝐶)                                                            (2-1) 

where C is the cytosolic calcium concentration, D is a coefficient representing diffusion between 

cells through gap junctions, and f is the rate of change of intracellular calcium concentration. x 

and t are the position and time variables. 

Intracellular calcium dynamics results from the response of Ca2+ stores, primarily the 

endoplasmic reticulum (ER), to inositol triphosphate (IP3) and ryanodine through IP3 receptors 

(IP3R) [48] and ryanodine receptors [49]. Both sensitized IP3R and RYR, lead to a process 

whereby calcium can trigger the release of additional calcium from the ER, namely calcium 

induced calcium release (CICR). Furthermore, since high levels of intracellular calcium are toxic, 

and cannot be degraded, cells control the intracellular calcium level by buffering, sequestration 

in specialized compartments, and by expulsion to the extracellular space [ 50]. Meanwhile, 

cytosolic calcium concentration is also inhibited by low level of Ca2+ [48,51]. In the basis of 

these processes, we model the rate of change of intracellular calcium by a simple calcium 

dependent non-linear reaction function: 

𝑓(𝐶) = −𝑘(𝐶) ∗ 𝐶                                                             (2-2) 

with 𝑘(𝐶) representing a calcium concentration-dependent calcium release/intake rate constant. 

To model the CICR and calcium buffering processes, we defined two thresholds UC1 and UC2, 

which determine the value of the calcium release/intake rate as shown in Figure 7. 
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Figure 7. Schematic representation of the non-linear intracellular calcium reaction dynamics as a loop in calcium 

concentration space. UC1 and UC2 are lower and upper thresholds of intracellular calcium concentration, respectively, which 

determine the value of calcium release/intake rate constant, k. 

UC1 is the threshold below which cytosolic calcium concentration is too low to promote ER 

release of additional calcium. Therefore, for calcium concentrations below UC1, the ER absorbs 

cytosolic calcium and the calcium release/intake rate constant takes on a positive value k(C)=k1. 

The rate of calcium dynamics, f, is therefore negative which corresponds to ER calcium intake. 

Calcium is released from ER to the cytosol, when the cytosolic calcium concentration is within 

the range UC1 and UC2. Within this range, the value of the calcium release/intake rate constant, 

k(C)=k2 is negative and f is positive. This corresponds to release of calcium by the ER and the 

total concentration of cytosolic calcium increases. If the intracellular calcium level exceeds the 

threshold UC2, then the cytosolic calcium is again absorbed into ER or extruded to extracellular 

space. Within this range, the value of the calcium rate constant, k(C)=k3 is positive and the rate 

of the cytosolic calcium dynamics is negative. Because cells exhibit a refractory stage of 

approximately 30 s after a complete cycle of calcium release followed by intake [32], in our 

model once the calcium rate constant reaches the value k3, the cell will retain that value 

indefinitely. 
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In the case of a spatially discrete representation of multicellular chain and considering 

diffusion between nearest neighbor only, equation (1) is discretized in space and time using finite 

differences and takes the form: 

𝐶(𝑥𝑖 , 𝑡𝑛+1) = 𝐶(𝑥𝑖 , 𝑡𝑛) + 𝐷∗[𝐶(𝑥𝑖+1, 𝑡𝑛) − 2𝐶(𝑥𝑖 , 𝑡𝑛) + 𝐶(𝑥𝑖−1, 𝑡𝑛)] − 𝑘∗(𝐶)𝐶         (2-3) 

The term on the left-hand side is the concentration of Ca2+ in cell “i” at time tn+1, and all the 

terms on the right-hand side are at a time tn. The time step is denoted ∆𝑡. The concentration for 

the next time increment, n+1, can be calculated from values of concentration at the previous time 

increment, n.  
𝐷∗∆𝑡

(∆𝑥)2 is defined as a dimensionless diffusion coefficient denoted “D*”. 𝑘∗(𝐶) =

𝑘(𝐶)∆𝑡  represents a dimensionless rate constant. For linear chains of endothelial cells, we 

assume that the calcium diffusion coefficient is the same between neighboring cells. However, 

we will consider spatially dependent diffusion coefficients in the case of models of more 

complex architectures such as “T” structures. This more complex model is detailed in the 

Appendix I. Calcium signals described by our model do not exhibit attenuation since we 

observed variations in the fluorescence intensity in individual experiments. Nevertheless, our 

model is able to capture the major features of intercellular calcium propagation described in the 

paper (see Figure 8). 
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Figure 8. Experiment image and normalized intensity of cells in single fine line subjected to single stimulus. (A) Image of a 

finite single fine line of cells. Cells are labeled 1 through 9. The stimulating probe is clearly visible on the right of the stimulated 

cell (cell 4 labeled with a red circle). The time (in sec) at which the normalized fluorescence reaches its maximum positive rate of 

change is indicated for every cell. The uncertainty for each one of these times is 0.6 sec. The origin of time is the time at  which 

fluorescence in the stimulated cell attains its maximum rate of change. (B) and (C) show the normalized intensity of fluorescence 

of cells 4 through 9 and cells 3 through 1, respectively, as functions of time. The vertical axis is the dimensionless normalized 

intensity of fluorescence and the horizontal axis is the time in seconds in intervals of 1.2 s between recordings. 
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2.3 Result and Discussion 

We investigate the behavior of several types of multicellular structures, namely single chains of 

endothelial cells and “T” structures subjected to either single or simultaneous double mechano-

stimulation at different locations in the structures. 

2.3.1 Chain subjected to single stimulation 

In this section we consider the behavior of a finite chain of endothelial cells among which a 

single cell in the chain is subjected to mechanical stimulation to initiate a calcium impulse, due 

to the intracellular increase in calcium concentration. 

Chain Subjected to Single Stimulation: Experiments 

Figure 8 shows the calcium-activated fluorescence of individual cells as a function of time 

in a finite single fine line of cells with one cell (cell 4) subjected to a single mechano-stimulation. 

Note that since the fluorescence of the system is recorded every 1.2 s, the response time of every 

cell in the structure is associated with an uncertainty of 0.6 s. 

The observed shape of the calcium pulse is consistent with that previously reported [52]. 

While we observed some attenuation of the pulse amplitude as a function of distance in several 

cases as reported by others [32], this did not occur in all experiments (as in Figure 8). The 

response time of a cell is defined to be the time corresponding to the highest value of the rate of 

change of fluorescence versus time. The response time of the stimulated cell (cell 4) is set as the 

origin of time. The response of cells 5 through 9 and 3 through 1 lags behind that of the 

stimulated cell as an increasing function of the distance from the stimulated cell. Thus two 

calcium pulses propagate along the cell chain in opposite directions with both pulses originating 

at cell 4. Figure 8 indicates that calcium pulses can propagate over distances of at least 3 to 5 cells 
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with relatively high intensity beyond the stimulated cell. For 20 different cell chains we 

examined, calcium pulses propagated from the stimulated cell with an average distance of 

propagation of 4.7 cells with a standard deviation of 1.1. Furthermore, the degree of force 

applied (from 3 to 300 µN) to the cell had no significant effect on the distance of propagation of 

a calcium pulse (Figure 6). This indicates that the propagation of the calcium pulse over a finite 

distance is not driven by stress/strain induced effects along the chain of cells. Also the 

normalized fluorescence intensity appears to be independent of the force applied. Based on the 

experimental data shown in Figure 8, the average time of the propagation of calcium wave from 

one cell to the next is approximately 1.8 s. Moreover, the average width of a temporal pulse is on 

the order of 10 to 15 second. This means that a regular pulse may extend spatially over 6 (10/1.8) 

to 9 (15/1.8) intercellular spacing. The average distance between cells in a single chain is 

approximately 31.2 µm. Therefore the average speed of a calcium wave is estimated to be on the 

order of 17 µm/s. It is important to note that the time it takes for the fluorescence signal to 

propagate from cell to cell is highly variable, differing by a factor of two in some cases. The 

variation may be due to the variability in cell size, cell state, gap-junction distribution in the cell 

membrane, or other characteristics of the cells. 

Chain Subjected to Single Stimulation: Simulation 

The cell chain in the simulation consists of 61 cells aligned in single fine line. To begin 

the simulation, a pulse is initiated in the middle-most cell of the chain, which is sufficiently far 

from the edges of the chain to avoid artifacts that could arise from boundary effects. For the ease 

of comparison with the experimental results, we subsequently label the cells in the chain from 26 

through 34 such that the stimulated cell is labeled as cell 4. The initial calcium concentration of 

all but the stimulated cell is set to zero. The initial calcium concentration of the stimulated cell is 
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C0, which is greater than UC1. This initial concentration triggers the CICR process initiating a 

pulse. The value of the model’s parameters was explored with consideration of three criterions: 

(1) the set of parameter values should ensure the propagation of intercellular calcium wave along 

the cell chain; (2) the parameter values should mimic the two-stage calcium pulses shown in 

experiments: an initial fast rising calcium concentration followed by a slower decrease with 

pulse spatial extension of 6 to 9 intercellular spacing; (3) the dimensionless diffusion coefficient 

should correlate with a reported real diffusion coefficient. To satisfy the criterion #1, we derive a 

set of parameter value initially via trial and error (shown in Table 1).   

Table 1. First set of Value of dimensionless parameters 

Symbol Definition Value 

C0 Initial concentration of calcium in stimulated cell 0.5 

UC1 Calcium concentration threshold 1 0.3 

UC2 Calcium concentration threshold 2 1.2 

*

1k  Calcium release/intake rate for C< UC1 1.0 

*

2k   Calcium release/intake rate for UC1<C< UC2 -1.0 

*

3k   Calcium release/intake rate for C>UC2 0.25 

∆t Time interval 0.01 

D* Dimensionless diffusion coefficient 0.7 
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Based on the parameter value listed in Table 1, we explore the influence of diffusion 

coefficient on the intercellular calcium propagation. We modify the value of D* without 

changing the value of other parameters. The intercellular calcium propagation only occurs when 

the value of D* is in [0.62, 0.74] named effective interval. If the value of D* is beyond this range, 

there is no calcium signal propagating along the chain. When D*<0.62, the inward fluxes are not 

larger than the rate of decrease of calcium concentration in the non-stimulated cells. Cells are 

unable to accumulate enough Ca2+ to trigger CICR. Calcium pulses, therefore, will not propagate 

along cell chain. When the D*>0.74, the outward diffusion fluxes are too large to help the 

accumulation of intracellular calcium. Therefore, intercellular calcium wave propagation will not 

occur neither.   

However, the length of the effective interval of D* is not rigid. It depends upon the value 

of other parameters. Table 2 lists the relation between the effective interval of D* and the value 

of UC2 that determines the capacity of cells for cytosolic calcium concentration. We can see that 

the increase of the cell’s capacity is able to support the intercellular calcium wave propagation at 

lower diffusion coefficients. Because the increase of cell’s capacity prolongs the time of positive 

intracellular calcium dynamic (period of CICR), the neighboring cells have more time to 

accumulate enough Ca2+ to exceed the threshold UC1. Moreover, diminishing the value of UC1 

can also decrease the lower bound of the effective interval of D*. Meanwhile, we notice that the 

upper bound of effective interval is insensitive of the value of threshold including both UC1 and 

UC2, but has positive correlation with the rate of increase of intracellular calcium, 
*

2k  (data not 

shown). 
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Table 2. Relations between UC2 and the lower bound and upper bound of effective interval of D* 

UC2 Lower Bound of D* Upper Bound of D* 

1.5 0.44 0.74 

2.0 0.3 0.74 

2.5 0.23 0.74 

3.0 0.18 0.74 

3.5 0.15 0.74 

 

We also investigate the range of concentration between UC1 and UC2, over which 

calcium signal is propagating along the chain. Figure 9 illustrates the relationship between UC1 

and UC2 without changing the value of other parameter shown in Table 1. The increase of UC1 

asks for a more rapid increase of UC2 to meet the demand of criterion #1. This may due to 

influence of calcium concentration gradients. The higher threshold UC1 requests a larger 

gradients existing between two neighboring cell which can be achieved by increasing the 

calcium concentration capacity of cells.  
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Figure 9. Relationship between UC1 and UC2. The region above the line contains the values of UC1 and UC2 which support the 

intercellular calcium wave propagation. The region below the line stands for the values that stop the intercellular calcium wave 

propagation. 

Besides UC1, UC2 and D*, the other parameters also play an important role in forming 

calcium pulses. For example, the value of 
*

1k  determines the difficulty for cells to exceed the 

threshold UC1; 
*

2k  is the rate of CICR determining the time cells have to take to reach the 

maximum intracellular calcium concentration; 
*

3k  controls the speed of decline of calcium 

concentration when the concentration exceeds the UC2.  

Based on the study introduced above, we explore the value of each parameter until 

system exhibits calcium wave propagation with characteristics comparable to those of the 

experimentally observed wave. In particular, we search for parameters that satisfy the criterion 

#2. The parameter value used in our model is listed in Table 3. The simulated calcium pulse has 

a spatial extend of approximately 10 cells comparable to what was observed experimentally. 
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Table 3. Value of dimensionless parameters used in the reaction-diffusion model of intercellular and intracellular 

reaction-diffusion dynamics 

Symbol Definition Value 

C0 Initial concentration of calcium in stimulated cell 2.0 

UC1 Calcium concentration threshold 1 0.3 

UC2 Calcium concentration threshold 2 3.0 

*

1k  Calcium release/intake rate for C< UC1 0.03 

*

2k   Calcium release/intake rate for UC1<C< UC2 -0.025 

*

3k   Calcium release/intake rate for C>UC2 0.0045 

∆t Time interval 0.01 

D* Diffusion coefficient 0.6 

 

In the model all rates are dimensionless. The evolution of the calculated calcium 

concentration in each cell is reported in Figure 10. 
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Figure 10. Simulated calcium concentration for cells in a single chain subjected to a single stimulus. We label the 

stimulated cell 4 (cell 31 in the chain of 61 cells). We report the response of cells on either side of the stimulated cell as cell 5 

through cell 9 and cell 1-through cell 3 to facilitate comparison with experimental results. The real time is obtained by scaling the 

cell-to-cell propagation time of the simulation to that of the experiment (see text for details). 

From the experimental data, the average time for propagation from one cell to the next one is 

1.8 s. In the simulation, the dimensionless time for propagation from one cell position to the next 

one is 0.87. Thus, we obtain a conversion factor from dimensionless to real time, 𝜏 =
1.8 𝑠

0.87
=

2.07s. Therefore, the dimensionless integration time step ∆t=0.01effectively amounts to 0.0207 s. 

With an average experimental spacing between cells of L=3.12x10-5 m and a dimensionless 

diffusion coefficient in the simulation of D*=0.6, we can calculate the actual value of the 

diffusion coefficient in our model as 𝐷 = 𝐷∗ ×
𝐿2

𝜏
= 7.84 × 10−10 (m2 s⁄ ) . Note that this 

diffusion coefficient accounts for calcium diffusion between cells through the cytoplasm as well 

as through gaps junctions. It is in reasonable agreement (in the same order of magnitude) with a 

free Ca2+ diffusion coefficient in a cytosolic extracts from Xenopus laevis oocytes of 2.2 ×

10−10 m2/s [53]. 
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Propagation is symmetric in the simulation and the response of cells 5 and 3, cells 6 and 2, 

cells 7 and 1 are the same. There is no variability in the magnitude of the calcium response from 

cell to cell in the model. The development of a calcium wave that propagates on both sides of the 

stimulated cell results from the competition between intracellular dynamics and intercellular 

diffusion. The calcium concentration of the stimulated cell initially exceeding UC1 leads to ER 

calcium release and therefore a fast rise in the cytosolic calcium in spite of a competition with 

diffusion that leaks calcium to the neighboring cells. When the concentration of cell 4 exceeds 

UC2 it declines steadily. Diffusion from cell 4 to cells 3 and 5 increases their respective calcium 

concentration beyond UC1, which in turns triggers CICR. This process sustains the propagation 

of a calcium wave. Note that in the simulation, there is a smaller hump appearing in the tail of 

each pulse. This behavior, which has no significant effect on the simulation result, is not 

observed experimentally and is an artifact resulting from the discrete nature of the model. Indeed 

calcium diffusion is bi-directional and driven by the calcium concentration gradient between 

neighboring cells. When the calcium concentration level in cells 5 and 3 reaches its highest level, 

the calcium concentration in cell 4, which is in a declining phase can rise again due to a large 

calcium diffusion flux originating in cells 5 and 3. This behavior would be more diffuse in a 

model that would account for the continuous nature of the cell cytoplasm. 

2.3.2 Double stimulation of single chain 

We now consider the behavior of a chain of cells subjected to dual mechano-stimulation. The 

stimulations are applied simultaneously on two cells separated by a short distance. In light of an 

average distance of propagation of a calcium pulse of approximately 4.7 cells, this distance is 

chosen so that one could expect possible overlap of the signals emanating from the two 

stimulated cells in the region separating them. 
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Single Chain-Dual Stimulation: Experiment 

Figure 11 shows one example of a chain of endothelial cells with dual stimulation. Here, 

the stimulated cells are separated by 6 cells, which is shorter than two times the average distance 

of propagation of calcium pulses. 

 

Figure 11. Experiment image and normalized intensity of cells in single fine line subjected to double stimulus. (A) Image 

of a finite single fine line of cells subjected to dual mechano-stimulation. The stimulating probes are visible at the top-left and 

bottom-right of the image. The response time of cells labeled in red was calculated from the maximum rate of change of the 

fluorescence intensity with uncertainties 0.6 s. The response time of cells labeled in green was calculated from a running average 

of the fluorescence intensity with uncertainties 1.2 s. The first response time for cell 4 (1), represents the time of the first sharp 

rise in fluorescence versus time. The second response time of cell 4 (2) indicates the time when the fluorescence intensity 
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increases a second time. Cells 4 and 5 represent the region where the calcium pulses are anticipated to meet. (B) and (C) present 

the normalized intensity of fluorescence of individual cells as a function of time. 

The time evolution of the fluorescence intensity of cells 4 and 5 is significantly different 

from that of the other cells and of signals observed in the case of a single chain with a single 

stimulation. As stated in section “2.2.1-Imaging”, the determination of the cell response time 

from signals with weak intensity is conducted on a running average of the rate of change of the 

intensity. 

In Figure 11(A), the average time for propagation from one cell to a neighbor of a pulse 

originating at cell 8 is 𝑡𝑑 ≈ 2.8 s (the subscript “d” stands for downward propagation), and the 

average cell-to-cell propagation time of a calcium pulse originating at cell 1 is 𝑡𝑢 ≈ 1.6 s (the 

subscript “u” stands for upward propagation). The statistical average times for propagation from 

one cell to next one based on averaging 17 experimental samples are 𝑡𝑑 ≈ 3.81 s with standard 

deviation STDEV=2.32 s and 𝑡𝑢 ≈ 3.84 s  with standard deviation STDEV=2.11 s. Calcium 

signals can propagate over an average maximum distance of 5 to 6 cells following a single 

stimulation event. Because of the difference in upward and downward cell-to-cell propagation 

time, and considering the possibility of calcium signals that could cross, one would expect to 

observe a second peak in the response of cell 3 at approximately 17 s, however, this is not the 

case. The absence of this second peak indicates that once the first pulse has triggered CICR of 

cell 3, that cell is unable to respond a second time in less than 17 s. This is a characteristic of the 

refractory behavior of a cell. However, cell 4 appears to exhibit a second peak. This cell is 

therefore the location where the two pulses meet with a time difference of approximately 10 s. 

The absence of a second peak in the response of cells 5 and 6 supports this inference. These 

observations indicate that the two pulses, which propagate toward each other, are unable to pass 
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each other due to the refractory behavior of CICR in endothelial cells. We conducted 26 

experiments similar to that reported in Figure 11 and 25 out of 26 of these showed calcium pulses 

that are not able to cross one another. This result provides strong statistical evidence for the 

absence of calcium wave crossing in chains of endothelial cells. 

Single Chain-Dual Stimulation: Simulation 

As described in section “2.3.1-Chain Subjected to Single Stimulation: Simulations”, we 

simulated the behavior of a long chain of cells by modeling a chain with sufficient length to 

avoid any edge effect during the simulation time when the dual stimulation is applied in its 

central region, namely cells 1 and 8. All initial calcium concentrations are set to zero except for 

the stimulated cells, which have an initial calcium concentration exceeding the threshold UC1. 

The cells located between the stimulated cells are labeled cells 2 through 7. Due to the symmetry 

of the model, cells 1 and 8, 2 and 7, 3 and 6, 4 and 5 behave in exactly the same way (See Figure 

12). 

 

Figure 12. Simulated calcium concentration for cells in a single chain subjected to double stimulus. Cell 1 and cell 8 are the 

stimulated cells. We report the response of cells between the stimulated cells as cell 2 through cell 7 to facilitate comparison with 

experimental results. The real time is obtained by scaling the cell-to-cell propagation time of the simulation to that of the 

experiment (see text for details). 
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The response of cell 1 and 8 shows a secondary peak already attributed to the discrete nature 

of diffusion in our model. If the calcium pulses propagating in the segment between cells 1 to 8 

were able to cross one would expect a peak in calcium concentration of cell 1 resulting from the 

pulse originating at cell 8 at an approximate time of 16 s. The response of cell 1 does not show 

such a peak. The occurrence of such a peak is not possible since the computational model 

includes implicitly a refractory stage for CICR. The calcium waves originating from the 

stimulated cells merge at cells 5 and 4. There, the calcium concentration decays steadily as the 

rate of calcium dynamics is negative and further response of the cells is prevented. In other 

words, once the rate of intracellular calcium dynamics, *

3k , is reached, a cell cannot respond 

anymore and the calcium pulses do not cross, as observed in the experimental and computational 

findings. 

2.3.3 “T” structure subjected to single stimulation 

The growth of “T” structures formed by surface-patterning perpendicular single chains of cells 

does not permit the formation of cellular junctions composed of a single cell. Typically, many 

cells aggregate at the junction of the three branches forming a cell cluster (see Figure 13 and 

Figure 14). 

“T” Structure-Single Stimulation: Experimental 

In this “T” structure, a single stimulation was applied to one of the branches to determine 

if the calcium signal can propagate through the junction area and trigger a signal in both of the 

other branches. We illustrate in Figure 13 and Figure 14 the behavior of “T” structures with two 

cases. In both cases, the stimulated cell is located in the lower branch (branch 1) at the edge of 
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the junction area. This is done to ensure that there exist paths for the propagation of a calcium 

pulse to the other branches that do not exceed 4 to 5 cells in length. 

 

Figure 13. Experiment image 1 and normalized intensity of cells in “T” structure subjected to a single mechano-

stimulation. (A) Image of a T structure of cells subjected to single mechano-stimulation. The red circle indicates the location of 

the stimulated cell. Red labels correspond to cells exhibiting strong fluorescence with response time measured from the rate of 

change of the fluorescence intensity. Green labels correspond to cells exhibiting weak fluorescence and response time derived 

from running averages of the rate of change of the fluorescence intensity. Black labels are for cells that show very weak (within 

the noise level) to no fluorescence. (B-E) shows the normalized intensity of fluorescence of branch 1, cluster area, branch 2 and 

branch 3, respectively, as functions of time. The vertical axis is the dimensionless normalized intensity of fluorescence and the 

horizontal axis is the time in seconds in intervals of 1.2 s between recordings. 
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Figure 14. Experiment image 2 and normalized intensity of cells in “T” structure subjected to a single mechano-

stimulation. (A) Image of a T structure of cells subjected to single mechano-stimulation. See Figure 13 for detail. (B-D) shows 

the normalized intensity of fluorescence of representative cells as functions of time. The vertical axis is the dimensionless 

normalized intensity of fluorescence and the horizontal axis is the time in seconds in intervals of 1.2 s between recordings. 

In Figure 13, two calcium signals originate from stimulated cell 4 (branch 1) and 

propagate into two directions, upward and downward. While the downward propagation is 

similar to that of a single chain although cell 1 (end cell of branch 1) does not respond, probably 

due to edge effects, and for our purposes, is not relevant. In contrast, a strong pulse propagates 

upward along a path involving cells 5 to 13. This pulse has similar characteristics as those 

observed in the non-branched single chains. The calcium-dependent fluorescence lessens in the 
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junction area and does not propagate beyond the junction area into the other two branches. From 

Figure 13(D and E), there are two sudden peaks appearing in cell 21 and 26. However, these two 

peaks are likely individual firing events, which we have observed in several cases, because the 

neighboring cells do not exhibit significant response and/or the response time is not consistent 

with the average time of propagation from one cell to the next. A similar behavior occurs in the 

case of a truncated branch structure as shown in Figure 14. The observed behavior may be 

understood on the basis of a competition between the intracellular dynamics of CICR and 

intercellular diffusion that depends on the architecture of the multicellular structure. Indeed, the 

fluorescence response of a cell results from the release of calcium by ER induced by a cytosolic 

calcium concentration that has risen above a threshold. This rise is due to an imbalance between 

inward and outward diffusion fluxes from and to neighboring cells. In a single chain, a cell that 

is being approached by a calcium wave has only two nearest neighbors and an excess of inward 

versus outward calcium diffusion will lead to rising cytosolic calcium concentration that will 

trigger CICR. If many inactivated cells surround a cell of interest such as in a cluster, these cells 

may serve as calcium sinks drawing calcium away from the cytoplasm of the cell of interest via 

diffusion. The calcium level in that cell may never reach the threshold needed to induce CICR. In 

a “T” structure, a calcium pulse propagating along a branch composed of a single chain of cells 

reaches the junction region composed of a cluster of cells. In this case, the calcium diffusion 

process transforms from diffusion in a one-dimensional space to diffusion in a two-dimensional 

space. The larger number of paths for diffusion between cells in the two dimensional region may 

prevent sufficient accumulation of calcium in any cell to trigger calcium release by ER. At the 

interface between the one-dimensional and two-dimensional regions and inside the junction 

cluster, for each cell outward diffusion exceeds inward diffusion and the calcium wave is 
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stopped. These experimental observations provide evidence for an effect of the architecture of 

multicellular structures on the propagation of calcium waves. We conducted 20 experiments 

similar to those reported in Figure 13 and Figure 14, and half of them (10/20) showed that the 

calcium signal could transmit to more than one arm. However, upon detailed characterization of 

the multicellular structures, it appeared that many of the structures that showed transmission of 

the calcium signal beyond the junction-cluster region possessed structural imperfections such as 

stimulated branches that were two-cell wide. It is anticipated that calcium signal propagation 

from a two-cell wide branch to the junction region could not be considered as transitioning from 

a one-dimensional to a two-dimensional regions anymore. This will be the focus of a future study. 

“T” Structure-Single Stimulation: Simulation 

To shed light on the experimentally observed behavior of section “2.3.3-T Structure-

Single Stimulus: Experimental” we develop a simplified model that mimics the structural 

characteristics of the experimental “T” network and can capture the effect of multicellular 

architecture on the competition between intracellular dynamics and intercellular diffusion. The 

model architecture is illustrated in Figure 15(A). The structure is composed of a backbone chain 

containing 61 cells. Cells 30, 31 and 32 are junction cells. A side branch is connected to cell 31 

and forms a right angle with the backbone. The side branch contains 30 cells denoted 1s, 2s, etc. 

Two additional cells 1’ and 2’ are located at the junction of the backbone and the side branch to 

mimic a cell cluster and multiple junctions. In the model, cells are represented as squares and we 

differentiate calcium diffusion between cells that are connected by their edges or by their vertices. 

The diffusion coefficient for edge-to-edge diffusion is the same as that used in modeling a single 

chain, namely 𝐷∗. Diffusion through vertices in the junction area, such as for instance between 

“cell 1s” in the side branch and cells 30 and 32 in the backbone, is characterized by a 
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dimensionless diffusion coefficient denoted 𝐷∗′ . 𝐷∗′  is chosen to be smaller than 𝐷∗  as the 

diffusion distance along a diagonal direction is larger than the cell-to-cell distance in a chain. 

Moreover, one also expects the density of gap junctions in a vertex-to-vertex contact area to be 

lower than in an edge-to-edge area. 

 

Figure 15. Schematic illustration and simulation results of the model “T” structure subjected to single stimulus. (A) 

Schematic illustration of the model “T” structure subjected to a single stimulus. Red cell is the stimulated cell. Orange arrows 

represent the edge-to-edge diffusion. Green arrows represent vertex-to-vertex diffusion. Purple cells highlight the junction cell 

cluster. (B) Calcium concentration of cells in backbone as a function of time. (C) Calcium concentration of cells 1’, 2’ and cells 

in the side branch. Here 𝐃∗′ = 𝟎. 
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The reaction-diffusion equations for cells in the junction area are detailed in the 

Appendix I. We initially investigate the effect of the value of 𝐷∗′ on the behavior of the model 

system. When 𝐷∗′  ranges from 0.0 to 0.16, a calcium wave triggered at cell 28 propagates 

throughout the entire model structure including backbone, side branch and junction cluster (see 

Figure 15(B) and (C)). For values of 𝐷∗′  in the range 0.17 to 𝐷∗ = 0.6, the calcium wave 

originating at the stimulated cell is unable to propagate beyond the junction region (see Figure 16). 

 

Figure 16. Simulated calcium concentration for cells in the “T” structure subjected to single stimulation with 𝐃∗′ = 𝟎. 𝟐. 

(A) reports the response of cells 28 to 31 in backbone as a function of time. (B) shows the calcium concentration of cells 30 to 33 

in backbone as a function of time. Notice the change of scale of the vertical axis. (C) illustrates the calcium concentration of cells 

31, 1’ and 2’ in the junction area and the side branch as a function of time. Again notice the change of scale of the concentration 

axis. 

Cells in the junction area and the side branch exhibit very low levels of calcium. Figure 16 

indicates for instance that due to the effect of vertex-to-vertex diffusion, the calcium 

concentration in cell 30 decreases too fast and cannot exceed the threshold UC1 for inducing 

CICR. Subsequently, the calcium concentration decreases steadily in the junction area. With a 

larger 𝐷∗′ the junction region realizes a conversion from one-dimension-like diffusion to two-

dimensional diffusion. The simulated behavior is comparable to that observed experimentally. 

This suggests that a calcium pulse cannot propagate in a multicellular structure with regions that 

transition from one-dimensional diffusion (in the lower branch of backbone) to two-dimensional 
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diffusion (in the junction cell cluster). These computational results provide further evidence for 

an effect of the architecture of multicellular structures on the propagation of calcium waves. 

2.3.4 Double stimulation of “T” structure 

In section “2.3.2-Single Chain-Dual Stimulation: Experiments” we have demonstrated that two 

calcium waves cannot cross when propagating toward each other in a chain of endothelial cells. 

We consider, here, the dual-stimulation of a “T” structure with stimulations located in two 

separate branches. We address the question of the interaction of the two calcium pulses in the 

junction area. 

“T” Structure-Dual Stimulation: Experimental 

To facilitate comparison between dual and single stimulation, two separate mechano-

stimulations are applied on cells close to the junction in order to ensure that calcium waves 

would propagate well beyond the junction and into the side branches. Two calcium signals were 

generated from each stimulated cell. They propagate in two opposite directions. For instance, the 

calcium signal induced in cell 19 propagates upward toward the junction and downward along 

the chain of cells that constitute branch 1. Two of the pulses, generated from cell 2 and cell 19 

respectively, meet in the junction area. The other pulse terminates at the ends of branches 1 and 3 

(see Figure 17). 
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Figure 17. Experiment image and normalized intensity of cells in “T” structure subjected to double stimulation. (A) Image 

of a T structure of cells subjected to double mechano-stimulation. The red circle identifies the stimulated cells. Red labels 

indicate the response time individual cells. All the cells exhibited strong fluorescence with response times calculated from the 

rate of change of the fluorescence intensity. Black labels show cells exhibiting only noise level fluorescence. (B-E) show the 

normalized intensity of fluorescence of branch 1, cluster area, branch 2 and branch 3, respectively, as functions of time. The 

vertical axis is the dimensionless normalized intensity of fluorescence and the horizontal axis is the time in seconds in intervals of 

1.2 s between recordings.   

Figure 17 unambiguously shows that nearly every single cell in the “T” structure can 

support a calcium wave when it is subjected to a dual stimulation. The fluorescence intensity of 

every cell is strong and possesses the characteristics of pulses observed in the case of the single 

stimulation of single chains. In contrast to Figure 13 and Figure 14, the cluster area in the junction 

is not acting as a diffusion sink for the calcium signal and the calcium wave is able to propagate 
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throughout the junction and beyond into branch 2. The signal terminates at cell 8 in branch 2 

probably because it has reached its maximum travel distance or due to edge effects. Compared to 

section “2.3.3-T Structure-Single Stimulus: Experimental”, the dual stimulation launches two 

calcium pulses toward the junction area. The initial time evolution of the calcium concentration 

in cells in the junction cluster is now driven by diffusion from several CICR activated cells. The 

activated cells surrounding a cell of interest in the cluster may serve as calcium sources 

providing calcium to the cytoplasm of the cell of interest via diffusion. This enables a rise in 

calcium concentration that can exceed the threshold for triggering subsequent CICR. This rise is 

now due to an imbalance between outward and inward diffusion fluxes from and to neighboring 

cells. The two sources of calcium can compensate for the transition from diffusion in the one-

dimensional space of the stimulated branches to diffusion in the two-dimensional space of the 

junction area. We conducted 8 similar experiments and 6 out of 8 (0.75%) showed the same type 

of behavior. 

“T” Structure-Dual Stimulation: Simulation 

Figure 18 illustrates the response of the model “T” structure to two stimuli. The model 

system is identical to that introduced in section “2.3.3-T Structure-Single Stimulus: Simulation”. 

All cells are initialized to a calcium concentration of 0 but cells 28 and 34, which are given 

simultaneously an initial concentration of C0. 
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Figure 18. Schematic illustration and simulation results of the model “T” structure subjected to double stimulus. (A) 

Schematic representation of “T” structure of cells subjected to dual stimulation. Red cells are the stimulated cells. See Figure 15 

for additional details. (B) Calcium concentration as a function of time for cells in the vicinity of the junction. 𝐃∗′ = 𝟎. 𝟐. 

We consider the case of 𝐷∗′ = 0.2 for which we have previously shown the inability to 

support a propagating calcium wave when it is induced by a single stimulation. Figure 18(B) 

shows that a calcium wave propagates readily throughout the junction area and into the side 

branch. Further investigation of the effect of the vertex-to-vertex diffusion coefficient shows that 

the calcium wave propagation is limited to values of 𝐷∗′ in the range of 0.00 to 0.23. Beyond the 

value of 0.23, 𝐷∗′ does not allow the “T” structure to support propagation into the side branch as 

fast diffusion in the cluster would prevent cytosolic calcium concentrations to exceed the CICR 

threshold. Therefore, in light of the simulations of the “T” structure subjected to single and dual 
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stimulation, agreement with the experimental observations is achieved when 𝐷∗′ ∈ [0.17,0.23]. 

As in the simulations and cell chain experiments, calcium signals propagate through a “T”-like 

structure of arterioles in the intact microvasculature, a more native architecture, when stimulated 

chemically by applying acetylcholine as agonist. While our emphasis has been on endothelial 

cells, this type of behavior likely depends on cell-type, morphology, the nature of the stimulation 

and environment [52]. 

2.4 Summary 

In this chapter, we study experimentally the propagation of calcium waves in different 

multicellular structures composed of human umbilical vein endothelial cells (HUVEC). The 

fabrication of cell-chain based multicellular chain structures relies on organizing multiple cells 

into specific configurations via selective plasma surface functionalization, which guides cellular 

attachment. Calcium waves are actuated via mechano-stimulation of selected cells. Calcium 

wave propagation is characterized by time-resolved fluorescence microscopy. The experimental 

observations are complemented by modeling and simulation of calcium wave propagation using 

a diffusion/reaction model. The model of intracellular calcium dynamics is non-linear and 

mimics the IP3-induced calcium release and calcium induced calcium release (CICR). In order to 

capture the essence of cross-level interactions in calcium signal propagation in multicellular 

architectures, we only consider a single component model of CICR. This model is different from 

previous CICR models, which consisted of multiple coupled non-linear differential equations 

describing the kinetics of IP3/Ca2+ pumping, release and activation [18,54]. Nevertheless, the 

model is capable of capturing most essential features of calcium wave propagation in HUVEC 

observed in the experiment. 
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Cell-to-cell interactions are described in this paper via intercellular diffusion through gap 

junctions. Experimental observation of calcium waves induced by a single mechano-stimulation 

and propagating along a chain of endothelial cells is used to calibrate the model. Experiments 

and simulations of chains of cells subjected to dual stimulation (i.e. simultaneous stimulation of 

two different cells) show that two calcium waves cannot cross each other due to the refractory 

stage of endothelial cells. The study of more complex multicellular structures utilized “T” 

structures, which are composed of three side branches joining at a junction. The junction is 

comprised of cell clusters. In this case, we observe experimentally that when a single cell in one 

of the side braches is stimulated, the calcium signal does not propagate beyond the junction area. 

However, when two mechano-stimulations are simultaneously applied on separate branches the 

calcium signal can propagate through the junction area and beyond well into the third 

unstimulated side branch of the “T” structure. A computational model of a “T” structure, which 

includes a cell cluster at the junction, shows the importance of intracellular calcium dynamics 

and intercellular diffusion in determining the propagation behavior of calcium waves. In 

particular, the organization of cells in the junction determines the existence of multiple paths for 

intercellular diffusion, which may affect the accumulation of cytosolic calcium and subsequently 

the ability of cells to undergo CICR.  

In summary, this work demonstrates that the propagation of calcium waves is dependent 

upon the architecture of multicellular structures. This dependence is due to the competition 

between intracellular calcium reaction and diffusion, which is affected by the topology through 

cell connectivity via gap junctions. 

 

  



 55 

CHAPTER 3. REGULATION OF THE FREQUENCY AND 

WAVELENGTH OF CALCIUM WAVES PROPAGATING IN NETWORKS 

OF INTERCONNECTED CELLS: A SIMULATION STUDY 

In the previous chapter, we introduce a combined theoretical and experimental study of the 

propagation of calcium signals in multicellular structures subjected to mechano-stimuli. 

However, in many cell types, extracellular chemical stimuli can be converted into intracellular 

signal in forms of [Ca2+]c oscillation [55]. This intracellular calcium oscillation accounts for the 

chemical reaction and diffusion of cytoplasmic calcium and inositol-1,4,5-triphosphate (IP3). Its 

frequency strongly depends on the dose of the applied extracellular agonist, whereas, the 

oscillation amplitude is nearly constant [56]. In this chapter, I will introduce a more complicated 

model of calcium wave propagation in a chain of cells incorporating both intracellular calcium 

dynamics and intercellular calcium wave propagation. We investigate computationally the effect 

of cross-level interdependence between intracellular calcium-IP3 pathway and cell-cell 

communication via intercellular diffusion of both Ca2+ and IP3. In contrast to Goldberg’s model 

[57], diffusion in our model is linear with a diffusion coefficient that is independent of Ca2+/IP3 

concentration. However, to achieve long-distance intercellular calcium wave propagation, a 

regeneration mechanism of IP3 is evoked. This mechanism depends on the cytosolic Ca2+ 

concentration. We investigate the effect of the chain-like architecture of the multicellular 

network on the frequency of calcium oscillations of individual cells and the wavelength of trains 

of calcium waves. Significant cross-level effects are found on the transient behavior of individual 

cells as well as their steady oscillatory state.  
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3.1 Introduction  

A particularly relevant aspect of networks, including cellular networks, is the potential emerging 

behavior of the system beyond simply a summation of individual element activities. With respect 

to cellular networks, the passing of signals between cells of the network is one way in which new 

system behaviors can emerge. For instance, intercellular calcium waves were observed to define 

communication networks among neural progenitor cells [58]. Also astrocytes of the cortical gray 

matter appear to play an active role in brain function that takes the form of calcium waves that 

propagate between cells within networks of astrocytes [59]. Central to understanding these 

emergent processes is that cellular networks inherently combine dynamical and structural 

complexity, making it difficult to isolate single cell versus emergent network behavior. However, 

the relationships between network dynamics and architecture have been successfully investigated 

using a variety of physical and mathematical approaches [38], many of which have been applied 

to understand the complexities of neuronal circuitry. For example, embryonic stem cell-derived 

neural progenitors form networks exhibiting synchronous calcium signaling activity. This 

coherent calcium dynamic was shown to be correlated across so-called small-world networks 

[60]; networks with the mean shortest distance between nodes scaled logarithmically with the 

number of nodes.   

The objective of the present study is to develop a model-based theoretical framework to 

shed light on the phenomenon of cross-level interactions in complex and dynamic multicellular 

structures with a focus on calcium signaling via calcium waves. Calcium signaling occurs in 

nearly all cell types and calcium waves are a common phenomenon in multicellular systems. In 

particular, we are interested in the interplay between intracellular calcium activity and 

intercellular propagation in networks of cells. From a theoretical perspective, Othmer and 
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Scriven [61] developed, following Turing’s pioneering mathematical treatise of morphogenesis 

[62], an analysis technique in which the information about the underlying network topology, 

through a connectivity matrix, is decoupled from that of the intracellular reaction pathway 

mechanism, thus enabling progress in multicellular network research that includes complexity at 

both low and high levels. A previous series of studies [39,40] reported the use of the Green’s 

function-based Interface Response Theory (IRT) [63], a method originally developed for tackling 

composite media in condensed matter physics, to augment Scriven-Othmer’s method to solve 

coupled dynamical networks with nontrivial connectivity matrices and therefore integrate natural 

biological organization from the cellular level to complex network architectures. We also 

conducted an experimental and computational study of calcium wave propagation in chains of 

model cells with nonlinear intracellular calcium dynamics and shown the importance of local cell 

environment on the transmission of a pulse through junctions in multicellular networks [64] (see 

chapter 2 for detail).  

In this chapter, we show that the intracellular oscillation frequency of an individual cell 

embedded in the chain-like network and stimulated with an agonist differs at steady state from 

that of an isolated cell. Furthermore, the transient behavior of that stimulated cell toward steady 

oscillations is taking significantly longer in the multicellular network. In fact, the stimulated cell 

generates sequential trains of pulses with increasing frequency. These trains of pulses are 

supported and propagating along the chain of cells. The mechanism for this long time transient 

behavior is attributed to retrograde diffusion of calcium and IP3 originating from a widening 

range of cells in the chain undergoing oscillations as the trains of pulses propagate. This 

mechanism highlights the importance of microenvironment on the dynamical behavior of cells in 

multicellular networks. In particular, this study demonstrates that the dynamical behavior of a 
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specific cell embedded in a multicellular environment depends on crosstalk between the cell and 

its environment. 

3.2 Models and Methods 

3.2.1 Model of intracellular calcium pathway 

A schematic of our model for the dynamics of intracellular calcium oscillations and intercellular 

calcium diffusion is shown in Figure 19. The pathway involves primarily the intracellular reaction 

dynamics and the intercellular diffusion of cytoplasmic calcium and inositol-1,4,5-trisphosphate 

(IP3). The intracellular chemical reaction process is based on a model introduced by Politi et al. 

[65]. For the sake of clarity, we describe this model in some details. The intracellular calcium 

pathway starts with an extracellular agonist combines with the G-protein-coupled receptors on 

the cell’s membrane to activate phospholipase C (PLC). It is, in turns, able to catalyze the 

production of IP3 [66]. IP3 then can bind to the IP3 receptor, IP3R, to open calcium channels in 

the membrane of the Endoplasmic Reticulum (ER). This process releases stored Ca2+ into the 

cytosol. Meanwhile, the cytoplasmic Ca2+ creates both positive and negative feedback conditions 

in the production of IP3. For the positive feedback condition, the cytoplasmic Ca2+ is capable of 

activating the PLC isoforms to release more IP3 [67]. For the negative feedback condition, the 

increase of cytoplasmic Ca2+ can activate the IP3 degradation via IP3 3-kinase (IP3K). Because 

high levels of intracellular calcium are toxic and cannot be degraded as many other signaling 

molecules can, cells control the intracellular calcium level by buffering, sequestering in 

specialized compartments, and expelling to the extracellular space [50, 68].  
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Figure 19. Reaction/Diffusion process of Ca2+ and IP3 metabolism included in the model. The solid, dashed, and dotted 

arrows indicate molecular diffusion, regulatory interactions, and reaction/transport steps respectively. The bold quantities indicate 

the following model variables: IP3, the cytoplasmic IP3; Ca(cyt), the free cytoplasmic Ca2+; Ca(ER), the free Ca2+ in the ER; 

IP3Ra, the active conformation of the IP3R. The other abbreviations denote IP3Ri, the inactive conformation of the IP3R; sercav , 

the active Ca2+ transport into the ER; PLCv , the production rate of IP3; relv , the rate of Ca2+ release through the IP3R; inacv  and 

recv , the rates of Ca2+-induced IP3R inactivation and recovery, respectively; Pv5  and Kv3 , the rates of IP3 dephosphorylation 

and phosphorylation, respectively; D(IP3) and D(Ca), the diffusion coefficient of IP3 and Ca, respectively; and UC, the threshold 

of Ca needed to activate PLC. 

The intracellular chemical reaction dynamics is formulated into a system of coupled 

differential equations involving four dynamical variables: the calcium concentration in the 

cytosol, c; the IP3 concentration in the cytosol, p; the calcium concentration in the ER stores, s; 

and the fraction of IP3R that has not been made inactivate by Ca2+, r. The rate equation for the 

IP3 concentration takes the following form: 
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where the PLCv  and degv  represent the production and degradation rate of IP3, respectively. PLCV  

is the maximum production rate of PLC that depends on the agonist concentration. PLCK  

characterizes the sensitivity of PLC to Ca2+; Kv3  and Pv5  are the rates of IP3 phosphorylation 

and dephosphorylation, respectively. Noted that the phosphorylation rate kk3  is described by a 

Hill function with the half-saturation constant KK3  [69]. The rate equation for the cytoplasmic 

Ca2+ is in the following form: 
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            For the sake of simplification, the total calcium concentration in the cell, totc , is 

conserved and is represented as scctot  , where is the ratio of effective cytoplasmic 

volume to effective ER volume (both accounting for Ca2+ buffering). Therefore, the calcium 

concentration in the ER store can be expressed as  


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s tot  .                                                                (3-3) 

            The dynamics of IP3R inactivation by Ca2+ is shown as follow: 
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In our numerical simulations of the intracellular pathway, we use the model parameters 

reported by Politi [65]. We limit ourselves to the model supporting calcium positive feedback, in 


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which the phosphorylation rate kk3  is set to zero. The corresponding parameters are summarized 

in Table 4. The numerical solutions of these differential equations are obtained by using the 4 th-

order Runge-Kutta algorithm with step size, =0.01 s. 

Table 4. Values of reaction/diffusion model’s parameters 

Parameters Description Value  

 IP3 dynamics parameters  

 Half-activation constant of IP3K 0.4 μM 

 IP3 phosphorylation rate constant 0 

 IP3 dephosphorylation rate constant 0.66 s-1 

 Half-activation constant of PLC 0.2 μM 

 Maximum production rate of IP3 1.5 μM s-1 

 Ca2+ transport and structural parameters  

 Ratio of effective volumes ER/cytosol 0.185 

 Maximal SERCA pump rate 0.9 μM s-1 

 Half-activation constant 0.1 μM 

 Total Ca2+ concentration 2 μM 

t

KK3

Kk3

Pk5

PLCK

PLCV



sercaV

sercaK

totc
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 IP3R parameters  

 Maximal rate of Ca2+ release 1.11 s-1 

 Ca2+ leak 0.0203 s-1 

 Ca2+ binding to activating site 0.08 μM 

 Ca2+ binding to inhibiting site 0.4 μM 

 IP3 binding 0.13 μM 

 Characteristic time IP3R inactivation 12.5 s 

 Reference Diffusion parameters  

*

CaD  Diffusion coefficient rate of Ca2+ 0.005 s-1 

*

3IPD  Diffusion coefficient rate of IP3  10
*

CaD  

UC  Threshold of Ca2+ to activate PLC 0.057 μM 

 

We illustrate the oscillatory behavior of the intracellular calcium concentration of 

individual cell in Figure 20. Following Politi, we can increase the frequency of the intracellular 

calcium oscillations by increasing the agonist concentration. For an isolated cell, the frequency 

of intracellular calcium oscillation does not vary so much at constant PLCV  (see Figure 20). The 

IP3 activity follows a similar dynamics. 
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Figure 20. Politi model: Agonist-induced intracellular calcium oscillation with stepwise increases in the agonist 

concentration (arrows) corresponded by an increase in VPLC. The Y-axis represents the cytosolic calcium concentration with 

unit “µM.” The X-axis represents the time with unit “0.01 s.” VPLC=0.3 μM s-1 for t < 1000 with successive increases to 0.787, 

1.0, 1.5, and 2.5 μM s-1. 

 Figure 21 illustrates the period of intracellular calcium oscillation generated in an isolated 

cell with initial calcium concentration, [Ca]i=0.05 μM. Initially, the period between the 

oscillating peak #1 and #2 is 1787 time steps. However, the period between the peak #2 and #3 

sharply decreases to 1681 time steps (point #2 in Figure 21), which is followed by a steady state 

with the period equal to 1672 or 1673 time steps. We have verified that different initial 

concentrations result in the very similar period behavior. 
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Figure 21. Period of intracellular calcium oscillation in an isolated cell. The X-axis represents the subsequent maxima. The 

Y-axis represents the value of time (in units of 0.01 s) corresponding to the occurrence of each maximum. 

3.2.2 Integration of intracellular calcium pathway into multicellular diffusion model 

Politi’s model only considers the intracellular dynamics in an isolated cell. To use Politi’s 

model to describe the calcium and IP3 dynamics in a multicellular system, we need to add the 

phenomenon of diffusion of both Ca2+ and IP3 driven by the concentration gradients between 

neighboring cells. The multicellular structure considered in this model is composed of a single 

linear chain of N cells with periodic boundary conditions (PBC). In such a chain, in which every 

cell is connected to two other cells (diffusion between nearest neighbor cells), one can write the 

one-dimensional time-dependent reaction/diffusion equation for Ca2+ and IP3:  
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and  

          pcftxptxptxpDpcf
x

p
D

t

p
nininiIPIP ,,,2,, 11

*

32

2

3 








 ,             (3-6) 



 65 

where “DCa” and  “DIP3” are the diffusion coefficients of Ca2+ and IP3. “x” and “t” are the 

position and time variables. In Eq. (3-5) and (3-6), we have discretized the equation in space and 

time using finite differences. “ ” refers to the discretized time line with a time step of . 

2xDCa   and 2

3 xDIP   are defined as the diffusion coefficient rate of Ca2+ and IP3 with unit 

“per second”, “s-1”, which we denote 
*

CaD  and 
*

3IPD  , respectively. “ ”refer to the nearest 

neighbor intercell-distance. To implement PBC, we impose the cyclic condition on the index “i”: 

cell i+1=cell 1 if i=N and cell i-1=cell N if i=1. The term on the left-hand side is the rates of 

change of intracellular Ca2+/IP3 concentration in cell “i”. The concentration for the next time 

increment, n+1, can be calculated from concentration values at the previous time increment, n. 

We assume that diffusion occurs only between nearest neighboring cells through their membrane 

via gap junctions. We further assume that the distribution of gap junctions in the plasma 

membrane is spatially uniform and that the diffusion coefficients are constants independent of 

cell number. Note that the mobility of Ca2+ through gap junction is restricted in comparison to 

that of IP3 because of the higher buffering capacity of cytoplasm for Ca2+ than for IP3 [24]. Thus, 

IP3 diffuses much faster than Ca2+ [53]. For the sake of simplicity, we set 
**

3 10 CaIP DD   in our 

model.  

In combining intracellular dynamics and intercellular diffusion, at a given time, tn-1, for 

each cell “i”, we effectively solve Eq. (3-1), (3-2) and (3-4) by using the 4th order Runge-Kutta 

method to evolve the c and p concentrations at the time, tn, due to intracellular dynamics. 

Meanwhile, the updated ),( ni txp  and ),( ni txc  are used in the diffusion part of Eq. (3-5) and (3-6) 

to impact the Ca2+/IP3 concentration in the neighboring cells. We have verified that this 

algorithm has fully converged for the time step =0.01 s. For this we have implemented the 

tntn  t

x

t
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algorithm for smaller time steps of 2t  and 4t  verified that one obtains the same 

reaction/diffusion dynamics.  

To study the propagation of trains of calcium waves in a multicellular one-dimensional 

chain, we initially stimulate a single cell in the center of the chain with the agonist. This cell will 

be called subsequently: “stimulated cell.” PLC of the stimulated cell is activated initially by the 

extracellular agonist to induce intracellular Ca2+/IP3 oscillations. All other cells in the chain that 

are not initially stimulated ( 0PLCV ) are referred to as “downstream cells.” One may visualize 

the downstream cells as forming a cellular microenvironment in which the stimulated cell is 

embedded.  

The reaction dynamics of the stimulated cell increases its calcium concentration. 

Diffusion of Ca2+ between the stimulated cell and its neighboring downstream cells elevates the 

Ca2+ concentration in downstream cells. To enable the propagation of a train of calcium waves 

that is initiated by the oscillation of the stimulated cell, we introduce a threshold based on the 

calcium concentration for inducing Ca2+/IP3 positive feedback in downstream cells (Figure 19). 

When the cytoplasmic Ca2+ concentration reaches a value exceeding a threshold, UC, the 

positive feedback effect of cytoplasmic Ca2+ is activated to increase the production rate of IP3. If 

the cytoplasmic Ca2+ concentration is below the threshold, PLC isoforms are not activated. This 

enables the synchronized development of collective spatio-temporal response of multicellular 

architectures. This extension is based not only on diffusion but also on an additional 

amplification mechanism through the generation of IP3 and the Ca2+-dependent activation of 

PLC [70].  
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In the simulation, the multicellular chain consists of 301 cells. The central cell (cell 151) 

is the stimulated cell. The size of the chain is chosen such that the calcium trains of waves never 

reach the ends of the chain (cells 1 and 301) during the time of the simulation. So even though 

we have implemented PBC, these conditions are never required during the simulation time 

reported here. The initial concentrations of Ca2+ and IP3 are set to 0.05 µM. The continuous 

presence of agonist is required to evoke the sustained intercellular calcium waves [71]. Therefore, 

the VPLC of the stimulated cell is kept at 1.5 μM s-1. All other cells have their initial VPLC set to 

zero. When the calcium concentration exceeds UC for the first time in a downstream cell, its 

VPLC is set to 1.5 μM s-1 for the remaining time of the simulation. The parameters of the diffusion 

model are listed in Table 4 with those parameterizing the intracellular reaction dynamics.  

3.3 Results and Discussion 

A comparison between the calcium oscillation of the stimulated cell and its first neighboring 

downstream cell is shown in Figure 22. Because the diffusion process is symmetric, we just show 

the temporal evolution of the calcium concentration on one side of the chain. The IP3 activity 

shows a similar dynamic. 
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Figure 22. Calcium oscillation based on reference parameters in stimulated cell and its first neighboring cell. The Y-axis 

represents the cytosolic calcium concentration with unit “µM.” The X-axis represents the time unit “0.01 s.” The red line stands 

for the intracellular calcium oscillation in the stimulated cell. The green line shows the intracellular calcium oscillation in the 1st 

neighboring cell. 

Initially, only the stimulated cell is triggered to generate calcium oscillation. Meanwhile, 

cytosolic calcium diffuses from the stimulated cell to the downstream cells through gap junctions. 

Once the calcium concentration in the downstream cells rises to a level exceeding the threshold 

“UC,” the PLC in the downstream cells is activated, that is, we set  μM s-1, 

where the superscripts “sc” and “dc” denote “stimulated cell” and “downstream cells”, 

respectively. This process sustains the propagation of a calcium wave. In Figure 22, the cytosolic 

calcium oscillation frequency of both the stimulated cell and the 1st neighboring cell is nearly the 

same. However, a slight phase shift occurs in the 1st neighboring cell because of a time lag 

imposed by the Ca2+/IP3 diffusion process. This latency is inversely proportional to the value of 

the diffusion coefficients. The IP3 activity shows similar dynamics.  

 We now turn to a full description of the propagation of calcium train of waves resulting 

from the coupled reaction/diffusion model (see Figure 23). 

5.1 sc

PLC

dc

PLC VV
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Figure 23. Snapshots of the propagating train of waves along the chain of cells.  The snapshots are reported at different times 

expressed in units of “0.01 s.” The Y-axis represents the cytosolic calcium concentration. The X-axis represents the location of 

cells. Cell 151 is the stimulated cell. (A) Train of pulses at time point T=475; the front of the train of pulse is marked by a star, 

“,”and this in subsequent snapshots. (B) Train of pulses at time point T=9364; the separation distance between pulses 
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(wavelength of the train) amounts to a segment of the chain containing  4 to 5 cells for the first 6 pulses.  This wavelength 

reduces to a segment containing 3 cells between pulse # 7 and # 6. (C) Train of pulses at time point T=14933; the train of pulses 

keeps propagating and retains a wavelength of 4 to 5 cell segments between pulses #1 through #9. The wavelength amount to a 3 

cell segment between pulses #9 and #11. (D) Train of pulses at time point T=20360; the central area with short wavelength 

expands spatially; the pulse interval between the newest calcium pulse generated by the central cell and the adjacent pulse 

decreases to a 2-cell segment. (E) Train of pulses at time point T=27037; the central region with decreasing wavelength keeps 

expanding. (F) Train of pulses at time point T=34989; short wavelength region expands further and the wavelength shortens to 1-

cell interval. 

Figure 23 illustrates the temporal and spatial evolution of the train of calcium waves 

produced by the multicellular reaction/diffusion model. Initially, intracellular calcium oscillation 

is induced by the extracellular agonist in the central cell (cell 151). At the time step T=475 (in 

units of 0.01s), the first calcium pulse in the central cell, which is marked by a star, “,” reaches 

its highest value (Figure 23 A). As time marches, this pulse splits into two pulses, propagating in 

opposite directions from the stimulated cell. Because pulse propagation is symmetrical about the 

center of the chain, we number the pulses from the pulse at the front of the train on the left side 

of the stimulated cell, only. The pulse labeled with a “star” corresponds to the 1st pulse, or say 

pulse #1 in the train. As time proceeds, the central cell undergoes subsequent oscillations. These 

oscillations emit calcium pulses that propagate in opposite directions along the chain. This 

process leads to the formation of the two opposite intercellular calcium wave trains (ICWTs). 

The wavelength of the ICWTs (separation distance between adjacent pulses) will be quantified 

by the number of cells between two maxima. It takes a value between 4 and 5 cells. After the 7 th 

oscillation of the stimulated cell, at T=9364, pulse #1 is located on cell 120. The 7th calcium 

pulse supported by the central cell reaches its highest level when the 6 th pulse reaches cell 147 

(Figure 23 B). The interval between these two pulses now corresponds to a segment containing 3 

cells (involving cells 148, 149, 150). This is the beginning of the a spontaneous heterogenization 
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of the train of pulses propagating along the chain of cells, that is a time-dependent decrease in 

the wavelength of the train of pulses At T=14933, when the calcium concentration in the central 

cell reaches its 11th maximum, the train of pulses is composed of two distinct regions. A train of 

pulses with a 4- to 5-cell wavelength (between pulses 1 and 9) and a central regions with three 

pulses (#9 to #11) separated by segments containing 3 cells (Figure 23 C). At T=20360, the 

central region of the chain becomes even more heterogeneous as a wavelength of 2-cell interval 

appears between pulses #15 and #14 (Figure 23 D) in addition to the existing 3-cell interval 

wavelengths already described. For T=27037, the central region is composed of five pulses with 

2-cell and 3-cell wavelengths (Figure 23 E). Finally, the train of pulse is fully heterogenized with 

4- to 5-cell distances separating the pulses #1 to #21, and a central region composed of pulses 

#21 through #26 separated by 3-, 2- and 1-cell wavelength. The wavelength of the train of waves 

decreases as one approaches the stimulated cell from the front pulse (Figure 23 F). Although we 

only reported calcium concentration in Figure 23, the concentration of IP3 follows a very similar 

dynamics.  

Figure 24 illustrates the downward tendency of the period of intracellular calcium 

oscillation generated in the stimulated cell. Similar to Figure 21, the period of oscillation shown 

in Figure 24 begins with a sharp decrease followed by a slow reduction before reaching a constant 

value. The initial rapid decrease is similar to that observed for the isolated cell in Figure 21. This 

is representative of the dynamics of the intracellular pathway. However, the slow varying region 

of Figure 24 contains 21 points (point #2 to #22, i.e. 21 periods) instead of 2 points (point #2 and 

#3) as was shown in Figure 21. Moreover, the period of oscillation at steady state in Figure 24 is 

smaller than that in Figure 21. We observe two effects, these being: (a) a slow rate of evolution 

toward steady state in the multicellular structure compared to the isolated cell, and (b) a steady 
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state period of oscillation that depends on the cell environments indicate that the intracellular 

dynamics is probably controlled by the diffusion process.  

 

Figure 24. Period of intracellular calcium oscillation in the central cell. The X-axis represents the subsequent maxima. The 

Y-axis represents the value of time (in units of 0.01 s) corresponding to the occurrence of each maximum. 

The calcium diffusion process is bi-directional and is driven by the calcium concentration 

gradient between the neighboring cells. We name the diffusion from the center of the chain to the 

edges of the chain the “forward diffusion” and the diffusion from the edges to the center the 

“retrograde diffusion.” When the calcium pulses in the central cell split into two pulses that 

subsequently propagate outward, the calcium concentration of the central cell decreases to form a 

trough while the calcium concentration of the downstream cells remains high. Thus, a calcium 

concentration gradient is established between some of the downstream cells with high calcium 

concentration and the cells in the vicinity of the central cell with low calcium concentration. 

Retrograde diffusion will occur, increasing slightly the Ca2+ concentration in the central region 

of the chain. The central cell may, therefore, take less time to reach its highest calcium level. 

With an increase in the number of calcium pulses along the cell chain, the influence of Ca2+ 
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accumulation by retrograde diffusion around the central cell is hypothesized to affect the 

frequency of its intracellular calcium oscillations.  

In order to explain the mechanism of the retrograde diffusion effect, we introduce the 

concept of an “effective diffusion coefficient.” According to Fick’s first law, the flux of Ca2+ 

between two neighboring cells is 

x

CC
DJ nn

in



 1 ,                                                           (3-7) 

where is the flux of Ca2+; nC  is the calcium concentration of cell n; 1nC  is the calcium 

concentration of cell n+1; Din  is the intrinsic diffusion coefficient which is also called the 

diffusion coefficient in the simulation; and x is the intercell spacing. We assume 1 nn CC . 

During the propagation process of ICWTs, retrograde diffusion increases 1nC  to 
*

1nC .  

We can write the Ca2+ flux between cell n and cell n+1 in two ways  
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where Deff  is an effective diffusion coefficient. Because 1nC  is less than 
*

1nC  , Din  should be 

larger than Deff . In the early stages of the propagation of the train of calcium waves (the first 5 

pulses), we assume that the retrograde diffusion effect is not large enough to change the 

oscillation frequency of the stimulated cell. Therefore, the intrinsic diffusion coefficient, Din , 

can be used as a surrogate for the effective diffusion coefficient when considering the early 

stages of propagation of calcium waves.  

J
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Figure 25. The properties of ICWTs for the different intrinsic calcium diffusion coefficients in the early stage of the 

ICWTs. (A-D) Early stages of ICWTs for 𝑫𝒊𝒏
∗ (𝑪𝒂)= 0.0017, 0.005, 0.01, and 0.015 s-1, respectively. The Y-axis represents 

cytosolic calcium concentrations. The X-axis represents cell locations. (E) The average period of intracellular calcium oscillation 

of the early stages when 𝑫𝒊𝒏
∗ (𝑪𝒂)= 0.0017, 0.005, 0.01 and 0.015 s-1, which are represented by the white dots. The Y-axis 

represents the average period of oscillation. The X-axis represents the intrinsic diffusion coefficient rate of Ca. (F) The average 
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pulse intervals of the early stages when 𝑫𝒊𝒏
∗ (𝑪𝒂)= 0.0017, 0.005, 0.01 and 0.015 s-1. The Y-axis represents the average pulse 

intervals. The X-axis represents the intrinsic diffusion coefficient rate of Ca. 

Figure 25 illustrates the properties of ICWTs at the early stage of simulations for different 

effective (intrinsic) diffusion coefficient rates. Figure 25 E shows the variation of oscillation 

period of the stimulated cell for different values of the diffusion coefficient. When  CaDin

*
 is 

less than 0.0017 s-1, there is no intercellular calcium propagation along the chain. Focusing on 

  0017.0* CaDin s-1. When  CaDin

*
 is equal to or larger than 0.0017 s-1, the average period of 

oscillation increases with increasing diffusion coefficient. Figure 25 F illustrates the relationship 

between the effective diffusion coefficient and the average wavelength. This figure shows that 

the wavelength decreases with a decreasing diffusion coefficient, at least in the early stages of 

the propagation. This observation can be used to shed light on the decreasing wavelength we 

reported during the later stage of propagation. Over time the retrograde diffusion process 

effectively reduces the diffusion flux in the vicinity of the stimulated cell and therefore leads to a 

reduced effective diffusion coefficient. An effective diffusion coefficient with a value smaller 

than that of the intrinsic coefficient would result in a shortening of the wavelength.  

3.4 Summary 

This modeling and simulation study of calcium oscillations and trains of calcium waves in a 

chain-like cell network is showing that the dynamics of cells embedded in a network is 

significantly different from that of an isolated cell. In particular we have demonstrated that the 

transient and steady state frequency of calcium oscillations of a cell stimulated with an agonist 

depends on its microenvironment, in this case, cell neighbors. This effect is attributed to a 

crosstalk between the stimulated cell and its environment through retrograde diffusion of calcium 
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and IP3. As a growing number of cells in the chain are excited over time and undergo oscillations, 

retrograde diffusion arising from an expanding train of pulses affects the calcium and IP3 fluxes 

in the region that originated the train of waves, that is, in the vicinity of the original stimulated 

cell. The neighborhood of the stimulated cell forms a “signaling niche” that acts on the 

stimulated cell itself and affects its dynamics. After stimulation of the single cell, the cellular 

niche responds to its Ca2+ and IP3 oscillations and signals back through gap-junction mediated 

diffusion thereby influencing the calcium behavior in the originating cell. This crosstalk leads to 

a dynamical regulation of the stimulated cell’s oscillation frequency. Given the importance in 

intracellular calcium dynamics in cell function, the niche-dependent changes will likely influence 

subsequent functions of that single cell. Our simulations always involved the activity of the same, 

single originating cell and the subsequent impact on calcium behavior throughout the network.  

In the tissue space, there will be multiple “originating cells” (meaning more than one cell 

in the interconnected system is receiving an external activating signal within the same time 

period), all of which comprise the cellular neighborhood. Thus, the originating cell in one 

instance is also a potential modifier cell to a neighborhood cell that is originating an oscillation. 

So, any given cell within a cell neighborhood is both an originating cell and a modifier cell to 

signals generated elsewhere within the neighborhood. Therefore, the activity of the cell system is 

greater than the sum of its parts because this type of calcium wave regulation is occurring across 

the entire system as multiple different cells originate calcium oscillations. Key to this conceptual 

model is a single-cell centric perspective whereby each cell acts as a signal-originating cell while 

also populating the cellular niche of other cells within the network. Even though we focused on 

one originating cell in this study, it should be possible to adapt the computational model to begin 

to examine this more complex paradigm. 
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This observation may have striking implications on the role of calcium signaling on 

cross-level interdependence in multicellular architectures in terms of signal generation and 

decoding. We have shown that the environment-dependent cross-talk results in Ca2+ and IP3 

regulation as well as control over oscillation frequency. Decoding of structural information by 

individual cells would subsequently need cellular control on frequency dependent intracellular 

pathways such as frequency-dependent protein phosphorylation by a Ca2+ -calmodulin activated 

kinase which was shown to be ubiquitous in a wide variety of cell types [72]. Therefore, it seems 

more likely that our calcium-based environment dependent frequency-encoding mechanism is 

operative in a range of multicellular architectures and tissues. 
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CHAPTER 4 CONCLUSION AND FUTURE WORK 

In this chapter, I briefly summarize the main achievement of this thesis and discuss the possible 

future work in bio-signal area.  

4.1 Conclusion 

Calcium wave signal has been found in a wide variety of cell types. Over the last years, a large 

number of calcium experiments have shown that calcium signal is not only an intracellular 

regulator but also a long-range signaling. In this thesis, I have studied the propagation of 

intercellular calcium wave in multicellular structures. Two models was introduced in chapter 2 

and chapter 3, respectively.  

In chapter 2, the model focuses on the development of an approach with complementary 

integration of theoretical and experimental methods for studying the multi-level interactions in 

multicellular architectures and their effect on collective cell dynamic behavior. The fabrication 

of cell-chain is produced by plasma surface patterning technique. Intercellular calcium waves are 

induced via mechano-stimuli of selected cells. The experimental observations are complemented 

by modeling and simulation of calcium wave propagation using a non-linear diffusion/reaction 

model. Cell-to-cell interactions is considered via intercellular diffusion through gap junctions 

and described by Fick’s second law. The rate of change of intracellular calcium is modeled by a 

simple calcium dependent non-linear reaction function. Two thresholds are used to determine the 

value of the calcium release/intake rate. This model suggests that the topology of cell structure 

will have influence on the competition between intracellular calcium reaction and diffusion, and 

then control the behavior of intercellular calcium propagation. 
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Besides mechano-stimulated model, previous studies also mentioned that chemical-stimuli 

from the extracellular space is able to induce the intracellular calcium oscillation [16,55]. The 

model in chapter 3 describes the chemical-stimuli based intercellular communication via 

intracellular calcium/IP3 oscillations. This model depends on the interdependence between 

intracellular calcium-IP3 pathway and cell-cell communication via intercellular diffusion of both 

Ca2+ and IP3. Different from the mechano-stimuli model, the intracellular dynamic of chemical-

stimuli model is based on the IP3-induced calcium release pathway and formulated into a system 

of coupled differential equations. To enable the propagation of calcium waves in a one-

dimensional chain of cells, we introduce a calcium concentration-dependent threshold-based 

mechanism to trigger calcium oscillations of individual cells. We investigate the influence of the 

chain-like multicellular structure on the frequency of calcium oscillations of individual cells. 

This model shows that after applying an extracellular stimulus, the intracellular oscillation 

frequency of an individual cell embedded in the chain-like network significantly differs at steady 

state from that of an isolated cell: the transient behavior of that stimulated cell toward steady 

oscillations is taking significantly longer in the multicellular network. This behavior is attributed 

to the retrograde diffusion of Ca2+ and IP3 and highlights the importance of microenvironment on 

the dynamical behavior of cells in multicellular networks. 

In summary, these two models describe new types of higher-order (across structure) 

behaviors arising from lower-order (within cells) phenomena, and make predictions concerning 

the mechanisms underlying the dynamics of multicellular biological systems. Microengineered, 

geometrically constrained networks of human umbilical vein endothelial cells (HUVEC) serve as 

platforms to arbitrate the theoretical predictions in terms of the effect of network topology on the 

spatiotemporal characteristics of emerging calcium signals. The theoretical approach describes 
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numerically the dynamics of non-linear behavior of calcium-based signaling in model networks 

of cells.  

4.2 Future Work 

In the mechano-stimuli model, we have introduced the combined experiment and simulation of 

intercellular calcium wave propagation in the multicellular chain-like and “T” structures. In 

order to get further understand of calcium propagation, more complex structures should be 

investigated in both experiment and simulation aspects. Moreover, every cell is considered the 

same in our model with the same diffusion coefficient. However, it is not always true in 

experiment. A cell-dependent diffusion coefficient could be introduced to mimic the different 

diffusion ability of cells.  

In chapter 3, we have introduced the theoretical model of chemical-stimuli based 

intercellular calcium wave propagation in a chain-like structure. The simulation results show that 

under a certain intracellular oscillation frequency, the intercellular diffusion coefficient has 

significant influence on the wavelength of intercellular calcium wave trains (ICWTs). However, 

our further research shows that the value of VPLC and threshold UC may also the significant 

factors affecting the wavelength of ICWTs. Moreover, more complex multicellular topologies 

such as “T” structures and “+” structures should be investigated with the objective of studying 

the relationship between the ICWTs wavelength and calcium transmission rate through the 

junction area.  

From the experiment point of view, a relevant experiment should be established to verify 

the prediction of the model in chapter 3. The purine receptor agonist ATP could be used as the 

stimulating agonist and changing the dose the agonist may control the intracellular calcium 
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oscillation frequency. The usage of Phospholipase C (PLC) inhibitor U-73122 and gap junction 

inhibitor Carbenoxolone can help to affect the PLC sensitivity and diffusion ability of gap 

junction, respectively. The experimental results with add of PLC and gap junction inhibitor will 

enable to test the prediction of significant factors in simulation model in the model.  
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APPENDIX I: REACTION/DIFFUSION MODEL OF “T” STRUCTURE 

Here, we detail the discretized reaction-diffusion equations for the “T” structure illustrated in 

Figures 10(A) and 13 (A). The reaction-diffusion equations are written for the cells in the 

junction region, namely cells 30 to 32, cell 1s, cells 1’ and 2’. 
*D  and 

*'D  are the dimensionless 

diffusion coefficient of edge-to-edge diffusion and vertex-to-vertex diffusion, respectively.  

The reaction-diffusion equation for cell 30: 
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The reaction-diffusion equation for cell 31 is: 
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The reaction-diffusion equation for cell 32 is: 
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The reaction-diffusion equation for cell 1s in side branch is: 
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The reaction-diffusion equation for cell 1’ is: 
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The reaction-diffusion equation for cell 2’ is: 
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APPENDIX II: FORTRAN CODE OF ICW IN A CHAIN-LIKE 

MOULTICELLULAR STRUCTURE SUBJECTED TO SINGLE/DOUBLE 

STIMULATION 

 

!CICR simple model 

!Propagation is symmetric  

!Time- and cell-independent diffusion coefficient 

!Parameter values are subjected to change 

!Periodic boundary 

 

 

IMPLICIT NONE 

double precision:: rk1, rk2, rk3, rk, coeff, & 

uc1, uc2, dt, x, d2c1, b 

INTEGER:: nc, nls, nls2, j, jp, jm,i, nt 

dimension:: x(801,2), rk(801) 

open(unit=1, file='chainS.dat',status='old') 

! Just consider 1-D chain 

 

! number of time steps 

 print *, "nt=" 

 read *, nt 

! nt=10000 

! number of cells in backbone 

 nc=61 

! chemical reaction parameter  

 rk1=3.0 

 rk2=-2.5 

 rk3=0.45 

! diffusion coeff 

 coeff=0.6 

! location of stimulation 

 nls=21 

! Another stimulated cell 

! nls2=41 

! critical conc 

 uc1=0.3 

 uc2=3.0 

! time step 

 dt=0.01 

! inital pulse 

 do j=1,nc 

 x(j,1)=0.0 

 enddo 

 x(nls,1)=2.0 

! x(nls2,1)=2.0 

! loop of time 

 do i=1,nt 

! loop over the cells in backbone 

 do j=1,nc 

 jp=j+1 

       jm=j-1 

 if(jp>nc)jp=1 

 if(jm<1)jm=nc 

! reaction 

 if(rk(j)==rk3) go to 100 
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 if(x(j,1)<=uc1)rk(j)=rk1 

 if((x(j,1)<uc2) .and. (x(j,1)>uc1))rk(j)=rk2   

 if(x(j,1)>uc2)rk(j)=rk3 

100  continue 

! diffusion 

 d2c1=coeff*(x(jp,1)-2*x(j,1)+x(jm,1)) 

 x(j,2)=x(j,1)+d2c1*dt-rk(j)*x(j,1)*dt 

 enddo  

! time shift  

 do j=1,nc 

 x(j,1)=x(j,2) 

 if(j==31) write(1,*) i*dt*2.53, x(j,1) 

 enddo      

 enddo 

 

   end 

  



 85 

APPENDIX III: FORTRAN CODE OF ICW IN “T” STRUCTURE 

SUBJECTED TO SINGLE/DOUBLE STIMULATION 

!CICR simple model 

!Propagation is symmetric  

!vertex-to vertex diffusion coefficient is introduced 

!Parameter values are subjected to change 

!Periodic boundary 

 

 

IMPLICIT NONE 

double precision:: rk1, rk2, rk3, rk, rks, coeff1, & 

uc1, uc2, dt, x, xs, d2c1,d2c2,coeff2,xs1,xs2,d2c3,d2c4,rks1,rks2 

INTEGER:: nc,nls,ns,k,j,jp,jm,kp,km,i,nt,nlsb,nls2 

dimension:: x(601,2), rk(601), rks(300), xs(300,2),xs1(100,2),xs2(100,2),& 

 rks1(100),rks2(100) 

  

open(unit=1, file='ST.dat',status='old')  

! The simplest complicated structure 

! number of time steps 

!    print *, "nt=" 

! read *, nt 

 nt=300 

! number of cells in backbone 

 nc=61 

! number of cells in side branch 

 ns=31 

! chemical reaction parameter  

 rk1=3.0 

 rk2=-3.0 

 rk3=0.45 

! diffusion coeff 

 coeff1=0.6 

 print *, "coeff2=" 

 read *, coeff2 

! location of side branch 

 nlsb=31 

! location of stimulation 

 nls=28 

! Another stimulated cell 

! nls2=34 

 

! critical conc 

 uc1=0.3 

 uc2=3.0 

! time step  

 dt=0.01 

! inital pulse 

 do j=1,nc 

 x(j,1)=0 

 enddo 

 x(nls,1)=2.0 

! x(nls2,1)=2.0 

 do j=1,ns 

 xs(j,1)=0 

 enddo 

! loop of time 

 do i=1,nt 

! loop over the cells in backbone, init 



 86 

 do j=2,nc-1 

 jp=j+1 

 jm=j-1 

! reaction 

 if(rk(j)==rk3) go to 100 

 if(x(j,1)<=uc1)rk(j)=rk1 

 if((x(j,1)<=uc2) .and. (x(j,1)>uc1))rk(j)=rk2   

 if(x(j,1)>uc2)rk(j)=rk3 

100  continue 

! diffusion 

 if(j==nlsb) then 

!cluster model 2---"nlsb" is connecting with xs1 and xs2 and xs(1) 

d2c1=coeff1*((x(jp,1)-2*x(j,1)+x(jm,1))+(xs(1,1)-x(j,1)))& 

 +coeff2*((xs1(1,1)-x(j,1))+(xs2(1,1)-x(j,1))) 

 

 else if(j==nlsb-1) then 

!cluster model 1---"nlsb-1" is connecting with xs(1) and xs1 

d2c1=coeff1*((x(jp,1)-2*x(j,1)+x(jm,1))+(xs1(1,1)-x(j,1)))& 

 +coeff2*(xs(1,1)-x(j,1)) 

 

 else if(j==nlsb+1) then 

!cluster model 1---"nlsb+1" is connecting with xs(1) and xs2 

d2c1=coeff1*((x(jp,1)-2*x(j,1)+x(jm,1))+(xs2(1,1)-x(j,1)))& 

 +coeff2*(xs(1,1)-x(j,1)) 

 

 else 

 d2c1=coeff1*(x(jp,1)-2*x(j,1)+x(jm,1)) 

 end if 

 x(j,2)=x(j,1)+d2c1*dt-rk(j)*x(j,1)*dt 

 enddo 

 

!---------------- 

! Side Branch  

!---------------- 

 do k=1,ns-1 

 kp=k+1 

 km=k-1 

! reaction 

 if(rks(k)==rk3) go to 200 

 if(xs(k,1)<=uc1)rks(k)=rk1 

 if((xs(k,1)<=uc2) .and. (xs(k,1)>uc1))rks(k)=rk2   

 if(xs(k,1)>uc2)rks(k)=rk3 

 200  continue 

 

! Diffusion 

 if(k==1) then 

!connect with cell nlsb, nlsb+1, nlsb-1, xs(1), xs(2),xs1 and xs2 

d2c2=coeff1*((xs(kp,1)-xs(k,1))-(xs(k,1)-x(nlsb,1))+(xs2(1,1)-xs(k,1))& 

-(xs(k,1)-xs1(1,1)))+coeff2*((x(nlsb-1,1)-xs(k,1))+(x(nlsb+1,1)-xs(k,1))) 

 

 else 

 d2c2=coeff1*(xs(kp,1)-2*xs(k,1)+xs(km,1)) 

 end if 

 xs(k,2)=xs(k,1)+d2c2*dt-rks(k)*xs(k,1)*dt 

 enddo 

 

 

!-------------------- 

! Cluster cells 

!-------------------- 

! reaction 

 if(rks1(1)==rk3) go to 300 

 if(xs1(1,1)<=uc1)rks1(1)=rk1 
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 if((xs1(1,1)<=uc2) .and. (xs1(1,1)>uc1))rks1(1)=rk2   

 if(xs1(1,1)>uc2)rks1(1)=rk3 

 300  continue 

! Diffusion 

!connecting with nlsb-1,nlsb and xs(1) 

d2c3=coeff1*((xs(1,1)-xs1(1,1))-(xs1(1,1)-x(nlsb-1,1)))& 

+coeff2*(x(nlsb,1)-xs1(1,1)) 

 

xs1(1,2)=xs1(1,1)+d2c3*dt-rks1(1)*xs1(1,1)*dt 

 

! reaction 

 if(rks2(1)==rk3) go to 400 

 if(xs2(1,1)<=uc1)rks2(1)=rk1 

 if((xs2(1,1)<=uc2) .and. (xs2(1,1)>uc1))rks2(1)=rk2   

 if(xs2(1,1)>uc2)rks2(1)=rk3 

 400  continue 

! Diffusion 

! connecting with nlsb+1,nlsb and xs(1) 

d2c4=coeff1*((xs(1,1)-xs2(1,1))-(xs2(1,1)-x(nlsb+1,1)))& 

+coeff2*(x(nlsb,1)-xs2(1,1)) 

 

xs2(1,2)=xs2(1,1)+d2c4*dt-rks2(1)*xs2(1,1)*dt 

 

! time shift in backbone 

 do j=1,nc 

 x(j,1)=x(j,2) 

 if(j==32) write(1,*)i*dt*2.53,x(j,1) 

 enddo 

! time shift in side branch  

 do k=1,ns-1 

 xs(k,1)=xs(k,2) 

!if(k==4) write(1,*) i*dt*2.53,xs(k,1)  

 enddo 

! time shift in cluster cells 

 xs1(1,1)=xs1(1,2) 

 xs2(1,1)=xs2(1,2) 

 enddo 

 

 

!  do j=1,nc 

!  write(1,*)j,x(j,1) 

!  enddo 

! do k=1,ns-1 

! write(1,*)nc+k,xs(k,1) 

! enddo 

! write(1,*)nc+k+1,xs1(1,1) 

! write(1,*)nc+k+2,xs2(1,1) 

 

end 
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APPENDIX IV: FORTRAN CODE OF CHEMICAL-STIMULATED ICW 

IN A CHAIN-LIKE MULTICELLULAR STRUCTURE SUBJECTED TO 

SINGLE STIMULATION 

!-------------------------------------------------------------------------------------

-------------- 

!Politi model (positive)used in calcium propagation in single chain subjected to 

single stimulation 

!calcium based-vplc controled model 

!R-K step size is introduced here.  

!periodic boundary condition 

!chemical stimulation 

!initial concentration keeps the same for each cells 

!-------------------------------------------------------------------------------------

-------------- 

 

!-------------------------------------------------------------------------------------

------------------------ 

!Thresholds uc1 were introduced 

!When Vplc=1.5, max(uc1)=0.067 

!D(IP3)=10*D(Ca) 

!-------------------------------------------------------------------------------------

------------------------ 

 

! k3k is IP3 phosphorylation rate constant 

! k5p is IP3 dephosphorylation rate constant 

! kplc is half-activation constant of PLC 

! vs is the maximal SERCA pump rate 

! k1 is maximal rate of calcium release 

! k2 is maximal rate of calcium leak 

! ka is calcium binding to activating site 

! kp is IP3 binding 

! ks half-activation constant 

! vplc is the maximal production rate of IP3 

! svplc is rescaled maximal PLC activity  

! tp is the characteristic time of IP3 turnover 

! eta is the ratio of the maxiaml IP3K rate to the total maximal degradation rate of 

IP3 

! v0 is the constant influx 

! fi is the stimulation-dependent influx 

! kpm is the half-activation constant 

! vpm is the maximal PMCA pump rate  

! epsilon is the strength of plasma membrane fluxes 

! beta is the ratio of effective volumes ER/cytosol 

! tr is the characteristic time IP3R inactivation 

! ki is Calcium binding to inhibiting site 

 

IMPLICIT NONE 

double precision::fr,uc1,h,c,p,r,tp,k3k,k5p,kplc,vplc,& 

 k1,k2,ka,kp,vs,ks,eta,v0,k,ki,ctot,& 

 fi,kpm,vpm,svplc,epsilon,beta,tr,& 

 temp1IP3,temp1Ca,temp1ER,temp1In,& 

 temp2IP3,temp2Ca,temp2ER,temp2In,& 

kIP31,tempIP31,kCa1,tempCa1,kER1,tempER1,kIn1,tempIn1,& 

kIP32,tempIP32,kCa2,tempCa2,kER2,tempER2,kIn2,tempIn2,& 

kIP33,tempIP33,kCa3,tempCa3,kER3,tempER3,kIn3,tempIn3,& 

kIP34,kCa4,kER4,kIn4,a,b,d,yu,derivIP3, derivCa, & 
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derivER, derivIn,cn,pn,d2Ca,d2IP3,coeffCa,coeffIP3,dt 

INTEGER::n,i,j,nc,nls,jm,jp 

dimension::c(1000,2),p(1000,2),r(1000),vplc(1000),uc1(1000) 

 

open(unit=1, file='ssppch_Ca.dat',status='old')  

open(unit=2, file='ssppch_IP3.dat',status='old') 

open(unit=3, file='ssppch_r.dat',status='old')   

 

!------------------------------------- 

! chemical reaction parameter  

!------------------------------------- 

 kp=0.13 

 ks=0.1 

 k=0.4 

 beta=0.185 

 epsilon=0.0 

 kpm=0.12 

 vpm=0.01 

 v0=0.0004 

 ctot=2.0 

! print *, "coeffCa=" 

! read (*,*)coeffCa 

! print *, "coeffIP3=" 

! read (*,*)coeffIP3 

 coeffCa=0.005 

 coeffIP3=0.05 

!------------------------------- 

! positive feedback 

!------------------------------- 

 k3k=0.0 

 k5p=0.66 

 kplc=0.2 

 vs=0.9 

 fi=0.0047 

 k1=1.11 

 k2=0.0203 

 ka=0.08 

 ki=0.4 

 tr=12.5 

!------------------------------------- 

! number of cells in backbone 

!------------------------------------- 

 nc=401 

 

!------------------------------- 

! location of stimulation 

!------------------------------- 

 nls=201 

!--------------------- 

! inital pulse 

!--------------------- 

 do j=1,nc 

 c(j,1)=0.05 

 p(j,1)=0.05 

 r(j)=0.85 

 enddo 

! c(nls,1)=0.3 

! p(nls,1)=0.3 

 

 

!------------------------- 

! Threshold 

!------------------------- 
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 do j=1,nc 

 uc1(j)=0.057 

 enddo 

!------------------------- 

! following vplc 

!------------------------- 

! print *, "fr=" 

! read (*,*)fr 

 fr=1.5 

!------------------------ 

!     time step size 

!------------------------ 

 dt=0.01 

!------------------------ 

! R-K step size 

!------------------------ 

 h=dt 

!-------------------- 

! Time Loop 

!-------------------- 

! print *, "times n=" 

! read (*,*)n 

n=15000 

 do i=1,n 

 

!------------------ 

! reaction 

!------------------ 

 do j=1,nc 

if(vplc(j)==fr) go to 100 

if (j==nls) vplc(j)=fr 

if(c(j,1)<uc1(j) .and. j/=nls) vplc(j)=0.0 

if(c(j,1)>=uc1(j) .and. j/=nls) vplc(j)=fr 

100 continue 

 

!------------------ 

!Call Subroutine 

!------------------ 

call derivfunction1(c(j,1),p(j,1),vplc(j),derivIP3) 

kIP31=h*derivIP3 

tempIP31=p(j,1)+0.5*kIP31 

!print *,"tempIP31=",tempIP31 

call derivfunction2(c(j,1),p(j,1),r(j),vplc(j),derivCa) 

kCa1=h*derivCa 

tempCa1=c(j,1)+0.5*kCa1 

!print *,"kCa1=",kCa1 

!print *,"tempCa1=",tempCa1 

call derivfunction3(c(j,1),r(j),derivIn) 

kIn1=h*derivIn 

tempIn1=r(j)+0.5*kIn1 

!print *,"tempIn1=",tempIn1 

 

call derivfunction1(tempCa1,tempIP31,vplc(j),derivIP3) 

kIP32=h*derivIP3 

tempIP32=p(j,1)+0.5*kIP32 

!print *,"tempIP32=",tempIP32 

call derivfunction2(tempCa1,tempIP31,& 

tempIn1,vplc(j),derivCa) 

kCa2=h*derivCa 

tempCa2=c(j,1)+0.5*kCa2 

!print *,"kCa2=",kCa2 

!print *,"tempCa2=",tempCa2 

call derivfunction3(tempCa1,tempIn1,derivIn) 
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kIn2=h*derivIn 

tempIn2=r(j)+0.5*kIn2 

!print *,"tempIn2=",tempIn2 

 

call derivfunction1(tempCa2,tempIP32,vplc(j),derivIP3) 

kIP33=h*derivIP3 

tempIP33=p(j,1)+kIP33 

!print *,"tempIP33=",tempIP33 

call derivfunction2(tempCa2,tempIP32,& 

tempIn2,vplc(j),derivCa) 

kCa3=h*derivCa 

tempCa3=c(j,1)+kCa3 

!print *,"kCa3=",kCa3 

!print *,"tempCa3=",tempCa3 

call derivfunction3(tempCa2,tempIn2,derivIn) 

kIn3=h*derivIn 

tempIn3=r(j)+kIn3 

!print *,"tempIn3=",tempIn3 

 

call derivfunction1(tempCa3,tempIP33,vplc(j),derivIP3) 

kIP34=h*derivIP3 

!print *,"kIP34=",kIP34 

call derivfunction2(tempCa3,tempIP33,& 

tempIn3,vplc(j),derivCa) 

kCa4=h*derivCa 

!print *,"kCa4=",kCa4 

call derivfunction3(tempCa3,tempIn3,derivIn) 

kIn4=h*derivIn 

!print *,"kIn4=",kIn4 

 

p(j,2)=p(j,1)+(kIP31+2.0*(kIP32+kIP33)+kIP34)/6.0 

c(j,2)=c(j,1)+(kCa1+2.0*(kCa2+kCa3)+kCa4)/6.0 

r(j)=r(j)+(kIn1+2.0*(kIn2+kIn3)+kIn4)/6.0 

!if(j==nls-2)write(3,*)i,r(j) 

enddo 

 

 

!---------------------------------------------------  

!Diffusion---loop over the cells in backbone, init 

!--------------------------------------------------- 

 do j=1,nc 

 jp=j+1 

 jm=j-1  

 if(jp>nc)jp=1 

 if(jm<1)jm=nc 

d2Ca=coeffCa*(c(jp,1)-2*c(j,1)+c(jm,1)) 

!if(j==nls)write(1,*)i,d2Ca 

d2IP3=coeffIP3*(p(jp,1)-2*p(j,1)+p(jm,1)) 

!if(i==10 .and. j==20) print *,"d2IP3=", d2IP3 

c(j,2)=c(j,2)+d2Ca*dt 

p(j,2)=p(j,2)+d2IP3*dt 

 

 enddo 

!------------------------ 

! Time shift 

!------------------------ 

 do j=1,nc 

 c(j,1)=c(j,2) 

 p(j,1)=p(j,2) 

if(j==nls-2)write(1,*)i,c(j,1) 

if(j==nls-3)write(2,*)i,p(j,1) 

 enddo 

!if(j==nls-12)write(1,*)i,vplc(j) 
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!if(j==nls-12)write(3,*)i,uc1(j) 

! write(1,*)i 

!write(2,*)i 

!write(3,*)i 

 do j=1,nc 

! write(1,*)j,c(j,1) 

! write(2,*)j,p(j,1) 

!      write(3,*)j,r(j) 

 end do 

 

!----------------------------- 

! end of time loop 

!----------------------------- 

 enddo 

 

end 

 

subroutine derivfunction1(c,p,vplc,derivIP3) 

double precision, intent(out)::derivIP3 

double precision, intent(in):: c,p,vplc 

double precision:: tp,k3k,k5p,kplc,& 

eta,k,ki,svplc,a,b,d 

!positive feedback 

 k=0.4 

 k3k=0.0 

 k5p=0.66 

 kplc=0.2 

tp=1.0/(k5p+k3k) 

!print *, "tp=",tp 

eta=k3k/(k3k+k5p) 

!print *, eta 

svplc=vplc*tp 

!print *, "svplc=",svplc 

!a=svplc*c**2 

!print *, "a=",a 

!b=kplc**2+c**2 

!print *, "b=",b 

!d=(eta*c**2)/(k**2+c**2) 

!print *, "d=",d 

derivIP3=(((svplc*c**2)/(kplc**2+c**2))& 

-((eta*c**2)/(k**2+c**2)+(1-eta))*p)/tp 

!print *,"derivIP3=",derivIP3 

return 

end subroutine derivfunction1 

 

subroutine derivfunction2(c,p,r,vplc,derivCa) 

double precision, intent(out)::derivCa 

double precision, intent(in):: c,p,r,vplc 

real:: tp,k3k,k5p,kplc,& 

k1,k2,ka,kp,vs,ks,eta,v0,k,ki,fi,kpm,& 

vpm,svplc,epsilon,beta,tr,e,f,g,h,ctot 

 kp=0.13 

 ks=0.1 

 k=0.4 

 epsilon=0.0 

 kpm=0.12 

 vpm=0.01 

 v0=0.0004  

 ctot=2.0 

 beta=0.185 

!positive feedback 

 k3k=0.0 
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 k5p=0.66 

 kplc=0.2 

 vs=0.9 

 fi=0.0047 

 k1=1.11 

 k2=0.0203 

 ka=0.08 

tp=1.0/(k5p+k3k) 

svplc=vplc*tp 

derivCa=(k1*((r*c*p)/((ka+c)*(kp+p)))**3+k2)*(((ctot-c)/beta)-c)& 

-((vs*c**2)/(ks**2+c**2))& 

+epsilon*(v0+(fi*svplc)-((vpm*c**2)/(kpm**2+c**2))) 

!print *, "derivCa=",derivCa 

return 

end subroutine derivfunction2 

 

 

subroutine derivfunction3(c,r,derivIn) 

double precision, intent(out)::derivIn 

double precision, intent(in):: c,r 

real:: tp,k3k,k5p,kplc,vplc,& 

 k1,k2,ka,kp,vs,ks,eta,v0,k,ki,& 

 fi,kpm,vpm,svplc,epsilon,beta,tr,j 

! positive feedback 

 ki=0.4 

 tr=12.5 

!j=1-r*(ki+c)/ki 

!print *, "j=",j 

derivIn=(1-r*(ki+c)/ki)/tr 

!print *, "derivIn=",derivIn 

return 

end subroutine derivfunction3 
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APPENDIX V: MATLABE CODE FOR ANALYZING THE BEHAVIOR OF 

INTERCELLULAR CALCIUM WAVE TRAINS 

 

function [ output_args ] = timepoint( FileName ) 
%Analyze the ICWTs including the pulse interval, peak and trough value of 
%pulses 

  
[x,y,z]=textread(FileName);% import data into matlab 
data=zeros(36000,1); 
time=zeros(35,1); 
conc=zeros(301,1); 
peak=zeros(35,1); 
intv=zeros(25,1); 
j=0; 
% Find the time point when the calcium level in stimulated cell reaches the 
% highest level. 
for i=[1:36000] 
    data(i,1)=y((152)+(i-1)*302);%calcium concentration of stimualted cell as 

function of time 
end 
for i=[2:35999] 
    if data(i,1)>data(i-1,1) && data(i,1)>data(i+1,1) 
        j=j+1; 
        time(j,1)=i; 
    end 
end 
%time(j)=0; 
disp(time); 
%Find the location of each pulse at some particular time points 
for j=[1:35] 
    if time(j)~=0 
        conc=y((2:302)+(time(j)-1)*302); 
        c=0; 
        m=0; 
        for k=[2:151] 
            if conc(k)>conc(k-1) && conc(k)>conc(k+1) 
                c=c+1; 
                peak(c)=k; 
            end 
        end 
        disp(peak); 
        %Calculate the pulse interval 
        for c=[1:35] 
            if peak(c)~=0 
            m=m+1; 
            intv(m)=peak(c+1)-peak(c)-1; 
                if intv(m)<0 
                intv(m)=0; 
                end 
            end 
        end 
        disp(intv); 
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    end 
end 

  

  
end 
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APPENDIX VI: MATLABE CODE FOR MAKING THE SNAPSHOT OF 

INTERCELLULAR CALCIUM WAVE TRAINS 

 

function [ output_args ] = FigurePlot( FileName,FolderName ) 
%FIGUREPLOT Summary of this function goes here 
%Code for making snapshot  

 
[x,y,z]=textread(FileName); 
data=zeros(301,1); 
for i=34988:34990 
data(:,1)=y((2:302)+(i-1)*302); 
plot((1:301),data,'-k'); 
 axis([1 301 0.0 1.3]); 
%set(gca, 'XTick',[20 60 90 120 150 180 210 240 280]); 
%set(gca, 'XTickLabel',{'30','60','90','120','150','180','210','240','270'}); 
%data=y((31:73)+(i-1)*102); 
%axis([20 282 0.0 1.3]); 
xlabel('Cell Location'); 
 ylabel('[Ca](uM)'); 
%hleg1=legend('T=32379'); 
 if (i<10) 
 saveas(gcf,strcat(FolderName,'0000',int2str(i),'file.jpg')); 
 end; 
 if ((i<100) && (i>=10)) 
 saveas(gcf,strcat(FolderName,'000',int2str(i),'file.jpg')); 
 end; 
 if ((i<1000) && (i>=100)) 
%if (i==509) 
 saveas(gcf,strcat(FolderName,'00',int2str(i),'file.tif')); 
end; 
 if ((i<10000) && (i>=1000)) 
%if (i==6317) 
saveas(gcf,strcat(FolderName,'0',int2str(i),'file.tif')); 
end; 
 if ((i<100000) && (i>=10000)) 
%if ((i==11563) || (i==16616) || (i==19125) || (i==24138)) 
%if (i==34989) 
saveas(gcf,strcat(FolderName,int2str(i),'.tif')); 
%print -r1000; 
end; 
output_args=0; 
end 
end 
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