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Abstract 

Living organisms face a changing physical environment. A major challenge in 

ecology is understanding the ecological and evolutionary role that this changing physical 

environment has in shaping a community. One fundamental question is how 

environmental variation affects species coexistence. Modern understanding of 

environmental variation emphasized the hypothesis that possible adaptations to a 

fluctuating environment allow species to use different environments in different ways. 

Species can partition temporally their use of resources. Persistent stages in the life cycle 

such as prolonged longevity can buffer species through unfavorable environments. 

Differences in longevity will also lead to different nonlinear responses of population 

growth rate to fluctuating in resources. Questions arise: how do these possible 

adaptations to environmental fluctuations affect coexistence.  Do they act through 

multiple coexistence mechanisms, how strong are the mechanisms, and do the 

mechanisms interact?  

 A framework has been developed for quantifying coexistence mechanisms in models. 

Being able to quantify coexistence mechanisms in the field is critical to understand 

different processes contributing to species coexistence in a community: whether a process 

prevents species dropping out of the community (stable coexistence), or slows down 

species losses (unstable coexistence), or both. In many respects, applications of those 

techniques for quantifying coexistence mechanisms have the potential for substantial 

improvements. In particular, very few studies directly quantify coexistence mechanisms 

for perennial plants. Coexistence of plant is often puzzling because they share similar 

resources. Environmental variation has been suggested as an important factor for niche 
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partitioning but challenges for studying it in perennial plants are unclear. The long 

generation time poses challenges to controlled experiments. Moreover, perennial plants 

have complex life histories. Vital rates change with size. In addition, tremendous 

temporal variation is observed in various life history processes. Seedling recruitment and 

individual growth can both be highly sensitive to fluctuation in the physical environment. 

Furthermore, different processes in different stages of the life history can interact with 

environment and competition in different ways. Using perennial plants as a specific 

system, our study reveals a crucial role in theory development to summarize 

understanding of such a complex system. I start with the simplest model for perennial 

plants, the lottery model, to study the relative importance of two coexistence mechanisms: 

the storage effect and the relative nonlinearity. Then I extend the model by showing that 

variation in individual growth can also lead to stable coexistence similar to the effect of 

variation in seedling recruitment. Species can benefit most from variable environments 

when the processes contributing most to capturing resources on average are also very 

sensitive to environmental fluctuations. New mechanisms arise through shifts in size 

structure, which depend on  how vital rates change through ontogeny. 
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Introduction 

A central question in community ecology is why there are so many species. Many 

studies are devoted to understanding patterns in biodiversity: its origin, maintenance and 

loss. Interests in biodiversity have been driving rapid development of coexistence 

theories. Early work on the Lotka-Volterra competition model predicts that the number of 

density dependent limiting factors must be equal to or greater than the number of 

coexisting species. This theoretical finding is challenged by the empirical observation in 

many systems (especially plant communities) that many species coexist although few 

limiting resources are evident. Many hypotheses have been proposed to explain species 

coexistence. Palmer (1994) reviewed and classified these hypotheses into different 

categories in terms of how they violate different conditions for coexistence in  Lotka-

Volterra competition models. Many of these hypotheses are synonyms or near synonyms. 

Though these classifications are problematic in light of modern understanding of 

coexistence mechanisms (Chesson 2000), this review is helpful in highlighting the 

important role in species coexistence of temporal and spatial variation, which is absent 

from Lotka-Volterra models.  

There have been many theoretical studies on the role of environmental variation in 

species coexistence. An early study claimed that environmental variation prevents species 

from remaining at equilibrium and promotes species extinction (May 1973, 1974). 

However, environmental variation, rather than being treated as a disruptive force for 

ecological processes, should be treated as part of the ecosystem (Chesson at al 2013). 

More recent studies, now widely accepted, come to the conclusion that environmental 

variation promotes species coexistence by offering new ways in which species can be 
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differentiated ecologically. These studies extend the classical niche concept developed 

with Lotka-Volterra models to include responses to variable environments as part of the 

niche (Chesson 1991). For example in plant communities, without environmental 

variation, niche overlaps are mediated by the way species relate to resources and 

predators. Spatial and temporal environmental variation offers species opportunities to be 

relative specialists on different environmental conditions, reducing interactions with other 

members of the same ecological guild.  

Several fluctuation-dependent mechanisms, which by definition are mechanisms that 

depend on fluctuations in population densities and environmental factors in space and 

time, have been proposed as promoting stable coexistence in a community (Clements 

1916, Hastings 1980, Pacala and Tilman 1994, Amarasekare and Nisbet 2001, Tilman 

2004). I will explain two hypotheses as examples here. Competition-colonization 

tradeoffs are one popular hypothesis for multispecies coexistence on a single resource 

(Tilman 1994). This theory has been criticized because of its strict requirements on 

interspecific trade-offs between competitive ability, and colonization ability, as well as a 

fixed hierarchy of these abilities (Yu and Wilson 2001). Two other related  popular 

hypotheses are the regeneration niche (Grubb 1977) and the gap dynamics hypothesis 

(Grubb 1977, Denslow 1987). New gaps after tree death open a range of microhabitats, 

allowing species with different regeneration requirements to establish. It has been further 

suggested that climate variation associated with gap formation will tend to favor different 

species at different times and allow an occasional match between seedling availability of 

different species and gap formation (Runkle 1989). However, this theory has been 

criticized because a limited number of species dominate regeneration in gaps, leaving 
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unexplained regeneration and coexistence of the majority of tropical forest trees, which 

are shade tolerant, slow growing and normally excluded by other species upon gap 

formation (Wright 2002). 

However, none of these above hypotheses consider life history characters such as 

species-specific responses to environments as possible adaptations to a variable 

environment. Nor did they seriously study the role of a variable environment in 

promoting recovery of species from low density (i.e. invasibility), which is essential to 

quantify the strength of stable coexistence. For a species to recover from low density, it 

must have a demographic advantage at low density. One way of achieving this is through 

species-specific responses to varying environmental conditions (Chesson and Warner 

1981). However, differences between species are not sufficient for species coexistence, 

and the critical issue lies between how species differences interact with density-

dependent process to promote rare species advantages (Chesson 2000, 2008, Siepielski 

and McPeek 2010).  

Different aspects of life history can lead to specific density-feedback loops for a 

species resulting in  stronger intra- than inter-specific competition on some spatial and 

temporal scale. Chesson (2003, 2008) argues that these different effects are best 

understood through partitioning the low density advantages into quantifiable coexistence 

mechanisms. The lottery model is the simplest model used to quantify coexistence 

mechanisms in a temporally varying environment (Chesson 1981). Two coexistence 

mechanisms arise in the model: the storage effect and relative nonlinearity. In brief 

explanation, the storage effect arises through an interaction between environment and 

competition: species at low density have opportunities to escape competition in a 



13	
	

favorable environment, and suffer less from competition in an unfavorable environment 

(Box 1). Relative nonlinearity arises because species have different nonlinear response to 

competition and thus are affected in different ways by fluctuations in competition (Box 2).  

Quantification of the mechanisms allows identification of critical life history 

processes for the mechanisms. Several critical questions are: how do the life histories 

affect the relative importances of different coexistence mechanisms that are present 

together in the system? Are  important life history processes for species coexistence 

missing in previous studies? Most theoretical and empirical work focuses on the storage 

effect. Among these studies, most have focused on recruitment stages. So the questions 

here remain open.  

 

Box 1. The Storage Effect 

 

Quantification of coexistence mechanisms is done in the context of invasion analysis: one 

species is perturbed to low density and is termed the invader species, and the rest of the species 

converging on stationary fluctuations are termed residents. The storage effect is often the 

strongest mechanisms under temporal variation because its two key requirements can be met most 

easily (Chesson 2003). 1) Weaker (relatively negative) covariance between environment and 

competition for invader species compared with residents (Fig. 1). Resident species are 

predicted to often have strong positive covariance. This means that they will not benefit much 

from a favorable physical environment because the potential recruitment from the favorable 

physical environment is reduced by strong competition. In contrast, the invader species will enjoy 

an advantage when favorable environments coincide with low competition. For example, if the 

species respond to the physical environment in different ways, when the invader is favored by the 
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physical environment, the resident might not be. Since the resident is the cause of most 

competition, the invader can escape competition when it’s favored by the physical environment, 

and so take full advantage of these favorable conditions. 2) Buffered population growth as a 

result of persistent stages in life cycle. With a persistent stage that helps a species to survive 

through years of bad recruitment, recruitment gains in favorable years will not be offset by 

population decline in bad years. Perennial plants meet this requirement by having a long life span, 

allowing persistence through bad years of environment and competition.   

 

 

 

 

 

Indeed, assumptions for the storage effect (Box 1) can be easily met in recruitment of 

various systems. The temporal storage effect has been explored in variety systems such as 

freshwater zooplankton, desert annuals, prairies and forests (Pake and Venable 1995, 

Cáceres 1997, Kelly and Bowler 2002, Adler et al. 2006, Angert et al. 2009, Usinowicz et 

Figure 1. Covariance between 
environment and competition: 
comparison between resident (blue 
dots) and invader species (green 
dots). For resident species, strong 
intraspecific competition 
accompanies a favorable 
environment, resulting in strong 
positive covariance. Invader species 
here have independent 
environmental responses from 
resident species as illustrated in this 
graph. Covariance is low for the 
invader because the invader can 
enjoy a favorable environment with 
low competition when resident is in 
an unfavorable environment. 
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al. 2012). Strong recruitment variation has often been observed in all these systems. For 

example, germinations of desert annual species are highly species-specific in relation to 

rainfall and temperature (Chesson 2013, Angert 2009, Kimball 2012). Prairie grasses 

shows contrasting correlations between intrinsic growth rate and climate variables (Adler 

2006). Even in tropical forest where environment variation is  generally regarded small, 

there is dramatic variation in seedling recruitment (Wright 2005). Also common cross all 

systems, organisms either are long-lived or have a dormant stage to buffer themselves 

against unfavorable environments.  

While there is sufficient evidence for assumptions of storage effect to hold across 

these systems, these same evidences do not preclude the existence of other mechanisms. 

Fluctuating environments drive fluctuation in competition; life history traits such as 

longevity and persistence in the seed bank that lead to the buffer required by the storage 

effect.  When different between species, these buffers also drive different nonlinear 

responses to competition between species (Box 2). These two conditions of the relative 

nonlinearity are inseparable from conditions that lead to the storage effect. Even though 

both mechanisms are generally present together, the storage effect is usually the only 

mechanism being investigated. Part of the ignorance is due to an unclear expectation of 

when relative nonlinearity is important. To make up this gap in understanding, in the 

Appendix A of the dissertation, I use the simple lottery model to provide a quantitative 

assessment to compare the two coexistence mechanisms functioning together in a 

temporally variable environment. This work provides a foundation for understanding how 

life history traits (e.g. longevity, fecundity, sensitivities and correlations in environmental 

responses) affect the relative importance of the coexistence mechanisms. It clearly 
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identifies conditions when relative nonlinearity can be strong, and conditions when 

negligence can be justified.  

Even though I have been emphasizing the need to investigate multiple mechanisms, 

even for storage effect alone, direct empirical test can be challenging. Very few studies 

(Chesson 2008) directly measured the key functional component of the storage effect, 

covariance between environment and competition (covEC). This covariance has been 

estimated directly in studies of spatial storage effect (Sears and Chesson 2007) by direct 

manipulation of a species’ density in a neighborhood competition experiment. While such 

manipulation may not be feasible in all situations, for the temporal storage effect there is 

an extra-layer of difficulty in the time-scale of the experiment. It can be problematic if 

the species studied have a slow life cycle. For this reason, quantification of temporal 

storage effect is often done indirectly via models. For example, in studies of the temporal 

storage effect in desert annuals, the connection between environmental variation and 

species interactions is derived from long term demographic data based on the assumption 

of lottery competition, without directly measuring competition (Angert et al. 2009, 

Chesson et al. 2011). Questions arise, does our conclusion about the strength of 

mechanisms depends the sort of model used? 

 

Box	2	Relative nonlinearity  

 

Relative nonlinearity depends on species’ relatively nonlinear responses to the fluctuations in 

limiting resources (Fig. b1). Because of these differences, species will benefit in different ways 

from fluctuations in the limiting factors (Chesson 2000). Based on Jensen's inequality, species 
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with a growth rate that curves up more strongly as a function of competition, will benefit from 

larger fluctuations. For coexistence to be promoted, this species must experience stronger 

fluctuations as an invader than does the other species as an invader. It is potentially important in a 

system where there are strong associations between the strength of nonlinearity and the strength 

of population fluctuations. The key in testing relative nonlinearity lies in calculating the variances 

of competitive responses and nonlinearity differences. This is difficult in the field studies because 

direct estimation of nonlinearities is difficult. Thus there is need for theory to provide a clear 

expectation of when relative nonlinearity is important. In a discrete-time population growth 

model, nonlinearities can simply arise from life-history traits, such as adult survival in lottery 

model.  

 

 

 

   

The key models used to develop theories on the role of environmental variation in 

species coexistence have been relatively simple, which makes them more tractable and 

understandable. Nevertheless, simple models do not necessarily match empirical systems 

Figure 2. Relative nonlinearity 
response of growth rate to 
competition. In the lottery model, 
relative nonlinearity simply arises 
from longevity differences 
between species. The growth rate 
as response to competition for 
longer lived species (blue line) is 
more convex than shorter lived 
species (green line). Longer lived 
species benefit more from 
fluctuations in competitive 
responses than shorter lived 
species.  
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very well. For example, the lottery model, unlike abstract models such as Lotka-Volterra 

model, does have important life history explicitly represented. Yet it is still a serious 

contraction of the life history. The basic lottery model differentiates individuals between 

two states only: propagule and adults. Critical processes including reproduction, 

propagule competition, and establishment as adult occur in one unit of time.  

While the basic model has focused on recruitment stages, post-recruitment dynamics 

can also be interesting. Details such as how fast an individual grows, at what stage it  

starts to reproduce, and how reproduction and mortality change with size reflect much 

about how life history strategies between species differ. Moreover, it is likely that 

environment and competition can shape the post-recruitment stages no less than their 

influence on recruitment variation. Using a forest as an example, trees are always 

resource limited, in particular by light. Saplings are inferior in competition for light and 

can stay small for an extended period before reaching the threshold of reproduction. 

However, individual growth of the trees of different species can be favored by different 

climate conditions. The rapidity of individual growth responses to favorable conditions 

varies between species. Simple models may fail to capture these detailed life-histories of 

a real system, but dothese life history details appreciable affect the strengths of 

coexistence mechanisms?  

To answer this question, I built a size-structured model that can capture more 

interesting biology. In Appendix B of the dissertation, I develop a continuous size-

structured lottery model and use it to summarize the effect of a complex life history on 

species coexistence.  Continuing in Appendix C, I use this model to study coexistence of 

species with life-history contrasts in reproduction and growth. This new model allows me 
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to answer more biologically relevant questions. The model shows temporal variation in 

multiple life history traits can lead to stable coexistence. Temporal variation further leads 

to dynamic size structure for each species and this fact reveals new insights into how 

size-dependent life-history schedules shape community structure.  
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Present study 

Research done in this dissertation is presented as three manuscripts in Appendix A, B 

and C. A central theme of the dissertation is developing models and theory that can 

facilitate better understanding of species coexistence in a temporally varying environment. 

My studies develop around the lottery model and its enhancement, the size-structured 

lottery model. The lottery model is used to study iteroparous perennial organisms. I have 

illustrated the model using forest trees and developed the model with strong intention for 

better match with empirical studies in forests. Progressing from the simple model to the 

more enhanced size structured model, I am able to investigate different aspects of life 

history and the different coexistence mechanisms they affect. Together, three studies 

provide answers to questions that need to be asked in every study of species coexistence: 

which coexistence mechanisms are operating, how important these mechanisms are, and 

how the different mechanisms interact. Below I summarize the major foundings in each 

appendix.  

Appendix A is in revision with Theoretical Population Biology. This study uses the 

lottery model to explore when relative nonlinearity is important. In the lottery model, the 

relatively nonlinear growth rates arise simply from death rate differences. As a direct 

consequence, species are favored in different ways as resources fluctuate. There is 

stronger nonlinearity in population growth of longer-lived individuals as a function of 

resources. A species’ longevity helps it persist through strong competition. Based on 

Janzen’s inequality, long-lived species are favored by stronger fluctuations in resources 

than shorter-lived species. For relative nonlinearity to be important, life history traits of 
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species must have the following characteristics: (1) species must differ greatly in their 

adult death rates, (2) sensitivity of recruitment to environmental variation must be greater 

for species with larger adult death rates, and (3) there must be high correlations between 

species in the responses of recruitment to the environment. When these requirements are 

met, a long-lived species, when abundant, favors its shorter-lived competitor by reducing 

fluctuations in competition. A shorter-lived species, when abundant, favors its longer-

lived competitors by increasing fluctuations in competition. These requirements for 

relative nonlinearity to be strong are much harder to satisfy than the requirements for the 

storage effect (Box 1). Nonetheless, the situations when relative nonlinearity is important 

are also when storage effect is weak. Relative nonlinearity might have a compensating 

role for a weak storage effect in nature.  

As Appendix A shows, the lottery model has been a powerful tool to quantify the 

strength of coexistence mechanisms. Yet the basic model has left out an important 

property of an organism—its size. Size, either for offspring, or adults, has had a 

prominent role in the formulation of life history strategies (Clark and Clark 1992, 

Thomas 1996, Westoby et al. 2002, King et al. 2006, Muller-Landau et al. 2006, Iida et al. 

2013). Size is closely related to other important properties of trees such as competitive 

ability, growth rate, fecundity, mortality rate etc. In Appendix B I introduce size into the 

model. It not only brings in detailed life histories, but also fundamentally changes the 

structure of the model. While the effect of tree growth dynamics, especially temporal 

variation of tree growth, on species coexistence is unclear, the new model allows us to 

explicitly study the post-recruitment individual growth process. I illustrate the model 

using forest trees. The model works in discrete time, and in each unit of time trees die 
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and the area they give up is competed for by others. Competition comes from two sources: 

(1) newly germinated seedlings compete for space to establish; (2) established individuals 

compete to grow and take up the newly available space. Competition between individuals 

occurs for this new space according to a lottery formula: the allocation of space to an 

individual is the proportion of its demand for space relative to the total demand from all 

individuals of all species in the same forest. The demand for space of an individual is 

species specific, and depends on its size and the environment. Demand for space from 

reproduction and individual growth can vary separately from year to year in response to 

environmental variation. Competition reduces the actual seedling establishment and 

growth of an individual. Growth is a continuous process, unlike the discrete form in 

matrix models.  

In Appendix B, I briefly illustrate the model using a guild of species where mean life 

history schedules are identical but have species-specific responses to the environment. In 

Appendix B, I show that general understanding of the coexistence mechanisms does not 

have to sacrifice detailed biology. The techniques for quantifying species coexistence in 

simple models can be applied to the more complex model easily. I extend understanding 

of the storage effect by showing now that variation in individual growth can lead to the 

storage effect. The relative importance of variation in reproduction and variation in 

individual growth depends on the average importance of reproduction and individual 

growth to population growth. Variation in reproduction and variation in individual 

growth can further interact when present together: a synergistic effect when positively 

correlated and an antagonistic effect when negatively correlated. Low density advantages 

in the storage effect lead to a new mechanism through shift in size structure. A shift in 
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structure can promote or undermine species coexistence depending on whether the size 

shifts at low density towards individuals having more demographic advantage, which is 

determined by the totality of the shapes of demographic schedules.  

In Appendix C, I further investigate species with contrasting mean life history in 

addition to species-specific environmental responses. Contrasting life histories potentially 

carry much information about species differences in ecological strategies. Identifying 

which aspects of these differences affect species coexistence is a critical task for theory. I 

illustrate the finding using a pair of species with contrasting fecundity and growth 

schedules. The two species have a tradeoff in life-time averages in reproduction and 

growth. They also differ in how life history traits change through ontogeny. Though 

trade-offs between contrasting life histories are commonly believed to play an important 

role in species coexistence, few studies have clearly associated them explicitly with 

quantifiable coexistence mechanisms. Similarly, ontogenetic shifts in reproduction, 

growth, and survival have much been discussed in the context of life history evolution 

and population demographics. Less is known about their effects on species coexistence. I 

provide a quantitative understanding of how such differences in life histories affect 

species coexistence through different coexistence mechanisms.  

In my model, under a constant environment, life-history tradeoffs can affect average 

fitness-differences between species only, and potentially act as equalizing mechanisms. 

Shapes of demographic schedules have no effect if their population average mean is fixed. 

Stable coexistence arises only in a variable environment in our model, but the strength of 

the stabilizing effect depends on the mean differences between species. Tradeoffs in 

reproduction and individual growth affect species coexistence through altering the 
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relative importance of variation in reproduction and variation in individual growth. The 

storage effect, the main stabilizing mechanism in the model, is strongest when the 

sensitivity of a life-history process to variation in the environment is aligned positively 

with the tradeoff between life-history processes. Thus, a species with high environmental 

sensitivity in fecundity should have an average advantage in fecundity relative to a 

species with high sensitivity in individual growth, which should have an advantage in 

individual growth.  

Differences in shapes of demographic schedules, on the other hand, affect species 

coexistence through shifts in size structure. Shifts in structure happen because of low 

density advantages in recruitment or individual growth brought by the storage effect. The 

storage effect in reproduction drives the size structure to include more smaller individuals, 

favoring species whose smaller individuals contribute more strongly to population growth. 

The storage effect in individual growth drives size structure to include more larger 

individuals. The effect of shapes in demographic schedules is very limited. An effect is 

only strong when shifts occur between size ranges differing dramatically in contributions 

to population growth. For a low density advantage to occur for  two species from 

opposite size dependence in their demographic rates, an opposite shift in size structure is 

required.  
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Abstract 

The coexistence mechanism called relative nonlinearity has been studied most 

seriously in deterministic models. However, it is predicted to arise frequently also when 

temporal variation has a stochastic origin. For example, it is known that the relatively 

nonlinear growth rates on which the mechanism depends arise simply from differences in 

life history traits. Many kinds of temporal variation can then interact with these 

nonlinearity differences to create the relative nonlinearity coexistence mechanism. 

Studies of stochastic models have focused on the storage effect coexistence mechanism, 

which is believed to be more important in the presence of temporal environmental 

variation, thus overshadowing studies of relative nonlinearity. However, total neglect of 

relative nonlinearity is not justified. This is true even for the lottery model of iteroparous 

communities in a variable environment, most known for demonstrating the storage effect. 

Here, we use the lottery model to provide a much needed quantitative assessment of the 

relative and combined effects of relative nonlinearity and the storage effect. We find that 

relative nonlinearity is able to contribute substantially to species coexistence in the lottery 

model, and in some circumstances is stronger than the storage effect or is even the sole 

mechanism of coexistence. Three requirements need to be met for relative nonlinearity to 

be stronger than the storage effect: (1) species must differ greatly in their adult death 

rates, (2) sensitivity of recruitment to environmental variation must be greater for species 

with larger adult death rates, and (3) there must be high correlations between species in 

the responses of recruitment to the varying environment. Although these situations may 

not be common in nature, partial satisfaction of these requirements can still lead to 
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substantial contributions of relative nonlinearity to species coexistence even though the 

storage effect would likely be stronger.  

 

 

Introduction 

 

Classically, community ecology focused on equilibrium mechanisms, or in 

modern terminology, fluctuation-independent mechanisms, i.e. mechanisms that can 

function without fluctuations over time in population densities or environmental variables 

(Chesson 2000). However, as natural populations do fluctuate, and invariably experience 

a temporally varying physical environment, it is essential to ask if those fluctuations have 

a role in species coexistence (Hutchinson 1961). Early work studied the potential roles of 

stochastic fluctuations in disrupting stable equilibria (May 1973, 1974). However, it was 

soon realized that temporal fluctuations, whether stochastic or deterministic, might also 

create coexistence mechanisms (Chesson and Warner 1981, Abrams 1984, Ellner 1984, 

Shmida and Ellner 1984, Loreau 1992). These types of coexistence mechanism are 

termed fluctuation-dependent because to function they require fluctuations over time in 

population densities or environmental variables (Chesson 1994). 

A unified theoretical approach to coexistence in temporally varying environments 

has revealed two broad classes of fluctuation-dependent coexistence mechanism, the 

storage effect, and relative nonlinearity (Chesson and Warner 1981, Chesson 1994, 

Chesson 2000, 2008). The storage effect arises from interactions between fluctuations in 

the physical environment and fluctuations in the intensity of competition. It provides 
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advantages to a species perturbed to low density by allowing the species to escape 

competition at times when the environment favors it, but not its competitors. The 

outcome is recovery from low density and hence species coexistence. The mechanism 

relative nonlinearity is named from the requirement that different species have different 

nonlinear responses to competition. If competition fluctuates over time, Jensen’s 

inequality (Needham 1993) means that the long-term growth rates, which are time 

averages of short-term growth rates, will be affected differently for different species 

(Armstrong and McGehee 1980, Chesson 2000, Kuang and Chesson 2008). Relative 

nonlinearity promotes coexistence when species drive fluctuations in competition in 

directions that favor their competitors.  

Coexistence by relative nonlinearity can result from endogenous fluctuations in 

population densities (Armstrong and McGehee 1980, Adler 1990, Abrams and Holt 2002, 

Kuang and Chesson 2008, Kang and Chesson 2010) and from external environmental 

fluctuations that drive fluctuations in population densities (Chesson 1994, Chesson 2000, 

2003, 2008). In difference equation models for species with seasonal reproduction, 

relatively nonlinear growth rates arise simply from differences between species in life-

history traits (Chesson 1994, Chesson 2003). In such models, fluctuations in competition 

are often driven by fluctuations in environmental factors (Chesson 1994), although 

endogenously driven fluctuations have also been considered (Kuang and Chesson 2008). 

In both cases, coexistence is possible from relative nonlinearity. When fluctuations in 

competition are driven by environmental fluctuations, such as in the lottery model studied 

here, the storage effect is always present too. As the storage effect has been predicted to 

be the more important coexistence mechanism (Chesson 1994), the role of relative 
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nonlinearity has often been ignored. Moreover, empirical studies of coexistence in a 

variable environment have focused almost exclusively on the storage effect even though a 

reasonable expectation is that relative nonlinearity is present too (Chesson 2003). 

Both Chesson (1994) and Abrams and Holt (2002) point out that it is difficult for 

relative nonlinearity alone to maintain coexistence of more than two species competing 

for single resource whether fluctuations are endogenous in origin or due to temporal 

environmental variation. However, Abrams and Holt (2002) show that relative 

nonlinearity can have a coexistence promoting effect comparable to the resource 

partitioning in the case of two competing species, and Chesson (2003) suggests that 

relative nonlinearity might still be important in multispecies systems through its 

interactions with other mechanisms even though alone it is not effective in stabilizing 

coexistence of more than two species on one fluctuating resource. The case of relative 

nonlinearity with multiple resources has not been studied extensively, but general 

considerations in Chesson (1994) suggest that the complex nonlinearities possible in 

multiple resource systems have strong potential to promote coexistence. Indeed, one 

example of relative nonlinearity with multiple resources and endogenous fluctuations was 

found to strongly promote coexistence of phytoplankton species (Huisman and Weissing 

1999, 2002). More study of the potential for coexistence by relative nonlinearity with 

multiple resources is certainly needed, but no less important is a better understanding the 

role of relative nonlinearity in the single resource case when other mechanisms are 

present. As models of recruitment variation that lead to the storage effect coexistence 

mechanism generally also permit relative nonlinearity, it is essential to understand what 

the relative contribution of relative nonlinearity to coexistence might be. It is also 
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important to know if relative nonlinearity can make a strong contribution to coexistence 

in multiple species cases when other mechanisms are present even though alone is 

unlikely to permit coexistence of more than two species. Without this understanding, the 

almost exclusive focus on the storage effect in models of recruitment variation may be 

seriously misleading. 

The purpose of this article is to determine if relative nonlinearity, driven by 

physical environmental fluctuations, can contribute importantly to species coexistence in 

comparison with the storage effect in circumstances when both mechanisms would be 

expected to be found. We use the lottery model for iteroparous perennials, which has 

been an important model for understanding the role of environmental variation in species 

coexistence (Chesson and Warner 1981, Comins and Noble 1985, Hatfield and Chesson 

1997, Hubbell 2001, Kelly and Bowler 2002). In this model, environmental fluctuations 

cause recruitment to vary from year to year. Persistent adult stages buffer population 

growth against unfavorable times, permitting the storage effect to be present. At the same 

time, species differences in adult death rates enable relative nonlinearity to be present. 

These features mean that these two mechanisms are nearly always present together and 

their contributions to coexistence are not independent. Indeed, below we show that 

important factors contributing to the strength of relative nonlinearity also crucially 

determine the strength of the storage effect. As parameters are changed, relative 

nonlinearity often changes in a contrasting way to the storage effect, which makes 

relative nonlinearity more important when the storage effect is weak. We determine the 

conditions that allow relative nonlinearity to be stronger than the storage effect. These 

conditions are identified using approximate formulae for mechanism strength, backed up 
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by simulations. Our results show that relative nonlinearity has the potential to be 

important in natural systems, justifying empirical study of this mechanism.   

 

Relative nonlinearity and the storage effect in the lottery model 

 

The lottery model describes community  dynamics of iteroparous perennial 

species. Two distinct life stages, juveniles and adults, are considered. Each year, adults 

reproduce, and the resulting number of juveniles varies stochastically overtime, driven by 

the varying physical environment. Juveniles require open space to establish and mature as 

adults. Space is assumed to be limited, becoming available only with adult death. 

Juveniles compete for this space to recruit as adults. Success of a species in this 

competition for space is assumed proportional to the total number of juveniles produced 

during a given recruitment period. After maturation to an adult, the survival of an 

individual is assumed to be insensitive to both the varying physical environment and 

competition.  

The lottery model has been used for perennial plants such as forest trees, and 

marine space holding organisms such as coral reef fishes or benthic invertebrates 

(Chesson and Warner 1981, Chesson 1994, Pacala and Tilman 1994, Kelly and Bowler 

2002, Munday 2004). The model is in fact closely related to the model commonly used in 

neutral theory to define dynamics within a forest stand (Hubbell 2001). However, as 

implemented here, it is far from neutral.  

The model is specified by the following difference equation for the dynamics of n 

perennial species:  
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Here  represents density of species j at time t, δj is the adult death rate, which is 

assumed to be constant over time, and βj(t) is the per capita number of juveniles produced 

by species j at time t. The recruitment to adults thus depends on per capita reproduction 

and survival of offspring to the juvenile stage when they compete for space to establish. 

The vector β(t) = (β1(t),…, βn(t)) is assumed to vary independently over time, but with 

components correlated between species. In our simulations, β follows a multivariate 

lognormal distribution with parameters that remain constant over time. 

Eq. (1) is a population model of the general form  

  

 Nj(t + 1) = λj(t) Nj(t)  (2) 

where λj(t) is the finite rate of increase, and is here equal to the term in braces in Eq. (1). 

Eq. (2) represents population growth multiplicatively. To analyze the model, we need to 

put it on an additive scale, which is the log scale. The logarithm of the finite rate of 

increase, rj(t) = lnλj(t), 

 rj(t) = lnNj(t + 1) – lnNj(t),                       (3) 

has the helpful property that its sum  over a given period of time gives the change in 

lnNj(t) for that same period of time. Equivalently, the time average, jr , of rj(t) defines the 

( )jN t
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average change in lnNj(t).  

Log scales for various quantities have also been long found to be the simplest 

scales for understanding the behavior of the lottery model (Chesson 1982, 1994), and in 

order to  place the model in a generic form for studying relative nonlinearity and the 

storage effect, we define the environmental response of species j as Ej(t) = lnβj(t), and the 

competitive response as  

	 .																																 (4)  

Note that in this definition, represents the amount of space available for 

juvenile settlement in the year t. It is equal to the total space released by adult death. The 

quantity  is the demand for this space in terms of the total density of 

juveniles competing for this space. The ratio of these two quantities is a measure of the 

magnitude of competition, which can be understood intuitively as “demand for space” 

divided by “supply.” Eq. (4) puts this quantity on a log scale as C(t). The model can then 

be written in the following generic form for iteroparous perennial organisms (Chesson 

2003):   

  .                                      
(5) 

This formula distinguishes two life-history processes, adult survival, which occurs with 

probability 1 – δj, and recruitment to the adult stage, which occurs at the per capita rate 

exp(Ej(t) – C(t)).  
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When δj is less than 1, as will always be the case for perennial organisms, rj(t) is a 

nonlinear function of the competitive response, C(t). Indeed, it is a convex function of 

C(t) as can be seen from its positive second derivative in C(t). Because the degree of 

convexity depends on δj, when the δs differ between species, their growth rates differ in 

convexity, which means they are relatively nonlinear functions. Note also that C(t) 

fluctuates over time due to the fluctuating environment and fluctuating species densities. 

Jensen’s inequality (Needham 1993) says that the average of a convex function, ( )f C  (= 

jr  here), of a varying quantity C, is greater than the function of the average, ( )f C . Most 

important, the difference between ( )f C and ( )f C depends on the degree of the 

convexity. Thus, when species differ in their adult death rates, their growth rates (5) will 

differ in convexity.  This outcome means that their time average growth rates (the jr ) will 

be affected to different degrees by fluctuations in C(t). In particular, a species with a 

smaller value of δ, which means a larger degree of convexity, has more to gain from 

fluctuations in C(t).  

The potential for Jensen’s inequality to affect the species differentially is critical 

to the coexistence mechanism, relative nonlinearity, but alone it is not sufficient. To state 

the full sufficient conditions, note that the difference between  and depends 

not just on the convexity of f, but also on the variance of C. As the variance of C 

increases, the difference between and increases. This increase is greater for a 

species with a smaller value of δ.  Thus, large fluctuations in C give a relative advantage 

to a species with a small adult death rate, δ, in comparison to a  species with a large adult 

death rate. Conversely, small fluctuations in C advantage a species with a large adult 

( )f C ( )f C

( )f C ( )f C
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death rate relative to a species with a small adult death rate.  These differences in the 

effects of fluctuations on the species are important for species coexistence when the 

species also strongly influence the magnitude of fluctuations in C, as is possible in the 

lottery model. Most, important, it is possible for a species to cause levels of fluctuation in 

C that favor its competitors. This fact is clear from Eq. (4) which shows that the 

components of β are weighted by species densities in determining C. Thus, a species 

having a highly variable β (equivalently, a highly variable environmental response, E) 

will lead to high variation in C whenever it is abundant, regardless of its adult death rate. 

Hence, a species with a large value of δ and a highly variable β will, whenever it is 

abundant, favor a competitor with a small value of δ. In this way (and in others to be 

discussed below) species with different values of δ can individually promote conditions 

that are disadvantageous to themselves but favor their competitors, promoting 

coexistence by the mechanism relative nonlinearity.    

As emphasized above, relative nonlinearity is not the only coexistence mechanism 

arising in the lottery model.  The storage effect arises too.  The storage effect depends on 

the fact that the growth rate rj(t),  as best appreciated in the generic form (5), depends on 

the environmental response Ej(t) interactively with C(t), because is not zero. 

This interactive effect, as we shall see, can be separated from the nonlinear effect of C(t) 

on rj(t) to reveal the storage effect as a distinct mechanism. The storage effect formalizes 

the concept of temporal niche partitioning. Because it has been much discussed elsewhere 

(Chesson and Warner 1981, Chesson 1994, Chesson 2003), we will only provide a brief 

introduction here.   

/j jr E C  
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One key component of storage effect is covariance between environment and 

competition. This covariance measures how much the ability of a species to benefit from 

favorable environmental conditions is inhibited by competition.  It is measured for each 

species separately. High (positive) covariance means that benefits to a species from 

favorable environmental conditions are countered by increased competition at those times. 

In the lottery and similar models, such effects occur when a species is at high density 

because its strong responses to the physical environment place high demands on 

resources, as embodied in Eq. (4). However, low covariance means that the competition a 

species experiences is decoupled from its environmental response. Such decoupling 

becomes possible when a species is at low density. It means that the species has times 

when the environment is favorable, but competition is weak, allowing the species to take 

full advantage of those environmentally favorable times. In the lottery model, this means 

that strong recruitment occurs.  Low covariance, however, also leads to times the 

environment is poor and competition is strong, leading to especially poor recruitment.  

The storage effect, however, has another key component, which is manifested 

here as a persistent adult stage. The adult stage buffers a population against times when 

recruitment is poor. This means that strong recruitment gains during favorable times are 

not canceled out by population decline during unfavorable times. Mathematically, this 

effect is measured by the interaction between environment and competition, , 

with a negative value implying buffered population growth, allowing low covariance 

between environment and competition to be a net advantage. As such low covariance is 

more likely at low than high density, recovery from low density is promoted, leading to 

the storage effect coexistence mechanism.  

/j jr E C  
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In most cases in nature, it can be expected that relatively nonlinear competition 

and an interaction between environmental responses and competition are both present. 

Thus, relative nonlinearity and the storage effect are expected often to be found together, 

as they are in the lottery model whenever adult death rates differ. 

 

Quantifying coexistence: long-term growth rate and invasion analysis 

 

In order to compare the contributions of relative nonlinearity and the storage 

effect to coexistence, we need a method to define their magnitudes. The invasibility 

criterion for species coexistence provides the needed quantification (Turelli 1981, 

Chesson 1994). The invasibility criterion uses the rate at which a species recovers from 

low density in the presence of its competitors to define the robustness of a species’ 

persistence in the community. This recovery rate, which we denote as ir , can be 

partitioned into contributions to species persistence from different coexistence 

mechanisms, most notably, relative nonlinearity and the storage effect (Chesson 1994, 

Chesson 2003).  Overall contributions of these mechanisms to coexistence in the 

community are derived by appropriately averaging their contributions to persistence of 

species individually, as discussed below under the section “community average 

coexistence mechanisms.”  

To evaluate the invasibility criterion, each species i is set in turn to zero density 

and its recovery rate, ir , is calculated as the expected change in ln population size per 

unit time, with the competitors of species i at the stationary distribution of population 

fluctuations that they have in its absence (Chesson 1994). The invasibility criterion 
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defines stable coexistence as positive recovery rates for all species. It has now been show 

for fairly general circumstances that the invasibility criterion implies that the dynamics of 

the species converge on a stationary stochastic process with all species at positive 

densities (Schreiber et al. 2011). Diffusion approximations to the stationary distribution 

for the lottery model have been worked out in the two species case (Hatfield and Chesson 

1989) and for a class of multispecies cases (Hatfield and Chesson 1997). 

The recovery ir  can be analyzed by approximating the growth rate rj(t) given by 

Eq. (5) in terms of a quadratic function of the environmental response, Ej(t), and the 

competitive response, C(t). Averaging over time, and comparing resident and invader 

average growth rates, then allows the recovery rate to be partitioned into meaningful 

components (Chesson 1994, Chesson 2003, 2008). The particular formulae for the 

components needed here are derived in appendix I. The results are most simply expressed 

when the recovery rate ir is measured on the time scale of a generation, which is here 1/δi. 

In these units, ir takes the general form 

  { }s i
i i s ir       .                                             (6) 

The first term { }s i
i s   is a comparison of the average fitness of the invader species i ( i

, defined in table I) relative to the residents ( { }s i
s

 ) where the special notation { }s i
s



means the average over the set of species s not including species i. The quantity η is 

found as the expected growth of a species from low density, on the generation time-scale, 

with competition fixed–for details see Appendix I.  In the absence of environmental 

variation, the fitnesses, i , reduce to the quantities  ln /j j  , which have the important 

property that they predict which species will dominate in competition under those 
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circumstances. The quantity i is only present when the environment varies, and consists 

of the combined magnitudes of the coexistence mechanisms that can be present under 

those circumstances.  

In the absence of the coexistence mechanisms, the invasion rate is simply the 

fitness comparison { }s i
i s   , and as a consequence, species with below average fitness 

cannot invade. In the presence of coexistence mechanisms, a species with a negative 

value of { }s i
i s   can invade if 

    { }s i
i s    >  –Ψi (7) 

Thus, the larger Ψi is, the larger the fitness disadvantage species i can suffer and still 

invade. In the lottery model, Ψi has contributions from both relative nonlinearity (ΔNi) 

and the storage effect (ΔIi):  

          i i iI N    ,                                                                       (8)  

given by the formulae in Table 1.  Note that for historical reasons associated with its 

derivation (Chesson 1994), relative nonlinearity is entered with a negative sign, and 

therefore a negative value of ∆Ni promotes recovery of species i.  

 Relative nonlinearity depends multiplicatively on the variance in competition and 

the difference in adult death rates (Table 1). In models with a single competitive factor, 

such as C of the lottery model, ΔNi has different signs for different species. As shown in 

the formulae for relative nonlinearity in Table 1, ΔNi will always be negative for species 

with larger adult death rates, and positive for species with smaller adult death rates. To 

promote stable coexistence, the mechanism must add more to the recovery rate of some 

species than it subtracts from others—this gives the mechanism a positive contribution at 

the community level, as discussed below. Coexistence by the storage effect is more 
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straightforward as its measure, ΔIi, is often positive for all species, although we shall see 

important cases here when it is not. The species level mechanism measures ΔNi and ΔIi 

are best used for understanding persistence of an individual species in competition with 

others. To gain an overall understanding of how coexistence is promoted in the 

community, we need to use community average measures, which we discuss next.  

 

Community average coexistence mechanisms 

 

 In the community average approach, the overall tendency for recovery from low 

density is assessed by averaging the invader growth rates (6) over species. In this process, 

it is important to appreciate that growth rates are in expressed in per generation units, as 

discussed above, which are the most meaningful units for making species comparisons 

(Chesson 2003, 2008).  Taking this average in (6), we obtain 

 
1

1 n

ii
r

n 
  ,       (9) 

i.e. just the average of the Ψi because the fitness comparisons, { }s i
i s   , necessarily 

average to zero. In terms of (9), we can regard the mechanisms as promoting coexistence 

on average if  

  I N                                                                              (10)         

is larger than 0. The individual invasion rates can then be written in terms of the 

community average as  

   i ir    ,                 (11) 
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where ξi is a modification of the fitness-difference { }s i
i s   accounting for the 

asymmetries in the actions of the coexistence mechanisms, and thus takes the form 

           
   { }

{ }

s i
i i s i i

s i
i s i i

I I N N

I N

  

   





       

   
.                             (12) 

Here, the deviations of the species level mechanisms from their community averages are 

denoted iI and iN . In most models, and the lottery model is no exception, η is defined 

in terms of more basic model parameters. In the lottery model a natural parameter is 

µ.This parameter has the desirable property that it is exactly equal to η in the absence of 

environmental variation and predicts the dominant species. With environmental variation,  

     21
2 1j j j j      .                                                           (13)                        

This means that the fitness comparison in the absence of the mechanism is written in 

terms of µ differences, plus a term δVi involving variances and adult death rates (Table 1).  

 

Table 1  
 Species Level Community Level 

Average Fitness 
Difference 

{ }     s i

i s i iV  n.a. 

Relative Nonlinearity 
{ }{ }1

( ( )
2

)  
 

s ii

i sV C   { } { }cov , V( )
2


 

s i i

i s

n
C  

Storage Effect 
{ }

{ } { }(1 ) (1 )
s i

i i

s s i i   


   
{ }

{ } { }(1 ) (1 )
s

s i
i s

s s s s   


     

Notes: The variable µj is the mean ln life-time fecundity for species j and is defined as [ ln]  
j jjE E , 

and E[] means expected value.  The mean ln life-time fecundity comparison between species is defined as
 

  


 
s i

i i s
. The variable 2

j
is the variance of the environmental response for species j:  2 V

j j
E  . 

i
V is the contribution from variance differences in ln fecundity between species to average fitness 

differences    
 

2 21

2

1
2

1 1
s i

i i i s s
V    



    .The variable ( )iC  is the competitive response of  all 

species in the community when species i is the invader, and ( ) ( )χ cov( , ) i i

j j
E C is the covariance between 

environment and competition for species j when i is the invader. Measurements of the coexistence 
mechanism are in the natural scale of a generation. 
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  The community average measures, I and N , define the overall roles of the 

mechanisms in stabilizing coexistence. The stronger these community average measures 

are, the more fitness inequality can be tolerated compatible with coexistence. These 

community average measures are the stabilizing components of the mechanisms 

(Chesson 2000, 2003) because they are necessary for stable coexistence, and lead to it if 

they are large enough. Moreover, to a large extent, stabilizing components determine the 

size of the coexistence region measured in terms of average fitness differences.  For 

instance from Eq. (11), we see that the species coexist if  

  min i i   .           (14) 

Hence, if the ξ can be varied independently of  then we see that   determines the size 

of the coexistence region in terms of the average fitness inequalities, ξ.  A larger value of 

 gives a larger region of ξ values permitting coexistence. We shall see later that the ξ 

values can be varied by varying the µ values given by Eq. (13) in the two species case 

with no effect on .  Beyond the two species coexistence does depend on the µ values 

too, but the effects are relatively small, and so the magnitude of the coexistence region is 

still largely determined by .  By looking at the major factors affecting  we can come 

to an understanding the major factors affecting species coexistence.  

 Given , the ability of any individual species to coexist with the others depends 

on its particular ξ value, which in turn depends on the deviations iI and iN of the 

mechanisms from the community average (Eq. 12).  These terms are said to be equalizing 

(Chesson 2000, 2003) if they reduce fitness inequality. Note, however, that iI and iN  

might increase rather than decrease fitness inequality depending on their signs and 

magnitudes relative to the average fitness comparisons, { }s i
i s   , in their absence. 
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Separate consideration of stabilizing and equalizing components of the storage effect and 

relative nonlinearity are critical because relative nonlinearity always acts unequally on 

the various species in a community whenever it is present, and the storage effect will 

commonly act somewhat unequally on the different species (Chesson 2003).  

  The community average measures have instructive general formulae (Chesson 

2003, 2008).  Community average relative nonlinearity, N , takes the form of a 

covariance (appendix I) : 

            { } { }cov , ( )
2

s i i
i s

n
N V C

    .                                           (15) 

It is a covariance between the variance in competition that residents generate { }( )iV C    

and the average death rate { } s i
s of the resident species. The covariance is taken over 

different possible sets of resident species, indexed by the invader i, which defines which 

of the n species in question is missing from the resident set.  Note that this mechanism 

magnitude is a direct measure of the association between the nonlinearities of species’ 

growth rate and the variance in competition that they generate as residents. Because N

contributes to the long term growth rate with a negative sign, as shown in Eq. 10, positive  

covariance between the adult death rate and variance in competition leads to a stabilizing 

effect. Thus this formula embodies quantitatively the understanding given above that for 

relative nonlinearity to stabilize coexistence, species with larger death rates must generate 

larger variation in competitive factors when they are resident species.  

 The community average storage effect is similarly a precise mathematical 

expression of the understanding the mechanism. It is given as a comparison of resident 

and invader state covariances between environment and competition, which are then 
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weighted by the adult survival rate (specifying the degree of buffering of population 

growth) and averaged over species as follows:  

       
{ }

{ } { }

1

1
(1 )

n i j
i j

j j j
j

I
n

  


 



     
   .                                   (16)                                     

Here, the critical comparisons of covariance between environment and competition are 

within species: The covariance, { }j
j
 , of species j  in the invader state is compared with 

its average covariance, 
{ }

{ }
i j

i
j


 , in the resident state, for each other species i in the 

invader state. If species, on weighted average, have higher resident-state covariance than 

invader-state covariance, the community average storage effect is positive, and therefore 

stabilizing.  

 Our focus in this study is on comparing the community average storage effect and 

community average relative nonlinearity as these provide the necessary requirements for 

stable coexistence and determine the size of the coexistence region in terms of average 

fitness differences (ξi, Eq. 12) compatible with coexistence.  In the work that follows, we 

are concerned both with features that make relative nonlinearity large and that make the 

storage effect small.  

 

Cases to be considered 

 

In each of the cases studied below, we looked at mechanisms measured in both 

two-species and multispecies cases. Though multispecies measures share many properties 

with their two-species counterparts, the behavior of coexistence mechanisms as the 

number of species increases can be informative. In some situations there are qualitative 
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differences between two-species and multispecies cases. These differences arise because 

in a two-species community there is only one resident species. This single resident 

species fills the fixed amount of space in the system, and so it stays at a fixed adult 

density. Fluctuations in competitive factor then reflect the fluctuations in environmental 

response of the resident species alone. Indeed, the response to competition is equal to the 

response to the environment of the resident species in this case. When there are multiple 

resident species interacting with each other, more factors come into play to affect the 

fluctuations in competition.  Factors that affect the strength of relative nonlinearity in the 

multispecies case but not in the two-species case include the correlations between the 

environmental responses of different species, and differences between species in mean 

fecundity. Other factors such as adult death rate differences, and differences between 

species in their sensitivity to the environment, should matter regardless of the number of 

species. With these considerations, we lay out the critical cases to be studied. 

  

Case (1) Adult death rate differences.  

Adult death rate differences have two distinct effects on the magnitude of relative 

nonlinearity as a coexistence mechanism. First, the difference in the curvature of the 

growth rates (the relative nonlinearity of the growth rates) of any two species is equal to 

their difference in adult death rate. Second, with multiple resident species, residents with 

higher adult death rates generate larger fluctuations in competition than residents with 

low adult death rates. This occurs because species with higher adult death rates have 

higher population turnover and so their populations fluctuate more, in turn causing higher 

fluctuations in competition. Higher population turnover carries over to larger fluctuations 
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in competition (Chesson 2000). Therefore, relative nonlinearity is expected to increase 

with differences in adult death rates.  In the two-species case, however, there is only one 

resident species, and its population density does not vary. In that case, there is no effect 

of resident adult death rate on the variance in competition.  Only the effects on the 

relative nonlinearities of the growth rates matter in this case.   

 

Case (2) Differences between species in sensitivity to the environment. 

In the lottery and similar models of competition in a variable environment, the 

physical environment is not modeled directly, but the environmental response is assumed 

to reflect the species’ response to underlying physical environmental variables. Thus, the 

variance in a species’ environmental response can be assumed to reflect the species’ 

sensitivity to the underlying physical environmental variables. Most important for our 

considerations here, a more sensitive species generates more fluctuation in competition as 

a resident. Fluctuation differences generated in this way are likely to be much stronger 

than those generated by longevity differences  because C is directly a function of each 

species’ environmental response (Eq. 4). If a more sensitive species also has a higher 

adult death rate, relative nonlinearity will increase with the differences in sensitivities.  

 

Case (3) Synchrony between species in environmental response.  

Competition is likely to fluctuate more as resident species become more 

synchronized (more correlated) in their environmental responses because then their 

separate contributions to competition through their environmental responses will 

reinforce one another, leading to greater fluctuations in the total demand for space 
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included in Eq. (4) for C. Synchrony should also have a large negative effect on the 

storage effect because in past work the storage effect has been shown to decrease linearly 

with the correlations of the environmental responses (Chesson 2003). Thus, synchrony 

between species is predicted to have a large effect on the relative magnitude of relative 

nonlinearity compared with the storage effect.  

 

Case (4) Mean fitness differences.  

The mean fitnesses η are equal to ln mean life-time reproduction (“mean 

fecundity”) when the environment is constant, and have a strong effect on the relative 

abundance of a resident species (Chesson 2003), although the relationship depends 

greatly also on other parameters. With multiple resident species, a species with much 

larger mean fecundity than the other species is likely to dominate resident species 

densities, which means that competition will mostly reflect this species. The effect on 

relative nonlinearity is not straightforward to predict, but does need to be understood 

because if the effects are strong, then the effects of mean fitness differences and 

mechanism magnitudes on species coexistence are not independent, complicating the 

interpretation of the invasion condition (Eq. 7). To simplify the analysis, we focus on one 

especially valuable scenario: how the mechanisms change as the mean fecundity of one 

species is moved towards its invasion boundary. To do this, we decrease the mean 

fecundity of each species in turn until its invasion rate is zero and study the changes in 

the mechanisms over this gradient. We only study cases when relative nonlinearity has a 

stabilizing effect, i.e. when shorter-lived species are more sensitive to the environment. 
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Except for case (4) where the two-species analysis is not needed, we study each 

case above for both two-species and three-species communities. Analytical 

approximations of sufficient accuracy are available for the two-species lottery model, but 

in the three species case we use simulations to derive the resident competition variance. 

Studies of two species communities dominate the theoretical literature on competition, 

but such studies are inadequate when the efficacy of a mechanism can depend greatly on 

the number of species. As relative nonlinearity has been predicted to be ineffective in 

promoting coexistence beyond the two species case, it is critical that we study it for the 

multispecies situation as well. However, because these simulations are stochastic, high 

replication is needed and this need increases dramatically with the number of species. For 

this reason, we do not go beyond the three species case.  

 

 

RESULTS  

Community average level 

In our investigation, we kept the average variance in the environmental response 

fixed, and varied only the relative variances ( 1 2/  ) for the different species.  In the two 

species case, the storage effect and relative nonlinearity are linear functions of variances 

and covariances (Table 2), and so the relative magnitudes of these mechanisms depend on 

the relative magnitudes of the variances, not their absolute values. In the three species 

case, our simulations showed negligible effects of the absolute values of the variances, 2
j

, on relative mechanism magnitude if species averages of these variances are 0.5 or less, 

and no individual variance is greater than 1 (spp Fig 1.). With fixed relative variances, the 
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absolute magnitudes of the storage effect and relative nonlinearity are approximately 

proportional to the average variance, which is fixed at 0.5 in the remainder of this study.  

 

Table 2 two species case 
Mechanism Species Level Community Level 

Relative 
Nonlinearity 

21
2 ( )i r r    2 21

1 2 2 14 ( )( )      

Storage Effect   2 21
1 12 1 2 21 22 (( )(1 ) ( )(1 ))           

Legend 
j
: adult death rate for species j; 2

j
: variance in environmental response for species j;


ir

: covariance between the environmental responses of species i and species r,    
ir ir i r

with 

the correlation between environmental responses.  
 

The effect of adult death rate differences alone   

The strength of relative nonlinearity increases with the differences in death rates 

as expected (Fig 1). However, these death rate differences alone lead to only small 

differences in the variance of competition. Thus, when there are no differences in 

species’ sensitivities to environmental fluctuations, relative nonlinearity is small in 

magnitude compared with the storage effect (Fig. 1a). In the case of equal sensitivity, 

both the storage effect and relative nonlinearity increase slightly with differences in death 

rate, but relative nonlinearity increases slightly faster in relative magnitude. Thus, 

although small, the proportional contribution of relative nonlinearity to stabilizing 

coexistence increases slightly with adult death rate differences (Fig. 2b middle curve). 

Because these effects on relative nonlinearity depend on fluctuations in resident densities, 

they are not found in the two-species case with species  equally sensitive to 

environmental fluctuations, as the single-species resident does not fluctuate in density 

and the community average relative nonlinearity is zero ( 2 2
1 2 0    in table 2) 

2(1 ) (1 )i ir r r      

ir
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Figure 1. In (a), (b), and (c) the stabilizing effects of relative nonlinearity ( N , solid line), 

the storage effect (I , dashed line), and the overall stabilizing effect (   N I , dotted line) are 
plotted against death rate spacing. The three panels area are: species have common sensitivities to 
environmental fluctuations (a), shorter-lived species more sensitive (b), and longer-lived species 

more sensitive (c).Parameters: 1 2 3    ; ρ = 1/3; 0.5 =  ߜ, with δ1 and δ3 spaced equally 

about the mean; 2 2 2

1 2 3: :     1:6:11 for  (b) or = 11:6:1 for (c).  

 

The effect of differences in sensitivity to the environment 

Adult death rate differences are essential for relative nonlinearity, but the 

magnitude of relative nonlinearity is much greater when species differ also in their 

sensitivities to the environment (Fig. 1b&c). The magnitude of relative nonlinearity 

increases rapidly with species differences in sensitivity to the environment, because these 

sensitivity differences cause the variance of competition to vary greatly with the identities 

of the resident species. Sensitivity differences cause much bigger differences in the 

variance of competition than adult death rate differences. Indeed, the critical covariance 

between adult death rates and variance in competition (Eq. 13) can be positive when 

longer-lived species are more sensitive to the environment, a situation that does not arise 

with adult death rate differences alone. Moreover, in this case, relative nonlinearity is a 

destabilizing mechanism, promoting competitive exclusion rather than coexistence (Fig. 

1c, Fig. 2 dotted lines).  This effect is not monotonic in the adult death differences, but 

a.   b.   c.   
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achieves a maximum for an intermediate spacing in these figures. However, with the 

opposite relationship between environmental sensitivity and adult death rates, i.e. when 

shorter-lived species are more sensitive to the environment, relative nonlinearity can have 

a strong stabilizing effect on species coexistence, an effect that  increases monotonically 

as adult death rate differences increase (Fig. 1b, Fig. 2 dashed lines).  

 

Figure 2. The relative contribution of relative nonlinearity to the overall stabilizing effect (

/ ( )   N N I ) as a function of death rate spacing in two species ( a) and three species cases 
( b). In each panel, comparisons are made between the case where shorter-lived species are more 
sensitive to the environment (dashed line) and the case where longer-lived species are more 
sensitive (dotted line). The case of equal sensitivities to environmental fluctuations (solid line) 

applies only to the three species case (b). Parameters:	 1
1 2 3 3

,      ; in (a) 2 2

1 2: 1 : 2    

(dashed line) or 2:1 (dotted line); in (b) 2 2 2

1 2 3: :     1:6:11 (dashed line) or 11:6:1 (dotted line).  

 
The storage effect shows the opposite trend to relative nonlinearity: it decreases 

with death rate differences when shorter-lived species are more sensitive to the 

environment (Fig. 1b), and increases with death rate differences when shorter-lived 

species are less sensitive to the environment (Fig. 1c). Because of this opposite behavior 

of the storage effect and relative nonlinearity, relative nonlinearity adds more as a 

proportion to stability when shorter-lived species are more sensitive than it subtracts 

a.   b.   
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when shorter-lived species are less sensitive. However, in both cases, the storage effect 

largely compensates for changes in relative nonlinearity (Fig. 1b) or drives the overall 

stabilizing effect because it is much larger than relative nonlinearity (Fig. 1c).   

 

The effect of synchrony between species in environmental responses. 

In the two species case, the degree of correlation in environmental responses 

between species has no effect on the absolute magnitude of relative nonlinearity as it does 

not affect resident competition. In the three species case, increasing correlation can have 

opposite effects on the absolute magnitude of relative nonlinearity depending on whether 

species have different sensitivities to the environment. When species are equally sensitive 

to the environment, increasing correlation further reduces the weak relative nonlinearity 

(Fig. 3a). When the sensitivities differ, increasing correlation increases the magnitude of 

the relative nonlinearity: it either leads to a stronger stabilizing effect of relative 

nonlinearity if shorter-lived species are more sensitive (Fig. 3b) or a stronger 

destabilizing effect if longer-lived species are more sensitive (Fig. 3c).  

The storage effect always declines linearly as the correlation increases (Fig. 3). 

The effect of correlation on the storage effect is stronger than on the relative nonlinearity. 

Thus, the relative magnitude of relative nonlinearity always increases with correlation, in 

large part due to the rapid decline of the storage effect (Fig. 4). When the shorter-lived 

species is more sensitive to environment, the storage effect can be weaker than the 

relative nonlinearity as correlation increases (Fig.3b, 4). It happens in two species cases 

that the storage effect goes negative as the correlation goes above certain level (Fig. 4a).  

In this situation, relative nonlinearity can be solely responsible for species coexistence.  
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Figure 3. In (a), (b), (c) stabilizing effect of relative nonlinearity (solid line), the storage effect 
(dashed line), and the overall stabilizing effect (dotted line) are plotted against increasing 
correlation in environmental responses. Comparisons are made between three situations: species 
have the same sensitivity (a), shorter-lived species are more sensitive (b) and longer-lived species 

are more sensitive (c). Parameters: 1 2 3 ,    1 2 30.2, 0.5, 0.8     , 2 2 2

1 2 3: :     

1:6:11 for (b) or , 11:6:1 for (c).  
 

 

Figure 4. The relative contribution of relative nonlinearity to the overall stabilizing effect (

/ ( )   N N I ) as a function of correlation between environmental responses. Dashed line: 
shorter-lived species more sensitive. Dotted lines, longer-lived species more sensitive;  Solid 

lines, species equally sensitive to the environment. Parameters: 1 2 3    ;	 (a) (δ1, δ2) = (0.2, 

a.   b.   c.   

a.   b.   
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0.8), 2 2

1 2: 1 : 2   (dashed line) or 2:1 (dotted line); (b) 1 2 3( (0.2,0.5,0.8), , )    2 2 2

1 2 3: :     

1:6:11 (dashed line) or 11:6:1 (dotted line). 
 

The effect of mean fitness differences 

Although all previous scenarios are investigated with species having equal mean 

ln life-time fecundity (equal µ values), the conclusions are robust to such µ differences. 

First note that in the two-species case, relative nonlinearity and the storage effect are both 

independent of µ differences, which is the ideal condition for the stabilizing effect  to 

be a direct measure of coexistence region in terms of range of  values that allows 

species to coexistence (Eq. 14). In three species cases, the overall stabilizing effect will 

change with µ differences; the direction of the changes depends on which species in the 

community is in disadvantage (Table 3). Nevertheless, the subtle difference in the overall 

stabilizing effect between invasion boundary and the interior of coexistence region is too 

small to change our conclusions based on the case of equal µ values (Table 3). This result 

is reassuringthat in the three species case, the overall stabilizing effect is a satisfactory 

measure of the coexistence region given the minimal impact of µ differences on the 

stabilizing effect. 

The small effects of µ differences on the overall stabilizing effect is partially due 

to the opposite responses of relative nonlinearity and the storage effect as µ differences 

vary (Supp. Fig. 2).  Both mechanisms change essentially linearly with µ differences: 

when µ of either the least sensitive species (also the longest-lived species) or the most 

sensitive species (also the shortest-lived species) is reduced, relative nonlinearity is 

reduced and the storage effect is increased (Supp. Fig. 2 a&c); the opposite is found when 

the µ of the median sensitive species (also the species with median longevity) is reduced 
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(Supp. Fig. 2b). Nevertheless, the effects of µ  differences on the community average 

storage effect and relative nonlinearity are still small, as we can tell from the slopes of the 

lines in Supp Fig. 2.  

 

Table 3. Sensitivities of coexistence mechanisms to mean ln life time fecundity  

Correlation   Species i 
( )i i

i

I N 


 


 

( )

i

I N


  


 i  

0   
i = 1 -0.032 0.031 -0.112 
i = 2 0.013 -0.013 -0.088 
i = 3 -0.046 0.046 -0.048 

0.3   
i = 1 -0.024 0.023 -0.102 
i = 2 0.038 -0.038 -0.061 
i = 3 -0.037 0.037 -0.035 

0.6   
i = 1 -0.104 0.108 -0.093 
i = 2 0.143 -0.144 -0.033 
i = 3 -0.148 0.054 -0.023 

Notes: The quantity 
i

I and 
i

N are deviations of the species-level storage effect and the species-level 

relative nonlinearity for species i from the community averages:     
i i

I I I  and    
i i

N N N . 

Columns 3 and 4 are average slopes of  
i i

I N and    I N  as µi varies from the invasion boundary to 

interior of coexistence regions (equal µ values), and the change in µi is given by 
i
in the last column.  

Different level of correlation in environmental responses between species is listed in column 1 and the 
species whose µ gets varied is listed in column 2, and. Parameters: 0.8 = 3ߜ ,0.5 = 2ߜ ,0.2 = 1ߜ, 

2 2 2

1 2 3
: :     1:6:11. 

 

Mechanism asymmetries and coexistence regions 

So far we have focused simply on the community average components of the 

coexistence mechanisms, but in general both mechanisms make unequal contributions to 

the recovery rates of different species. These unequal contributions can be examined 

through the mean fitness adjustment, δIi and δNi. In the two species case, these mean 

fitness adjustments are available analytically, and the fitness comparison ξ, reduces to the 

following form 
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     21 1
2 2i i i r ir i r

i i iV I N

       

  

    


  .                                (17) 

(Appendix II), where σir is the covariance between Ei and Er, and 2 is the average of the 

variances in the environmental responses (E) across species.  Relative nonlinearity is only 

present when the δ’s of the two species are different.  Of necessity δNi is non-zero.  If δNi 

has the same sign as the combination δµi + δVi + δIi it will have the net effect of 

promoting coexistence. Moreover, as δNi is always larger in magnitude than N , the 

fitness equalizing effect of relative nonlinearity is likely often to be more important than 

its stabilizing effect (Supp. Fig. 3). However, as µ can be changed independently of the 

mechanisms, these fitness comparison components do not affect the size of the 

coexistence region in terms of the range of µ values compatible with coexistence.  With 

three species, there is some sensitivity of the mechanism to µ but the sensitivity is low 

(Table 3), and so for general considerations of the extent to which these mechanisms 

promote coexistence, focus on community average measures is sufficient. However, this 

result likely does not generalize to models where relative nonlinearity is present alone 

because in those cases, up to quadratic level of approximation, the strong asymmetries 

between species with relative nonlinearity preclude the coexistence of more than two 

species (Chesson 1994).  

 

Discussion  

 

 The lottery model, which we investigate here, is a common model for 

understanding the role of recruitment variation in species coexistence in nature. Whereas 
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previous studies have focused almost exclusively on the storage effect, our work 

identifies situations in which relative nonlinearity can have an important role too. We 

find that in the lottery model, relative nonlinearity can be important in the stabilization of 

species coexistence, both absolutely, and in comparison to the storage effect. Relative 

nonlinearity is present together with the storage effect whenever the adult death rates 

(equivalently the mean lifetimes) differ between species. The question is not whether 

relative nonlinearity should occur, but whether it is large enough to be important. We 

have found that it can be important in several different ways.  It can have large effects on 

stabilization of fitness at the community level, which can be positive and thereby promote 

stable coexistence, or negative and thereby promote exclusion. It can also have large 

effects on fitness inequality, either equalizing fitnesses and promoting coexistence in that 

way, or it can lead to high fitness inequality and promote exclusion.  

 Stabilizing and destabilizing effects at the community level work through average 

rates of recovery across species, either increasing them and leading to higher stability or 

decreasing them and lowering stability.  These changes can also be interpreted in terms of 

increases or decreases in the size of the parameter space compatible with coexistence. 

The effects on fitness inequality are seen from the species level mechanism measures.  

Relative nonlinearity always makes asymmetrical contributions to the recovery of 

different species from low density. This effect can promote coexistence of a set of species 

with given parameters if it tends to equalize average fitnesses between species, or 

promote exclusion if it creates larger average fitness differences between species.  

The relative nonlinearity coexistence mechanism depends on per capita growth 

rates, here measured as rj(t) = ln λi(t), to be relatively nonlinear functions of competition.  
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Adult death rate differences provide this key requirement in models like the lottery model 

of recruitment variation in discrete time, appropriate for seasonally reproducing species 

(Kuang and Chesson 2009), as explained above (Relative nonlinearity and the storage 

effect in the lottery model). Relatively nonlinear growth rates combine with the variance 

in competition to affect the rates of recovery of species from low density, and hence 

species coexistence. To get an overall stabilizing effect of relative nonlinearity, shorter-

lived species should generate stronger fluctuations in competition when they are 

abundant, and reciprocally, longer-lived species should generate weaker fluctuations in 

competition. These conditions mean that shorter-lived species create the conditions that 

favor recovery of longer-lived species from low density and vice versa. These effects are 

explained here in terms of how Jensen’s inequality gives a stronger boost to the long-term 

growth rate of longer-lived species than to shorter-lived species. The community average 

measure of the mechanism quantifies this effect in terms of the average across the 

community of the long-term rates of recovery from low density (the “invasion rates”, ir ). 

The community average measure of relative nonlinearity expresses the required 

relationship precisely as the covariance between the average adult death rates of resident 

species and the variance in competition that they generate (Table 1).  

Larger resident adult death rates are naturally associated with higher variance in 

competition provided all species are equally sensitive to the environment. This occurs 

because variance in competition is jointly dependent on fluctuations in adult densities and 

direct contributions from fluctuations in the environmental response (E = ln β = ln 

fecundity). Large resident adult deaths mean higher population turnover and hence 

greater population fluctuations in comparison with residents with smaller adult death 



63	
	

63	
	

rates.  This effect creates the required covariance between resident adult death rates and 

variance in competition for an overall stabilizing effect of relative nonlinearity at the 

community level (a negative value of N ). However, in this case of equal sensitivity to 

the environment (equal variances of species’ environmental responses), relative 

nonlinearity is weak compared with the storage effect, which must be present too, and is 

therefore not an important promoter of coexistence.  Moreover, relative nonlinearity 

cannot promote coexistence in the two-species case with equal environmental sensitivity 

because the single-species resident occupies all space and does not fluctuate in density, 

and so there is no contribution from density fluctuations  in that case.  Instead, 

fluctuations in competition from the single-species resident come only from the direct 

effects of fluctuations in the resident’s environmental response. More generally, the 

direct effects of fluctuations in the environmental responses have much stronger effects 

on fluctuations in competition than do fluctuations in adult densities. It follows that 

differences in sensitivity of different species to the environment create much stronger 

differences between sets of resident species in the variance of competition than do 

differences in adult death rates.  Consequently, a strong stabilizing effect of relative 

nonlinearity arises when shorter-lived species are more sensitive to the environment. 

Conversely, when longer-lived species are more sensitive to the environment, a strong 

destabilizing effect can occur at the community level (large positive value of N ).  

Fluctuations in competition are intensified by positive correlations between 

species in their environmental responses. This has the effect of increasing the magnitude 

of relative nonlinearity ( N ), but it has a negative effect on the magnitude of the storage 

effect ( I ), and so this situation can make relative nonlinearity important in comparison 
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to the storage effect (Fig 4). This occurs whether relative nonlinearity has positive or 

negative effects on species coexistence.  Moreover, in the two-species case, the 

community average storage effect ( I ) can be negative when relative nonlinearity has a 

net stabilizing effect, meaning that the contributions of relative nonlinearity to 

coexistence overcome a strong destabilizing effect of the storage effect (Fig 4a, upper 

curve). In the multi-species case, we were not able to identify cases where relative 

nonlinearity makes a stronger contribution to coexistence than the storage effect, but 

nevertheless, its contributions can still be of comparable magnitude.  In both the two-

species and multispecies cases, community average relative nonlinearity is of comparable 

or stronger magnitude than the community average storage effect when shorter-lived 

species are more sensitive to the environment and there is a strong correlation between 

species in these sensitivities. 

Our key results on the community average storage effect were determined for the 

case of equal mean ln life-time fecundity (  ln /E   ), which equalizes average 

fitnesses between species in the constant environment case. However, in the two-species 

case, the relative nonlinearity and storage effect measures are independent of the µ 

values. In the three-species case, these do change with µ, but since the sensitivity of these 

measures to µ in our studies is much less than 1, these  community average measures, and 

the µ values, are relatively independent.  Moreover, the species level contributions of the 

coexistence mechanisms are also relatively insensitive to µ. These facts mean that the 

community average measures are able to indicate the size of the coexistence region 

expressed in µ values. In the case where relative nonlinearity is expected to make the 

most important contributions to coexistence (shorter-lived species are more sensitive to 
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the environment) positive net stabilizing effects ( I N   ) do not guarantee coexistence 

in the multispecies case at equal µ values. As net stabilizing effects indicate only the 

average contribution of species to recovery from low density, this outcome is not 

surprising. However, using a measure of fluctuation stability (the average tendency of the 

coexisting species to remain away from zero density), we found that strong fluctuational 

stability could always be found for some µ values even though coexistence may not have 

been possible at equal µ values (Appendix  IV).  

Relative nonlinearity is an inherently asymmetric mechanism, and at the species 

level makes negative contributions (positive values of iN ) for species with larger than 

average adult death rates, and positive contributions (negative values of iN ) for other 

species. A net stabilizing effect results when the positive contributions  outweigh the 

negative contributions in the average over species. Persistence of individual species with 

given parameters, however, can be helped or hindered by relative nonlinearity. Relative 

nonlinearity becomes an equalizing mechanism when it helps species with average fitness 

disadvantages, as measured by the µ values (ln mean life time fecundity in the absence of 

competition). Here that means the presence of tradeoffs between species where µ values 

are smaller for species with small adult death rates. Fecundity and longevity are predicted 

by life-history theory to indeed to tradeoff negatively between species (Charnov 1991, 

1993, 1997), but here a greater proportional tradeoff is needed as fecundity is measured 

on adult life-time, i.e. average annual fecundity is multiplied by longevity. 

A strong net stabilizing effect of relative nonlinearity at the community level 

requires a different sort of life-history tradeoff: shorter-lived species must be more 

sensitive to the environment.  However, life-history theory as worked out in single-
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species models, mostly predicts that species that are more sensitive to the environment 

should be longer-lived (Bulmer 1985, Real and Ellner 1992) in contradiction of the 

requirements for a strong stabilizing effect of relative nonlinearity. It would good to have 

life-history theory for multispecies contexts to be confident of the relevance of this 

prediction, but as it stands it implies that a strong destabilizing effect of relative 

nonlinearity is more likely in nature than a strong stabilizing effect.  This means in the 

lottery model that coexistence would rely on a stronger storage effect to counteract the 

negative contribution of relative nonlinearity.   

Many theoretical studies of coexistence focus on two species scenarios assuming 

that a generalization from the two species case is possible. However, we find 

fundamental differences between two species scenarios and multispecies scenarios. As 

mentioned, the differences arise because in two species cases there is only one resident 

species. The effects of correlation and mean fecundity difference on relative nonlinearity 

arise only with more than one resident species. This is because these two factors change 

competition fluctuations by their effects on the dynamics of resident species.  

We find that relative nonlinearity is much larger and is able to contribute in a 

greater proportion to stable coexistence in the two species case than the three species case 

(Figs 2&4). As mentioned above, relative nonlinearity can maintain coexistence of more 

than two species only with difficulty when it is the only stabilizing mechanism (Chesson 

1994). As relative nonlinearity relies on differences in the variance of competition 

between sets of resident species that differ only in which one of the n species in the 

community is missing from that set of resident species, it is likely to become weaker as n 

increases because such differences between different resident communities are 
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necessarily smaller.  However, it is also known the storage effect will decrease in 

magnitude as diversity increases because there are fewer times when an individual 

species is favored more strongly by the environment than any other species. At present 

we do not know whether relative nonlinearity declines more strongly than the storage 

effect as diversity increases. Simple generalization from two species to many species is 

impossible for serious questions of diversity maintenance. 

The first discussion of relative nonlinearity as a coexistence mechanism in the 

literature (Armstrong and McGehee 1980), did not involve life-history differences, but 

instead obtained relatively nonlinear growth rates from different nonlinear functional 

responses of two consumer species to a common resource. Endogenous consumer-

resource cycles drove fluctuations in competition. It is also claimed in Armstrong and 

McGehee (1980) that it is possible for relative nonlinearity to support an unlimited 

number of species on a single fluctuating resource.  Although we do not doubt this claim, 

we note that quadratic nonlinearities alone do not allow stable coexistence of more than 

two species in the absence of other stable coexistence mechanisms (Chesson 1994), and it 

is not clear whether biologically realistic scenarios exist that allow strong stable 

coexistence of more than two species on a single fluctuating resource by relative 

nonlinearity alone. Such coexistence would have to be based on large higher order 

nonlinearity differences between species. In the studies reported here, the storage effect is 

always present along with relative nonlinearity, and is critical to multispecies 

coexistence.  For the two-species case Abrams and Holt (2002), showed that relative 

nonlinearity created by functional response differences and endogenous cycles can have 
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comparable strength to resource partitioning, but they note also the difficulty of obtaining 

coexistence of more than two species from relative nonlinearity alone. 

Although the study of coexistence based on variation from endogenous population 

fluctuations alone is an interesting intellectual exercise, there is reason to question its 

relevance to nature.  In nature, environmental fluctuations are always present, and can be 

expected to interact with endogenous forces leading to the kinds of fluctuations in 

competition that drive the relative nonlinearity coexistence mechanism (Kimball et al. 

2012). A more serious exercise for understanding coexistence in nature would focus not 

on what endogenous cycles can do alone but how endogenous forces might interact with 

temporal environmental variation to generate the fluctuations in competition actually 

observable in nature. In models with linear per-capita growth rates, which include Lotka-

Volterra models and their discrete-time counterparts, Ripa & Ives (2003), and 

Ruokolainen & Ripa (2012)  have studied how environmental variation contributes to 

population fluctuations. Extensions to models with nonlinear per capita growth rates 

would be valuable for better understanding of coexistence from relative nonlinearity.   

Our studies have depended on the ability to understand the separate effects of the 

mechanisms in the presence of each other.  This would be impossible without a suitable 

method of quantifying coexistence, such as we use here. Moreover, the method that we 

use has the ability to increase understanding the mechanisms.  For instance, the precise 

representation of the community average relative nonlinearity leaves no doubt as to the 

requirements for the mechanism to promote coexistence. Verbal descriptions of the 

functioning of a mechanisms try to define its requirements based on the assumptions that 
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seem necessary for it to work, but this approach cannot demonstrate the actual necessity 

and sufficiency of purported requirements. 

Our findings have much relevance to empirical studies of the role of recruitment 

variation in species coexistence.  Empirical work on this topic has focused on the storage 

effect alone (Cáceres 1997, Kelly and Bowler 2002, Descamps-Julien and Gonzalez 

2005, Facelli et al. 2005, Adler et al. 2006, Angert et al. 2009, Chesson et al. 2011). 

However, our work shows the potential for major contributions to coexistence, which can 

be positive or negative, from relative nonlinearity with the potential to alter the 

conclusions from such studies. Of most importance would be situations in which the 

species being investigated differ greatly in life-history traits, such as life span, that can 

cause major nonlinearity differences between species in their per capita growth rates. 

Further considerations, as highlighted by our results, are correlations between species in 

their responses to environmental fluctuations and differences between species in 

sensitivities to those fluctuations.  

We have focused our investigation on iteroparous species such as perennial 

plants, but the same phenomena can be expected in species with seasonal recruitment, as 

long as these species have a persistent stage in the life history (Kuang and Chesson 

2008). The presence of the persistent stage provides the buffered population growth that 

can lead to the storage effect (Chesson 1994), and differences between species in the 

longevity of the persistent stage can lead to relatively nonlinear growth rates, and 

potentially the relative nonlinearity coexistence mechanism, as demonstrated here. An 

extraordinary diversity of organisms have persistent life stages. In annual plants, the 

persistent stage is the seed in the common case where between-year dormancy is present 
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with a seed bank (Adondakis and Venable 2004, Facelli et al. 2005)  Relative 

nonlinearity based on both fluctuations in competition and apparent competition have 

been demonstrated for such annual plants systems (Kuang and Chesson 2008), as has the 

storage effect (Chesson and Kuang 2010).  

Arthropods may have between-year diapause, for example insects, especially 

from high latitude regions. Zooplankton can have dormant progagule pools and their 

long-lived egg banks establish overlapping generations (Cáceres 1997). Even single-cell 

organisms such as phytoplankton can form resting cysts, which buffer population growth 

through unfavorable environments (Nehring 1995). Thus, there is every reason to expect 

that the phenomena discussed here are general for a wide range of communities. 

Although the specific findings of this work are likely to depend somewhat on the specific 

details of the system at hand, the generic nature of the summary dynamical Eq. (5) is 

likely to preserve key elements of our analysis provided that competition depends directly 

on the environmental responses of the species, as well as their densities, as it does here. 
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Appendix I 

Chesson (1989), Chesson (1994) and Chesson (2003) provide the basic analysis of 

the lottery model, which is elaborated here to provide formulae needed for our analyses. 

While Chesson (1989) provides a complete analysis of the lottery model for the two 

species case, Chesson (1994) provides the general theory for multispecies competition in 

a variable environment for models of the form 

( ) ( ( ), ( ))j j j jr t g E t C t                                                         (A.1) 

where gj is an arbitrary continuously differentiable function.  The lottery model and other 

models that take the form given here by Eq. (5) are special cases of this general model.  

Chesson (2003) focuses on models given by Eq. (5), which are general models for 

recruitment variation, with the lottery model as a special case. Many of the formulae that 

we need are available directly from Chesson (1989, 1994 and 2003). However, the 

emphasis in Chesson (1994 and 2003) is on the case where the environmental response 

variances are the same for all species.  That assumption is inadequate for our purposes 

here. In these appendices we explain the pertinent results in these previous works, and 

extend and adapt them for our needs.  

 These previous works all rely on quadratic approximation of Eq. (A.1). The 

resulting expressions for the invasion rates, ir , and their division in contributions from 

different mechanisms are accurate to o(σ2) where σ2 can be interpreted here as the 

maximum value of the 2
j  across species.  For the lottery model, the only assumption 

needed for this to apply is that the µj differ between species by no more than O(σ2).  The 

formulae for species coexistence in the lottery model show that this assumption is valid in 

the interior and boundary of the coexistence region.  Simulations, and Hatfield and 
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Chesson (1989), show that high numerical accuracy is achieved the parameter range 

considered here with σ2 no more than 1.  

 Chesson (2003), Table 1, gives the formulae components of the invasion rate ir , 

{ }s i
i s   , iN  and iI for general models obeying Eq. (5), which includes the lottery 

model.  However, term ( { }s i
i s   ) is denoted ir  in Chesson (2003), and is given by the 

formula 

	
{ }{ }{ } 2 1 21

2 2(1 ) (1 )
s is is i

i s i s i i s s

i iV

       
 

      

 
.        (A.2) 

 Appendix II now develops the particular forms of iN  and iI that we need here 

for the two species lottery model, and appendix III does the same for the multispecies 

case.  

 

 

Appendix II 

 In the two species lottery model, the formulae for the mechanisms from the 

quadratic approximation do not require simulation for evaluation. The relevant formulae 

have been derived in Chesson (1989). These formulae show that the species-level relative 

nonlinearity is   

   { } 21 1 1
2 2 2(1 ) (1 ) ( ) ( )

i

i i r i r rN V C    


         (A.3) 

(Eq. 39, Chesson 1989), where i the given species and r is the other species.  Averaging 

over species, this formula gives the community average 

  2 2
1 24 2 1

1 ( )( )N        . (A.4) 
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Subtracting (A.4) from (A.3) gives the fitness modifying component of relative 

nonlinearity as  

                        2
1 2

1 2
4 ( )( )i i i rN N N          . (A.5) 

 The species level storage effect is given as 

            
{ }

{ } { } 2(1 ) (1 ) (1 ) (1 )       


         
s i

i i
i s s i i r ir i irI  (A.6) 

(Eq. 40, Chesson 1989). Averaging over species gives the community average storage 

effect as: 

  2 2
1 12 1

1
2 21 22 [( )(1 ) ( )(1 )]I             .                     (A.7) 

The fitness modifying component of the storage effect is thus 

 2 21 1
122 2[(1 ) (1 ) ] ( )i r r i i i rI             .                    (A.8) 

The stabilizing effect in two species case can be written as the following expression and 

is always positive: 

                         2 2
1 2

1 1
2 2 12 1 2(1 )( 2 ) (1 ) V( )I N E E                      (A.9) 

Fitness inequality accounting for the coexistence mechanisms becomes 

                         1{ }
4 ( ) V( )s i

i i s i i i r i r i rI N d d E E                        (A.10) 

Note that combining A.9 and A.10 we obtain a very simple formula for the recovery rate,  

                                1
2 1 2(1 ) V( )i i i r ir E E           ,                       (A.11) 

(Eq. 41, Chesson 1989), which shows that the species will always coexistence in the three 

species case if the µ’s are the same for both species.  

 

Appendix III 



74	
	

74	
	

 Table 1 lists the general formulae that can be used to quantify relative 

nonlinearity and the storage effect. As explained in the previous appendix, the two-

species case is the special situation where all mechanisms can be derived analytically. For 

three or more species cases, quantification of the mechanisms relies at least partially on 

simulation. The covariance between environment and competition needed for calculating 

the storage effect in Eq. (16) can be obtained completely using the simulated time series 

values for the environmental and competitive responses. However, following the 

calculations in Chesson (1994) section 5.3, without applying the symmetry assumptions 

used there, and dividing by δi to obtain results on the per generation timescale, the 

species level storage effect becomes  

  
1

1i i i s s is r r s s rs
s i r i s i

I a a
n

       
  

  
  ,   (A.12) 

where 11i i    , and /s s r rr
a E N N    .  Evaluation of sa relies on simulation. 

This formula was found to give almost identical values to evaluation of the formula for 

ΔIi in Table 1 by simulation.  

 Relative nonlinearity was calculated using Eq. (15), where the variance in 

competitive responses, { }V( )iC  , was found from simulation. The formula for community 

average relative nonlinearity is given in Chesson (2003) as  

    { }Cov ,V( )
2( 1)

  


i
i

n
N C

n
                                        (A.15) 

This formula can be rearranged as follows to give Eq. (15) used here:  
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Eq. (15), identical with A.16, has the advantage that it directly associates the resident 

death rates with the variance in competition that the residents create.  

 

Appendix IV 

 Except in Table 3, all results in the text are given for the case of equal µ values (ln 

mean life time fecundity). With equal µ values, both species in any two species 

community coexist stably according to the lottery model provided there is any variance in 

the difference between their environmental responses, as can be seen from Eq. (A.11).  

This means that the two species studies above with equal µ values are studies where the 

species do stably coexist.  This also means that all two-species resident communities exist 

for the three species studies with equal µ’s (i.e. the two resident species coexist). 

However, stable coexistence does not necessarily occur for the three species assemblage, 

as one or more may not be able to invade the two-species resident community, despite 

being equal in µ value. This outcome is understandable given that the contributions of the 

coexistence mechanisms can be highly asymmetric in the cases studied in this 

investigation.   

 Our calculations presented in Table 3 show that the community average measures 

are not greatly sensitive to fitness inequality, justifying the focus on the equal µ case for 

our calculations. The combined community average mechanisms  gives the average 

invader recovery rate, and indicates coexistence strength in terms of the fitness 

differences compatible with coexistence. Our question here is whether patterns observed 
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for how  changes with the circumstances can be related to patterns of community 

stability defined in terms of joint population fluctuations. To consider this question, we 

develop here a measure of fluctuational stability  

  

1

1

nn

j
j

n E N


  
     

 .                                                                (A.17)  

Taking the nth root of the expectation in (A.17) and then multiplying it by n will scale the 

stability measure between 0 and 1. Fluctuational stability measures the degree of 

fluctuation in the community in terms of how much the densities keep away from 0. If 

there are no fluctuations over time, and species stay at the equal constant density of 1/n, 

the fluctuational stability will reach the maximum value 1. If instead, the community has 

large fluctuations, with some species often near zero, the measure will approach the 

minimum value of 0.  

 The two species stationary distribution, as derived by diffusion approximation 

(Hatfield and Chesson 1989), depends on (µ1 – µ2)/V(E1 – E2) and δ1 and δ2 only.  As  

is proportional to V(E1 – E2), but does not involve µ1 – µ2 in this case, fluctuational 

stability should depend on  when average fitnesses are different, but not necessarily 

otherwise. Thus, fluctuational stability should provide new insight into the effects of the 

coexistence mechanisms. Because the mechanisms can have strong effects on average 

fitness differences as well as on community average stabilizing mechanisms, summarized 

by , patterns of fluctuational stability for µ differences fixed at 0 should give very 

different results, especially when such average fitness differences arising from the 

mechanisms would predict extinctions in the three species case with µ differences fixed 

at zero.   
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 Our results shows that maximum fluctuational stability is not sensitive to the 

spacing of adult death rates  (Supp. Fig. 4a, 5), sensitivity differences (Supp. Fig. 4, 5, 6), 

or correlations in the environmental responses between species (Supp. Fig. 4b, 6), in the 

range of situations that we have studied. Surprisingly, these results imply that, provided 

the conditions for coexistence are actually satisfied, maximum fluctuational stability is 

dependent primarily on the number of species.  However, we have not studied the effects 

of mean sensitivity across species or mean adult death rates across species. These 

quantities are fixed in our analysis.  Nevertheless, it is clear that maximum fluctuational 

stability is indeed giving different information than  , which measures the species 

average invasion rate.  

 Consistent with our predictions, fluctuational stability measured at equal µ values 

shows a very different pattern from its maximum value (Supp. Fig. 4, 5, 6). At equal µ 

values, fluctuational stability declines rapidly with death rate spacing (Supp. Fig. 4a, 5). 

This is likely to be the result of increasing average fitness differences between species 

introduced by relative nonlinearity. In contrast  can increase with death rate spacing 

(Fig. 1 a&c), or at least stay at high values (Fig. 1b) at fixed µ values, not greatly 

different from maximum fluctuational stability. Correlation between environmental 

responses has a negligible effect on fluctuational stability with equal µ’s.  Indeed, this is 

predicted by the stationary distribution in the two species case because then (µ1 – 

µ2)/V(E1 – E2) = 0, nullifying any effect of correlation on the form of this distribution.  

Naturally, in this case also, sensitivity differences are unimportant, as seen in Supp. Fig. 

4.  However, in the three species case, sensitivity differences affect the fluctuation 

stability measured at equal µ values. Among all three cases, the strongest fluctuational 
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stability as equal µ values occurs when the shorter-lived species is more sensitive to the 

environment.  This is also the case when relative nonlinearity can potentially equalize 

fitness differences between species due to the effects of δVi, i.e. fitness inequality 

introduced by variance differences despite equal µ values (Supp. Fig 5, 6).  
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Supplementary figures	

 

Supplement Figure 1. The relative contribution of relative nonlinearity ( / ( )   N N I ) for 

different average variances in environmental responses (lines for 2 can be seen to be essentially 

coincident). a) / ( )   N N I plotted against differences in death rate. b) / ( )   N N I  

plotted against correlation in environmental responses (ρ). Parameters: 2 2 2

1 2 3: :    1:6:11. For 

(a) ρ = 1/3; 0.5 =  ߜ, with > 1ߜ	3ߜ > 2ߜ following an arithmetic sequence and for (b) 2ߜ ,0.2 = 1ߜ = 

) The average variances .0.8 = 3ߜ ,0.5 2 ) for these lines are 0.1(solid line), 0.2( dashed line), 
0.3(dotted line), 0.4(dashed dot line), 0.5(dashed dot dot line).   
	

 

Supplementary Figure 2. The stabilizing effect of relative nonlinearity (solid line), storage 
effect (dash line) and the overall stabilizing mechanism (dot line) as mean ln fecundity (µ) 
differences between species change. In each graph above, µ values for each species are in turn 
varied from its invasion boundary to the coexistence central (µ = 0 for all species),while µ values 
for the rest are kept 0. In (a), the stabilizing effects are plotted against the mean fecundity of 
species 1:the least sensitive and longest-lived species; In (b), the stabilizing effects are plotted 
against the mean fecundity of species 2: the species with median sensitivity and median 
longevity; In (c), the stabilizing effects are plotted against the mean fecundity of species 3: the 

a.   b.   

a.   b.   c.   
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most sensitive and shortest-lived species(c). Parameters: ρ = 0.6; 2 = 0.5; 2 2 2

1 2 3: : 1 : 6 :11   
  .0.8 = 3ߜ ,0.5 = 2ߜ ,0.2 = 1ߜ ;
	

 

 

 

Supplement Figure 3. Species level coexistence mechanisms as mean ln fecundity (µ) 
differences change: solid lines are for the storage effect and dashed lines for relative nonlinearity.  
Rows 1-3 of the table are the mechanism measures respectively for species 1-3. Columns 1-3 
correspond to the species whose mean ln fecundity is varied, as indicated in x-axis label. 

Parameters: ρ = 0.6, 2 = 0.5, 2 2 2

1 2 3: :     Each line is) .0.8 = 3ߜ ,0.5 = 2ߜ ,0.2 = 1ߜ ,1:6:11

drawn by connecting 6 equally spaced points.) 
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Supplementary Figure 4. Comparisons between the fluctuational stability with equal µ values 
(solid line) and the maximum fluctuational stability with different µ values (dashed line) in the 
two species case. In (a) fluctuational stability is plotted against death rate spacing. In (b) the 
fluctuational stability is plotted against ρ (pairwise correlation in environmental responses). The 
result is insensitive to which species is more sensitive to the environment. Parameters: ߪଶതതതത = 0.5, 

2 2

1 2: 1 : 2   (black lines) or 2:1 (grey lines), for (a) ρ = 0.3, 0.5 =  ߜ, and for (b) 2ߜ ,0.2 = 1ߜ = 

0.8.   
	

	

Supplementary Figure 5. Trends of the fluctuational stability as death rate spacing increases in 
the three species cases. In each figure, comparisons are made between fluctuational stability with 
equal µ values (solid line) and the maximum fluctuational stability with different µ values 
(dashed line). Between figures, comparison are made between (a) the case that species have equal 
sensitivities to the environmental fluctuation, (b)the case that shorter-lived species are more 
sensitive, and (c) the case that longer-lived species are more sensitive. Parameters: ρ = 1/3, ߜ = 
ଶതതതതߪ ,0.5 ൌ 0.5,  2 2 2

1 2 3: :    1:6:11 for (b) or 11:6:1 for (c).  

	

	

a.   b.   

a.   b.   c.   
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Supplementary Figure 6. Trends in fluctuational stability as correlation between species in 
environmental responses (ρ) increases. In each figure, comparisons are made between 
fluctuational stability with equal µ values (solid lines) and the maximum fluctuational stability 
with different µ values (dashed lines). (a) species have equal sensitivity to environmental 
variation, (b)shorter-lived species are more sensitive, and (c) longer-lived species more sensitive. 
Parameters: ߪ .0.8 = 3ߜ ,0.5 = 2ߜ ,0.2 = 1ߜଶതതതത ൌ 0.5 , 2 2 2

1 2 3: :    1:6:11 for (b) or 11:6:1 for (c). 	
	 	

a.   b.   c.   
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Abstract 

Models of species coexistence tend to be of two opposite sorts. Abstract models do not 

have the life-history detail to allow the investigation of much interesting biology. 

Analyses of complicated models often have difficulty revealing the details of coexistence 

mechanisms.  Here we show that techniques of quantifying coexistence mechanisms 

developed for simpler models can also apply to more complex models, allowing study of 

how life-history details affect species coexistence.  In a new cohort-based size-structured 

lottery model, uniquely, we have both reproduction and growth as functions of varying 

environmental factors and competition. Variation in both processes lead to stable 

coexistence through distinct storage effects when functioning alone. Acting together and 

positively correlated in the model, they are strongly synergistic. Our results show that for 

coexistence, the most important aspect of a species’ life history is the set of life stages 

sensitive to physical environmental factors and competition.  The size dependency in life 

history processes—such as an offspring size, growth rate, fecundity rate, and mortality 

rate—determines the average contribution of critical history processes to population 

growth. If individual growth contributing more on average to population growth than 

reproduction, storage effect in growth will be more important than storage effect in 

reproduction, and vice versa. Beside storage effects, variable environment leads to shifts 

in size structure as species’ densities change. Variation in reproduction and variation in 

growth drive size structure in opposite directions.  Either can promote or undermine 

species coexistence, depending on whether the change in size structure on decline to low 

density favors population growth, and hence recovery from low density.  Quantification 

of coexistence mechanisms reduces the understanding of complexity of life-history 
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strategies into population level measurement, which turns out to be no much complicated 

than in simple models.  

Introduction 

It has long been recognized that stable species coexistence stems from different 

species using the environment differently (Chesson 2000).  Many hypotheses of 

coexistence mechanisms are proposed (Palmer 1994, Chesson 2000, Wright 2002). 

Among them, coexistence as a result of environmental variation has often been seen as 

key. It is important to recognize that all species live in constantly changing environments. 

Empirical studies document species- specific temporal variation in critical life history 

processes in a variety of systems including tropical forests, dessert annuals, coral reefs, 

fresh water zooplankton (Venable et al. 1993, Cáceres 1997, Soong et al. 2003, Wright et 

al. 2005, Chesson et al. 2013), suggesting that species partition temporal variation in the 

environment. Meanwhile, an extraordinary diversity of organisms have persistent life 

stages that allow persistence through unfavorable conditions (buffered population 

growth), e.g. prolonged life span of long-lived organisms and dormant stages of short-

lived organisms (Danks 1987, Nehring 1995, Pake and Venable 1996, Cáceres 1997, 

Venable 2007), which can be the bet-hedging strategies of life-history theory (refs).  

Sophisticated theories of species coexistence in variable environments exist. Yet there 

are challenges in applying theory to study empirical system majorly due to the contrast 

between simplicity in model assumptions and complexity in natural world. The key 

models used to develop the theories have been relatively simple, which makes them more 

tractable and understandable. The lottery model, for example, provides fundamental 

understanding of how temporal environmental variation can promote species coexistence 

(Chesson and Warner 1981). The model reduces the life-history of perennial iteroparous 
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organisms, such as forest trees, to their bare essence:  adults produce propagules which 

compete to establish as adults. Propagule competition is completely a lottery, meaning 

that the success of species is proportional to the number of its propagules. The 

assumption for its base is simple: namely all individuals of a species are identical, and 

reproduction, propagule competition and establishment as an adult can be compressed 

into one unit of time. The simple model leaves out many detailed biology. 

Questions arise on whether all the complexities in life history matter for coexistence. 

If not, more complicate model is unnecessary. We will illustrate our ideas using forest 

trees, but our conclusion is general. Coexistence of plants in nature are often puzzling 

because they rely on a relatively small number of resources, yet have high diversity 

(Silvertown 2004). Forests trees, in particular, have complex life histories that pose 

challenges in both modeling and experiment (Clark and Clark 1992). Yet these 

complicated life histories carry much information about differences between species in 

ecological strategies (Condit et al. 2006).  Meantime, long-term forest studies show 

evidence of enormous temporal variation in several life-history parameters, including 

reproduction, seed germination, and tree growth (Clark and Clark 1994, Wright et al. 

2005). These findings raise the question of how temporal variation in these different life 

history processes affects species coexistence. 

There have been various attempts to relate the ordinary lottery model to actual forest 

systems, e.g. coexistence of species with differing tendencies to recruit following fires in 

Australian eucalypt forests (Comins and Noble 1985); dynamics of tropical with temporal 

patterns of masting (Hubbell (2001)). More recently, Usinowicz et. al. (2012) extended 

the lottery model to a two-stage model and use it to study coexistence of tropical trees in 

Barro Colorado Island (BCI), Panama. These previous studies, along with much other 
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empirical work, indicate strong potential for environmental variation to contribute to 

diversity maintenance in forests (Wright et al. 2005). However, in all cases, tree life 

histories are represented in seriously contracted forms. The match between the model and 

the fundamental idea under test remains tenuous. 

In this study, we enhance the ordinary lottery model, allowing it to capture the 

complex life histories of communities studied and yet summarize the complexity with a 

few critical parameters. First of all, our new model is size explicit. Size, either for 

juveniles, or established individuals, has had a prominent role in the formulation of life 

history strategies (Clark and Clark 1992, Thomas 1996, Westoby et al. 2002, King et al. 

2006, Muller-Landau et al. 2006, Iida et al. 2013). Size is closely related to other 

important properties of trees including competitive ability, growth rate, fecundity and 

mortality rate. Introducing size into a model allows interesting life histories to be 

represented. It can capture more biological details in the seedling recruitment process 

than an unstructured model, and can represent post-recruitment growth processes. The 

latter is the fundamental as we are particularly interested using the new model to study 

the effects of tree growth dynamics on species coexistence. While temporal variation in 

tree growth has been quite often observed (Clark and Clark 1994, Enquist and Leffler 

2001, Nath et al. 2006, Soliz-Gamboa et al. 2012), its role in species coexistence is not 

understood theoretically. Yet it seems reasonable to expect that temporal differentiation 

between species in individual growth should promote coexistence in a similar way to 

temporal differentiation in recruitment.   

Using the new size-structured model, we are able to identify aspects of life history 

strategies that affect species coexistence the most: the sets of life stages sensitive to both 

physical environmental factors and competition. Variation in reproduction and individual 
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growth can both promote coexistence through distinct storage effects. The key effects of 

a complex life-history on coexistence through the storage effect is through simply 

determining whether processes most sensitive to environment can contribute more on 

average to population growth. Beside the storage effects, the mean size structure of a 

species shift as its densities change, which can be either promoting or undermining 

coexistence. Interestingly, variation in growth and variation in reproduction will drive 

species’ mean size structure in opposite directions when species drops to low density. 

Shift in size structure will promote coexistence if size structure for the population at low 

density allows species to take more advantages of the demographic schedules. Otherwise, 

it will undermine coexistence.  

The model 

The model describes a forest community of many species, and each species consists 

of individuals of different sizes. The basic workings of the model are defined in Figure 1, 

the parameters for the model are in table 1, and the detailed formulae behind the model 

are in table 2.  Here we give the narrative description of the model. We assume that area 

of the whole forest is conserved, and the size of each individual tree is given by an area, 

reflecting a share of the total resources of the forest available to it. Summing the area of 

all individuals of all sizes leads to the constant area of the whole forest. Space is used as a 

general measure of the overall resources and all individuals compete for space.  

The model works in discrete time. In each unit of time trees die according to species 

specific size-dependent mortality functions. Death frees space, which the living compete 

for. Competition comes from two sources: (1) newly germinated seedlings that need 

space to establish; (2) established individuals, which need space to grow. Competition 

between individuals for this newly available space occurs according to a lottery formula. 
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Thus, the allocation of space to an individual is proportional to its demand for space 

divided by the total demand from all individuals of all species in the forest. A fecundity 

function determines the number of seedlings competing to establish. It is a species-

specific function that depends on both the size of an individual and the physical 

environmental. A competitiveness function determines the demand for space of each 

individual, which is the new area an individual would acquire without resource limitation. 

The competitiveness function is also species-specific depending on both size and the 

physical environment, like the fecundity function. No variation between individuals of 

the same age and species occurs. The model is cohort-based. The fate of any individual is 

predictable based on its species, cohort, and the shared environment of all individuals. 

Details are described in below.  

Critical variables in the model are the total available space, S(t), from deaths during 

the interval t to t + 1, and the total demand, or requirement, for space, R(t) (details in T. 2 

Eq. 2-7 ). As explained above, this demand for space is the total new space needed to 

achieve the largest potential of reproduction and growth under unlimited space supply. 

Since the space available is not unlimited, competition occurs. The magnitude of 

competition C(t) is evaluated as the ratio of demand to supply on the log scale ( T. 2 Eq. 

8), also referred as the competitive response. Individuals of all species and sizes compete 

in same resource pool, and competition reduces their actual establishment and growth.  

The key dynamical components of the model are recruitment to the seedling cohort, 

and subsequent growth of individuals in the established cohorts. A tree in cohort c of 

species j has size jca , which does change with time but t is omitted for notational 

simplicity. Before competition, seedling produced by Njc individuals in cohort c of 
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species j depends on two components (T.2 Eq. 3). The first term, fecundity schedule
jcak , 

determines the size-dependency in fecundity, which is time invariant and further 

weighted by the competitiveness in seedling establishment sjc . The other factor b ( )jE te

captures fluctuation in reproduction due to environmental variation, where the quantity

bjE  is defined as the environmental response in reproduction. Newly established seedling 

has initial size . 

 

Table 1. General notation 
Symbol Definition 
C Competitive responses 
R Total demand for resource from seedling recruitment and tree growth 
S Total available space, from death of trees 
c Index for cohort 
j Index for species, in particular i for invader, r for resident 
p Total number of species in the community 

jca   Size of individuals in cohort c of species j 

nja   Size of individual in the seedling cohort of species j 

jcak ;
jcac   Size-dependent fecundity schedule and growth (competitive) schedule  

bjE , E
gj

 Environmental response in reproduction and in growth respectively 

, )(j jck ta   Fecundity per individual in cohort c of species j 

sjc   Competitiveness in seedling establishment  

sjN ; njN  Density of seedling germinated and established respectively 

jcN   Density of cohort c of species j 

jcam   Size-dependent mortality schedule  

jA ; bjA ; gjA  Total Area, area of the new seedling cohort, and established cohorts  

jr   The population growth rate of species j evaluated as changes in ln jA   

j   The scaling factor, sensitivity of growth rate jr to competition. 

ir   Long-term low density growth rate of invader species 

i   Average fitness differences between invader and resident 

A  The overall stabilizing effect 
S   Mean effect of size structure 

sja
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E  Mean environmental effect 
I ; bI ; gI  The overall storage effect; storage effect in reproduction; storage effect in growth 

b ; g  Covariance between Eb and C; Covariance between Eg and C; 

b ; g  storage coefficient for buffer in reproduction, and buffer in growth 

;b g    Sensitivity of C to Eb ; Sensitivity of C to Eg 

ps, pb, pbg, pg Proportional contribution of survival, reproduction, seedling growth, sapling 
growth to population growth 

 

Table 2. Model details 
Process Formula  Eq 
Space occupied by 
species j at time t 

( (( ) ) )j jc jc
c

A t ta N t  0 

Death release spaces 
,

jcjc jc a
c j

S N a m  0 

Number of Seedling 
germinated 

b ( )

s s( 1) j

jc

E

j j a jc
c

tkt c eN N   0 

Seedling size g

sn s
j

j

E

j j aca ea   1 

Demand for space 
from seedling  g b

ss s
j j

j jc

E E

s j a j a jc
cj

R a c e ec Nk   2 

Demand for space 
from tree growth   g 1j

jc jc

E

g a a jc
j c

R m Nc e    2 
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Figure 1. The cohort-based size-strucutured lottery model. This conceptual graph describes the 
processes happened in one unit of time for the forest modeled in this study. (1) At time t, space 
are occupied by two species with individuals of different sizes. (2) The amount of seedlings 
produced depends on both the size of the mother plant and the physical environmental, details in 
Eq.0. (3) Death removes individuals and the space available is limited so that both the incoming 
new cohorts in (2) and the surviving individuals in (3) need to compete for it. (4) Competition 
reduces the actual number of seedling established (Eq.4) and the size of seedling depend on 
environmental factors Eq.1. (5) The growth of established trees is proportional to environment 
and inversely proportional to competition as in Eq.5.  The size of tree and seedling symbols 
meaningfully represent dynamic in tree growth and seedling recruitment. In this snapshot of 
example, one species (black) is experiencing favorable environment for reproduction and the 
other species (grey) is experiencing favorable environment for growth.  
 

(1) Forest at time t  

(3)	Space	opened	up	after	tree	death	Sp(t),	

(4) Seedling establishment (Eq. 9) and growth (Eq. 4) 

(5) Tree growth (Eq. 10) 

(2) Number of Seedling produced, Eq. 

(6) Forest at time t+1  
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Individuals in all cohorts will grow. The potential growth without competition for 

cohort c of species j is determined by two components: a size-dependent growth schedule

jcac , also called the competitiveness schedule; and the temporal fluctuation in growth 

g ( )jE te , where gjE is defined as the environmental response in growth. We assume seedling 

growth after germination is not subject to competition as competition already occurred 

during their establishment (T. 2 Eq. 4). Unlike seedlings, the growth of individuals in the 

established cohorts is reduced by competition (T.2 Eq. 10). Only trees escaped the death, 

in a remaining proportion of 1
jcam , can grow.  

The population growth rate of species j is evaluated as change in log area occupied by 

the whole population from one time to another as:  

ln ( 1)1) (( ln )j j jr t A t A t     5 

where Aj is the area of species j (T. 2. Eq 11). 

The long-term growth rate is obtained by averaging Eq 5 overtime, with proper 

scaling factor between species, for species at low density.  
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As will be explained latter, the low-density growth rate is a critical measure for species 

coexistence. The purpose of parameter j  is to put growth rate of species with different 

sensitivities to competition on the same scales of comparison, referred as the natural 

scale.  

In this model, variation can occur during both seedling recruitment and tree growth. By 

modeling environmental response in reproduction  and the environmental response in bE
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growth gE  separately, we allow these two processes to capture different environmental 

cues. Both environmental responses and competitive response are measured on the log 

scale for more accurate representation of the results in a lottery model (Chesson 1982). 

Among all three life history process — reproduction, growth and mortality — mortality is 

the only process that does not directly depend on environment or competition. However, 

as growth does depend on the environment and competition in general, the size 

dependence of mortality leads to an indirect effect of the environment and competition on 

the mortality.  

 For simplicity, we assume two species in the community have identical demographic 

schedules and mean life history traits, which means that the scaling factor β is the same 

for both species. These cases resemble the guild of species with similar ecology in the 

community. We choose a typical combination of tree demography schedules as a baseline 

to illustrate the model: a linear fecundity schedule, an U-shaped mortality schedule, and a 

hump-shaped growth schedule for both species (solid lines, Fig. 2). The linear fecundity 

schedule captures the trend that larger individuals produce more seeds than smaller ones. 

We can set different size thresholds for the initial reproduction to represent the different 

degree of delay in reproduction (Fig. 2a), common for forest trees (Thomas 1996). A U-

shaped mortality schedule captures the trend that mortalities are higher for both the 

smallest and largest trees than the intermediate-sized ones (Fig. 2b). Being small is most 

vulnerable to diseases and predation, while largest trees are usually old and face 

senescence (King et al. 2006). The hump-shaped growth schedule reflects an advantage 

in competition for resources as plants grow larger; But after some threshold, the capacity 

to grow decreases when maintenance costs, such as evapotranspiration, limit the ability to 
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expand further (Westoby et al. 2002). We will vary the seedling sizes as the initial point 

of growth.  

We further compare the demographic schedules in baseline cases, as references, with 

size-independent ones (dashed lines, Fig 2). These comparisons specifically address the 

consequences of changing one particular demographic schedule from the reference 

schedule to a size-insensitive one (dashed lines, Fig. 2) while all other schedules remain 

the same as the reference. Constrained are applied so size-dependent and their 

corresponding size-independent demographic schedule have identical population average 

values. The detailed formulae and parameterization of the demographic schedules are 

described in Appendix I. Though these particular shapes are chosen, the models is not 

limited to the possible shapes of demographic schedules (Appendix I). A follow up study 

will take more serious consideration of the comparison between contrasting life history 

schedules between species (Yuan and Chesson, in progress). For now, a comparison 

between flat and size-sensitive demographic schedule is an important step to figure out 
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whether the shape has an effect at all on species coexistence. 

 

 Theory development 

The stability of coexistence is measured by the tendency of species to recover when 

dropped to low density. Using the invasibility analysis (Turelli 1981, Chesson 1994), we 

can measure the average rate, as in Eq5, at which a species recovers from low density in 

the presence of its competitors fluctuating in a stationary way. The species perturbed to 

low density is called the invader species and the species fluctuating around equilibrium is 

called the resident species. Chesson (Chesson 2003, 2008) shows that recovery rate for 

invader species from low density in general scenarios is contributed by both average 

fitness-differences between species ξi and the overall stabilizing effect A , aka stability of 

coexistence: 

 r
i
 

i
 A   5 

Figure 2. Examples of demographic schedules investigated in this study. (a) Linear 
increasing fecundity schedule (solid line) vs size insensitive schedule (dashed line). (b) U-
shaped mortality schedule (solid line) vs size insensitive mortality schedule (dashed line). 
(c) Hump-shaped competitive schedule (solid line) vs size insensitive competitive 
schedule (dashed line). Detailed parameters setting is described in Appendix I.  

(a)    (b)              (c) 
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where the subscript i labels the invader species. The average fitness difference ξi is a 

species level measure on the mean fitness advantage (if it is a positive value) or 

disadvantage (if it is a negative value) of the invader comparing to the rest of the 

community. It predicts exclusion in the absence of any stabilizing effect A . In contrast, 

the stabilizing effect ( A) is a community level measure for the overall degree to which 

coexistence is stabilized in the guild in question. As the ξi values average to zero across 

species, A  can be obtained directly by averaging invasion rates over each species in the 

community as the invader:   

 
1

1 p

i
i

r
p

A


  .        6   

Thus Ahas the dual interpretation as 1) the degree of average fitness-inequality 

between species compatible with coexistence as in Eq. 5, and 2) the average ability of all 

species in a community to recover from low density in the presence of competitors as in 

Eq. 6. Under temporal variation, the overall stabilizing effect is mainly contributed by 

several coexistence mechanisms (Yuan and Chesson, in progress):  

 A S E I      . 6 

The quantity S measures the mean effect of fluctuating size structure. The quantity

E measures the mean environmental effect under fluctuating size structure. The storage 

effect I measure the mean of interaction between environment and competition. 

As mentioned, to simplify matters, we consider only symmetric cases where species 

are identical except their environmental responses. In such cases, the life history 

differences are minimalized between species. Another fluctuation dependent mechanism, 

relative nonlinearity N , that arise when species have different nonlinear responses to 

limiting resources between species, is negligible (Yuan and Chesson In review) and is 
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omitted from Eq. 6.  

In symmetric cases, the quantities S and E both arises with fluctuating structure, 

unseen in nonstructured model . We find out, through both simulation and approximation, 

although size structures fluctuate with environment, it is the mean structure differences 

between invader and resident states matters for coexistence (Appendix). More 

specifically, mean in size structure will shift more when a species is in invader state than 

resident state, compared with the equilibrium structure in single species stationary status 

(Chesson and Yuan, in progress). Both mechanisms S and E are measured directly 

from simulations (Appendix). The quantify S is measured as the difference in growth 

rate between invader and resident, with competition and environment fixed at 

equilibrium, and averaged over fluctuating size structure. This mechanism promote 

coexistence if size structure shift in direction with demographic advantages. The quantity

E is measured as the difference in mean environment effect on growth rate between 

invader and resident, with competition fixed at equilibrium, averaged over fluctuating 

environment and size structure. It reflects whether environmental variation enhance the 

effect of shift in structure.  Approximation show it can promote coexistence if shift in 

structure in structure leads to increasing contribution to population growth on average 

from the process sensitive to environment (Appendix). 

The storage effect I measures the differences between invader and resident in their 

ability to decouple environment with competition. As a formalization of the concept of 

temporal niche partitioning, the storage effect is usually the major contributor to the 

stability of coexistence (Chesson 2003, 2008). Its two prerequisites easily hold up for it to 

promote coexistence. First, covariance between environment and competition (covEC), 

which is measured by a formal statistical covariance over time between environment and 
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competition, must be higher in resident state than in invader state (Appendix, Chesson 

2008). Environmental response, such as a seedling germination or potential tree growth, 

will determines the demand for resources and thus strength of competition. Nevertheless, 

species will only have a significant effect on competition at resident state, as its density at 

invader state is negligible. A resident species in favorable environment posts strong self-

limitation through intraspecific competition –a high value of covEC. Unless the invader 

species have the exact same pattern of variation in environmental response as the 

resident, it has opportunities to escape the competition when the environment favors it 

but not the resident species –a low value of covEC. The larger the differences in covEC 

between resident state and the invader state are, the stronger the storage effect gets.  

The second critical component of the storage effect is buffered population growth,  

due to the subadditive (negative) interaction between environment and competition in 

population growth. As a result, increasing competition does not have such a strong 

limitation on population growth for a species in unfavorable environment as on species in 

favorable environment. Buffered population growth arises naturally with forest trees. On 

one hand, the long life span of trees slow down the population decline in unfavorable 

environment; on another hand, growth is an irreversible process, biomass accumulated in 

the tree as it grows and in our model trees cannot decrease in size. The persistence of the 

population through harsh times means that the benefits accumulated in good environment 

is not lost completely in bad environment. The stronger the buffer is, the stronger the 

storage effect is. As buffer is measured by the negative interaction, we flip its sign and 

put it on natural scale for easier interpretation, the new term defined as the storage 

coefficient ψ.  

In our model, both environmental responses –response in reproduction bE and 



105	
	

105	
	

response in individual growth gE – have an effect on the competition C. Each will 

generate a covariance between environment and competition (CovEC); both 

environmental responses interact with the competition to create buffer in population 

growth (Eq. 3.1, Eq. 3.2). Thus each will contribute to a separate storage effect 

(Appendix II, III). We are particularly interested in factors that determine the importances 

of these two storage effects. The two storage effects are measured both directly through 

simulation (Chesson and Yuan, in progress) and through approximation (Appendix II, 

III). 

  

Results 

 

In our model coexistence only occur with species-specific responses to environmental 

variation. Across a wide range of cases, we find that total mechanism magnitude, A , is an 

increasing linear function of the variances of the environmental responses, var(Eb) and 

var(Eg), as these are changed proportionally (spp. Fig 1).  This means that we can report 

results simply for fixed values of these variances, which are then always either 0 or 1.   

The storage effect 

Like the original lottery model, variation in fecundity promotes species coexistence, 

and the key mechanism is the storage effect (Fig. 3). Also variation in growth does too. 

For equivalent variances in fecundity and growth, each alone promotes coexistence less 

strongly than fecundity promotes coexistence alone in the original lottery model. 

However, together, their combined effect can be as strong or stronger than in the original 

lottery model (Fig. 3,4). This outcome depends on the correlation within species in 

fecundity and growth. Positive correlations are strongly synergistic, given a high 
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coexistence promoting effect. However, with negative correlations these effects 

counteract each other, and in some circumstances a strong negative correlation leads to 

very weak coexistence (Fig. 4).  

 

Figure 3. The stabilizing effects in structured model (bars) compared with mechanisms in 
unstructured lottery model (dashed line). Storage effect in structured model are plotted as 
circles. Setting 1 and setting 2 show cases of structured model with contrasts in relative 
contribution of reproduction and individual growth to population growth. Axis labels:  “Eb”, 
“Eg” and “Eb+Eg”: structured model respectively with variation in reproduction only, growth 
only, and both reproduction and growth, respectively. Trees in the non-structured lottery 
model have the same longevity and fecundity in setting 1of the structured model under single 
species steady state. Setting 2 have the same mortality schedule with setting 1 but opposite 
importance of fecundity and growth to population growth. Parameter details are in Appendix 
I. 
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These findings can be understood in terms of the approximate formulae for the storage 

effect (Table 3), which is predominant mechanism in coexistence in this model. Because 

competition C depends on both growth and reproduction, its covariance with environment 

response in reproduction Eb, χb, involves the covariance between Eb and Eg 

(environmental response in growth) as well as the variance of Eb.  Sensitivities θ of C to 

Eb and Eg define the dependence of on this variance and covariance (Table 3, 

Appendix II).  Similarly, χg depends on the covariance between Eb and Eg, and variance 

of Eg. For fixed variances of Eb and Eg, their covariance is proportional to their 

correlation. Hence, both storage effects, and their sum ΔItot are increasing functions of the 

correlation between Eb and Eg. Thus, a strong positive correlation creates a strong 

synergistic effect between the two storage effects. Conversely, a negative correlation 

subtracts from each of the separate storage effects making them strongly antagonistic and 

weakening their total effect (Fig. 4). 

b

Figure 4. The overall stabilizing effect (solid line) and its main contributor storage effect 
(dashed line) as the correlation between growth and fecundity increases. Results here are 
illustrated using the reference demographic schedules: two species have identical linear 
fecundity schedule, u-shaped mortality schedule, and hump-shaped growth schedule. We 
increase the mean environmental responses, ߤ௕ ൌ ௚ߤ ൌ 3,	so all space can be filled under 

high correlation to satisfy the lottery assumption. Growth and reproduction have close 
contribution to average population growth. Mechanisms other than storage effect are 
negligible. Parameter details are in Appendix I.
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Table 3 Functional component of the storage effects 

 
Formula  Functional component 

Storage, on natural scale
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seedling individual growth; pgthe proportion in sapling growth; pb the proportion for seedling 
establishment; ps the proportion for surviving individuals. b g bg s 1p p p p      

 
Though variation in reproduction and variation in individual growth  both lead do 

storage effect, their importance can be very different (Fig. 3). The importance of the 

variation in a process is directly proportional to the average fractional contribution of this 

process to population growth (the value p’s) (Table 3). Two critical functional 

components of the storage effect—sensitivities θ of competition to environmental 

responses in formulation of covEC, and buffer in population growth measured by storage 

ψ—can both be simply expressed by the fractional contributions of different life-history 

stages to population growth (Table 3). Interestingly ψ and covEC depend in very similar 

ways on these life-history contributions. The odds ratio of the fractional contribution 

from survival ps—ps /(1 – ps)—is a common factor in all ψ’s and 1/(1 – ps) is a common 

factor in all covEC’s. Hence the storage is proportional to the odds ratio ps /(1 – ps).  The 

remaining terms in the ψ and covEC are pb + pbg for the recruitment terms, and pg + pbg for 



I
b

Ig

Itot

I
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the individual growth terms.  This means that the storage effect from recruitment is 

enhanced by strong contributions from seedling establishment (pb) and seedling growth 

(pbg), while the storage effect from growth is enhanced by strong contributions from 

sapling growth (pg), and seedling growth (pbg).  Seedling growth is the common element 

in both storage effects. The relative importance of the two storage effects will therefore 

be strongly dependent on these growth contributions.   

Overall, the contributions of recruitment and growth to the storage effect will be 

enhanced by having both a strong contribution of that process to growth and strong 

sensitivity of that process to the environment.  Their joint effects are then dependent also 

on the correlation of Eb and Eg, in other words, the alignment of the environmental 

sensitivities between reproduction and individual growth. Lurking behind the scenes is 

persistence of population through survival ps: without a positive value of ps there is no 

buffering and therefore no storage effect.   

Given variances and covariances of environmental responses, the fractions p’s are all 

we need to understand the storage effect. Our next question is how do p’s depend on the 

demographic schedules. Because the invader and resident are assumed to have 

independent responses to the environment, changes in p’s between resident and invader 

do not affect the storage effect: only resident values matters.  

The p’s summarize complexity in life history by distinguishing the aspects of life 

history that affect the storage effect and those don’t (Fig. 5,6,7). The primary effects that 

are seen on the p’s are life schedule changes that affect the relative performance of 

seedlings versus growing plants. For instance, seedling size has a big effect on pb.  

Increasing pb /(1 – ps ), as a result of the increasing initial seedling size (spp. Fig. 2 

Append IV), increase both storage ψb , the measure for buffer for bad environment for 
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reproduction, and θb ,sensitivity of competition to Eb (Fig. 5). Increasing storage effect in 

reproduction is contrasted with decreasing storage effect in growth as seedling size 

increase. As relative contribution from individual growth (pg+pbg /(1 – ps )) decreases 

(spp. Fig. 2 Append IV), both ψg and θg decrease with seedling size (Fig. 5). Changing 

the relative competitive ability of seedlings and saplings through varying the competitive 

schedule works similarly (Fig. 7). Increasing competitiveness of seedling to grow leads to 

increases in pbg /(1 – ps ), as a result favors storage effect in reproduction; yet the overall 

contribution to individual growth (pg+pbg /(1 – ps )) are affected minimally, so is the 

storage effect in growth. 

On the other hand, the p’s are relatively insensitive to shapes of the mortality and 

fecundity, and therefore changes in these curves do not affect the storage effect (Figs 6, 

7). As mentioned, competitive schedules of growing plants also have minimal effect on 

the storage effect (Fig 7). However, in some cases we see the mean effect of fluctuating 

environment E and structure S changing in magnitude as life-history schedules are 

varied even though the storage effect is not affected (Fig. 6, 7). For instance, as delay in 

reproduction increases, the p’s remain flat, so are the storages. But overall mechanism 

magnitude changes, as discussed next. 

 

a.                                                   b. 
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c.                                                   d. 

    

Figure 5. Changes in the overall stabilizing effect, storage effect and its functional 
components as initial seedling size increase. (a) With only Eb varies, the overall stabilizing effect 
(solid) and the storage effect (dashed) increase with seedling size. (b) With only Eg varies, the 
overall stabilizing effect (solid) and the storage effect (dashed) decreases with seedling size. In 
parallel, storage due to reproduction and ߠ௕increase with seedling size (solid in c and d 
respectively); storage due to growth and ߠ௚decrease with seedling size (dashed in c and d 
respectively). Results here are illustrated using the demographic schedules where two species 
have identical delayed linear fecundity schedule, u-shaped mortality schedule, and hump-shaped 
growth schedule. Parameter details are in Appendix I. 
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Figure 6. Changes in the overall stabilizing effect, storage effect and its functional 
components as delay in the reproduction increases. (a) With only Eb varies, the overall 
stabilizing effect decreases with delay in reproduction. (b) With only Eg varies, the overall 
stabilizing effect first increases and then decreases with delay in reproduction. The storage 
effects (dashed line in a,b), and its functional components (c, d) are insensitive to changes 
in the delay in reproduction. Results here are illustrated using the demographic schedules 
where two species have identical delayed linear fecundity schedule, u-shaped mortality 
schedule, and hump-shaped growth schedule. Parameter details are in Appendix I. 

(c) buffer                               (d) θ

γb 

γg 

(a) Eb                                     (b) Eg  
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Mechanisms relating to change in structure between resident and invader (

 and E S   ) 

In this model, nonzero values of and E S  require differences in population 

structure between the resident and invader states. This does not occur in a constant 

environment because then an invader has the same equilibrium population structure as the 

resident.  With a growing invader population, the relative numbers of juveniles will be 

higher.  However this effect only leads to higher numbers of small individuals when 

environmental variation is through fecundity variation, not growth (fig 8a).  When there 

is environmental variation in individual growth, the invader cohorts can advance more 

(a) Eb                                     (b) Eg                                       (c) Eg+Eg 

Figure 7. The effect of demographic schedules on the stabilizing effect. In each panel, the 
dashed line represents the stabilizing effect of the reference case, as already presented in 
Figure 1. The reference community has two species with identical linear fecundity schedule, 
u-shaped mortality schedule, and hump-shaped growth (competitive) schedule. In each 
separate case, one of the schedules is changed to size insensitive one whiles the other two 
remain the same: “flat f”  refers to community with flat fecundity schedule, u-shaped 
mortality schedule, and hump-shaped growth (competitive) schedule; “flat m” refers to 
community with flat mortality schedule, linear fecundity schedule and hump-shaped growth 
(competitive) schedule; “flat c” refers to community with flat competitive schedule, linear 
fecundity schedule, u-shaped mortality. Between plots comparison are made between (a) 
community where only reproduction is sensitive to the environment, (b) community where 
only growth is sensitive to the environment, (c) community where both reproduction and 
growth are both sensitive to the environment. Parameter details are in Appendix I. 
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rapidly in size leading a shift in invader structure towards larger individuals (fig 8b).   

Whether these shifts in structure promote or undermine coexistence, depends on whether 

size structure shifted in direction that advantages population growth.  For example, the 

shift in size distribution to smaller individuals under the reference structure is 

disadvantages to population growth because small individuals have low fecundity, high 

mortality and low competitive ability. Fig 7a shows this disadvantage is manifested as a 

negative contribution from ΔS under the reference fecundity.  This disadvantage grows as 

fecundity is deferred to larger sizes (fig 6a).  With flat fecundity, instead, this 

disadvantage is not present, and ΔS may even contribute positively to invader growth (fig 

7a). For ΔE, the issue is whether the structure difference between invader and resident 

gives greater benefits of the variable environment to the invader. A positive effect from 

ΔE is seen in this case with flat fecundity, but not with reference case where small 

individuals have low fecundity. In contrast, with variation in growth, flat fecundity leads 

to more negative effects compared with the reference, as then there is less benefits to 

increases individual size (Fig 7b).  When fecundity and growth variation are combined, 

the pattern due to growth tends to be dominant.  It is important to note, however, that our 

reference schedules chosen to be the most realistic among the schedules considered point 

to the storage effect as the overwhelmingly dominant mechanism.  Flat fecundity gives 

the largest values for ΔE and ΔS, but this assumption is not very realistic.   

(a) Eb only           
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(b) Eg only 

 

(c) Eb + Eg 

 

Fig 8.  Shift in size distributions from resident (dashed) to invader (solid) state. Comparison 
are made between cases with variation in reproduction only (a), variation in growth only (b), and 
both reproduction and growth varies (c). Results here are illustrated using the reference 
demographic schedules: two species have identical linear fecundity schedule, u-shaped mortality 
schedule, and hump-shaped growth schedule. Parameter details are in Appendix I.  

 

Discussion 

Our cohort-based size-structured lottery model shows that general theory is 

compatible with studies of interesting biological details.  Our model reaffirms the 

important role of the storage effect in promoting coexistence in a variable environment.  

Although other mechanisms may be present, for our most realistic combinations of life-

history schedules, the storage effect was the major factor for stabilizing coexistence, and 

sometimes the only significant contributor to coexistence.  However, our structured 

lottery model revealed the potential importance of environmental variation individual 

growth, which could not be examined in the original unstructured lottery model.  Our 

results show that the key effects of a complex life-history on coexistence through the 
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storage effect can be summarized by just a few parameters: the fractional contributions to 

population growth through key processes, principally, fecundity, individual growth and 

individual survival on average across the structured population.  An informative 

approximation to the magnitude of the storage effect involves only these quantities and 

the variances and covariances of temporal variation in fecundity and individual growth.  

This means that the key results understood in relatively simple terms that are only a little 

more complex than in the unstructured lottery model.  This means also that assessing the 

likely importance of the storage effect in species with complex life histories in nature 

need not be complex. Details of life-history schedules are not needed, only the relative 

contributions of key processes to population growth in a population as a whole. 

In addition, a structured model allows study of the possible contributions to species 

coexistence due to changes in the structure as density changes, especially changes 

between resident and invader states.  We found two mechanisms, quantified as ΔS and 

ΔE, which reflect such shifts.  Although normally dominated by the storage effect, these 

factors can be significant when size shifts between stages that that vary greatly in their 

contribution to population growth. For example, with flat fecundity and mortality 

schedules small individuals can contribute more significantly to space recruitment. Shift 

in structure towards smaller individuals under variation in reproduction leads to strong 

stabilizing effect through ΔS and ΔE. Shift away from it under variation in growth leads 

to the opposite. The opposite example is delay in reproduction where sapling contribute 

nothing to reproduction. Shifting in size structure towards it under variation in growth 

leads to strong destabilizing effect. 

The cohort-based size-structured lottery model that forms the basis for this theory of 

complex natural system is conceptually simple and easily tractable. Its novelties lie in 
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many aspects. The model captures detailed processes in seedling recruitment and post-

recruitment growths. Species are capable of partitioning the environment during both 

process. The model is in discrete-time, which is potentially better match than continuous 

time differential equation models to field studies where observations are made at discrete 

intervals of time. Tree grows continuously in our model as function of environmental and 

competitive conditions. It thus an advance over the matrix model of Dewi (1997) in 

which growth occurs as transitions between discrete size classes. Our model is also 

fundamentally different from the forest simulator models, which focus mostly on forest 

succession or prediction of dynamics in an applied setting (Botkin et al. 1972, Pacala et 

al. 1996). Instead, our model provides a unique perspective to link life history diversity 

with quantifiable coexistence mechanisms. 

Size structure and size dependency of life-history parameters have been much studied 

as a topic in life-history evolution, and for demographic studies of plant populations, 

without much attention to community dynamics. In the original lottery models, the 

important life history processes to recruitment as an adult tree all occur within one year. 

After this year, trees are insensitive to environment and competition in their rest of life. 

Our study shows without explicitly introducing size structure, it is impossible to match 

the abstract models with complex dynamics in real forest. The ordinary lottery model 

overestimate the importance of the storage effect due to reproduction by assuming that 

seedling stage is the only stage sensitive to both environment and competition. Meantime, 

it ignores the role of variation in growth to promote species coexistence. It will bias our 

understanding of the relative importances of processes for species coexistence in a real 

system.  
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The biggest effect of structure on coexistence occurs when stages sensitive to the 

environment are also sensitive to competition. In the model, variation in seedling 

recruitment and variation in tree growth lead to distinct storage effects: the storage effect 

in reproduction that provides species at low density advantages to recruit more and 

survive the most vulnerable stage of the life; the storage effect in growth that provides 

species at low density an advantage to grow faster to become more accessible to 

resources and more ready for reproduction.  Indeed, both seedling recruitment and tree 

growths can be highly variable due to environment, and both processes draw down the 

resources (Clark and Clark 1994, Binkley et al. 2010, Pretzsch and Biber 2010). 

Variation in reproduction and variation in growth have interactive effects on storage 

effect if they both present. A strong synergistic effect arises if an environment favors 

reproduction of a species also favors its growth. If it is the other way around, a strong 

antagonistic effect will rise. There are evidences for both positive, zero and negative 

correlation between the responses of seedling recruitment (or fecundity) and growth to 

the physical environment. Positive correlation can occur when the environment favors 

carbon gain in general, including both reproduction and growth (Despland and Houle 

1997). In another example, no correlation occurs within years because fecundity 

responses to the environment in a previous year and seed matures the year after 

pollination (Woodward et al. 1993). For some other species, negative correlation occurs 

because tree growth and reproduction are stimulated by opposite weather conditions 

(Knops et al. 2007). Negative correlation is also possible if environmental factors trigger 

a shift in resource allocation within an individual plant between these two processes. 

Currently sampling of tree growth, seedling recruitment in tropical forests will likely 

reveal the kinds of correlations present in the near future. 
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Aside from the temporal variation, mean the strength of storage effect largely 

depends on how key processes: fecundity, individual growth and individual survival on 

average contribute to population growth. Hypothesis of life history tradeoff suggest, due 

to physiological and allocation constraint, it is unlikely that species have advantages in all 

processes. Guilds of species invest more in reproduction relative to growth on average 

will in turn have more resource allocated to reproduction. Such guilds are more likely to 

experience strong storage effect in reproduction and less in growth. Similarly, guilds of 

species invest more in growth on average relative to reproduction will likely experience 

strong storage effect in growth and less in reproduction. Longer survival as the buffer 

favors both storage effects. 

Unlike storage effect being only affected by the population level life history 

processes, the effect of shift in structure is much affected by size-related within-

population differences in demographic processes. Whether shift in structure promote or 

undermine coexistence depends on whether size structure shift in directions where 

individuals have more demographic advantage. When being small is in great 

disadvantage, as in the references case studied especially with large delay in 

reproduction, shift in structure towards larger individuals driven by variation in growth 

favors species coexistence. If being small has no such disadvantages, as in flat fecundity 

cases, shift towards smaller individuals driven by variation in reproduction favors 

coexistence.    

The ability to link complex life history with simple coexistence mechanisms made 

our model powerful. The uniqueness of our model lies in many other respects. The model 

is in discrete-time, a potentially better match than continuous time models to observations 

made at discrete intervals of time. Tree grow continuously, and is thus an advance over 
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the matrix model of Dewi (1997) in which growth occurs as transitions between discrete 

size classes. Our model is also different from forest models that focus mostly on forest 

succession or prediction of dynamics in an applied setting (Botkin et al. 1972, Pacala et 

al. 1996, Purves et al. 2007).  It is worth mention that our model share similar philosophy 

with Integral projection model (IPM) (Easterling et al. 2000, Ellner and Rees 2006, 2007) 

in terms of avoiding the arbitrary discretization of the population and facilitating 

parameter estimation of the smooth demographic schedules. In fact our model can be 

easily extend into the IPM framework to capture variation between individual of the same 

sizes in life history processes. But we have not find any effect of the individual level 

variation on our conclusion but much effect on the computational speed (unpublished 

work). That we stick with the cohort-based model.  

Our model has broad implications for species with complex life histories. For 

example, in animal communities, body size is also an important trait that scales with 

metabolism and many other life history traits. Our size structured model can be 

generalized to study species coexistence in these systems as well. Among all systems, we 

do see a strong role of our model to facilitate studies long-term studies of forests tree.  

Long-term studies in different systems with yearly based diameter and height 

measurements, combined with dendrometer measurements and tree ring chronology, are 

critical in revealing temporal pattern of tree growth in response to environment (Enquist 

and Leffler 2001, Nath et al. 2006, Soliz-Gamboa et al. 2012). Overall, the amount of 

study on variation in tree growth is disproportional to its potential importance for species 

coexistence, as our study suggest. Many data on growth is measured on multiple-year 

intervals but aggregation through years loses information on the variation within the 

census interval (Clark and Clark 1999, 2001). On the other side, studies on seed trap and 
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seedling plots reveal ubiquitous spatial and temporal variations in seedling recruitment in 

different systems as a result of environment and species interaction (Schupp 1990, 

Connell and Green 2000, Harms et al. 2000, De Steven and Wright 2002, Beckage et al. 

2005, Wright et al. 2005, Norden et al. 2007, Metz et al. 2008). Inverse modeling can 

estimate the seed production from the seed rain mapped, providing better knowledge in 

size-dependence in reproduction (Muller-Landau et al. 2008). Our theory suggests not 

only the number of the seedling recruits is important, but also how large its initial size is 

and how fast it can grow in response to the environment. To get the full picture for 

species coexistence, studies on seedling recruitment need to be integrated with study on 

tree growth.  

What the long-term demographic studies from forest census won’t tell us is the 

separate role of environment and competition on variation in life history traits. Control 

experiment can artificially creating resident-invader state for different species (Sears and 

Chesson 2007) but such experiment can be unrealistic and destructive for long-lived 

perennial plants. In the next step, proper statistical models need to be developed to link 

the latent processes in interaction between environment and competition with the 

observations. The recent advancements of hierarchical Bayesian model make it possible 

to synthesize observations from different life history processes with multiple underlying 

processes (Metcalf et al. 2009, Clark et al. 2010). Besides, the model can estimate 

demographic traits that not directly measurable. Integrating statistical models with the 

cohort-based size structure models will complete our understandings for the different 

coexistence mechanisms in the forest system. Such work is yet to be done. 

 

Appendix I Demographic schedules 
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Fecundity schedule 

The fecundity of an individual partly depends on a species specific size-dependent 

fecundity schedule. The fecundity schedule in this study is specified as linear function of 

size, ajc, after some size threshold, a0, as in Fig 2a, according to the formula:  

1 0( ), 0ma ( )x
jca jca ak   .        A.1  

The parameter 1 is the sensitivity of fecundity to size. The values chosen for and for 

each case illustrated in this study are listed in Table A.1. 

Mortality schedule 

Mortality rate of any individual is determined by a species-specific mortality 

schedule. The mortality schedule in this study is chosen as a u-shaped function, as in Fig 

2b, specified by five parameters: 
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
  A.2   

The parameters 0 , mm m and m  specify that the mortality is near 0m at small sizes, 

decreases towards mm as sizes increases, and increase towards m as size is very large.  

The parameter d   determines how rapid mortality rate moves between these different 

levels with size. The parameter ma determines the size after which mortality rate increase 

with size. The parameters  d and ma are fixed in all cases as 0.05 and 5 respectively. The 

values chosen for and  for each case illustrated in this study is listed in Table 

A.1. 

Growth schedule, also called competitiveness schedule 

As described in Eq. (5), the potential growth of an individual partially depends on a 

species-specific growth schedules. In this study we choose a Gompertz-alike function for 

1 0a

0 , mm m m
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growth schedule so that in equilibrium cases, tree size increase slowly when small, faster 

when tree gets larger, slows down and stop growing eventually when tree get very large 

(Fig. 2c).   

The original Gompertz growth function is for differential equation model where the 

growth of tree follow the following equation  

0 1b
dy

dt
b y          A.3  

where lny W , the logarithm of tree size W. We use W instead of ja  here for tree size to 

avoid confusion on the actual methods for tree growth used in our study.    

We discretize the Gompertz function by integrated Eq. A.3 and obtain  

    1 10

1

( 1) ( ) [1 e ]b bb
y t e y t

b
    .    A.4 

Therefore tree size increases as  
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and the growth in discrete time is  
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
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          A.6 

in discrete time. Unlike other model that used Gompertz function for the deterministic 

growth process, we use it to describe the potential to grow in equilibrium cases, and the 

actual growth further depends on environment and competition.  

After the parameter transformation, the hump-shape growth schedule is determined 

by the following function with two parameters, truncated below zero: 

0
1max( ,0)

jca jc jca ac   .  A.7 
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where 0 1exp )( b   and 0
01

1

exp( (1 )
b

b
  . The parameter 0 and 1 determines how 

fast the growth potential increase with size before it decreases with it at large sizes. The 

values chosen for 0 and 1 for each case illustrated in this study is listed in Table A.1. 

Comparisons between models with different demographic processes 

Most results illustrated in this study involve comparisons between demographic 

schedules. Several constraints are applied to make the different demographics schedules 

comparable. For comparisons between different fecundity schedules, the averaged 

fecundity under single species steady state is fixed between schedules. For comparisons 

between different mortality schedules, the longevity under single species steady state is 

identical between schedules. For comparison on competitive schedule, the average 

competitiveness under single species steady state is identical between schedules. These 

averaged values are defined later in details, in Eq A.10, A.11 and A.12 respectively.  

The average demographic traits, where the constraints are applied, are calculated by 

averages weighted by the stationary age structure. To calculate these age-averaged 

demographic traits, it is necessary to obtain the age dependency in demographic 

schedules. In equilibrium cases, there is a one-to-one correspondence between age 

structure and size structure. We know the demographic trait for individuals at certain age 

by first figuring out their size at different ages. Under single species steady state 

individual grow at fix rate, and there is a unique projection between the size structure and 

the age structure. The size of individual at age x is obtained by iteration through the 

following process in single species steady state: 
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( )ja x is defined as the size of individual at age x, and the size of individual at age 1  

is defined as the size of the initial seedling cohort (1)j jsa a .The variable gj is the mean 

environmental responses in growth andC is the constant competitive responses in single 

species steady state.  After knowing their sizes at different ages, we could obtain the age-

structured demographic schedule. For individual of age x from species j, we label its 

fecundity rate as ( )jk x where ( )( )
jj a xx kk  , its mortality rate as ( )jd x where ( )( )

jj a xx dd  , 

and its competitiveness as ( )jc x where ( )( )
jj a xx cc  .   

The probability that an individual of species j survives to age x is jxl  where

1
1 ( ))(1x

jx i jl id
   . Due to the fixed growth rate under single species steady state, only 

certain sizes are possible, which make the model similar to an age-structured matrix 

model. Many well-studied properties of the matrix model can be applied. The stationary 

age distribution is  

1

j
jx

x
x

l x

l
 






        A.9 

The stationary age distribution is used as a weight to calculate average demographic 

traits. For the purpose of comparing different fecundity schedules, we fixed the average 

fecundity, weighted by the stationary age structure in Eq (A.1), under single species 

steady state: 
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where bj is the mean environmental responses in reproduction.  

For a fixed jk , there is no unique choice of bj and ( )jk x . To avoid 

overparameterization, the ( )jk x and jk are chosen first, bj are then fixed and can be 

estimated numerically. The parameter details on ( )jk x and jk is in Table A.1.  For non-

structured lottery model, the average fecundity is simply as bj

jk e .  

For the purpose of comparing different mortality schedules, we fixed the average life-

span under single species steady state. The life span for individual in structured 

population is estimated as:  

1
j jx

x

L l




   .       A.11 

For the non-structured lottery model, the life span is simply one over the death rate 

1/ jd .    

For the purpose of comparing different competitiveness schedule, we fixed the 

average competitiveness weighted by the stationary age structure under single species 

steady state: 

1

1
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Similar with the average life-time fecundity, for fixed jc there is no unique choice of

gj and ( )jxc x . The values for jc and ( )jxc x are chosen first and then gj are solved by 

numerical methods. For the non-structured lottery model, the average competitiveness is 

simply gj

jc e . However, in non-structured lottery model, the absolute magnitude of this 

value has no effect on the species coexistence, only the relative magnitude matters 

(Chesson and Warner 1981). Besides, the individuals in the non-structured lottery model 

do not grow, so it is not meaningful to compare c between structured and non-structured 

models.  

 

Parameter setting 

Parameters for the model to illustrate the results are listed in Table A.1.  

 
 Table A.1. Parameter settings in the model 
 

                        Schedules 
Cases 

Fecundity 
schedule 

Mortality 
schedule 

Competitiveness 
schedule 

Fig. 3 nonstructured model 1.1253706k   0.065m   NA 

Fig. 3 setting 1, 
Fig. 4, 5, 7 ref 

Spp. Fig. 1, 2, 4 ref, 5 Ref, 6,7 

0 0a   

1 1   

1.125k   
0 0.1m   

0mm   

0.02m   

0 0.819 

1 1.573   

c=0.528 
Fig. 6 

Spp. Fig. 3 
0a and 1  varies 

1.125k   
Fig. 7 Flat f 1.125k 
Fig. 7 Flat m 

0 0a   

1 1   

1.125k   

0.065m   

Fig. 7 Flat c 

0 0.1m   

0mm   

0.02m   

c=0.528 

 
 

Apendix II Approximation for the Storage Effects and CovEC 



128	
	

128	
	

The storage effects can be measured exactly through simulation, or studied 

analytically through approximation. We have placed the responsibility in introducing the 

exact storage effects and the detailed approaches to measure it in our paralleling 

manuscript Chesson and Yuan (in Progress). The exact storage effect approach facilitates 

the quantification of coexistence mechanisms in complex models. The results on storage 

effect shown in main text are the exact values. Nonetheless, to fundamentally understand 

how life history details affect the storage effect, it is necessary to study each functional 

component of the storage effects – sub-additivity and covEC – based on the quadratic 

approximation. As explained in the main text, the strength of the storage effect is 

proportion to these two components: sub-additivities provide a buffer for population 

growth in bad environment; invader-resident covariance differences provide invader 

species advantages to escape the competition. These qualitative descriptions in invader-

resident state comparison can be quantified by the following formulae where the 

community average storage effect due to variation in reproduction is approximated as 
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and the community average storage effect due to variation in growth is approximated 

as 
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In Eq. A.13, the quantity i
bj represent the covariance between environment response 

in reproduction and competition, bcov( , )jE C , for species j when species i is the invader. 

Similarly, in Eq. A.14, the quantitate i
gj  represent the covariance between environmental 



129	
	

129	
	

response in growth and competition, cov( , )gjE C , for species j when species i is the 

invader. Thus the quantity
i j

j i
bj bj 


  and 

i j
j i

gj gj 


  measures the differences in the 

covariance between a species in the invader states and the species in resident state. Both 

bI and gI  are averages of the covariance differences for each species in the 

community between the two states times the subaddtivity , scaled by sensitivity of 

competition .  

The quantity i
bj  measures the interaction between environment in reproduction and 

competition for species j and i
gj  measures the interaction between environment in 

growth and competition. The interaction is another important component for storage 

effect, different from the covariances. The interaction, in this case as subadditivity, 

buffers the population dynamics. It makes sure advantages accumulated in good years for 

an invader do not cancel out by population decline in bad years. The estimation of 

subadditivity for the cohort-based size structure model is described in details in Appendix 

IV. The quantity i
j
 is a scaling factor in time for convenient of comparison between 

species with different life history, measured as the sensitivity of growth rate in 

competition for species j. The scaling factor i
j
 also partially reflects the longevity of 

trees in the forest. Divided by it, we are now compare population growth rate on the unit 

of life time rather than per unit of time. In our studies, species have identical mean life 

history, and scaling factor is less important.  

As shown above, the approximation for the storage effect is essential for 

understanding, even though it is less accurate than the exact measure. The quadratic 

approximation to get Eq. A.13 and Eq. A.14 has been demonstrated in general models 
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with single environmental response (Chesson 1994, 2000, 2008) and multiple 

environmental responses (Supporting Information, Angert et al 2009), and is not our 

focus here. In the rest of this appendix, we focus on how we studied the critical 

component of storage effect, CovEC, in this complex model and in the next appendix we 

will focus on the other critical component, buffer in population growth measured as sub-

additivity in interaction between environment and competition.  

The covariances i
bj  and i

gj  is measured directly from simulation by the statistical 

covariance over time between the environmental responses and competitive response of 

species j. Further approximations on covEC are critical for understanding how life history 

details affect species coexistence through the storage effects. The competitive response as 

listed in Table 2, takes the form in the two-species invasive analysis: 
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where  gr br
sr sr1 [) ](gr

rc rc sr rc

E E E
a a a a rc

c

R c e m a c e c k e N   is the requirement for 

space, 
rcrc a

c

S N m  is the available space released by death and r indicate the resident 

species. The requirement for space R depends on the environmental response in growth 

and reproduction. The available space S is a constant function in terms of the 

environment responses. Therefore the covariance between environment and competition 

is reduced as   

cov( , ) cov( , ln( )) cov( , ln( )) cov( , ln( ))E C E R E S E R       A.16 

where E is either Eg or Eb. 
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As in Table 3, the effect of life history schedules on covEC can be summarized by 

θ’s, the sensitivity of competition to environmental responses. Covariance between 

environmental responses in reproduction and competition for the resident is: 

      , cov , vac v ro br g br gr brbE E EE C       A.17 

and for the invader is: 

    cov( , ) cov , cov ,bi g bi bgr bi brE C E E E E   .  A.18 

Covariance between environmental responses in growth and competition for the 

resident is: 

       , var covc v ,o gr g gr g brb rC E E EE       A.19 

and for the invader is: 

      , cov , ccov ov ,gi g gi gr gi brbE C E E E E   .   A.20 

The first step to get the above approximation of covEC is doing linear expansion of ln 

(R) at the equilibrium value of gr grE   and br brE  . Let ln ( , )gr brR f E E , and in 

linear approximation  

( , ) ( , ) ( , )( ) ( , )( )

                     higher-order term
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
  A.21 
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where the term labeled 0 , g  and s are all constant function of the environmental 

responses grE  and brE . Replacing the constant function 0 , g  and s  into the Eq. A. 21, 

the linear approximation of the ln R is:  

 0

constant function of the  and 

ln  +

gr br

g gr br g gr br

E E

b bR E E         


.    A.23 

Taking the above approximation of ln R into the covEC expression A.16, the first 

term in Eq. A. 23 as a constant function of the environmental responses will drops out 

when covariance is calculated. We are left with covEC simply be expressed as function 

of θ’s as well as the variance and covariance of environmental responses in Eq. A.17-

A20.  

As we work on the special cases where different species are independent in their 

responses to environment, invader species have zero covariances between their 

environmental responses and their competitive responses: cov( , ) 0biE C   and 

cov( , ) 0giE C  . 

As shown in Eq. A.22, the sensitivity g  and b   is the average proportional 

contribution of the growth (including both adults and seedlings growth) and seedling 

recruitment (establishment and growth) to the overall space recruitment respectively.  We 

can express these two terms using fractional contribution of different component to 

population growth, the p’s. The finite rate of increase Gj are additively sum of 

contributions from survival (Gsj), growth of the survived individuals (Ggj), seedling 

establishment (Gbj) and growth of established seedling (Gbgj), details in Table A.2. 

Correspondingly, fractional contributions p’s is defined as the ratio of each contribution 
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to the finite rate of increase: psj=Gsj/G, pgj=Ggj/G, pbj=Gbj/G and pbgj=Gbgj/G. 

Rearrangement in A.22 leads to expression of θ’s in p’s of species in resident status: 
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Table A 2. Finite rate of increases and its different components 
contribution to growth 

rate,  
Formula 
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Appendix III Buffering (subadditivity) in the model 

The storage effect requires buffered population growth. This is measured the 

interaction between the response to the environment and response to competition, as the 

quantity γ:   
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 

 

.   A.26 

A negative value, i.e. 0  , is called subadditive.  A subadditive interaction gives 

buffered population growth.  Henceforce in this appendix, we will refer to buffered 

population growth as subadditivity. With subadditivity, population growth of a species 

will suffer less from competition in a bad environment, than in a good environment. The 

more negative γ is, i.e. the more subadditive, the better the population can persist through 

bad environment. Therefore, good recruitment in one year is not going to be canceled out 

by bad recruitment in another year, also commonly known as the storage processes. In 

our model, there are two environmental responses – one in reproduction bE and one in 

tree growth gE – both will interact with competition. There is one γ arising from the 

interaction between each of these environmental responses and competition:  
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          A.27 

and 
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g
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r
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 .          A.28 

In our size-structured model, the population growth rate takes a complicated form, as 

the Eq. (13) can be extend in detail as:  
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E       A.29 

where jG is the finite rate of growth .To understand how bc and gc is determine by the 

life history details in this complicate structure, we need to divide the population growth 
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into additive classes. In our model, each cohort of the population is divided into the 

survival, seedling establishment, seedling growth, and tree growth classes. These classes 

are not real subpopulation. Nonetheless the action of environment and competition is 

independent within each classes, though overall they are interactive. This method has 

been proposed by Chesson 1990. Afterwards it has been described in detail and applied in 

Dewi 1997 to understand the storage effect in complex size-structured models. Here we 

described it briefly. The main step includes: 1) calculate the contribution of each class to 

population growth; 2) determines the sensitivities of these contribution to changes in 

environment, competition, and the interaction between environment and competition, 

while the latter is deliberately fixed as zero by the way we choose the classes; (3) the 

overall sub-additivities can be obtained by calculating the means and covariances of these 

sensitivities over all the classes weighted by their contribution to population growth. 

Below the mathematical details is outlined. 

In the cohort-based size structure model, if environment varies, the size structure of 

each species in the community will vary. As a result, the contribution of each size class to 

the population growth rate will vary over time, and so are sub-additivities. For 

simplification, I estimate sub-additivity in single species steady state, that is with constant 

environment. As mentioned, the first step to calculate sub-additivity is by dividing the 

population growth into additive components ( , )cpjG CE :    
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We define 
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N
jc

a
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 .  The component 1 jcc j jc a cjG a s q  is contributed by the 

survival of cohort c; the component 2
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E C
c j a a cjG c e s q is contributed by the tree growth 

of cohort c; the component 3
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c j js js a cjG a c k e q is contributed by the establishment of 

seedlings produced by cohort c; the component 4
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js jc

E E C
c j a js a cG c c k e q  is contributed 

by the growth of seedlings produced by cohort c. The species label j is omitted from now 

on for notation simplicity. The logarithm of the finite rate of increase contributed by each 

component of cohort c is:  
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    A.31 

The sensitivities of each component of growth rate to changes in environment, 

competition, and the interaction between environment and competition are each 

calculated following equations below. The sensitivity of growth rate component cpg to 

environmental response in reproduction is calculated as  

 cp
bcp

b

g

E



       A.32 

where lncp cpg G .  The sensitivity of growth rate component  to environmental 

response in growth is calculated as  

   gcp
g

cpg

E



 . A.33 

cpg
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The sensitivity of growth rate component  to competitive response is calculated as 

 cp
cp

g

C



  .      A.34 

The sensitivity of growth component to the interaction between environmental 

response in reproduction and competition is calculated as  

 .      A.35 

The sensitivity of growth component to the interaction between environmental 

response growth and competition is calculated as  
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 

      A.36 

The sub-additivity bcp  and gcp  are zero for all cases here since the each component 

is additive. In more details, the growth rate contributed by survival component 1cg  is 

neither sensitive to environment nor competition: 1 1 1 0bc gc c     . The growth rate 

contributed by growth of established individuals c2 is sensitive to environmental 

response in growth and competition, 2 2 1gc c    and not sensitive to environmental 

response in birth, 2 0bc  .The growth rate contributed by seedling establishment before 

growth c3 is sensitive to environmental response in birth and competition, 3 3 1bc c   , 

and not sensitive to environmental response in growth, 3 0gc  .The growth rate 

contributed by growth in seedling c4 is sensitive to environmental response in birth and 

growth, as well as competition, 4 4 4 1bc gc c    . 

cpg
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From Chesson 1990, the sub-additivity is expressed as the difference in the weighted 

average of   and the weighted covariance between sensitivity to environment and 

sensitivity to competition: 
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and  
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   A.38 

where b , g ,  , b , g  are weighted averages respectively. 

The weighted averages b is expressed as 
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and , , , are expressed in similar forms. Taking the values of bcp , gcp , cp  

0bcp  and 0gcp   into Eq. A.37 and Eq. A.38 we reduces the formulae into  

 3 4 3 4 2 3 4( )c c c c c c c
b

c c c

G G G G G G G
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 and   

 2 4 2 4 2 3 4( )c c c c c c c
g

c c c
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    

     .  A.41 

The growth rate components 1cG , 2cG , 3cG and 4cG are obtained directly from 

simulation. As indicated in Eq. A.40 and Eq. A.41, the relative contribution to tree 

growth rate in component, Gc2 and seedling establishment Gc3 determines whether 

g  b g
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variation in growth or variation in birth is more important for species coexistence. If 3cG  

is larger than 2cG , b  will have a larger magnitude ( a smaller negative number), and 

variation in birth will lead to stronger coexistence mechanism, and vice versa.  

Express in p’s, the storages coefficients, which are the positive values measuring the 

strength of the subadditivity from A. 40 and A. 41 on natural scale can be simplified as:  
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and  
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Appendix IV Supporting results: the effect of life history schedules on the relative 

importance of two storage effects.  

 

spp. Fig 1. The stabilizing effect changes proportionally with variation in reproduction (solid line) 
and variation in growth (dashed line). The solid line represent the case when there is only 
variation in reproduction; the dashed line represent the case when there is only variation in 
growth. The structured models have the reference demographic schedules: two species have 
identical linear fecundity schedule, u-shaped mortality schedule, and hump-shaped growth 
schedule. Parameter details are in Appendix I. 
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(a)                                                       (b) 

     

(c)         (d) 

 

Spp. Fig 2. Shift in resource allocation and functional component of storage effect as initial 
seedling size increases, for (a) and (b) relative contribution of growth rate are in normal and 
natural scale: pb in solid, pbg in dashed and pg in dotted. Buffer due to reproduction and covEbC 
are solid in c and d respectively. Buffer due to growth and covEgC are dashed in c and d 
respectively. The structured models have the reference demographic schedules: two species have 
identical linear fecundity schedule, u-shaped mortality schedule, and hump-shaped growth 
schedule. Parameter details are in Appendix I. 
 
(a)                    (b) 

  

(c)                                   (d)    
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Spp. Fig 3. Shift in resource allocation and functional component of storage effect as delay in 
reproduction increases, for (a) and (b) relative contribution of growth rate are in normal and 
natural scale: pb in solid, pbg in dashed and pg in dotted. Buffer due to reproduction and covEbC 
are solid in c and d respectively. Buffer due to growth and covEgC are dashed in c and d 
respectively. Two species have identical delayed linear fecundity schedule, u-shaped mortality 
schedule, and hump-shaped growth schedule. Parameter details are in Appendix I. 
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(c) 

 

Spp. Figure 4. The effect of different life history schedules on the components of the storage 
effect. Panel (a) compares subadditive interactions and scaling factors under different 
demographic schedules. Panel (b) compares covariance between environmental responses in 
reproduction bE and competition C , cov(E , )b C , under different demographic schedules. The 

quantity cov(E , )b C has similar strength between the case where only bE varies and the case 

where both bE and gE vary but in independent way. Panel (c) compares covariance between 

environmental responses in growth gE and competition C , cov(E , )g C , under different 

demographic schedules. The quantity cov(E , )g C has similar strength between the case where 

only gE varies and the case where both bE and gE vary but in independent way. The reference 

community (ref) has two species with identical linear fecundity schedule, u-shaped mortality 
schedule, and hump-shaped growth (competitive) schedule. In each separate case, one of the 
schedules is changed to size insensitive one whiles the other two remain the same: “flat f”  refers 
to community with flat fecundity schedule; “flat m” refers to community with flat mortality 
schedule; “flat c” refers to community with flat competitive schedule. 
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(a) Eb + Eg 

  

(b) Eb only 

 

(c) Eg only 

 

Spp. Figure 5. Partition of long-term low density growth rate into different mechanisms. The 
reference community ‘ref’ has two species with identical linear fecundity schedule, u-shaped 
mortality schedule, and hump-shaped growth (competitive) schedule. In each separate case, one 
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of the schedules is changed to size insensitive one whiles the other two remain the same: “flat f”  
refers to community with flat fecundity schedule, u-shaped mortality schedule, and hump-shaped 
growth (competitive) schedule; “flat m” refers to community with flat mortality schedule, linear 
fecundity schedule and hump-shaped growth (competitive) schedule; “flat c” refers to community 
with flat competitive schedule, linear fecundity schedule, u-shaped mortality. Between plots 
comparison are made between (a) community where only reproduction is sensitive to the 
environment, (b) community where only growth is sensitive to the environment, (c) community 
where both reproduction and growth are both sensitive to the environment. Parameter details are 
in Appendix I. 
 
(a)             (b) 

 

Spp. Figure 6 Size distributions and the corresponding age-size relationships in the structured 
model in constant environment. No invader (solid line) and resident (dashed line overlapped with 
the solid line of invader) differences in either size structure (a) and age-size relationship exist in 
constant environment. Results here are illustrated using the reference demographic schedules: two 
species have identical linear fecundity schedule, u-shaped mortality schedule, and hump-shaped 
growth schedule. Parameter details are in Appendix I.   
 

 

   a. Eb only                                b. Eg only                                 c. Eb + Eg  

 

spp. Figure 7. Age size relationship in cases where only Eb varies (a), only Eg varies (b), and 
both Eb and Eg vary (c). The solid lines represent the invader state, and the dashed lines represent 
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the resident state. The dotted line in the age-size relationship plots is for the single species 
stationary status. 
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Abstract 

 

Complex life histories potentially carry much information about species 

differences in ecological strategies. Identifying which aspects of these differences 

affect species coexistence is a critical task for theory. Formulating differences in 

mean demographic rates between species as tradeoffs, we ask whether such tradeoff 

lead to stabilizing effect alone or modify other stabilizing mechanisms. Using a 

continuous-size structured lottery model, we are able to study both tradeoffs in 

relative importances between reproduction and individual growth, and tradeoffs in 

size-dependency of these life history processes. We demonstrate that quantifying 

coexistence mechanisms is essentially no more difficult for species with complex life 

histories than for species with simple life histories. In a constant environment, life-

history tradeoffs can only affect average fitness-differences between species, and 

potentially act as equalizing mechanisms. In variable environment, tradeoff further 

leads to equalizing effect of fluctuation dependent mechanisms. Stable coexistence 

arises only in a variable environment in our model, but the strength of the stabilizing 

effect depends on life-history tradeoffs. The storage effect, the main stabilizing  

mechanism in our model, is strongest when the sensitivity of a life-history process to 

variation in the environment is aligned positively with the tradeoff in mean 

importance between life-history processes. Thus, a species with high environmental 

sensitivity in fecundity should have an average advantage in fecundity relative to a 

species with high sensitivity in individual growth, which should have an advantage in 

individual growth. Size-dependency in demographic rates can affect species 



153	
	

153	
	

coexistence through changes in mean structure with population density. For a, stabilizing 

effect to occur for two species from opposite size-dependency in life history processes, 

opposite shifts in size structure are needed. However, an appreciable stabilizing effect 

occurs only under very restrictive circumstances.  

 

Introduction 

 

Every species is unique and there is wide variation in life history strategies (Stearns 

1992). There have been many attempts to categorize species into functional groups based 

on their life histories, but detailed studies within groups invariably reveal finer 

differences in life-history (Clark and Clark 1992). Striking species-specific recruitment, 

individual growth and survival patterns are commonly observed. It is widely believed that 

such diversity in demographic traits and their patterns of ontogeny can promote species 

coexistence (Lusk and Smith 1998, Nakashizuka 2001, Kneitel and Chase 2004, Gilbert 

et al. 2006, Wright et al. 2010). But questions arise: are differences in different aspects of 

life history strategies between species equally important for species coexistence? What 

are the specific coexistence mechanisms involved? Identifying which aspects of the 

differences matter for species coexistence is critical for understanding the maintenance of 

species diversity.  

Our previous work studied a community model with continuous size structure that 

allows the formulation of detailed life history strategies. In the model, species’ 

recruitment rates and individual growth rates could be sensitive to variation over time in 

the physical environment in species-specific ways. However, we had assumed species 
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have identical mean life history. It is the purpose of this paper to examine the effects 

of contrasting differences in size dependence of vital rates between species on their 

coexistence. We seek to understand whether species differences in this dependence 

alone can act as coexistence mechanisms through trade-offs between species in their 

life-history schedules, and how these life-history schedule differences interact with 

the mechanisms previously elucidated. 

In a size-structured community model, two forms of the storage-effect 

coexistence mechanism can arise, one from variation in recruitment, and the other 

from variation in individual growth. Both mechanisms are affected by the population 

stage structure. This previous work (Appendix B) also showed that another 

mechanism could arise under some circumstances due to density-dependence of size 

structure, but only in a variable environment when the storage effect would also be 

present.  

Species differences in life history traits might affect coexistence in two different 

ways.  They might affect average fitness differences, which would not alone lead to 

stable existence. On the other hand they might lead to or affect stabilizing 

mechanisms, which by definition are necessary for stable coexistence (Chesson 

2000). Such  mechanisms enhance a species’ ability to recover from  low density 

(Chesson 2000). Stabilizing mechanisms can be seen to work by enhancing 

intraspecific density dependence relative to interspecific density dependence on some 

spatial or temporal scale.  

There has been much interest in species differences in mean demographic rates, 

formulated as tradeoffs, in studies about life history evolution and population 
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demography. While it is commonly believed that such trade-offs are maintained by 

inherent differences in species’ adaptation to the environment, their consequences for 

species coexistence are not clear. Demographic tradeoffs such as growth-mortality, 

growth-fecundity, and propagule size-number between species have been widely 

observed in nature (Jakobsson and Eriksson 2000, Gilbert et al. 2006, Wright et al. 2010, 

McMahon et al. 2011). There is the potential that different positions on a tradeoff curve 

may have advantages under different circumstances.  For example, in forests, it is 

hypothesized that trees with an advantage in individual growth can do better in high light 

while trees with advantages in survival can do better in low light (Kobe 1999). It is 

common to see it assumed that life history tradeoffs promote species coexistence, but 

some people question their sufficiency to support high species diversity (Condit et al. 

2006, Esther et al. 2011). The basic issue is that mere demonstration of life-history 

differences between coexisting species is not sufficient to say that they have a role in 

coexistence. There need to be serious studies to investigate whether such mean 

differences affect average fitness differences or stabilizing mechanisms  (Chesson 2000).   

Tradeoffs in demographic rates can easily be seen to have a role in equalizing average 

fitness differences between species (Hubbell 2001, Turnbull et al. 2008, Ostling 2012). 

For example, trees with higher relative growth rates usually have higher mortality rates 

due to physiological constraints such as low wood density (Iida et al. 2011, Iida et al. 

2013). Producing a larger number of offspring often sacrifices the quality of each 

individual (Turnbull et al. 1999, Jakobsson and Eriksson 2000). However, it is now 

known theoretically that the existence of such tradeoffs, although tending to equalize 

average performance of different species, need not stabilize coexistence (Chesson 2000). 
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Nonetheless, quantifying these equalizing effects is  critical. Similar average fitnesses 

between species make stable coexistence easier if stabilizing mechanisms are present. 

It seems less clear how stabilizing mechanisms can arise from tradeoff in mean 

demographic rates. 

Apart from the unknown effects of differences in mean demographic rates, it is 

known that differences in responses of life-history traits to temporal environmental 

variation can lead to stable coexistence by the storage effect. Underlying physiology 

differences between species determine differences in their resource use efficiencies. 

In desert annual plants, for example, opposite patterns of temperature and rainfall can 

favor germination and growth in different species (Kimball et al. 2012, Chesson et al. 

2013). A favorable physiological response to environmental conditions, however, can 

be associated with stronger competition if many individuals respond at the same time, 

and so draw down resources. Thus, a species at high density in a favorable 

environment can contribute strongly to competition and so experience stronger self-

limitation. Thus, there is positive covariance between environmental responses and 

competition (covEC).  In contrast, a species at low density has more opportunities to 

escape competition and take advantage of a good environment if other species do not 

respond favorably to the same conditions.  Thus, it might have only a weak positive 

covariance between its environmental response and competition, or negative 

covariance. These differences between high and low density are at the heart of the 

storage effect coexistence mechanism, but it is not known how they are affected by 

tradeoffs in life-history schedules.  



157	
	

157	
	

Given the importance of the storage effect in our previous study where species had 

the same size-dependence of their life-history schedules, we are particularly interested to 

see how differences between species in these life-history schedules might interact with 

this mechanism. This question is especially important given our finding that the strength 

of storage effect is highly dependent on the mean life-history properties. In addition, 

whether density-dependence of size structure promotes or undermines coexistence 

depends highly on the size-dependency of life history schedules.  

In this study we ask two main questions. First, do tradeoffs in mean demographic 

rates and the size dependence of demographic rates lead to stabilizing effects alone? 

Second, do these tradeoffs interact with mechanisms that depend on fluctuations over 

time in demographic rates to affect coexistence? We seek the answers by quantifying 

coexistence mechanisms, and seeing how the magnitudes of the mechanisms change with 

life-history differences between species. In a previous study of a nonstructured lottery 

model we were able to show how a fecundity-mortality tradeoff interacts with 

environmental variation to increase the strength of relative nonlinearity and weaken the 

storage effect. In this study, we have the opportunity to examine a different tradeoff that 

does not arise in the simple lottery model, namely the fecundity-individual growth 

tradeoff as an example to provide a clear link between life history diversity and species 

coexistence.  

 

Method 

 

Model description 
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To study how these complex life histories affect different coexistence 

mechanisms, we use our recently developed continuous-size structured lottery model. 

In the model, important traits of species, such as size to maturity, body sizes, ability 

to grow and reproduce, are all size-dependent. Size explicit traits allow us to capture 

tradeoffs in mean life history process and how they shift through ontogeny. More 

importantly, in our model, critical life history processes, i.e. reproduction and 

individual growth, can be sensitive to both the physical environment and competition. 

Quantification of coexistence in this model in essence is no more difficult than in the 

simple lottery model. Theory development (in the next section) summarizes the 

complexity in life history traits on different coexistence mechanisms.  

The model will be illustrated using forest trees. While we used it in previous 

studies for a guild of species with identical mean life history schedules, two species in 

this study have different mean life history schedules. Details of the model are 

described in Yuan and Chesson and Appendix I. Table A.1 in Appendix I gives the 

notation. The model works in discrete time. In each unit of time, deaths occur and 

free up space to give total available space S(t) for which the living compete. Demand 

for space R(t) comes from two sources: recruitment of new individuals, and growth of 

new and established individuals. Both can vary with the environment. Competition 

for the space is quantified as a ratio of demand to supply on the log scale:  

 ln
R

C
S

   
 

. 1  

Per capita offspring produced by each cohort depends on a species-specific size-

dependent fecundity schedule , jcj ak , where jca  is the size of individuals in cohort c of 

species j, and an environmental response in reproduction Ejb. The formula for per 
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capita offspring is equal to b ( )

,
j

jc

E t

j ak e . Each offspring has an initial size sja , but grows in 

size depending on the environment and its competitiveness. The growth of an individual, 

whether seedling or sapling, in general depends on a species-specific size-dependent 

competitiveness schedule , jcj ac and the environmental response in individual growth Ejg. 

Together these two factors give a net maximum growth amount of g

,
j

cj

E

j ac e , which is then 

reduced by competition. The environmental response in reproduction Ejb and individual 

growth Ejg are normal random variables with mean µjb, µjg and variances 2 2,jb jg 

respectively.  

The total potential growth and seedling recruitment lead to a total resource demand 

R(t) in Eq. (1).  It is the sum over space required by each new seedling to establish and 

grow, and for the growth of each surviving sapling and adult. Competition modifies the 

actual area of offspring recruited to b

,
j

jc

CE

j ak e  and actual growth of established individuals 

to g

,
j

cj

CE

j ac e  . The allocation of space to an individual is proportional to its demand for 

space divided by competition. We assume the initial growth of offspring do not suffer 

from competition. Instead, competition restricts the total area they can occupy, and 

growth has the effect of modifying the actual number recruited for a given area recruited. 

Using the notation 
jcam for mortality, Njc for cohort density, the population growth rate is 

calculated as the natural log of the ratio of space occupied by the population from one 

time to another, which equals 
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where the sums are over cohorts. In Eq. (2), time, t¸is omitted from the E’s, C,and Njc for 

notational simplicity.  

We will further scale growth rate by dividing Eq. (2) with βj, the sensitivity of the 

growth rate to competition 

 j
j

r

C



 


 ,  (3) 

which we evaluate in a constant environment at equilibrium (Yuan and Chesson, in 

progress). The quantity 1/ βj has units of time defines a timescale that we call the natural 

scale: the timescale of responsiveness to competition.  Past work has shown that 

expressing population growth on the natural scale provides more effective comparisons 

between species with contrasting life history (Chesson 2008). 

The size structure is defined as a set , 1, 2...jc

j
jc

S c
a

N

     
 




that describes the 

fraction of the population of certain sizes. The population growth rate in Eq. (2) can 

be expressed as a function (G and its ln form g) of environment, competition and 

structure:  

 , , ) (( )n , ,lj j j j j jr g GC S C S E E .  (4)  

We use invasibility as our definition of species coexistence. The strength of 

coexistence is quantified using the rate at which a species recovers after perturbed to 

low density, while its competitor that has converged on stationary fluctuations 

(Turelli 1981, Chesson 1994). The species held at lower density is called the invader 

species, and we define its recovery rate by measuring the long-term low density 

growth rate ir by: 
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 (5)  

We make the assumption, which is borne out by simulations, that the fluctuations 

over time in a single species community converge on a stationary stochastic process 

given independent and identically distributed fluctuations in the environment over time.  

A single species in this state is called the resident species in an invasibility analysis. 

Coexistence is stable when both species have a positive recovery rate in invader state. 

We first ask whether differences in life history schedules lead to stable coexistence in 

a constant environment in our model. We then ask how mean differences in life history 

interact with variation in life history by looking at cases where environmental variation 

acts on different life history processes: reproduction, individual growth, or both. In 

addition to our main approach to partitioning recover rate into different contributes of 

coexistence mechanisms (in the next section), we measure the coexistence region by the 

average fitness differences of two species that allow mutual invasion. Among many ways 

to vary average fitness, we vary the difference in mean environmental response in 

reproduction between species (µb1-µb2) while fixing the other parameters. The range of 

µb1-µb2that allows successful mutual invasion is a measure of the region of stable 

coexistence.  

 

Theory development 

Thee recovery rate ir can be partitioned into different coexistence mechanisms:   

 ' i i ii ir S Er I      . (6)  
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The individual coexistence mechanisms in Eq (6) are species specific indicated by i due 

to asymmetry in mean life history schedules. Each mechanism measures different aspects 

of the effects of life history through an invader-resident comparison (Chesson 1994). All 

mechanisms are measured directly from simulations. The approximations are used to 

facilitate understanding. The first term 'ir measures contribution due to average fitness 

differences and fluctuation independent mechanisms—mechanisms in shorter time scale 

than unit of time considered. The quantity 'ir is thus measured as invader-residence 

difference in the recovery rate at equilibrium. Three fluctuation dependent mechanisms in 

this model are the mean structure effect iS , the mean environmental effect iE , and the 

mean effect of interaction between environment and competition iI , known as the 

storage effect. Stabilizing effect (or destabilizing effect if negative) of each mechanism is 

a community-average measure as each mechanism averaging over all species as invader (

S , E and I ). Fitness inequality effect is measured as any deviation of the individual 

level mechanisms from their stabilizing effect: iS S  , iE E  and iI I  each 

labeled as iS , iE and iI  

The quantity iS measures shifts in mean structure between invader and resident 

states that occur in a variable environment (Appendix II). Our previous study shows 

this mechanism is strong only when there is a large shift in size structure between 

sizes that vary greatly in their contribution to population growth (Yuan and Chesson, 

in progress). Variation in reproduction leads to a low-density advantage in 

reproduction and more seedling recruitment drives size structure towards more 

smaller individuals in invader state compared with the resident state. Variation in 
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individual growth leads to low-density advantage in growth, and larger individual growth 

drives size structure towards more larger individuals in invader state. Shift in structure 

only promotes coexistence when size structure shift in direction with demographic 

advantages. It undermines coexistence otherwise. Thus, this mechanism highly depends 

on both the shapes of demographic schedules and environmental variation. The shapes of 

demographic schedules determine the relative contributions of individuals of different 

sizes to population growth. Environmental variation determines the direction of the shift 

in structure.  

The quantity iE measures differences in mean environmental effect between invader 

and resident. The approximation for mean environmental effect comes down to a ln ratio 

of environmental variation (on exponential scale) in each process weighted by relative 

importance of each process, the p’s (Yuan and Chesson, in progress):  

 
 
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The p’s are average fractional contribution to population growth from recruitment 

(pb), initial growth of offspring (pbg), growth of established individual (pg), survival (ps). 

They add up to one. Each fraction is measured in either invader or resident state indicated 

by their subscripts. 

Approximation in Eq. (7) indicates that large magnitude of iE is due to two reasons: 

strong asymmetries in σ2, sensitivity in environmental responses; strong asymmetries 

between species in p’s, relative importance in the contribution of the processes to 

population growth rate. In particular, the magnitude iE is large when one species has 

strong sensitivity to environment in  processes important to its population growth, and the 
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other species does not. However, asymmetries in sensitivity to environment, which 

are density-independent, lead to fitness inequality only. The relative fractional 

contribution as measured by the p’s, however, can change as the mean structure shifts 

with species’ density. Thus we predict that a strong stabilizing or destabilizing effect 

of iE incurred by such a density dependent loop can only be seen with a significant 

effect of the shift in size structure. Based on the approximation, our hypothesis is that

iE contributes to stabilizing coexistence only when the size structure in the invader 

state results in a greater p compared with resident state for the process sensitive to the 

environment. But such a condition is restrictive. 

Among all mechanisms, the condition for a stabilizing effect of the storage effect

iI  can be met most easily and the storage effect is usually the major contributor to 

the stability of coexistence (Chesson 2003, 2008). The storage effect measures 

differences in ability to decouple environment with competition between invader and 

resident. For it to promote coexistence, two critical requirements must be satisfied 

(Table 1). First, covariance between environment and competition (covEC), which is 

measured by a formal statistical covariance over time between environment and 

competition, must be higher in the resident state than in the invader state (Chesson 

2008). Such differences in covariance arise easily unless the invader species has the 

exact same pattern of variation in its environmental response as the resident. A 

resident species in a favorable environment imposes strong self-limitation through 

intraspecific competition—a high value of covEC. The invader has opportunities to 

escape competition when the resident species is suffering from the environment—a 

low value of covEC. The second critical component of the storage effect is buffered 
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population growth. The buffer is due to the subadditive (negative) interaction between 

environment and competition in population growth. As a result, increasing competition 

does not have such a strong limitation on population growth for a species in unfavorable 

environment as on species in favorable environment. Buffered population growth arises 

easily in nature, e.g. from the long life span of long-lived organisms and dormant stages 

of short-lived organisms. We defined storage (ψ) as a measure for this buffer.  It is  the 

absolute value of the negative interaction between environment and competition divided 

by sensitivity competition, i.e. it is measured on the natural scale. 

Life history processes sensitive to both environment and competition can all lead to 

the storage effect. In our model the storage effect can arise from both reproduction bI

and individual growth gI . The approximation for the storage effect shows the key 

effects of a complex life-history on coexistence because the storage effect can be 

summarized by the p’s, the fractional contributions to population growth through key 

processes (Table 1). As a process increases on average in its contribution to population 

growth, the corresponding buffer and covEC both increase (Yuan and Chesson in 

progress, Table 1). In the simple situation where species are independent in their 

responses to the environment, the storage effect an invader experiences depends only on 

the life history of the resident species (Table 1, Appendix II). From the approximation, 

we predict that a process leads to substantially storage effect when the average 

importance to population growth and the sensitivity to environment of a process are 

aligned. With contrasting life history between species, it is reasonable to expect strong 

asymmetries in storage effects experienced by different species. 
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Table 1 Functional components of the storage effects 

 
Formula 
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Table adapted from Table 3 in (Yuan and Chesson, in progress) Legends: ߰ୠstorage due to 
reproduction; ߰୥storage due to individual growth; ߯ୠ ൌ covሺEୠ, Cሻ; χ୥ ൌ cov൫E୥, C൯;ߪୠ୥ ൌ
covሺEୠ, Egሻ; σୠୠ ൌ VarሺEୠሻ; ୥୥ߪ ൌ VarሺE୥);  

 

Missing from from Eq (6) is the mean effect of competition iC . This mean effect 

of competition can be partitioned into a linear term and the relative nonlinearity iN . 

It is omitted because when two species have identical mortality schedules, the 

differences in the effect of competition between invader and resident are limited. 

Cases considered 

We mainly study two species with contrasting fecundity and growth schedules 

both in mean and shape. One species has an advantage in mean fecundity: it starts to 

reproduce right after seedling establishes and has mean reproduction increase more 

rapidly with size (Fig. 1). The other species has an advantage in mean individual 

growth with competitiveness for growth increasing rapidly with size, but its 

reproduction is delayed and increases slowly with size. For a comparison, we also 

consider an extreme case where we keep the mean of the schedules unchanged but 


I



167	
	

167	
	

change their shapes to be flat, i.e. size independent. The fecundity and growth function of 

species are chosen so that the species have equal mean fitness in a constant environment 

(Appendix III).  

To generalize our findings, we are able to vary the differences in demographic 

schedules between species along a continuous gradient in a tradeoff from the strongly 

asymmetric case (Fig. 1 black) to a symmetric case where the species are at the same 

point on the tradeoff (Fig. 1 grey). Along the gradient, demographic schedules are the 

weighted averages of two extreme schedules. Changing the weights morphs one into the 

other (Appendix III). Weights are obtained from analytical solutions so that along the 

gradient species have equal fitness in a constant environment (Appendix III). 

a.                                               b.                                             c. 

 

 

Fig. 1. Equilibrium demographic functions for species with fecundity growth trade-
off, comparison between strongly asymmetric (black) end and symmetric (grey) end of 
the tradeoff. When asymmetric, species 1 has a mean advantage in reproduction (solid, a) 
and a mean disadvantage in growth (solid, b); species 2 has a mean disadvantage in 
reproduction (dashed, a) and a mean advantage in growth (dashed, b). Both species have 
identical mortality schedule with size (c). 

 

Results 

Constant environment 
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In this model because all species are limited by the space in the same way, no 

stabilizing effect exists in a constant environment (Fig. 2). There is a unique solution 

for the difference in mean environmental responses in reproduction between species 

that allow species to have neutral coexistence (Fig2 a, Appendix III).  Either side of 

this value, one of the species excludes the other, i.e. any deviation in mean fitness 

differences leads to exclusion of one species. In a constant environment, a tradeoff in 

life history processes can only reduce the average fitness differences between species. 

Though such equalizing effects do not allow stable coexistence alone, they reduce the 

magnitude of the stabilizing effect required for stable coexistence (Chesson 2000).  

 

 

Figure 2.  Coexistence region measured by range of differences in mean environment responses 
in reproduction (µb) between species that allows successful invasion of both species. 
Comparisons are made between constant environment where the region is zero (a) and variable 
environment where there is a nonzero region (b). Details of parameterizations in Appendix III.  
 

A fitness advantage in life-time reproduction from one species can be equalized 

by its competitor having an advantage in individual growth (Fig. 3). However there is 

an exception: a fecundity-growth tradeoff cannot equalize fitness in the extreme cases 

where fecundity and mortality are insensitive to size (Fig. 3, dashed line). The reason 

for this is that, regardless of the size dependence, ultimately birth rates and death rates 

determine the fitness. If size does not affect any of these processes, growth in size is 
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irrelevant. Thus, individual growth, regardless of how it changes with size or differs 

between species, cannot compensate for fitness differences caused by fecundity or 

survival schedules. While this extreme case might be very unlikely in nature, we use it as 

a reference point for our study. 

 

Figure 3. Tradeoffs in life-time growth rate and life-time reproduction for two species that allow 
neutral coexistence in constant environment (solid). In extreme cases, with flat mortality and 
fecundity schedules (dashed), species have to be identical in fecundity for neutral coexistence, 
regardless of differences in life-time growth. Details of parameterizations in Appendix III.   

 

Variable Environment 

Stable coexistence, in our model, arises only when there are species-specific 

responses of life-history traits to environmental variations (Fig. 2 b).  However, 

differences in life-history schedules are critical in determining the relative importances of 

different fluctuation-dependent mechanisms. Previous work with the unstructured lottery 

model (Yuan and Chesson In review) showed that the magnitude of fluctuation-

dependent mechanisms increases proportionally to the sensitivity, σ2
b, of the species’ 

fecundity to environmental variation.  This finding is generalized to a linear function of 

σ2
b and σ2

g in the structured case (Yuan and Chesson, in progress), and in the analytical 

approximation to the storage effect (Table 1).  Thus, there appears to be no need to study 
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these mechanisms for a range of σ2
b and σ2

g. For simplicity, in this study, we fixed 

these sensitivities (σ2
b for reproduction and σ2

g for growth) at either 0 or 1.  

The storage effect 

With contrasting life history schedules (Fig. 1), two species experience storage 

effects of very different magnitudes (Fg. 4, 5, 6). The more contrast there is in life-

history schedules, the stronger the asymmetries in storage effects experienced by the 

different species (Fig 5, Fig. 6). The primary aspects of the difference in life history 

schedules that matters for the storage effect are the population level demographic 

properties. With environmental responses being independent between species, the 

storage effect experienced by an invader is created by the resident species.  A resident 

can lead to a strong storage effect when its life history processes that on average 

contribute strongly to population growth are also strongly sensitive to the 

environment (Table 1). Tradeoffs between species in life histories drive the 

asymmetries in the storage effect through altering the average fractional contribution 

of each process to population growth (pr in Table 1.). The species with an advantage 

in fecundity have a larger fractional contribution of reproduction (prb) than the 

fractional contribution of individual growth (prg); the species with an advantage in 

individual growth has prg larger than prb. The functional components of the storage 

effect (buffers and covECs) can both be expressed by the pr values. The storage effect 

for a given population growth component (reproduction or individual growth) is an 

increasing function of the pr value for that component, and also the pr value for 

seedling growth (Table 1). Thus, the relative importance of the two sorts of storage 

effect, assuming that reproduction and individual growth are equally sensitive to the 
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environment, depend on the relative values of prb and prg. For a species with an average 

advantage in reproduction, variation in reproduction can lead to a stronger storage effect 

for its competitor than does variation in growth (Fig. 5, black).  Reciprocally, for the 

species with an advantage in individual growth, variation in growth can lead to a stronger 

storage effect for its competitor than does variation in reproduction (Fig. 5, grey).  

 

 

 

 

 

When both species have reproduction and individual growth sensitive to environment, 

neither species will be advantaged in both storage effects (Fig 5). The storage effect in 

growth can compensate for changes in the storage effect in reproduction. But if there is a 

strong contrast in the relative importance of the process sensitive to environment, e.g. 

Figure 5. Change of individual level storage 
effects (in approximation) between two 
species along the continuous gradient of 
fecundity growth tradeoff from strongly 
asymmetric (x = 0) to symmetric (x = 0.5). 
Storage effect in reproduction is solid and 
storage effect in growth is dashed. Species 
with advantage in reproduction(sp1) in 
black, and species with advantage in growth 
(sp2) in grey. Details of parameterizations 
in Appendix III.

	ୠଶܫ∆

	ୠଵܫ∆

	୥ଵܫ∆

	୥ଶܫ∆

Figure 4. Change of individual level 
mechanisms between two species along the 
continuous gradient of a fecundity-growth 
tradeoff from strongly asymmetric (x = 0) to 
symmetric (x = 0.5). Storage effect: solid 
lines, and other mechanisms below the scale 
break. Species with advantage in 
reproduction in black, and species with 
advantage in growth in grey. Details of 
parameterizations in Appendix III. gradient along tradeoffs 
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both species only vary in reproduction or only vary in growth, strong asymmetries in 

storage effects lead to a strong fitness inequality between the two species (Fig. 6 a, c). 

These differences are reduced as the life-history schedules of the species become 

more similar.  

So far we have only investigated cases when two species have independent 

environmental responses.  In Appendix II, the quadratic approximation is generalized 

to the case where the species are correlated. Then the storage effect experienced by a 

species depends also on its own p’s, i.e. the fractional contributions to population 

growth of the species itself, the pi’s. However, these contributions will not be high 

unless the species have strongly correlated environmental responses.  

When species are strongly opposite in their responses to the environment (a strong 

negative correlation between species), increasing contribution to population growth of 

the process most sensitive to environment increases the storage effect a species itself 

experiences as invader (Appendix II). On the other hand, when species are highly 

positive-correlated, increasing importance of the process most sensitive to 

environment decreases the storage effect that the species itself experiences as invader 

(Appendix II). Invader pi’s further depend on invader structure that shifts with 

fluctuations, though the effects can be very limited as in the section below on  

The storage effect is the strongest contributor to stabilizing coexistence among the 

three mechanisms (Fig 5, 6b, 6d). The stabilizing effect is strong when the storage 

effect experienced by each species is strong.  Life-history traits affect the storage 

effect through the values of the pr’s as discussed above, but given these values, the 

shapes of the life-history schedules have no additional effect on the storage effect 
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according to the quadratic approximation to its magnitude (Table 1). This prediction of 

the quadratic approximation is supported by simulation comparing flat fecundity and 

mortality schedules with others (Fig. 1), where the storage effect changes very little when 

the pr’s do not change (Fig. 7). However, the overall mechanism magnitude (invasion 

rate) is dramatically different due to ( S ) and mean effect of environment ( E ) 

becoming important in this case, as discussed next.   

  

Environmental variation and the mean structure  

Besides the storage effect, differences in life histories affect the mean environment 

effect ΔE and the mean structure effect ΔS. Between the two, ΔE is found to be much 

stronger. The structure can change between resident and invader states in a fluctuating 

environment because the invader growth rate becomes nonzero. The mechanism ΔE 

measures invader-resident differences in population level responses to mean environment 

effect at a fixed level of competition. It is sensitive to population structure. Fig. 6 shows 

that it has only a weak stabilizing or destabilizing effect, but much stronger effects on 

fitness inequalities arising from differences in life histories between species.  

Consistent with our prediction from the approximation Eq. 7 in the theory section 

above, strong fitness inequalities arise from ΔE if the two species differ strongly in the 

relative importance of processes sensitive to the environment (Fig. 6). When one species 

has a process with mean advantage being sensitive to the environment and its competitor 

does not, the species receives a mean fitness advantage from ΔE, and its competitor gets a 

mean fitness disadvantage from ΔE. For example, when both species have only 

reproduction sensitive to the environment, one with a mean advantage in reproduction 
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benefits from ΔE and the other one with a mean disadvantage in reproduction suffers 

from a negative ΔE (Fig. 6a). The reverse applies when both species have only 

individual growth sensitive to the environment (Fig. 6b). This inequality not only 

increases with the contrast in the relative importance of reproduction and individual 

growth to population growth (Fig. 6), but also differences between species in their 

sensitivities to the environment, which can be inferred from Eq. 7. Interestingly, 

fitness inequality due to the mean effect of environment varies exactly in the opposite 

way to inequality in the storage effect (Fig. 6). Thus, fitness inequalities of the two 

mechanisms get equalized (Fig. 6).  

A community average effect of the mean environment effect E only arises with 

changes in the fractional contributions of critical processes to population growth 

between invader and resident states, in forms of differences between the pi’s and pr’s. 

These changes in p’s occur because of shifts in the size structure, and individuals of 

different sizes contribute differently to population growth. In fact, E can be 

stabilizing as well as destabilizing. It depends on how the mean structure shifts as 

well as the shapes of the demographic schedules that determine how demographic 

traits change with size.  In general, the magnitude of E is very small. For species 

with life history schedules in Fig. 1, the community average E is minimal compared 

with the stabilizing effect of the storage effect (Fig. 6). Consistent with our 

predictions in the theory section from Eq. 7, the limited effect of E is due to the 

limited effect of shifted in structure (Fig. 6).  

 

  a. Eb only    b. Eb only 
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asym                                           sym       asym                                sym 
 
  c. Eg only      d. Eg only 

                 
 
Figure 6. Changes of coexistence mechanisms along the gradient of fecundity-growth 

tradeoff from strongly asymmetric (x = 0) to symmetric (x = 0.5). Panels (a) and (b) plot the 
individual level and community average mechanisms respectively for coexistence of species with 
only reproduction sensitive to environment. Panels (c) and (d) plot the individual level and 
community average mechanisms respectively for coexistence of species with only growth 
sensitive to environment. The mechanisms plotted are storage effect (solid), shifted in structure 
ΔS (dashed), ΔE(dotted). For plots with individual mechanisms (a and c), species with advantage 
in reproduction (Sp1) in black, and species with advantage in growth (sp2) in grey. Details of 
parameterizations are in Appendix III. 

 

The effect of shifted mean structure,S , strongly depends on the shapes of the 

demographic schedules. We see shifts in structure having important community average 

effects under extreme situations with flat fecundity and mortality schedules (Fig 7). 

When both species have growth varying, size structure will shift dramatically increasing 

the fraction of larger individuals from the resident to the invader state. In this case both

S  and E  are destabilizing (Fig. 7). The total destabilizing effect due to shift in 

structure is close to the magnitude of the stabilizing effect of the storage effect, acting 
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strongly to cancel out coexistence promoting effect of storage effect in growth. The 

effect of shift in structure S  are destabilizing because larger individuals does not 

have demographic advantage. The population density is smaller with more larger 

individuals, reducing the overall contribution to population growth. The mean effect 

of environment E further enhances the destabilizing effect under shifted structure. 

As there are fewer individuals contributing to recruitment and individual growth, 

there is a reduction in the overall fractional contribution from processes sensitive to 

environment. Structure shift towards having more smaller individuals under variation 

in reproduction will do the opposite: there will be a significant stabilizing effect of S

, enhanced by a stabilizing effect of E (Fig. 7).  

 

 

 

Fig. 7 partitioning of community average mechanisms in extreme cases with flat 
fecundity and mortality schedule, comparison are made between Eb only and Eg only 
cases. The life time reproduction and mortality, as well as the competitive schedule 
are kept the same with those in other examples illustrated. Details of parameterization 
are in Appendix III. 

 

Discussion 
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Stable coexistence generally requires differences between species in the ways they 

use the environment. Species differ in many ways, but which of these differences 

contribute to stable species coexistence?  Differences in life-history traits are easily 

observed and measured (Westoby et al. 2002), and life-history tradeoffs have been widely 

discussed as a potential coexistence mechanism (Nakashizuka 2001, Kneitel and Chase 

2004). However, many studies question the significances of tradeoffs as in general it is 

not clear that they lead to different uses of the environment by different species (Condit 

et al. 2006, Esther et al. 2011). A response is that even though life-history differences 

may not directly lead to different uses of the environment, they may interact with other 

mechanisms based on such differences, and as a consequence alter the possibilities for 

species coexistence. Understanding such effects is best done by quantifying species 

coexistence mechanisms allowing interactions between processes to be partitioned out 

and assessed. 

Using a continuous-size structured lottery model, we show how it is possible to 

quantify coexistence mechanisms for communities with complex life histories. The goal 

is to understand the role of complex life histories in species coexistence. We consider 

both constant and variable environments.  In a constant environment, we find that life-

history tradeoffs alone do not lead to stable coexistence. This is consistent with the fact 

that there is only a single limiting density dependence factor in our model, which is the 

space available for seedling recruitment and tree growth. Life-history tradeoffs between 

species in this context only affect average fitness differences between species.  They thus 

affect the identity of the dominant species and how rapidly it excludes the other species. 
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A perfect tradeoff would equalize the mean fitness between species and lead to 

neutral coexistence. 

In a variable environment life-history tradeoffs continue to affect mean fitness 

differences, but they can also affect the strength of stable coexistence mechanisms 

that arise in a variable environment. Our model assumes that three different processes 

may be sensitive to environmental variation, namely, recruitment, individual growth 

during recruitment and during post-recruitment phases. We assume that the latter two 

are perfectly correlated within a species. Processes sensitive to environmental 

fluctuations generate coexistence mechanisms. Nonetheless, the relative importances 

of the different coexistence mechanisms are affected by the mean relative 

contributions to population growth of these processes and how they change with size. 

Tradeoffs in life history alter the magnitude of the mechanisms and their asymmetry 

between species by changing these mean contributions.  

Variation in reproduction and individual growth can each independently lead to 

three mechanisms. A mean structure effect measures the direct effect of shift in mean 

structure on population growth rate. A mean environment effect measures the 

population level average response to environment. The storage effect measures the 

ability to decouple environment from competition. The storage effect, as the most 

significant mechanism, acts asymmetrically between species because of tradeoffs in 

mean population level properties between species. Between two species with a 

fecundity-growth tradeoff, a species benefiting from a strong storage effect due to 

reproduction will likely not benefit much from a strong storage effect due to growth, 

and vice versa. The mean structure effect depends on differences in the contributions 
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to population growth from cohorts of different sizes. The asymmetries between species of 

the mean structure effect will be large if the species have opposite patterns of size 

dependence of vital rates. The asymmetry in the mean environment effect depends on 

both differences in population level properties and differences in the size-dependence of a 

process. Species obtain a mean fitness advantage from a mean environmental effect if the 

important processes for population growth in that species are more sensitive to 

environmental fluctuations than they are in the other species. A low density advantage 

arises if shift in size structure enhances the mean importance of processes sensitive to 

environmental fluctuations. Nevertheless, as will be discussed later, shifts in structure 

have only weak effects except under very restrictive conditions.   

Despite asymmetries between species introduced by tradeoffs in life histories, it is by 

far easiest to see strong stabilizing effects from the storage effect, and they are in general 

positive for both species. The storage effect promotes species coexistence when a species 

exert stronger self-limitation by more active resource consumption in a favorable 

environment. Self-limitation arises most strongly from the process most demanding for 

resources on average, which in turn is the process most important on average for 

population growth. Environmental sensitivity of this process leads to strong covariance 

between the environmental response and competition when a species is in the resident 

state, which benefits the invader. The more important a process is for population growth, 

the greater the effect of its sensitivity to the environment in creating the storage effect. 

Therefore, we will expect strong stability of coexistence to be contributed by the storage 

effect when the sensitivity of a life-history process to variation in the environment is 

aligned positively with the tradeoff between life-history processes. Thus, for a strong 
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storage effect, a species with high environmental sensitivity in fecundity should have 

an average advantage in fecundity relative to a species with high sensitivity in 

individual growth, which should have an advantage in individual growth.  

In contrast to the storage effect, the mean environmental effect (ΔE) and mean 

structure effect usually have opposite signs for species with contrasting life histories 

and contrasting relative amounts of variation in growth and variation in reproduction. 

As a consequence, the fitness inequality resulting from the mean environmental effect 

to a large degree compensates for the asymmetry of the storage effect. The opposite 

species differences resulting from the storage effect and the mean environment effect 

tend to equalize the overall ability of each species to recover from a low density. 

Nevertheless, the mean environmental effects often get averaged out at community 

level and do not contribute much to the stability of coexistence. This is especially true 

when both reproduction and growth vary where their mean effects of variation cancel.  

Important effects of mean structure shifts on coexistence (ΔS) occur in very 

restricted circumstances. The shift must have net consequences for growth of the total 

population.  This means that a shift must have a major effect on the number of 

individuals in size ranges with much stronger than average contributions to 

population growth. This condition, requires specific combinations of variation in 

response to the environment and shapes of demographic schedules. The most realistic 

schedules, such as those in Fig. 1 , do not lead to substantial shifts in structure, and 

have no substantial effect on long-term growth of either species. Two extreme 

examples of demographic schedules where a shift in structure can have significant 

effects are a flat fecundity schedules (Fig. 7) and a delayed fecundity schedule 
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(unpublished work). Under a flat fecundity schedule, cohorts of smaller individuals 

contribute substantially more to population growth than cohort of larger individuals. The 

opposite occurs under the delayed fecundity schedule. For a significantly positive effect 

of size structure, species with a flat fecundity schedule must be associated with strong 

variation in reproduction so that size structure shifts towards more smaller individuals. 

Species with a delayed fecundity schedule must have strong variation in growth that 

drives size structure towards more larger individuals. These conditions maybe difficult to 

achieve in nature.  Moreover, they get weakened when reproduction and growth both 

vary.   

When strong effects of mean structure occur, they not only affect ΔS, the direct 

measurement of the role of mean structure, but the underlying shift in structure also 

affects ΔE. By increasing the average contribution to population growth of processes that 

are sensitive to environment when a species is in the invader state, a stabilizing effect of 

the mean environment can result. However, given the rarity of strong effects of mean 

structure, these results may be of more academic interest than applicable in nature. 

Our study intends to relate biology to general understanding of the mechanisms. We 

show that life-history tradeoffs, rather than being a mechanism for species coexistence 

alone, instead affect coexistence through interactions with other factors, specifically 

environmental variation, and other mechanisms such as the storage effect. Merely 

evaluating life-history tradeoffs without consideration of other factors is insufficient to 

understand their effects on stabilizing coexistence. Our model developments synthesize 

life history processes over the life cycle and quantify their interactions with other 

processes to determine their overall effects on mean fitness differences and stabilizing 
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mechanisms. Only a few critical quantities are needed to summarize the effects of a 

complex life history to determine the relative importance of different coexistence 

mechanisms.  

A key finding of our study is that species differences in sensitivity to 

environmental variation have a major effect on the magnitudes of the contributions of 

life-history tradeoffs to species coexistence. The most important positive effects on 

coexistence occur when the process contributing most strongly to population growth 

for a species are the processes most sensitive to environment variation. In nature, 

there is strong evidence for differences in sensitivity to environmental variation 

(Wright et al. 2005, Vincent et al. 2009). There is evidence in forest trees for more 

competitive species being more sensitive to environment associated with a growth 

rate - herbivory tradeoff (Kelly and Bowler 2002, Kelly and Hanley 2005). Fast 

growing trees tend to be more responsive than slow growing trees to favorable 

environment to growth, but slow growing trees are more tolerant of resource shortage 

(Baker et al. 2003, Ouedraogo et al. 2013). Highly sensitive reproduction very 

possibly carries a mean advantage as well. In the example of masting, species are 

highly sensitive to the environment and it is suggested that mass production of seeds 

is not only taking advantage of a favorable environment but also is possibly a 

predator-satiation strategy, or pollinator-attraction strategy (Kelly and Sork 2002). 

Coexisting animal species may also show contrasting sensitivities in behavioral 

responses to the environment.  Our study has clearly laid out how these sensitivity 

differences lead to stabilizing niche differences.  
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Though our results are illustrated for a simple case of species with a fecundity-growth 

tradeoff, the methodology applies in general. The major effect of a complex life-history 

on stable coexistence depends on whether processes most important to population growth 

are on average most sensitive to environment. If a tradeoff involves large differences in 

mortality, such as growth-mortality tradeoff (e.g forest trees), relative nonlinearity may 

be significant when species with high death rates are associated with much larger 

sensitivity differences (Yuan and Chesson In review).  Under these conditions, higher 

sensitivity to environment in species with high individual growth rates and high death 

favors the competitor when it is at low density through the mechanisms termed relative 

nonlinearity (Yuan and Chesson, in review). A high sensitivity in growth rates of this 

species also compensate for the weakening buffer in the storage effect due to the high 

death rate.   

The assumption of lottery competition for space means that our model best applies to 

organisms where the resources required for recruitment are sequestered by the living 

organisms, and released on death. Examples include sessile organism such as plants, 

intertidal marine invertebrates, coral, as well as animals such as coral reef fishes. The 

form of competition can be easily modified for more accurate descriptions of other 

communities, but our fundamental conclusion will not be affected. A better 

acknowledgement of not only which mechanisms are present, but also how their relative 

importances are affected, are the key to studying species coexistence in various systems. 

Our study offers a guide to understand the role life histories play.  

 

Appendix I 
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Model will be illustrated using forest trees. Critical variables in the model are the total 

available space, S(t), from deaths during the interval t to t + 1, and the total demand, or 

requirement, for space, R(t) (Details in Table A.1). As explained above, this demand for 

space is the total new space needed to achieve the largest potential of reproduction and 

growth under unlimited space supply. Since the space available is not unlimited, 

competition occurs. The magnitude of competition is evaluated as the ratio of demand to 

supply, which is given on the log scale as 

     C(t) = lnR(t)/S(t),                              A.1  

and referred to as the competitive response. Individuals of all species and sizes compete 

in same resource pool, and competition reduces their actual establishment and growth. 

Competition for space comes from two processes: recruitment to the seedling cohort and 

subsequent growth of individuals in the established cohorts.  

Trees in cohort c of species j has size jca  and density Njc, both change with time but t is 

omitted for notational simplicity. Resource supply S from Eq A.1 is summed over death 

occurred over all cohorts of all species, based on a species-specific size-dependent 

mortality function
jcam : 

 
,

jcjc jc a
c j

S N a m .  A.2  

But in this study we assume species have identical mortality function 
jcam . 

Demand for space from seedling depends on two factors: the fecundity schedule , jcj ak

determines the size-dependency in fecundity, which is time invariant and further 

weighted by the competitiveness in seedling establishment sjc ; the other factor b ( )jE te
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captures fluctuation in reproduction due to environmental variation, where the quantity

bjE  is defined as the environmental response in reproduction. 

The above description gives the following equation for the species-specific 

fecundity function for per capita seed production from individuals from cohort c of 

species j:  

   b ( )

,( , ) j

jc

E t

j jc sj j ak a t c k e .     A.3  

Total number of seedling produced by species j sjN  is summed over seedling produced 

by each cohort:  

b ( )

s s ,( 1) j

jc

E

j j j a

t

jc
c

N t c e Nk       A.4  

The total demand for space from seedling recruitment is Eq. A.4  summed over species.   

Demand for space also comes from individual growth from both the germinated seedling 

cohort and established cohort that escaped death. The potential growth without resource 

limitation for cohort c of species j is determined by two components. A size-dependent 

growth schedule , jcj ac , also called the competitiveness schedule, determines how ability 

to grow change with size. We specify the competitiveness of seedling growth as csj. The 

temporal fluctuation in the growth potential depends on g ( )jE te , where gjE is defined as the 

environmental response in growth. The above description gives the species-specific 

growth function ( , )j jcc a t , which describes the per capita demand for space to growth 

from individual in cohort c of species j as: 

 g ( )( , ) j

jc

E t

j jc aa t cc e       A.5  
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Total demands for space, R from Eq.A.1, is the sum over space required for seedling 

establishment, seedling growth, and growth of established saplings and adults:  

     g b g

s s , , 1j j j

jc jc jc

E E E

j sj j j a j a a
j

jc
c

R a c m Nc e k e c e    A.6  

The actual number of seedling established as a new cohort of species j njN is subject to 

competition: 

                                     b ( )

n

) (

s( 1) j

jc

E C t

j j a jc

t

c

k eN t c N   . A.7   

We assume seedling growth after germination is not subject to competition as 

competition already occur during their establishment. The size of the established seedling 

is therefore: 

g (

n s

)( 1) jE

j j j

t

sa c et a                 A.8  

where sja is a species-specific constant for initial seedling size. Thus the total area 

allocated to seedling recruitment of species j is 

b n nj j jaA N .       A.9  

The growth of individuals in the established cohorts is reduced by competition 

g ( ) ( )

( )(1) )( j

jc

E

jc jc a

t C t

tca a tt e         A.10  

The total space occupied by the established cohorts of species j in the t+1 is  

 g ( 1) 1 m ( )
jcj jc a jc

c

A a t N t         A.11   
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where
jcam is the mortality rate for individuals in cohort c of species j. The population 

growth rate of species j is evaluated as change in log area occupied by the whole 

population from one time to another as:  

ln ( 1)1) (( ln )j j jr t A t A t    A.12 

where b gj j jAA A  . 

Table A.1. General notation 
Symbol Definition 
capital C Competitive responses 
R; S Total demand and supply for space  
subscript c Index for cohort 
subscript j Index for species, in particular i for invader, r for resident 

jca ; nja  Size of individuals in cohort c and seedling cohort (n) of species j 

, jcj ak ; , jcj ac ;
jcam   fecundity schedule, growth (competitive) and mortality schedule  

bjE , E
gj

 Environmental response in reproduction and in growth respectively 

, )(j jck ta   Fecundity per individual in cohort c of species j 

sjc   Competitiveness in seedling establishment  

sjN ; njN ; jcN  Density of seedling germinated, seedling established respectively and 
cohort c  

jA ; bjA ; gjA  Total Area, area of the new seedling cohort, and area of established 
cohorts  

( )jr t ; ir  The population growth rate; long-term low density growth rate of 
invader  

j   The scaling factor, sensitivity of growth rate jr to competition. 

i   Average fitness differences between invader and resident 

A  The overall stabilizing effect 

iS , S  Mean effect of size structure, and its community average effect 

iE , E  Mean environmental effect and its community average effect 

iI , ibI , igI ,

I , bI , gI  

The overall storage effect; storage effect in reproduction; storage effect 
in growth and their corresponding community average effect 

bj ; gj  Cov(Ejb, C) and Cov(Ejb, C) for invader (j = i) and resident (j = r) 

bj ; gj  storage for buffer in reproduction and buffer in growth  (j = i or r) 
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;bj gj    Sensitivity of C to Eb ; Sensitivity of C to Eg (j = i or r) 

psj, pbj, pbgj, pgj  Proportional contribution of survival, reproduction, seedling growth, 
sapling growth to population growth (j = i or r) 

 

 Appendix II 

Exact form of mechanisms partitioning  

The population growth rate in Eq.2 can be expressed as a function of environment E, 

competition C and structure S. 

 , , ) (( )n , ,lj j j j j jr g GC S C S E E   A.13 

Rearrangement of growth rate partition it to several components: 
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 A.14  

where the quantity 'ir measures mean fitness, the curly quantity are standard parameters 

measuring the effect of E, C, S and their interactions in the unit of population growth rate. 

The quantity S measure the effect of structure in population growth rate; the quantity E is 

the effect of environment; the quantity C measures the effect of competition; the quantify 

I is the effect of interaction between environment and competition. 

Averaging the growth rate over time we have the long-term recovery rate  

for invader 

 'i i i i i iS E Ir r C     A.15  
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and for resident  

 ' 0r r r r rr r S E I    A.16  

where S,E and I are E[S ], E[E] and E[I] respectively.  

The resident long-term recovery rate rr  is zero because its population converges on 

stationary fluctuation. We rearrange A.15 as invader-resident comparisons 

 
' ' (C )

ii i i

i r i i r i

IS E C

i i i

i i r

i r r r

i

S S E E I I

S E C

r r r

I

r r C
  

 
        

   



   

  
 A.17  

We can omit ' 'i rr r as it is 0 due to because our special assumption that two species have 

equal fitness in equilibrium ' 'rir r . 

 

Approximation for mean effect of structure ( iS ) 

The mean effect of structure can be approximated as effect of shift in mean structure:  
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The approximation applies if nonlinearities in structure are not large for the range of 

variation in structure that occurs. The adequacy of this approximation for the cases 

considered here was confirmed by simulation. 

Approximation for mean environment effect ( iE )  

The mean environment effect can be approximated as  
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if nonlinearities in environment and structure are not large for the range of variation 

occurs. 

The finite rate of increase G are additive in components from survival Gs, seedling 

recruitment Gb, seedling growth Gbg, and post recruitment individual growth Gg (Table 

A.2 Yuan and Chesson, in progress). 

We define following mean finite rate of increase as 

 * {i* i }{ }( , , )j js jb jbg jgj jE G C S G G G G      E    A.20  

where j = i or r. 

Then *{i} {i}( , , )j j jE G C S  E  can be represented using Gj giving eE in Eq.2  follows 

lognormal distribution, and there is no covariance between E and S: 

  2 22 2/2/2 /2*{i }} {i( , , ) jb jg jbgjb jg

js jb jbg jj j gjE G C S G G e G Ge e
         E . A.21  

We also define the p values as the fraction of different components of finite rate of 

increases: pjs=Gjs/Gj, pjb=Gjb/Gj , pjbg=Gjbg/Gj , and pjg=Gjg/Gj . 

Thus A.19 can be expressed in p’s as: 
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.  A.22  



191	
	

191	
	

Because we assume there is no correlation within species between environmental 

response in reproduction and environmental response in growth σbg = 0, this expression 

can be simplified as Eq 7:  

 

 
 

 

2 2 2 2

2 2 2 2

/2 /2 /2

/2 /2 /2
ln

ib ig ig ib

rb rg rg rb

ibg ig is
i

r

ib

rbg rg rsb

E
p e p e p e p

p e p e p e p

   

   





 
 
 


 


  
.  7 

 

Approximation for the storage effect ( iI ) 

Two forms of the storage effect can arise, one due to reproduction ( ibI ) and one due to 

growth ( igI ). The storage effect are measured as differences in covariance between 

environment and competition (covEC) between invader and resident weighted by buffer 

in their population growth. The approximation for buffer, as measured by storage 

coefficient ψ, and covEC,χ, can be found in detail in (Yuan and Chesson, in progress) so 

we will not repeat here. The following are full expression for the storage effect in 

reproduction and storage effect in growth in general cases where species can be 

correlated. 

Storage effect due to reproduction 
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Storage effect due to growth  

 

      
      
   
   

g s

g s

g s

g s

cov , cov
1

var cov ,

,

1

1

1

i r i r

rr r r

g ig ig rg rg

i ibg i

rg gi gr gi br
is

r rbg r

rg gr gr br
rs

i ibg i

rg g g g b
is

r rbg r

rb

rb

r

rg g g
rs

b

rb b

I

p p p
E E E E

p

p p p
E E E

p

p p p

p

p p p

p

   

 

 

   

   



 





 



 





 











 A. 24  

Appendix III 

Fecundity schedule 

The fecundity of an individual partly depends on a species specific size-dependent 

fecundity schedule. The fecundity schedule in this study is specified as species-specific 

linear function of size, ajc, with slope 1j  and size threshold aj0:  

, 1 0(max( ),0)
jcj a j jc ja ak   .     A. 25 

The specific values chosen for 1j and aj0 are listed in Table A.2. 

Mortality schedule 
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Mortality rate of any individual is determined by a species-specific mortality schedule 

specified by five parameters: 

2 2 2

2

( )

0

( )

(1 )

1

d jc d jc m d jc

jc d jc m

a a a a

m
a a a

m m e m
m

e

e e  



   


 

  



   A.26  

The parameters 0 , mm m and m  specify that the mortality is near 0m at small sizes, 

decreases towards mm as sizes increases, and increase towards m as size is very large.  

The parameter d determines how rapid mortality rate moves between these different 

levels with size. The parameter ma determines the size after which mortality rate increase 

with size. The parameters d and ma are fixed in all cases as 0.05 and 10 respectively. The 

values chosen for and are listed in Table A.2. 

Growth schedule, also called competitiveness schedule 

In this study we choose a Gompertz-alike function for growth schedule so that in 

equilibrium cases, tree size increase slowly when small, faster when tree gets larger, 

slows down and stop growing eventually when tree get very large (Fig. 2c).   

The original Gompertz growth function is for differential equation model where the 

growth of tree follow the following equation  

0 1b
dy

dt
b y          A.27  

where lny a , the logarithm of tree size a. 

We adapted Eq. A.27 for the competitiveness schedule of the trees that will produce 

similar shapes of schedules: 

  , ,.1 ,2max ( ln( )),0
jcj a jc j j jcc a a     A.28  

0 , mm m m
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 The values chosen for 0 and 1 are listed in Table A.2. 

Gradient of tradeoff 

Parameters for the demographic schedules are chosen to enforce tradeoff between 

fecundity and growth schedules. At the extreme of the tradeoff, the species have mean 

advantage in fecundity have fecundity contribute primarily to population growth; the 

species have mean advantage in growth have growth contribute primarily to population 

growth. Parameters (Table A.2) are chosen through the numerical solution (eqSolve in 

Gauss 14, Aptech inc.) so that species can coexist neutrally in constant environment.  

We label the fecundity schedules and competitive at the strong asymmetric end of the 

tradeoff with *:  *
, jcj ak  and *

, jcj ac . We morph the schedules between two species to create a 

continuous gradient of the tradeoff by varying the weights p between [0,0.5]. So that one 

species has fecundity schedule as  

 
1 1 21, 1,

*
2
*
,(1 )

c c ca a ak p k pk   (1.1)  A. 29 

and its competitor has fecundity schedule as 

 
2 1 2

*
,

*
2 1, 2,(1 )

c c ca a ak pk p k    . (1.2)  A.30 

The competitive schedules are morphed in similar way but with a different weights p’. 

The weight p’ is solved numerically using the same method (eqSolve in Gauss) so species 

can coexist neutrally in constant environment. It also falls in the range [0, 0.5]. One 

species have competitive schedule as  

  
1 1 21, 1,

*
2
*
,(1 ') '

c c ca a ac p c p c    A.31 

and its competitor has fecundity schedule as  

 
1 1 2

*
,

*
2 1, 2,' (1 ')

c c ca a ac p c p c   . A. 32 
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Comparisons between different shapes of demographic processes 

When we used flat cases as a reference point, we kept the relative mean importance of 

reproduction, individual growth, and survival, as close as possible to cases at the extreme 

end of the tradeoff. That way, p’s are relative constant, we will be mainly investigating 

the effect of shapes. To achieve such goal, we kept the single species steady state life-

time fecundity, the longevity, the life-time average competitiveness identical between the 

two scenarios. These life-time average demographic traits, where the constraints are 

applied, are calculated by averages weighted by the stationary age structure. To calculate 

these age-averaged demographic traits, it is necessary to obtain the age dependency in 

demographic schedules. In equilibrium cases, there is a one-to-one correspondence 

between age structure and size structure. We know the demographic trait for individuals 

at certain age by first figuring out their size at different ages. Under single species steady 

state, an individual grow at fix rate, and there is a unique projection between the size 

structure and the age structure. The size of individual at age x is obtained by iteration 

through the following process in single species steady state: 
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 .   A. 33  

( )ja x is defined as the size of individual at age x, and the size of individual at age 1  is 

defined as the size of the initial seedling cohort (1)j jsa a .The variable gj is the mean 

environmental responses in growth and *C is the constant competitive responses in single 

species steady state.  After knowing their sizes at different ages, we could obtain the age-
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structured demographic schedule. For individual of age x from species j, we label its 

fecundity rate as ( )jk x where ( )( )
jj a xx kk  , its mortality rate as ( )jm x where ( )( )

jj a xx mm 

, and its competitiveness as ( )jc x where ( )( )
jj a xx cc  .   

The probability that an individual of species j survives to age x is jxl  where      

 1
1 ( ))(1x

jx i jl im
   . A.34 

Due to the fixed growth rate under single species steady state, only certain sizes are 

possible, which make the model similar to an age-structured matrix model. Many well-

studied properties of the matrix model can be applied. The stationary age distribution is  

1

jx
jx

x
x

l

l
 






       A.35  

The stationary age distribution is used as a weight to calculate average demographic 

traits. For the purpose of comparing different fecundity schedules, we fixed the average 

fecundity, weighted by the stationary age structure in Eq A.35 , under single species 

steady state: 

    1

1

( )
bj

jx jx
x

j

jx
x

k x l
k e

l














      A.36  

where bj is the mean environmental responses in reproduction.  

For mortality schedules, we fixed the average life-span under single species steady state. 

The life span for individual in structured population is estimated as:  

1
j jx

x

L l




  .      A.37  
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For the purpose of comparing different competitiveness schedule, we fixed the average 

competitiveness weighted by the stationary age structure under single species steady 

state: 

1

1

( )
gj

jx jx
x

j

jx
x

c x l
c e

l














      A.38  

 

Table A.2 Parameters of demographic schedules 

                        Schedules 
Cases 

Fecundity 
schedule 

Mortality 
schedule 

Competitiveness 
schedule 

Strongly 
asymmetric 

end for 
Fig. 1-6 

Species with 
mean advantage 
in reproduction 

(sp1) 

 

11

10 1

2.178

0, 1ba





 

  0 0.1m   

0mm   

0.02m   

1,1

1,2 1

0.03

0.01, 1g


 



 
  

Species with 
mean advantage 
in growth (sp2) 

11

10 1

0.5

1, 1ba 
 


 

2,1

2,2 2

0.3

0.05, 1g



 



 
 

Fig. 7 

Species with 
mean advantage 
in reproduction 

(sp1) 

k1=0.421 m=0.020 
1,1

1,2 1

0.03

0.01, 1g



 



 
 

Species with 
mean advantage 
in growth (sp2) 

K2=0.401 m=0.019 
2,1

2,2 2

0.3

0.05, 1g


 



 
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