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ABSTRACT

Minimum absolute error (MAE) is used as an image restoration 

criterion in trying to find an optimal solution to the classical imaging 

equation with additive noise. This problem is dealt with in the field 

of mathematics known as linear programming, and is formally known as the 

Jlq solution to an overdetermined set of linear equations. A computer 

algorithm employing the simplex method of linear programming is used to 

find this solution. In,cases where the image data is afflicted with 

occasional and sporadic outlier noise, it is hoped that the MAE cri

terion will provide more accurate restorations than other more popular 

(and more analytic) methods such as least squares or minimum mean square 

error.

vii



CHAPTER 1

INTRODUCTION

The classical model of image formation is characterized by two 

different processes. The object, represented as a function f(u,v), is 

first blurred by a known (but not necessarily stationary) point spread 

function h(x,y;u,v). x and y are image plane coordinates; u and v are 

object plane coordinates. This blurring is described by the integral 

(Goodman, 1968):

f(u,v)h(x,y;u,v)dudv (1.1)

The image modeling is completed by adding noise n(x,y) to the above 

integral:

g(x,y) = f(u,v)h(x,y;u,v)dudv + n(x,y) (1.2)

In the discrete or digital domain the image, object and noise functions 

(g, f and n, respectively) become vectors via lexicographic stacking 

(Andrews and Hunt, 1977) of the sampled 2-D data. The point spread 

function h(x,y;u,v) becomes an mxn matrix H. This all gives

g = H ? + n , (1.3)

where g and n are mxl, f is nxl, and H is mxn.

The problem of image restoration is to seek an object estimate, 

f', that is in some sense a more accurate rendering of the original
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object than the available image data. The method of restoration used is 

strongly dependent on the characteristics of the additive noise. Most 

commonly the noise is modeled as being Gaussian, uncorrelated and signal 

independent. Within the modeling procedure the degree of noise is 

characterized by its standard deviation or a signal to noise ratio. A 

rather popular restoration method adopted in the presence of such noise 

is one that is guided by some type of least squares criterion. More 

specifically, one seeks a solution f' that minimizes the error function 

defined as

e(f') = (g - H f')1 (g - H f')

m n= I [g. - c I h f m  ci.4)
i=l 1 j=l 13 3

The squaring operation ensures that our error function is positive 

definite, and it lends itself well to differentiation and, thusly, to 

an analytic solution.

A problem that is implicitly present whenever such a squaring 

operation is imposed is that data points having a comparatively large 

noise value are weighted more heavily than points with less noise magni

tude. This can be very detrimental in cases where it is known that the 

image data is afflicted with outlier noise: substantial "spikes" or

"holes" that sporadically afflict only a few data points, due to sampling 

or transmission errors, within the entire set of image data. During the 

squaring process such points would contribute largely to the overall 

value of the error function. The restoration would thus place an



undeserved emphasis on "correcting” those data points associated with 

the outliers, most likely at the cost of poorly restoring other data 

points.

A way to avoid this unfair biasing of inaccurate data points 

would be to consider the absolute value of the error, rather than the 

square:
m n

e(f')= I Ig. - ( I H f-)l (1-5)
i=l 1 j = l ^  J

The subject of this paper is to use an existing algorithm that finds a 

solution f' which minimizes the absolute error. The degree of success to 

which the minimum absolute error (MAE) criterion serves to restore the 

object when differing amounts of image noise (both gaussian and outlier) 

are present is compared to both least square and minimum mean square 

error restorations.

As a final note of introduction it should be pointed out that 

the mathematical techniques and modeling procedures employed throughout 

this paper are not limited to the domain of image restoration. Spectro

scopy, atmospheric physics (where, for example, remote sensing data is 

inverted to calculate aerosol size distributions) and geophysics (inter

pretation of seismic data) are examples of different disciplines that 

must contend with methods of mathematical analysis that are comparable 

to those employed in image processing.



CHAPTER 2

THEORETICAL BACKGROUND

On the following pages we discuss in greater detail the theoret

ical development of each of the restoration methods to be employed.

Least-Squares

As mentioned earlier, our image formation model within the dis

crete regime can be stated as follows:

g = H f + n (2.1)

Solving for the noise component explicitly we obtain

n = g - H f (2.2)

The spirit of the least squares criterion is as follows: we first de

fine an error function e,

-*t -> m e = n n = I n .2 , (2.3)
i=l

the superscript "t" implies "transpose." If we invoke Eq. (2.2) and 

substitute £' for f, we can write e as a function of the object estimate

e = (g - H f')1 (g - H ?')

m n 2
(2.4)



We now wish to determine an object estimate, f", that minimizes 

e. Mathematically, it is helpful to think of the function e as repre

senting a surface in some n+1 dimensioned space, n being the number of 

independent components of the object vector f". As such, to find f" 

that minimizes e, there will be n independent equations that satisfy

the relation = o. More explicitly:
k

~ 2 m n 236 V  I [g4- I h„ fr]3f'k 3f'k i=i 1Si jil i

m n
I -2[gi- I fj]Hik 
1=1 3=1

m n
= -2 J ,  Hij fj] (since "ik^i^i = l  3 = 1

m m
= -2 I 4  g + 2 I h5.[ I H £'] = 0. (2.5)

i=l K1 1 i=l K1 j=l 13 3

If we now employ matrix notation we obtain

g = H f" (2.6)

Since H is mxn and H is nxm, H H is nxn and thus invertible. This 

allows us to write the solution for f' directly as

£' = (^H)"1 g ■ (2.7)



This equation is known as the pseudo-inverse solution (Pratt, 1978). 

Stated simply, the least square error approach effectively says to ig

nore the presence of random noise and to simply invert the blurring 

process that was effected by the psf.

MMSE - Minimum Mean Square Error

In the least square error approach we sought a solution f" that

fulfilled the sole criterion of minimizing the total image noise, 
m
1 n.2. As the resulting solution suggests, this is one of the simplest 
i=l 1
and most straightforward approaches that can be taken. That is, we 

merely effect the inverse of the blurring procedure upon the available 

image data. The only presumptions inferred are that the object was 

blurred by a known spread function, and that the image data is contami

nated by random, uncorrelated noise.

Realistically, considerably more is known about the image forming 

process than what is intimated above. For example, one generally has 

knowledge regarding the degree of noise incurred. That is, we typically 

know the signal to noise ratio, or noise variance, of our data as 

effected by the particular form of image data acquisition that was in

voked. Furthermore, one often has some notion of what the actual object 

looks like. For example, the image may be a blurred and noisy rendition 

of a page of text. Thus we can consider our ensemble of possible object 

distributions to be pages of text, or rather, evenly spaced rows of 

varying sequences of letters of the alphabet and punctuation marks. Ob

viously, the statistical properties of such a class of possible object
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distributions differ markedly from such objects as, say, a jet aircraft 

situated against a uniform background (the sky), or the bone structure 

of an individual with a broken limb.

The considerations discussed above are invoked in the MMSE 

restoration method. The available information regarding the ensemble of

possible object distributions is characterized by the autocorrelation

matrix R̂ :

Rf = E{ f T }  , (2.8)

where "E" connotes "expected value." The noise behavior can similarly 

be characterized by the autocorrelation matrix R̂ :

R = E{n n b  . (2.9)n

If the noise is uncorrelated, R^ is diagonal, with diagonal elements

(R ).. equal to a 2, the noise variance, n'n n n
In light of the above discussion, let us now develop the MMSE 

restoration method. In the manner of Andrews and Hunt (1977) we begin 

by defining, almost glibly, the error vector e as

e = f - f" . (2.10)

In a manner similar to the least squares method, we define an error

function e(f') that is positive definite as

e(f) = £ e.2 = e = Tr(e e*) , (2.11)
i=l 1

where "Tr" means the trace of the corresponding matrix. The problem
—y

posed by the MMSE method is to find an object estimate f' that minimizes



the expected value of e: 

minimize with
respect to f' E{e(£')}= E{Tr(? } (2.12)

We next assert that the optimum solution f' is obtained via a 

linear operation, {L}, upon the image data,

f" = L g . (2.13)

Thus,

E{Tr(e e1)} = E{Tr[(f-f') (f-f')1]}

= E{Tr[(f-L g)(f-L g)1]} (2.14)

-y ->■ -ySince g = H f + n, we obtain:

E{Tr(e e1)} = E{Tr[(f-L(Hf+n))(f-L(Hf+n))t]}

= E{Tr[ff^ - LCHf? + n?1)

- (ff1 Ht + f

+ LCHf? + n f̂  + H f n^ + nn^)L^

(2.15)

We may now interchange the order of trace and expectation operations, 

since trace is linear. This gives:

E{tr(eet ) } = Tr j E {^} - LE{HfP +

- E{??t + ? n1} L1 (2.16)

+ L E { H ^  H1 + ^  +
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We now substitute in Eqs. (2.8) and (2.9), and also note that for un

correlated and signal independent noise, the expectation value of any
i • ->"t ,terms linear in n or n become zero.

E{tr (eet) } = Tr{Rf - 2LHRf + LHRf H1̂  + L R^ L1} (2.17)

For convenience, let us define the matrix A:

A = Rf - 2LHRf + LHRf L1 + L Rr Lt (2.18)

The diagonal elements of A, A ^ , are

li Rfii ’ 2 ^  Lij Hjk Rfki J K

+ I I I I Lij Hjk Rfki Hml Lim j k 1 m J J

+ H  Lij Rnjk Lik (2-19)

Of course, the trace of A is just

Tr(A) = £ A.. (2.20)
i 11

As per expression (2.12), we want to minimize Tr (A) with respect to f '. 

But since we've set f̂  equal to L g, we can equivalently minimize with 

respect to each element of L. So, we differentiate (2.20) with 

respect to and set these derivatives to zero. This gives
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0 = d T -  Tr(A) 
pq

'2 £ Hqk Rfkp +  ̂1 ^ Hqk Rfkl Hml Lpm

j k 1 Lpj Rfkl Hql + k Rnqk Lpk

+ y L . R . (2.21)j PI njq

Rewriting this expression in matrix notation we obtain

0 = -2HRf + HRfHtLt + [LHR^ 1]1

+ RnLt + [LRn]t (2.22)

We now transpose the entire expression, noting that since both R^ and R^

are symmetric, R ^  = R̂. and R  ̂= R̂ . This gives

0 = -2RfHt + 2LHRfHt + 2LR^ . (2.23)

Continuing, we obtain

LHR^H1 + LRn = (2.24)

L [ H R ^  + R ] = R ^  (2.25)

Finally, we obtain for our restoration matrix L:

L = R^ 1 [HRfHt + Rn]'1 (2.26)
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Let us now develop the results of Eq. (2.26) for the following 

relatively simple circumstances. Let’s presume that all we know about 

our image data is the signal to noise ratio and the noise variance.

a 2 = noise variance

■ U v }
/m (2.27)

and

SNR [m m I'*
! ^  ' ,1, V j  •

From these quantities we infer an object variance a^2 to be simply

a 2 = (SNR)2 o 2 (2.29)

Since our noise is uncorrelated, R^ is of course diagonal, and

is equal to

R = a 2 I (2.30)n n

where I is the mxm identity matrix. Furthermore, possessing no greater 

knowledge of our object ensemble other than its variance, we note that 

R^ is also diagonal, and:

Rf = af2 I (2.31)

where in this case I is the nxn identity matrix. If we substitute Eqs.

(2.31) and (2.30) we obtain:

L = of21 Ht [H(af2I)Ht + o^2I]

= af2 [af2HHt + ĉ 2!]"1 . (2.32)

-1
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This result is employed experimentally and compared to the results en

countered by the least squares and minimum absolute error methods.

One final observation: for the case of zero (or negligible)

noise variance , Eq. (2.32) reduces to:

L = af2 [af2HHt]~1

= H1 [HH1]-1

HL = HH1 [HH1]'1 

HL = I 

H^HL = if

L = [H^H]”1 (2.33)

This result is equivalent to the pseudo-inverse solution of Eq. (2.7).

Minimum Absolute Error: Linear Programming
and the Simplex Method

We seek a solution, f', to the classical image forming equation

that minimizes the sum of the absolute value of the error that exists

implicitly within each data point. That is

m n
minimize f e(rt= I I g.-( I H fr) I (2.34)

i = l 1 Vj = l 13  ̂>

Following the approach of Barrodale and Roberts (1973) we will show that 

Eq. (2.34) can be rewritten in a somewhat different mathematical form. 

More specifically, Eq. (2.34) will be restated as a standard problem 

that is dealt with commonly in the field of mathematical study known as 

linear programming. A solution to Eq. (2.34), in its new form, can be
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obtained fairly directly by a well developed technique known as the 

simplex method.

In the following pages the general problem of linear programming 

and the simplex method itself will be discussed in some detail. We will 

then show how the problem stated in Eq. (2.34) can be massaged into a 

form that is compatible with the simplex method.

Linear programming grew out of the more general field of optimi

zation theory. Linear programming deals with the problem of how to mini

mize (or maximize) the value an objective function, this latter quantity 

being a linear function of n non-negative variables, {x_}. The objective 

function is accompanied by m linear equations of the variables x̂ . Math

ematically we have

minimize f = C1X1+ C2X2+ ... + c^x (2.35)
(or maximize)

subject to

allxl + al2x2 + ••• + ainxn 1 hi

ailxl + ai2x2 + + ainxn 1 bi

a iXi + a 2x2 + ... + a x < b (2.36)m1 1 mz z mn n — m

and x^ >_ 0 for i = {1,2,...,n}. It will soon be shown that the system 

of linear inequalities (2.36) can correspondingly be linear equalities.

The motivation for the development of linear programming tech

niques arose primarily during the 1930's and 40's (Barsov, 1959). Then,

as continues today, economists and mathematicians were becoming very
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interested in analyzing the effects that new and constantly improving 

methods of production were having on the economy. The problem then was 

still rather academic.

During the 50's the advent of the electronic computer allowed 

the possibility for the actual implementation of the long and arduous 

calculations involved. In time computational methods were developed 

that were quite practical and efficient. Such success attracted the 

interest of industrial, business, and other commercial and governmental 

concerns, since they routinely encounter the type of optimization prob

lems dealt with in linear programming.

The question may arise as to why traditional methods of optimi

zation involving calculus and partial differentiation aren't used. This 

is because an optimum solution to the linear programming problem lies on 

a vertex point of the admissable solution set. Partial derivatives 

simply don't exist at such non-well behaved locations.

To better understand this latter point as well as other aspects 

of linear programming, we'll briefly consider an example that is sub

stantially simplified (see, for example. Van de Panne, 1975). The number 

of variables will be small enough (i.e., two) to allow us to perform a 

graphic analysis of how an (not necessarily "the") optimum solution is 

found. Though it wouldn't be feasible to try and solve a real life 

problem in this manner, where hundreds (perhaps thousands, as may be the 

case in image restoration problems) of variables may be involved, such 

an approach will provide a method of visualizing the behavior of the ob

jective function and the accompanying constraint equations.
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Consider the case of a factory producing two different products, 

with xi and xg representing the number produced of each product. If 

product two gamers, say, 25% more profit per unit sold than product 

one, then the total profit may be written as

p = xi + 1.25 X2 . (2.37)

The problem is to decide how many of each product the factory 

should produce in order to maximize their profits. Without any con

straints, they should of course produce nothing but product two. How

ever, constraints do exist in the form of limitations of materials, the 

time required to produce each product, etc. For example, for each 

production run there exists enough materials to produce at most "a" of 

xi and "b" of X2« Additionally, the man-hours for preparation of pro

duct two may be, say, 50% greater than that for product one on a per 

unit basis. If "c" represents the total number of man-hours effected 

within one production run we have the constraint *]. + y x2 2L c. Of 

course, 2 additional constraints exist, manely that both x% and X2 must 

be non-negative. Written together our constraints are

1 o 

%2 1 0
xi < a 

x2 £ b

Xj + y x2 c (2.38)

These constraints can be represented graphically as portrayed in 

Figure 1. The cross hatched region is known as the feasible solution



X =a 
1 

X =b 
2 

.. 
3 X +-X =c 1 2 2 

Graph of region that represents the feasible solu
tion set as determined by constraint equation 2.38. 

Vertex points A and B represent basic feasible 
solutions. 

16 
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set as determined by the constraint equations. The family of dashed 

lines represents different values of the objective function (profit) as 

a function of xj and xg. The optimum solution vector (x^,X2) will of 

course provide maximum profit (or equivalently, the greatest X2-intercept 

of the family of objective function lines) and lie within the feasible 

solution set. For the present example we can readily identify this 

solution by inspection to be the point A.

One important feature that is depicted in Figure 1 is the con

vexity of the feasible solution set. A solution set is convex if, for 

any 2 points within the solution set, a line segment connecting these 2 

points is also fully contained within the set. Figure 2 illustrates 

various convex and non-convex sets. This concept extends to any n- 

dimensioned set of points, and it can be shown that the set of points 

defined in n variables by m linear inequalities is necessarily convex 

(Barsov, 1959) (unless, of course, the set is null, as is the case for 

a set of inconsistent inequalities). This solution set is easily thought 

of as a multi-faceted polygon consisting of sides determined by the 

linear constraint equations, and edges and vertices determined by the 

intersections of the various hyperplanes.

The objective function of our example was represented by a family 

of parallel lines. Similarly, for the case of n variables our objective 

function,

f = C1X1+ c?X2+ ... + c x (2.39)11  ̂  ̂ n n

represents a family of parallel hyper-planes in n-space. An increase 

(decrease) in the value of f corresponds to a hyperplane moving farther



(b)

Figure 2. Convex and non-convex solutions sets in two 
dimensions.

(a) Convex solution sets.
(b) Non-convex solutions sets.
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from (closer to) the origin of our coordinate system. It should thus be 

apparent that an optimum solution, i.e., a minimum or maximum of f, 

occurs when one of these objective function hyper-planes intersects the 

convex polygon that is our feasible solution set at a vertex of that 

polygon. This point needn't be unique of course - the objective func

tion hyperplane corresponding to an optimum solution could intersect an 

entire edge or face of the solution set. In our 2 dimensional example, 

this would be analogous to the case wherein the line segment AB of 

Figure 1 is parallel.to the family of objective function straight lines.

It should now be apparent that each vertex point within the 

feasible solution set is potentially an optimum solution vector to the 

linear programming problem. Thus a method of solving the problem would 

be to determine each of these vertex points and evaluate the objective 

function at that point. Such a procedure would be impractical for 

application to problems with many variables and constraints. A better 

procedure was developed by Dantzig (1951), which he called the simplex 

method. In this method an extreme point (vertex) is selected and the 

objective function is evaluated. It then moves onto a neighboring 

extreme point, in the direction that increases (or decreases) the objec

tive function. In this manner a maximum (or minimum) is obtained in 

between m and 2m iterations (Gass, 1958), where m is the number of 

linear constraints. Such a method is reliant on the implicit convexity 

of the solution set. If the solution-set "polygon" was concave at any 

point, then such a point would appear to be a local minimum or maximum, 

thus halting the iterative best-solution search process.
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The first step in applying the simplex procedure is to rewrite

our linear inequalities as linear equalities. This is done by intro

ducing m new non-negative variables, where m is the number of inequali

ties. If such an alteration is performed on Eq. (2.38) of our example 

above, we must introduce the additional non-negative variables X 3 ,  X 4  

and X 5 .  Our new equations are

In this new form, the extreme points of the feasible solution set take 

on special significance. Letting n=5 represent the number of variables 

and m=3 represent the number of linear equalities, it can be asserted 

that the coordinates of any extreme point (which, as we pointed out 

earlier, is also a potential optimum solution) will contain at most m 

non-zero coordinates (Gass, 1958). (Equivalently, there can be no more 

than m variables that are linearly independent.) For example, vertex 

point A has x%=a, which implies that X3=0, and satisfies the equation 

X1 + J x2 = c > which implies that x5=0. Thus at the point A

XI, x 2 , x 3, x 4 , X5 >_0

x2 + x4 = b

xl + |  x2 + xs = c (2.40)

xj = a
2 ,x2 = y (c-a)

X3 = 0

*5 = 0 . (2.41)
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Similarly for point B it can be shown that

x4 = 0

x5 = 0 (2.42)

More generally, the linear programming problem can be restated 

as follows: Maximize (or minimize) the objective function

While it is definitely not as easy to visualize, our feasible solution 

set as expressed in this new form is still an n-m dimensioned manifold 

within n-space. Furthermore, as can be proven mathematically (Gass, 

1958), it can be shown that the coordinates of any extreme point will 

consist of at most m non-zero values. Such a point is also known as a 

basic feasible solution, as distinguished from an optimum feasible solu

tion. These solutions will have the following appearance:

(2.43)

subject to the following constraints:

x_ >_ 0 , j = 1, 2, . . . , n (2.44)

and

(2.45)
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(x j, %2 > • • • > 1 *  ̂* Xm+1 * ^ , * * *# ^)
(x i, X2) •••> 0 > 2 * ^ ^  * • • • > 0) (2.46)

There will be, at most, ( n ) = , /.n*— rr such basic solutions (Luenberger,\ m / m!(n-m)!
1973).

Conceptually, there is no great difficulty in determining only 

one existing basic (but not necessarily minimum) solution. We know 

that, generally, for a set of m equations in n unknowns, we can pick any 

one variable x^ and, by either straightforward Gaussian elimination or 

column and row operations upon the matrix of coefficients, obtain an 

expression for x̂  as a linear function of any desired group of n-m 

remaining variables. This can be done simultaneously for, say, variables 

{x., 1 j< i <_ m} of Eqs. (2.45). This would provide the following:

X1 = bl-(al,m+lVl+al,m+2V2+- •
x2 " b2 (a2,m+lxm+l+a2,m+2Xm+2+" ‘ ■+a2,nXn''

x = b -(a ,x +a nx _+...+a x ) (2.47)m m m,m+l m+1 m,m+2 m+2 m,n n

More compactly we have

n
. - T a..x. , 1 < i <
1 j=m+l v  j ~  -

x̂  = b^ - I a . . * ; , 1 ^ i 5 m (2.48)

When expressed in this form the variables (x_; 1 <_ m} are known as the 

basic variables. The remaining n-m x̂  are the non-basic variables. 

Thus, once Eqs. (2.45) have been altered into a form similar to Eqs.



(2.47), a basic feasible solution is .available by just setting the non- 

basic variables {x^, i>m} equal to zero.

The problem with the above procedure is that there is no way of 

knowing whether the solution we obtain will be positive; that is whether 

the basic variables satisfy the non-negativity constraint x̂  ^ 0. To 

find such positive solutions we begin by rewriting the given constraint 

equations in the following form:

bi = aiixi + a 12X2 + ... + a ^ x ^

b. = a.1X1+ ... + a. x 1 1 in n

b = a 1X1 + ... + a x (2.49)m nr 1 mn n

or more compactly,

>. = V a. .x. , 1 < i <
1 j=i 13  ̂ -  -

n
b. = y a..x. , 1 < i < m (2.50)

We assume that each b^ is non-negative. This is no problem - if any one 

bu<0, we simply multiply that equation by -1.

For convenience, we construct the matrix of coefficients of Eqs. 

(2.49), and identify each column by an appropriately numbered vector P..
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Before we may begin invoking the simplex method as briefly des

cribed above, we require an initial non-negative basic solution. With 

this initial solution we may begin our iterative search through other 

solutions (representing traveling along adjacent extreme points of our 

solution set) until we find our optimum solution.

The most straightforward and efficient method to determine such 

an initial solution is reminiscent of the way in which we transformed a 

set of linear inequalities to a set of linear equalities. To the set of 

Eqs. (2.49) we simply introduce m new positive variables Xj, where 

n+1 <_ j _< n+m, such that Eqs. (2.49) now appear in the following somewhat 

altered form:

bi = a n x i  + a 12X2 + ... + + xn+1

b2 = a2lXl + . . . + a2nxn + xn+2

bi = ailxl + ' ' ' + ainXn + V i

bm amlXl + • • • + amnXn Xn+m (2.52)

These new variables are typically called slack variables. The coeffi

cient matrix corresponding to this revised set of constraint equations 

appears as follows:

^n+1 ^n+2 '•’ ^n+m
1 0 ... 0
0 1 0 m

h h .. ? n
bi an a2 1 ain
b2 a2 1 a22 .. a2n

bm am1 v  • amn (2.53)

m
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From such a form we can immediately recognize that the variables

through x are basic variables, and as before, a basic feasible solu- n+m
tion is realized by merely setting the non-basic variables xi through x^ 

equal to zero.

Having obtained an initial basic solution, we now describe the 

method by which one obtains a new extreme point solution. We select one 

of the m equations, say the mt 1̂, that contains a positive coefficient 

â j. For simplicity let us assume a ^  is such a positive quantity. 

Having decided on an appropriate coefficient, we sort through all posi

tive a 's within the column of the coefficient matrix until we 11
locate the appropriate row that minimizes the quantity b^/a^^. If this 

is the row, then a ^  is the pivotal element. We then solve the k1"*1 

equation for the variable x , and this expression is substituted into 

the remaining equations. That is

bk = V Xl + ••• + ak«.xi + ••• + V n  + V k  (2'54)
and thus

^  = ak£ " ak«l Xn+k " ak^ j = l t2'55)
5**-

Substituting Eq. (2.55) into the i^^ equation we obtain

a. n
bi = v xi + ••• + it: [V V k  - .1 akjxjJk£ j = l

3fl>

+ ... + a. x + a. .x (2.56)in n i,n+i n+i

This gives for the new i ^  equation



ai£- —  x , + a. .x . (2.57)a, . n+k i,n+i n+i

Upon performing these operations, we note that the column of 

the new updated coefficient matrix will be a new basis vector; that is, 

it will contain all zeroes, except for the kt^ entry a^, which is of 

course one. Likewise, substituting Eq. (2.55) into the other equations

will introduce into them a non -zero term in the, until now, basic varia

ble Vv The new coefficient matrix will have the following general

appearance

h • * 1 * *■*n *n*l •‘* n+k '* . ?n+m

an... 0 .. • aL 1 *• ai,n+k •. 0

bz *21 0 a2n 0 a2,n+k •. 0

bk ak: 1 akn 0 ak,n+k 0

bm a;i 0 am  0 a;,n+k 1

Furthermore, it is particularly important to note from Eq. (2.5 7) the 

values of the new bu's. That the pivotal element a^ was chosen so as 

to minimize the quantity b^/a^ for i ranging from 1 to m is assurance 

that the new b^'s, i.e.,



\  I

27

(2.59)
k£

are all non-negative.

The process described above is known as a simplex transformation. 

It can also be thought of as a change of basis between adjacent basis 

sets. Just as with the previous set of basic and non-basic variables, 

we can set the non-basic variables equal to zero in order to obtain an 

extreme point solution. The positivity of this solution is assured by 

the pivotal element criterion.

We now consider how the above technique is employed to find an 

optimum extreme point solution. That is, one that minimizes our objec

tive function.

As before, we begin by introducing the appropriate m slack varia

bles to our set of constraint equations. We construct the corresponding 

coefficient matrix as in (2.12), and then augment this matrix with yet 

one more row of figures - namely, the coefficients from our objective 

function. This gives as our starting matrix:

Po

bl

b2

I

... ?

all a12

a2 1

n

am  1

ml
ci c2

0

a 0 mn

n+1 n+2

0 

1

0 

0

n+m

(2.60)

To find a minimum feasible solution, one begins by seeking the 

first column, say the that contains both a positive objective
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function coefficient, ĉ , and a positive a^. Then, in the manner de

scribed above, a suitable pivotal element is found among the a^'s, that 

corresponding equation is solved for x , and the proper change of basis

is effected as per the simplex method. This process is repeated until

there no longer exists a positive coefficient c. within the bottom row.1
The optimum value of the objective function residing in the position f 

at the completion of the final simplex iteration and the minimum feasi

ble solution itself are promptly obtained by substituting zeroes in for 

the non-basic variables remaining in the m constraint equations.

It should be pointed out that within the above discussion there 

were many mathematical subtleties that were well glossed over. Many 

assertions and generalities were made on the basis of analogy (for

example with 2 and 3 dimensional cases), and sometimes just glibly

written down, for the sake of brevity and clarity. Also, there exist 

certain pathological situations that can occur during the iterative pro

cess, e.g. cycles, and degeneracy (Barsov, 1959), that require special 

attention that weren't discussed. It is hoped that any individual 

interested in the mathematical rigor accompanying linear programming will 

find the works listed in the references to their liking.

Having obtained at least a conceptual understanding of the simplex 

method and how it works, we shall now discuss how it can be used to ob

tain a minimum absolute error solution to the classical imaging equation 

(Barrodale and Roberts, 1973). (Recall Eq. (1.1).) First, non-negative 

variables u. and v. for i < m are introduced such thati i  —



Though neither or can be negative, their difference of course can.

Next, we introduce yet another set of non-negative variables, a_. and b̂

for j < n such that f' = a. - b .. This last step is made in order to - J J J
accommodate "object" values that are negative. This provides the al

gorithm with greater versatility, and allows it to be applied to a 

larger class of data restoration problems. For the purposes of image 

restoration, however, there is typically no physical relevance in allow

ing negative object values. As such, some greater computational effi

ciency within the algorithm could be realized by foregoing this last 

step, and instead just effect the ensuing simplex computations upon the 

variables u^, v^ and fT. In addition to somewhat enhanced computational 

efficiency, such a process might also result in more accurate restora

tions due to invoking the positivity constraints placed on the values 

fT. This would be subject matter for further study.

Having made such substitutions, we now rewrite the MAE restora

tion problem, originally stated in Eq. (1.5), as follows:

m
minimize e = £ u.-v. (2.62)

i=l 1 1

subject to the following m constraints.
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Thus, we have succeeded in converting the rather cumbersome problem of 

Eq. (1.5) into a form that lends itself to analysis via the methods of 

linear programming described earlier.

There still exists one additional alteration to be made that 

will ease the computational procedure. Barrodale and Roberts (1970) 

have shown that the problem stated above is equivalent to solving the 

following problem with a slightly altered objective function:

m
minimize e = T u.+v. (2.64)

. \  i i i = l

subject to the (same) following m constraints,

n
g, = I (a.-b.)H + u - v. (2.65)

1=1 J J J

This latter statement of the problem turns out to be less unwieldly to 

solve that the previous one, allowing certain shortcuts to be taken 

within the ensuing simplex procedure (Barrodale and Roberts, 1973).

Median Filter

Median filtering is a non-linear method of preparing the image 

data that is well suited for eliminating outliers (Pratt, 1978). The 

method is rather straightforward: a window which samples an odd number

of data points, NWIND, at a time is moved along the stream of data one 

point at a time. At any one time, a designated array will contain 

these NWIND sampled points. From this array the median value of the 

pixel values stored is determined, and this value is chosen as the output
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pixel value. Thus, any image point that is severely afflicted with 

outlier noise will be much higher, or lower, than any other points con

tained within a particular array of sampled points.

Figure 3 shows how a given set of image data, afflicted with 

sporadic outliers, is altered upon median filtering. The sampling 

window used was of length NWIND=3. Several effects are observed that 

distinguish median filtering from a linear process such as convolving 

the data with, say, a rectangle function, where it may be hoped that the 

outliers will average out among the neighboring points. This latter 

operation will clearly have a smoothing effect upon the image data.

The (undesired) information represented by the outlier is still present, 

just smoothed and made somewhat less conspicuous.

Median filtering also effects some degree of smoothing. Portions 

of the image data that contain local maxima (minima), like the top of the 

ramp and the sinusoidal-like hump, will be slightly flattened at the top 

(bottom). Also, any highly localized or impulse type structure, as on 

the far left of Figure 3a, will be altogether deleted if its spatial 

extent is of less than (NWIND-l)/2.

It is this latter effect that makes median filtering especially 

desirable and effective in picking out and deleting outliers. Remember, 

the image data represents the object distribution after having been 

smoothed by the appropriate point spread function. This means that 

there will be some characteristic limit to the amount of high spatial 

frequency content within the image data. Any such high frequency struc

ture that is present can be attributed to noise. Outliers in particular
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represent such structure and obviously must represent a noise extremum 

or sampling error at that point.

Figure 3

(a)

(b)

Effects of median filtering.

(a) "Image" data with outliers.
(b) Data from part a above after median filtering. 

NWIND=3.



CHAPTER 3

EXPERIMENTAL PROCEDURE

An appropriate experimental procedure must be developed that 

will provide a fair and consistent comparison of the different restora

tion methods employed. We are of course interested in comparing how 

well the different restoration methods can cope with varying degrees of 

gaussian noise versus varying degrees of outlier contamination, as well 

as combinations of the two. Thus we want to be able to control the 

amount of each type of noise that is added to the image data.

Other considerations exist as well. We'd like to observe how 

well restorations behave for varying degrees of blurring. Thus, we want 

to be able to vary the size and shape of the point spread function.

An added consideration exists in deciding on the type of object 

distribution it is we wish to restore. For example, it is well known 

that certain restoration techniques are better suited to restoring 

rapidly varying impulse type objects than smoother, more slowly varying 

object scenes. To this end we wish to design an object distribution 

that contains a good portion of both high and low frequency content.

The following procedure was adopted to meet the above require

ments. A program OBJGEN was written to create an initial image file.

The user supplies N, the number of object points; NPSF, the number of 

points in the point spread function; and finally the values of the point

33
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spread function. OBJGEN first produces a set of N object points that 

fit the object distribution pictured in Figure 4. Such an object distri

bution seems to be a good combination of high and low frequency compo

nents. N was consistently set equal to 124. This decision was made 

largely on practical considerations - the larger N is, the longer one / 

has to wait for their results, and the more expensive it is. If n is 

small, severe limitations are encountered when the user tries to vary 

the size of the psf. For example, if N is 50, then a 5 point psf repre

sents a blur function that is 10% of the total field.

After calculating the object vector, OBJGEN assembles the mxn 

blurring matrix H, using the user supplied psf values. (Before doing 

this, OBJGEN normalizes the psf values such that the area under the psf 

equals one.) This matrix is then multiplied by the object vector, giving 

the noise - free image data. The object vector, the blur matrix H, and 

the noise free image are then written into a file. This file is typi

cally retained in the user's directory so that subsequently it can be 

read by the program NOISE, which adds varying amounts of noise to the 

image vector.

The program NOISE gives the user the opportunity to add Gaussian 

noise and outlier noise to the image data. The values produced by the - 

random number generator of the computer follow a flat probability distri

bution, located between zero and one. In order to obtain random numbers 

adhering to a Gaussian probability distribution, the following trans

formation is performed (Frieden, 1980):
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Y=sin{ 2tt (X-ŷ -) }Y=1
Y=-8X+3

4X

5/81/4 3/8 1/2 3/4 7/81/8 10

Figure 4. Diagram of object distribution, f(X), used in OBJGEN. 

Expressed mathematically:

4X for 0 < X < .25

f(X) =

-8X + 3 for .25 < X < .375
0 for .375 < X < .5
1 for .5 < X < .6875
0 for .6875 < X < .8125

sin |2tt(x - ) | for .8125 < X < 1.0



1/
X = <m> + a(-21nY^) 2cos27rY2
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(3.1)

The quantities Y^ and Y^ represent the "random" numbers supplied by the 

computer's system subroutine, and are characterized by the above men

tioned rectangular probability distribution function. The quantity X 

will have the desired Gaussian probability distribution of mean "m," 

and of standard deviation a. Both of these lattef quantities are user 

supplied, "m" was always zero and a, known in NOISE as SIGMA, was 

varied.

After adding the appropriate Gaussian noise to the image vector, 

NOISE asks the user whether outlier noise is to be added to the image 

vector. If so, the user supplies the indices and the•corresponding 

outlier noise magnitude for the image points that are to be perturbed.

NOISE also calculates the noise standard deviation and SNR of

the data, and appends them at the end of the image file. These two .

. quantities are determined just after the Gaussian noise has been added, 

before considering the matter of outliers. In other words, the outlier

fluctuations don't enter into the determination of SNR of noise variance

since these two quantities represent a priori knowledge regarding the 

noise characteristics of whatever signal acquisition process may have 

been involved. In contrast, outliers represent sampling or transmission 

errors, about which no information is known. As such it would be un

realistic to include their effect in the assessment of the noise charac

teristics.

The following three programs were written to effect the restora

tion methods discussed earlier.



MINABS: Performs the minimum absolute error restoration as

per the simplex method of Barrodale and Roberts 

(Barrodale and Roberts, 1974).

INVMAT: Achieves a least square solution via the pseudo

inverse method.

NOCORR: Performs the MMSE restoration assuming an uncorrelated

object ensemble.

The matrix inversion required in both INVMAT and NOCORR was achieved by 

a subroutine which employed Jordan's method of successive elementary

transformations. (See, for example, Hoffman and Kunze, 1961.)

Each restoration method was applied to image data degraded by 

various amounts of both Gaussian and outlier noise. The amount of 

Gaussian noise added was varied so as to achieve SNR's ranging from 

roughly 740 to roughly 78. For the sake of fairness and consistency the 

degree of outlier noise was handled in the following manner. In each 

trial, the same 3 image points - the eighth, sixteenth and twentyfourth - 

had added to them some amount of outlier noise. For different trials, 

the magnitude of the outlier noise was increased or decreased in order 

to test each method's ability to cope with it.

The restoration quality of each method was judged by calculating 

the root mean square discrepancy, d^^, between the object and its 

corresponding estimate:
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The values of d for each restoration are tabulated as a function of rms
the amount of Gaussian noise (characterized by the SNR) and outlier 

noise (characterized by the outlier noise magnitude, ONM) added to the 

image data points 8, 16 and 24.

One additional program, STARGEN, was written in order to investi

gate whether or not any of the restoration methods employed showed a 

marked ability in restoring object distributions that consist mainly of 

impulse type structures.. We are alluding, of course, to astronomical 

applications, where the image is of a group of stars located in some 

portion of the sky. A typical problem that arises with such images is 

to determine whether a particular "Spot" or "blur" is due to a single 

star or perhaps an unresolved pair of stars.

STARGEN is an alteration of OBJGEN. The object distribution 

created is a sequence of pairs of impulses ("stars") separated by vary

ing distances (see Figure 5). This object is then blurred by a user 

supplied point spread function in a manner identical to that of OBJGEN. 

The data file created by STARGEN is identical in form to that of OBJGEN 

in order that it may be read by NOISE, wherein the user can impair the 

image vector^with the desired amount of noise.

The experiments described above were performed on a VAX 11/780 

minicomputer, manufactured by the Digital Equipment Corporation. The 

computer was outfitted with a VMS operating system.
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10 3O31 50 70y2 85 88 110 114
 ------------   Pixel Location

Figure 5. Object distribution used in STARGEN.



CHAPTER 4

EXPERIMENTAL RESULTS

On the following pages are tabulated the root mean square dis

crepancies, dr]ns> between the original object distribution and the 

object estimate as achieved by each of the three restoration methods 

employed. NOCORR indicates the result obtained via the MMSE criterion 

with an uncorrelated object ensemble. PI refers to the pseudo-inverse, 

or least-squares method of INVMAT, and MAE stands for the minimum 

absolute error solution obtained by MINABS.

Each table shows the results for a specific point spread func

tion used in blurring the object, and for different combinations of 

Gaussian noise and outlier noise magnitude, ONM. The standard deviation 

of the Gaussian noise added, ct , was varied by altering the user defined 

variable SIGMA. The outlier noise magnitude ONM corresponds to the 

amount of error added to the 8^^, 16^, and 24t*1 points of the image 

vector.

The point spread function used to blur the object distribution 

is pictured in the upper right of each table. Consistent with the 

nomenclature employed in earlier discussions, the quantities N, NPSF and 

M are:

N = Number of Object Points

NPSF = Number of Points ("width") of the PSF

M = Number of Image Points, where M=N+NPSF-1

40
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The results depicted in Tables 7 and 8 illustrate the effects

that median filtering the image data before submitting it to a restora

tion algorithm can have on the restoration accuracy. Median filtering 

was performed on image data with and without outlier noise contamination 

in order to observe its effects on the restoration process.

Following the numerical results presented in Tables 1 through 8

are Figures 6 through 12. These were obtained from photographs of CRT 

displays of the various object, image, and restoration data for different 

combinations of noise and blurring.



42

Table 1. RMS discrepancies.

PSF ■ t "  (5/2 )
e

N = 124 iNPSF = 5 M = 128 • •

ONM=0 ONM=. 1 ONM=.5

0 =0 NOCORR 2.89 NOCORR 14.42n Pseud In 2.89 PI 14.42
MAE 2.46 MAE 12.32

a =7.9xl0'4 n NOCORR .063 NOCORR 1. 131 NOCORR 5.637
SNR=772.8 PI .021 PI 2.860 PI 14.384
SIGMA=.0005 MAE .370 MAE 2.449 MAE 12.280

0 =1.6x10  ̂n NOCORR .082 NOCORR •731 NOCORR 3.567
SNR=386.4 PI .443 PI 2.830 PI 14.327
SIGMA=.001 MAE .738 MAE 2.494 MAE 12.259

a =7.9xl0'5 n NOCORR .136 NOCORR •310 NOCORR 1.298
SNR=77.3 PI 2.22 PI 3.298 PI 14.336
SIGMA=.005 MAE 4.21 MAE 4.773 MAE 12.311

a =1.6x10  ̂n NOCORR .169 NOCORR •242 NOCORR .810
SNR=38.6 PI 4.41 PI 4.769 PI 14.206
SIGMA=.01 MAE 7.38 MAE 7.563 MAE 13.706

a =7.9xl0'2 n NOCORR •207
SNR=7.7
SIGMA=.05

a =1.6x10 * n NOCORR •205
SNR=3.9
SIGMA=.1

a =1.58 n NOCORR •566
SNR=.4
SIGMA=1.



Table 2. RMS discrepancies.
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PSF = rect • • • •

N = 124 NPSF = 5 M = 128'

ONM=0 ONM=.1 ONM=.5

a =0 NOCORR .230 NOCORR 1.154n PI .230 PI 1.154
MAE .118 MAE .674

-4a =7.9x10 n NOCORR .014 NOCORR .232 NOCORR 1.149
SNR=768.8 PI .014 PI .234 PI 1.157
SIGMA=.0005 MAE .014 MAE .254 MAE 1.344

-3a =1.6x10 n NOCORR .0283 NOCORR .231 NOCORR 1.128
SNR=384.4 PI . 0283 PI .237 PI 1.209
SIGMA=.001 MAE .0283 MAE .141 MAE 1.327

a =7.9xl0"3 n NOCORR .0984 NOCORR .185 NOCORR .780
SNR=76.9 PI .1414 PI .292 PI 1.258
SIGMA=.005 MAE .1597 MAE .589 MAE 1.309

a =1.6x10  ̂n NOCORR .139 NOCORR .1785 NOCORR .567
SNR=38.4 PI .283 PI .3969 PI 1.538
SIGMA=.01 MAE .347 MAE .2835 MAE 1.240
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Table 3. RMS discrepancies.

PSP = tri ( jfj)
• •

N = 124 NPSF = 7 M = 130 S • • •

ONM=0 ONM=.1 ONM=.5

a =0 NOCORR 7.78 NOCORR ***n PI
MAE

7.78
.482

PI *** 
MAE ***

a =7.9xl0"4 n NOCORR .089 NOCORR 1.39
SNR=7 61.1 PI .176 PI 7.76
SIGMA=.0005 MAE .455 MAE 4.54

a =1.6x10  ̂n NOCORR .102 NOCORR .707
SNR=380.5 PI .338 PI 7.75
SIGMA=.001 MAE .987 MAE 2.16
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Table 4. RMS discrepancies.

PSF = rect (y)

N = 124 NPSF = 7 M = 130

ONM=0 0NM=.1 ONM=.5

Q 1 II O NOCORR .205 NOCORR 1.02611 PI .205 PI 1.026
MAE .407 MAE 1.833

-4a =7.9x10 NOCORR .014 NOCORR .205 NOCORR 1.022n
SNR=754 PI .014 PI .206 PI 1.026
SIGMA=.0005 MAE .020 MAE .370 MAE 2.123

o =1.6x10 ^ NOCORR .028 NOCORR .204 NOCORR 1.011n
SNR=377.0 PI .028 PI .207 PI 1.027
SIGMA=.001 MAE .045 MAE . 366 MAE 2.161

a =7.9xl0"3 NOCORR .112 NOCORR .194 NOCORR .823n
SNR=75.4 PI .142 PI .251 PI 1.038
SIGMA=.005 MAE .214 MAE .445 MAE 2.379
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Table 5. RMS discrepancies.

PSF - tri (972)

N = 124 NPSF = 9 M = 132

ONM=0 ONM=.1 ONM=.5

Q 1 II O NOCORR 6.355 NOCORR ***
11 PI 6.355 PI * * *

MAE 5.818 MAE ***

a =7.9xl0"3 n NOCORR .099 NOCORR 1.14 NOCORR 5.669
SNR=747.5 PI .318 PI 6.333 PI ** *
SIGMA=.0005 MAE .543 MAE 5.354 MAE * * *

a =1.6x10 3n NOCORR .118 NOCORR .964 NOCORR 4.701
SNR=373.8 PI .608 PI 6.325
SIGMA=.001 MAE 1,.420 MAE 6.003
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Table 6. RMS discrepancies.

PSF = rect j

N = 124 NPSF = 9 M = 132

ONM=0 0NM=.1 0NM=.5

Q I II O NOCORR .244 NOCORR 1.21711 PI .244 PI 1.217
MAE .412 MAE 1.512

a =7.9xl0~3 NOCORR .0164 NOCORR .580 NOCORR 1.216n
SNR=736.8 PI .010 PI .246 PI 1.220
SIGMA=.0005 MAE .0245 MAE .405 MAE 1.967

a =1.6x10 ^ NOCORR .032 NOCORR .245 NOCORR 1.204n
SNR=368.4 PI .024 PI .248 PI 1.222
SIGMA=.001 MAE .050 MAE .379 MAE 1.954

a =7.9x10 ^ NOCORR .110n
SNR=73.7 PI .124
SIGMA=.005 MAE .249
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Table 7. RMS discrepancies.

Restorations preceded by median filtering of 
image data. NWIND0W=3.

PSF ■ tri (172)

N = 124 NPSF = 5 M = 128

ONM=0 ONM=.1 ONM=.5

a =0 NOCORR .057 NOCORR .918 NOCORR .918n PI .057 PI .918 PI .918
MAE .045 MAE .772 MAE .772

a =7.9xl0'3 n NOCORR .050 NOCORR .301 NOCORR .301
SNR=772.8 PI .235 PI .733 PI .733
SIGMA=.0005 MAE .453 MAE .573 MAE .573

a =1.6x10 3 n NOCORR .057 NOCORR .187 NOCORR .187
SNR=386.4 PI .480 PI .572 PI .572
SIGMA=.001 MAE .922 MAE .690 MAE .690
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Table 8. RMS discrepancies.

Restorations preceded by median filtering of 
image data. NWIND0W=3.

PSF = rect • * e •

N = 124 NPSF = 5 M = 128

ONM=0 0NM=.1 ONM=.5

a 2=0 NOCORR .009 NOCORR .060 NOCORR .060n PI .009 PI .060 PI .060
MAE .010 MAE .092 MAE .092

a 2 = 7 . 9 x 1 0 " 3 n NOCORR .017 NOCORR .055 NOCORR .055
SNR=768.8 PI .017 PI .055 PI .055
SIGMA=.0005 MAE .017 MAE .032 MAE .032

a 2 = 1 . 6 x 1 0  3 n NOCORR .028 NOCORR .053 NOCORR .053
SNR=384 PI .029 PI .054 PI .054
SIGMA=.001 MAE .041 MAE .047 MAE .047

a 2= 7 . 9 x 1 0 ' 2 n NOCORR .114 NOCORR .112 NOCORR .112
SNR=38.4 PI .205 PI .177 PI .177
SIGMA=.01 MAE .388 MAE .299 MAE .299
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(a) (b)

(c) (d)

Figure 6. Original object and images with varying degrees of Gaussian 
noise.

PSF in all cases is rect . No outliers.

(a) Original object.
(b) Image, SIGMA=.005, SNR=76.9.
(c) Image, SIGMA=.01, SNR=38.4.
(d) Image, SIGMA=.05, SNR=7.7.
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(c)

Figure 7. NOCORR restorations for different amounts of Gaussian Noise. 

In all above cases, psf = tri ’ anc* ONM=.l.

(a) SIGMA=.001, SNR=386.4, dTms=.731.
(b) SIGMA=.01, SNR=38.6, drms=.731.
(c) SIGMA=.1, SNR=3.9, drms=.205.
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(c) (d)

Figure 8. MAE restorations for varying amounts of Gaussian and outlier 
noise.

PSF = rect .

(a) SIGMA=.0005, SNR=768.8, 0NM=.1, drms=.254.
(b) SIGMA=.0005, SNR=768.8, 0NM=.5, drms=1.344.
(c) SIGMA=.005, SNR=76.9, 0NM=.l, drms=.589.
(d) SIGMA=.005, SNR=76.9, 0NM=.5, drms=1.309.
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(c) (d)

Figure 9. NOCORR restorations for varying amounts of Gaussian and 
outlier noise.

PSF = rect (^) .

(a) SIGMA=. 0005, SNR=768.8, 0NM=.l, drTns=.232.
(b) SIGMA=.0005, SNR=768.8, 0NM=.5, drms=1.149.
(c) SIGMA=.005, SNR=76.9, 0NM=.l, drms=.185.
(d) SIGMA=.005, SNR=76.9, 0NM=.5, d =.780. v rms



(c) (d)

Figure 10. Restorations of STARGEN image blurred by tri

In all cases SIGMA=.001, SNR=101.8, and ONM=0.0.

(a) Image from STARGEN.
(b) N0C0RR restoration. drins=.0822.
(c) INVMAT restoration. drTns=.4416.
(d) MINAMS restoration. drms=.738.
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(a) (b)

Figure 11. Restorations of STARGEN image blurred by rect  ̂

In all cases SIGMA=.001, SNR=96.3, and ONM= 0.0.

(a) NOCORR restoration, d =.0230.
(b) INVMAT restoration. drTnS=.0283.
(c) MINABS restoration. drmS=.0412.J rms

cn| 
x
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Figure 12 . MAE and MMSE restorations for different amount s of out l ier 
contamination. 

In all cases, psf = rect ( ~) . 

(a ) MINABS. SIGMA=.OOOS. Outliers: . 2@ 10, .4@ 20 . d =. 290. rms 
(b ) NOCORR. SIGMA=.OOOS. Outliers: . 2@ 10, .4 @2 0 . drms= .877. 
(c) MINABS. SIGMA=.OOl. Outliers : .5@60 . d =. 981 . 
(c ) NOCORR. SIGMA=.OOl. Outl i ers: .5@60. drms= . 460. 

rms 



CHAPTER'S

DISCUSSION AND CONCLUSIONS
'■

The results summarized in Tables 1 through 6 indicate that the 

minimum absolute error criterion as effected by the method of Barrodale 

and Roberts (1973) provided results that are quite comparable to the 

least-squares criterion invoked by the pseudo-inverse method. As was 

originally hoped for, the MAE method does seem to provide slightly 

better restoration accuracy under the influence of outlier contamination. 

Likewise, in the presence of only Gaussian noise, with no outliers, the 

pseudo-inverse method was consistently better than the MAE approach.

Most conspicuous of all, though, is the immense success of NOCORR, which 

employed the MMSE and signal to noise criteria. NOCORR succeeded in 

out-performing both MINABS and INVMAT in nearly every restoration problem 

considered.

Overall, it would have to be judged that INVMAR, or equivalently, 

the least-squares criterion, was generally more successful than MINABS.

In the presence of outliers, and with only a small amount of Gaussian 

background noise, MINABS occasionally would restore somewhat more 

accurately than INVMAT. This slight advantage, however, would dissipate 

as the Gaussian noise was allowed to increase, as though, with suffi

cient background noise, the outliers became less conspicuous and domi

nated the error function to a lesser degree.

57
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The results depicted in Figure 12, however, demand that radically 

altered appraisals of the different restoration schemes be made. When a 

seemingly modest change in the outlier noise added was made, MINABS un

furled a restoration prowess far superior to either INVMAT or NOCORR. 

Obviously, the MAE approach is extremely sensitive to the number of out

liers present.

The specific manner in which outliers affect the restored object 

is peculiar (see Figures 8, 9 and 1.2) in all three restoration methods, 

but it is most intriguing with MINABS. The so-called ringing effect 

that is prominent in many of the restored objects is well known and has 

been long observed in the field of image restoration (Frieden, 1977).

It is the symmetrical nature of the ringing, or erroneous points of the 

MAE restorations that is interesting (see Figure 8). The MAE method also 

displays a significant localization sensitivity in its restorations.

That is, the bad or inaccurate points within the MAE object estimate 

seem to generally be within the.- same locale as the outlier contaminated 

data points of the image vector. This is quite apparent, in the MAE 

restorations of Figure 12. Here, image points 10 and 20 were contaminated 

with outliers of .2 and .4, respectively. Correspondingly, points within 

this same vicinity of the object estimate are what seem to suffer most.

In contrast, the detrimental effects that outliers have on pseudo-inverse 

or MMSE restorations extend more throughout the entire object estimate.

Despite the appealing nature of the above observations, the fate 

of the usefulness of MAE restorations pales somewhat upon considering 

the effectiveness of simply median filtering the image data before
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submitting it to restoration. The MAE method is most effective when the 

background Gaussian noise is quite low. In such instances, outliers are 

readily picked out and done away with when subjected to median filtering, 

Then, an MMSE, or even a pseudo-inverse (for suitably high SNR) restora

tion will provide restorations superior to that of the MAE method. The 

assertions are born out in Tables 7 and 8.

For the most part, the MMSE criterion employed by NOCORR was the 

superior restoration technique. As described earlier in Chapter 2, it 

was the only one of the three methods used to invoke any kind of con

straint during the restoration process that regarded some knowledge of 

what the object estimate should look like. We see first hand how effec

tive it can be to utilize even such seemingly sparse information as a 

SNR in directing the restoration.

It is well known that the MMSE criterion in effect imposes a 

smoothness constraint upon the restoration. This is best understood in 

the Fourier domain, wherein the MMSE criterion leads to the Weiner func

tion (Helstrom, 1967).

W(fx) = ♦f * i ( f x) / * o ( f x) ( 5 ‘ n

For uncorrelated noise and object ensemble, we have

/c-Y.n^ (5.2)|H(f ) | 2 + (1/SNR)2

From this latter expression we observe that the lower the SNR, the 

greater the attenuation of high frequency components of the image data.
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Equivalently, this suppresses the acquisition of wildly varying points 

in the object estimate. In constrast, neither the MAE or least-squares 

method impose such constraints. As such, the restorations are subject 

to such oscillations. Perhaps the best display of the MMSE qualities is 

in the restorations of the "star" patterns depicted in Figures 10 and 11

An apparent anomaly seems to exist with regard to the results of 

NOCORR restorations as given in the tables. In the cases where the 

image is contaminated with both Gaussian and outlier noise, it seems to 

occur with rather perplexing consistency that as the level of Gaussian 

noise increases, the NOCORR restoration accuracy improves. Weird, huh?

An explanation of this phenomena could lie in the manner in 

which the SNR and noise standard deviation, a , are specified. Early 

on, an ethic was adopted wherein statements of SNR’s and o^’s would not 

reflect the effect of any outliers present, since their existence is not 

known of. Let us now violate this ethic and see how our NOCORR restora

tions behave if we acknowledge these outliers when assessing SNR and a .

By definition

(5.3)

(5.4)

SNR = a^/an (5.5)



where ru is the Gaussian noise contribution to the i ^  image point.

us now determine how a and SNR will be altered if we consider then
effects of 3 outliers, each of magnitude .1.
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Let

a = noise standard deviation, with outlier contribution no

M
y n.2 + .I2 + .I2 + .1: 
i=l 1

M

(5.6)

(5.7)

i v * r
(5.8)

Additionally,

SNRq e signal to noise ratio, with outlier contribution (5.9)

= af/ano (5.10)

From (5.5) we have

= SNR a f n (5.11)

Thus, combining (5.10) and (5.11),

SNR = SNR —  o a
(5.12)

no

Furthermore

6SNR = SNR-SNRo

= SNR(1 _ oy<,no)

(5.13)

(5.14)
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and

f r - ^  ■no

These altered standard deviations and signal to noise ratios were 

calculated for the noise levels pertinent to the various restorations 

that were performed. The results are contained in Table 9. These modi

fied values for a and SNR were then employed in NOCORR, and the dn r rms
achieved using these altered values are compared to the d^ms using the 

unaltered noise values. The results are in Table 10.

From Table 9 we observe a significant improvement in the MMSE 

restoration quality when the outlier contributions to the noise statis

tics are considered. Apparently the MMSE restoration method performs 

more accurately when it is provided with a more accurate assessment of 

the image vector variance.

One final observation to be made is also the least understood. 

Throughout the entire experiment it was consistently found that images 

that had been blurred with a triangularly shaped psf would simply not 

yield restorations as accurately as images that had been blurred by rec

tangular psf’s of the same width, despite having identical noise and out

lier contamination. If any such difference was to be anticipated, one 

would think that it would be the reverse of the observed outcome; i.e., 

that images blurred with a triangle would provide better restorations 

than images blurred with a rectangle. This is because the rectangle 

effectively blurs more than a triangle of the same width. In any event,
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Table 9. Effects on noise statistics when outlier contribution is 
considered.

The outliers were each of magnitude .1, located at the 8^, 
16th and 24th image points.

SIGMA no SNR SNR 6SNR
SNR

.0005 .00079 .0153 770 39.8 .95

.001 .0016 .0154 385.4 40.04 .90

.005 .0079 .0172 77.2 35.5 .54

.01 .016 .0220 38.5 28 .28

.05 .079 .0805 7.7 7.6 .02

. 1 .16 .161 3.9 3.9 .005

Table 10. Comparison 
statistics 
outliers.

of NOCORR restoration RMS 
that neglect outliers vs.

discrepancies for image 
statistics that consider

Outlier distribution is the same as for Table 9.

SIGMA an SNR drms ano SNR0 drms

.0005 .00079 768.8 .232 .0153 39.8 .113

.001 .0016 384.4 .231 .0154 40.04 .114

.005 .0079 76.9 .185 .0172 35.5 .127

.01 .016 38.4 .178 .0220 28.0 .154

.05 .079 7.7 .247 .0805 7.6 .244
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this rather perplexing result has been observed by other individuals who 

have worked in image restoration (personal discussions).

In conclusion, it is felt that the MAE method of restoration may 

hold some promise in application to restoring data that is sparsely 

afflicted with outliers, and with low overall background noise. Of 

course, we have seen that median filtering can be extremely effective in 

deleting such points. But it is also true that median filtering itself 

perturbs and smooths the image data. If the inherent SNR of the data is 

sufficiently high to begin with, it can occur that the effects of median 

filtering can do more harm than good.

For the more general case, though, when the data is not blessed 

with such low levels of background noise, the MMSE method, used with or 

without median filtering (as circumstances dictate), seems to be the 

overall favored method.
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r*u00RAM OBJGEN
C THIS PliOGRAH GENERATES AN OBJECT VECTOR OF N POINTS, N BEING
C USER SUiM'l. JKD. THE OBJECT IS A RAMP, RECT, AND THE POSITIVE
C LORE OF HALE A SINE WAVE. THE USER ALSO SUPPLIES THE RSE,
C FROM WHICH THE PS I— MATRIX IS ASSEMBLED AND MULTIPLIED BY
C THE OBJECT VECTOR.

DIMENSION Y( 256 ) ,PSF(9 ) ,OBJ( 256 ),H( 256 ,256 )
CHARACTER OUTF IL>M6 
WRITE!5,5)

5 FORMAT! 1 ENTER THE NUMBER OF PTS. IN THE PSF, FORMAT!12 ) 1 )
READ! 5, IJJHIPSF 

10 FORMAT!12)
WRITE!5,15)

15 FORMAT! 1 ENTER VALUES OF PSF, FORMAT!SF10.0)1 )
READ(5,20)(P SF(K ),K = 1,NPSF)

20 FORMAT!8F10.0)

C NORMALIZE PSF VALUES SUCH THAT SUM OF ALL P S F ! I >1S = 1 .0
SUtlP SF =0.
DO 21 1 = 1 ,NPSF

21 SUMPSF = SUMPSF + PSF! I )
DO 22 1=1.NPSF

22 PSF! I ) = PSF(I)/SUMPSF 
WRITE!5,25)

25 FORMAT!1 ENTER NO. OF OBJECT POINTS AND BIAS, FORMAT!13,F 10.0)')
READ!5,30)N,BIAS 

30 FORMAT! I 3,FI0.0)
PI2F=2.*8.*ACOS(- 1 . )/3.
DO 2000 1=1,N 
X = F LOAT( I ) /F LOAT(N )
I F (X . L E .1. )0BJ( I) = SIN!PI2F*(X-.8125)) + BIAS
IF!X.LE..0125)OBJ(I)=BIAS
IF(X .L E ..6075)0BJ( I)=1.0+BIAS
IF!X.LE..5 )OBJ(I ) = BIAS
IF(X.LE..375)OBJ!I)=-8.*X+3.+BIAS
IF!X.LE..25)OBJ(I)=4.0*X

2000 CONTINUE40 FORMAT!8F10.0)
C CALCULATE M, NO. OF IMAGE POINTS

M=N+NPSF-1
C DETERMINE ELEMENTS OF PSF MATRIX H(( I , J ). BLOCK CIRCULANT.

DO 50 1=1,MDO 4 5 J =1,N
IF (I.EO.J>G0 TO 55
IF!J.GT.I)G0 TO 60IJDEL=I-J
LPSF=NPSF-IJDELIE!LPSF.LT.1>G0 TO 60
H( I,J ) = PSE(LPSF )GO TO 4555 H( I,J ) = PSF(NPSF )
GO TO 45 60 H!I,J)=0.GO TO 4 5 

45 CONTINUE•
50 CONTINUE
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CC
65

75
70

B0

85

90

100

NOW CALCULATE IMAGE VALUES 
INITIALIZE DO 65 1=1,M Y(I)=0.
DO 70 1=1,M DO 75 0=1 ,NY(I ) = Y( I)+H(I,0 >*OBJ(0 )CONTINUE CONTINUE WRITE(5,80)FORMAT(' ENTER NAME OF OUTFIL') READ(5,85 )OUTFIL 
FORMAT;A16 )OPEN;UNIT=1,NAME =OUTFIL,TYP E =1 NEW' ) 
write;i,90);y;i>,1=1,m>FORMAT;10F10.6)w r i t e ; i ,90>;o b j ; i >,1= 1,n )
DO 100 1=1,M
write;i,90);h;i,j ),j = i,n )
CONTINUE
STOPEND
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PROGRAM NOISE

C NOISE ADDS GAUSSIAN AND OUTLIER NOISE TO THE IMAGE VECTOR.C GAUSSIAN NOISE IS GENERATED FROM THE FLATLY DISTRIBUTEDC RANDOM NUMBERS SUPPLIED BY THE COMPUTER’S RANDOM NUMBERC ROUTINE VIA THE TRANSFORMATION DESCRIBED ON PAGE 3-88C OF ROY FRIEDEN'S CLASS NOTES. TO ADD OUTLIERS THE USERC SPECIFIES THE APPROPRIATE INDEX AND THE CORRESPONDINGC OUTLIER TO BE ADDED TO THAT IMAGE POINT.CHARACTER INFIL* 16,OUTFIL* 16 REAL MAGNOIDIMENSION Y( 256 ),H< 256,256 ),OUTLY(20>,INDEX(20),OBO( 256 )VRITEt 5,10)10 FORMAT! ' ENTER NAME OF FILE TO BE READ, FORMAT!A16 ) ’ )READ!5,20)INFIL 20 FORMAT!A16)OPEN!UN IT=1,NAME = INFIL,TYPE=’OLD’ )WRITE!5,25)25 FORMAT!' ENTER FILE NAME TO BE WRITTEN, FORMAT!A16)')
READ!5,30)OUTFIL 30 FORMAT!A16)
OPEN!UNIT = 2,NAME=OUTFIL,TYPE =’NEW’ )WRITE!5,35)35 FORMAT! ' ENTER M,N AND SIGMA, FORMAT!21 3,F10.0)' )
READ!5,40)M,N,SIGMA 40 FORMAT!213,F10.0)TWOP1=2.0*ACOS!-1.0)SUMNOI=0.POWNOI=0.
POWSIG=0.C READ, ADD NOISE, WRITE.ISEED1=0READ!1,60)!Y!I),1=1,M)
READ!1,60)!OBJ!I),1 = 1,N )DO 75 1=1,M
READ!1,60)!H(I,0 ),J = 1,N >

75 CONTINUEY1=RAN!ISEED1 )DO 50 1=1,M 
Y1=RAN< I SEED 1 )Y2 = RAN( ISEED1 )X1 = -4.606*LOG(Y1 )
X1=SQRT!X1 >*SIGMA*COS(TWOPI*Y2 )SUMNOI=SUMN0I+X1 POWNOI=POWNOI+ X1̂  X1 POWSIG = POWSIG + Y( I )*Y( I )Y! I > = Y! I ) + Xl 

50 CONTINUE
WRITE!5,95 )95 FORMAT! ' WANT TO ADD OUTLIER NOISE? NO=0,YES=1.FORMAT 11' )READ!5,100 > NOUT 100 FORMAT!II)IF(NOUT.EQ.0 )GO TO 105 WRITE!5,110)

110 FORMAT!' HOW MANY IMAGE POINTS DO YOU WISH TO ADD OUTLIER NOISE1 TO - FORMATI3?' )READ!5,115 )NOUT 115 FORMAT!13)WRITE!5,120)
120 FORMAT!' ENTER INDICES OF IMAGE POINTS & NOISE TO BE ADDED.1 FORMAT I 3,F10.0' )

READ!5,125 )!INDEX!I ) ,OUTLY( I),1 = 1,NOUT)
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125
13010560

80

81
83

85
90

FORMAT!13,F10.0)
DO 130 1=1,NOUTY(INDEX!I)) = Y(INDEX!I ) ) + OUTLY!I )WRITE!2,60)!Y( I ),1 = 1,M>FORMAT! 10F10.6 )
WRITE!2,60)!OBJ!I ),I = 1,N)
DO 80 1=1,MWRITE!2,60)!H( I,J >,J = 1,N )
CONTINUEIF!POWNOI.EQ.0.)GO TO 81 SNR = SQRT! POV/S IG/POWNOI )
GO TO 83
SNR--1.0GO TO 83AVE NOI=SUMNOI/M
STANDV-!POWNOI/M)**. 5WRITE!5,85)SNR,AVENO I,STANDV
WRITE!2,90>SMR,AVENO I.STANDVFORMAT!' SNR=1,F10.1,/,' AVERAGE NOISE VALUE=1,F10.8, 
1/,' NOISE STANDARD DEVIATION =',F10.8)FORMAT!F10.1,F10.8,F10.8)
STOPEND
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PROGRAM MI NABSDIMENSION OBJ( 256 >,RESID( 256 ),IWRKSPI 256 ),OBJEST( 256 ) CHARACTER PLOTFIL* 16,INFIL* 16,OUTFIL* 16 
COMMON Y{ 256 ) ,H( 256 ,256 )
TOL=10.0**(-10)WRITE!5,6)6 FORMAT!' ENTER N, NO. OF OBJ PTS., AND NPSF, THE NO. OF
1 PSF PTS., FORMAT!213 ) ' )READ(5,11)N,NPSF 11 FORMAT!213 )M=N+NPSF-1 
M2=M+2 N2=N+2 WRITE!5,40)40 FORMAT!' ENTER FILENAME TO BE READ')
READ!5,45)INFIL

45 FORMAT!A16)OPEN!UN IT=1,NAME = INFIL,TYPE=,OLD' >
WRITE!5,41 )41 FORMAT! ' ENTER NAME OF OUTFILE, FORMAT!A16 ):' >
READ(5,45)OUTFIL
OPEN!UNIT=2,NAME=OUTFIL,TYPE='NEW')WRITE!2,5 )5 FORMAT!' IMAGE DATA IS:'/)READ! 1 , 10H Y( I), 1 = 1 ,M)10 FORMAT!10F10.6)WRITE!2,10)!Y!I),1=1,M>WRITE!2,50)50 FORMAT!' OBJECT DATA IS:’/)READ!1,10)!OBJ!I),1=1,N)WRITE!2,10)!OBJ!I),1=1,N)

DO 60 1=1,MREAD!1,10)!H(I,J >,J = 1,N>
60 CONTINUEREAD!1,52)SNR,AVENOI,STANDV 
52 FORMAT!F10.1,2F10.6)WRITE!5,54)SNR,AVENOI,STANDV WRITE!2,54 )SNR,AVENOI,STANDV 
54 FORMAT!/,' SNR=',F10.1,/,' AVERAGE NOISE VALUE=',F10.6,1/,' NOISE STANDARD DEVIAT I ON=' ,F10.6)

CALL Ll!M,N,M2,N2,TOL.OBJEST.RESID,IWRKSP)
WRITE!5,25 )H!M+1,N+1 ) ,H!M+1,N2 ) ,H(M2,N + 1 ) ,H(M2,N2 )
WRIT E(2,2 5 ) H(M +1,N + 1 ),H(M+1,N2),H!M2,N + 1 ),H!M 2,N 2 )25 FORMAT! ' MINIMUM SUM OF ABS!RESID! I ) ) = ' , F8.3,/ ,1' RANK OF H!I , J )=' ,F4.0,/, ' EXIT CODE=' ,F4.0,/,
2' NO. OF SIMPLEX ITERATIONS®' ,F 4.0 )
WRITE!2,65 >65 FORMAT!' OBJECT ESTIMATE IS:',/)WRITE(2,10)(OBJEST! I ) ,I = 1,N >
RMSERR=0.
DO 33 1=1,N 33 RMSERR = RMSERR+(OBJEST! I )-OBJ< I) )**2RMSERR = !RMSERR/FLOAT!N ) ) * * . 5 
WRITE!5,43 )RMSERR WRITE!2,43 )RMSERR 

43 FORMAT!' ROOT MEAN SQUARE DISCREPANCY®',F10.6)
WRITE!2,70)70 FORMAT!' RESIDUALS ARE:',/)WRITE!2,10 )(RESID! I>,1 = 1,N )



71
WRITE(5,100)100 FORMAT(' DO YOU WANT A FILE WRITTEN FOR PLOTTING? YES=1,NO=0') READ(5,105 )IDEC105 FORMAT(Il)I F(I DEC.EQ.0)GO TO 101 WRITE(5,110)110 FORMAT!1 ENTER 1 FOR OBJECT,2 FOR OBJECT ESTIMATE,3 FOR IMAGE')READ!5,105)IDEC WRITE!5,115)115 FORMAT! ' ENTER FILENAME OF DATA TO BE PLOTTED, FORMATA16' )
READ!5,45)PLOTFILOPEN!UNIT=4,NAME=PLOTFIL,TYPE='NEW')
IF!IDEC.EQ.1)WRITE(4,10)!OBJ!I),1=1,N)IF! I DEC. EQ. 2 )WR ITEM, 10 MOB JEST! I ), 1 = 1, N)IF! IDEC.EQ. 3 )WR ITEM, 10 MY! I ), 1 = 1, M>

101 STOP ENDSUBROUTINE L1!M,N,M2,N2,TOLER,X,E,S)
CC THIS SUBROUTINE USES A MODIFICATION OF THE SIMPLEX METHODC OF LINEAR PROGRAMMING TO CALCULATE AN LI SOLUTION TO AN
C OVER-DETERMINED SYSTEM OF LINEAR EQUATIONS.
C DESCRIPTION OF PARAMETERS.C M NUMBER OF EQUATIONS.
C N NUMBER OF UNKNOWNS 8M.GE.N)C M2 SET EQUAL TO M+2 FOR ADJUSTABLE DIMENSIONS.C N2 SET EQUAL TO N+2 FOR ADJUSTABLE DIMENSIONS.C A TWO DIMENSIONAL REAL ARRY OF SIZE (M2,N2)C ON ENTRY, THE COEFFICIENTS OF THE MATRIX MUST BEC STORED IN THE FIRST M ROWS AND N COLUMNS OF A.
C THESE VALUE ARE DESTROYED BY THE SUBROUTINE.C B ONE DIMENSIONAL REAL ARRY OF SIZE M. ON ENTRY, B
C MUST CONTAIN THE RIGHT HAND SIDE OF THE EQUATIONS.C THESE VALUES ARE DESTROYED BY THE SUBROUTINE.C TOLER A SMALL POSITIVE TOLERANCE. EMPIRICAL EVIDENCEC SUGGESTS TOLER=10**<-0*2/3) WHERE D REPRESENTSC THE NUMBER OF DECIMAL DIGITS OF ACURACY AVAILABLEC !SEE DESCRIPTION).C X ONE DIMENSIONAL REAL ARRY OF SIZE N. ON EXIT, THIS
C ARRAY CONTAINS A SOLUTION TO THE LI PROBLEM.C E ONE DIMENSIONAL REAL ARRAY OF SIZE M. ON EXIT, THISC ARRAY CONTAINS THE RESIDUALS IN THE EQUATIONS.C S INTEGER ARRAY OF SIZE M USED FOR WORKSPACE.C ON EXIT FROM THE SUBROUTINE, THE ARRAY A CONTAINS THEC A!M +1,N +1 ) THE MINIMUM SUM OF THE ABSOLUTE VALUES OF
C THE RESIDUALSC A!M=1,N + 2 ) THE RANK OF THE MATRIX OF COEFFICIENTS.C A!M+ 2,N+1 ) EXIT CODE WITH VALUES.C 0 - OPTIMAL SOLUTION WHICH IS PROBABLY NON-C UNIQUE (SEE DESCRIPTION)C 1 - UNIQUE OPTIMAL SOLUTIONC 2 - CALCULATIONS TERMINATED PREMATURELY DUE TOC ROUNDING ERRORSC A!M + 2,N + 2 ) NUMBER OF SIMPLEX ITERATIONS PERFORMED.

COMMON B(256),A!256,256)DOUBLE PRECISION SUM 
REAL MIN,MAX,E(M),X( N)INTEGER OUT,S!M >LOGICAL STAGE, TESTC

C BIG MUST BE SET EQUAL TO ANY VERY LARGE REAL CONSTANT.C ITS VALUE HERE IS APPROPRIATE FOR THE IBM 370C
DATA BIG/1.E38/C

C INITIALIZATION.C
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Ml®M+1 N1=N+1 DO 10 J=1,N 
A(M2,J >=J X(J)=0.10 CONTINUEDO 40 1=1,M A(I,N2 ) = N+I 
A(I,N1> = B( I )IF (B(I).GE.0.) GO TO 30 DO 20 0=1,N2 A<I,0 > = -A<1,0 )20 CONTINUE30 E(I)=0.40 CONTINUECC COMPUTE THE MARGINAL COSTS.C DO 60 0=1,N1 SUM=0.00 DO 50 1=1,M SUM=SUM+A(I,0 >50 CONTINUEA(Ml,0 ) = SUM 60 CONTINUE.

CC STAGE 1C DETERMINE THE VECTOR TO ENTER THE BASIS.
C STAGE®.TRUE.KOUNT=0 

KR=1 KL = 170 MAX*-1.DO 80 0 = KR,NIF (ABS(A(M2,0 >).GT.N > GO TO 80 D=ABS(A(Ml,0 ) )IF (D.LE.MAX) GO TO 80 
MAX = D I N = 080 CONTINUEIF (A(M1,IN ) .GE.0. ) GO TO 100 
DO 90 1=1,M2 A<I,IN)=-A(I,IN)90 CONTINUEC DETERMINE THE VECTOR TO LEAVE THE BASIS

100 K=0
DO 110 I=KL,M D=A(I,IN)
IF (D.LE.TOLER) GO TO 110 K = K+ 1
B(K)=A(I,N1)/D S( K > = I 
TEST*.TRUE.110 CONTINUE

120 IF (K.GT.0) GO TO 130
TEST*.FALSE.GO TO 150 130 MIN=BIG
DO 140 1=1,K
IF (B(I).GE.MIN) GO TO 140 0 = 1
MIN = B( I )OUT = S( I>140 CONTINUE
B( 0) = B(K )SCO) = S(K )K = K-1
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C CHECK FOR LINEAR DEPENDENCE IN STAGE I.C
150 IF (TEST.OR..NOT.STAGE ) GO TO 170DO 160 1=1,M2 D=A( I,KR )

A(I,KR ) =A(I,IN)A( I,IN ) = D 160 CONTINUEKR=KR+1 
GO TO 260 170 IF (TEST) GO TO 180A(M2,N1 ) = 2.
GO TO 350 180 PIVOT=A(OUT,IN >
IF (A(Ml,IN )-PIVOT-PIVOT.LE.TOLER) GO TO 200 DO 190 J=KR,N1 D=A(OUT,J )
A(Ml,J>=A(M1,J )-D-D A(OUT,J ) = -D 

190 CONTINUEA(OUT,N2)=-A(OUT,N2)GO TO 120C
C PIVOT ON A(OUT,IN ).C
200 DO 210 J=KR,N1

IF (O.EQ.IN) GO TO 210 A(OUT,J )=A(OUT,U)/PIVOT 
210 CONTINUEDO 230 1=1,MlIF (I.EQ.OUT ) GO TO 230

D=A(I,IN)
DO 220 J=KR,N1 IF (O.EQ.IN ) GO TO 220 A(I,0 )=A(I,J)-D*A(OUT,J)220 CONTINUE230 CONTINUEDO 240 1=1,Ml
IF (I.EQ.OUT > GO TO 240

A( I ,IN) = -A<I,IN )/P I VOT 240 CONTINUE
A(OUT,IN)=1./PIVOT D=A(OUT,N2 )A(OUT,N2)=A(M2,IN)A(M2,IN ) = DKOUNT=KOUNT+l
IF ( .NOT.STAGE ) GO TO 270CC INTERCHANGE ROWS IN STAGE 1.C KL=KL+1DO 250 J=KR,N2 D=A(OUT,J)A(OUT,J>=A(KOUNT,J )A(KOUNT,J)=D 

250 CONTINUE
260 IF (KOUNT+KR.NE.N1) GO TO 70C
C STAGE II.C

STAGE=.FALSE.C
C DETERMINE THE VECTOR TO ENTER THE BASIS.
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270 MAX--BIGDO 290 0=KR,N D=A(M1,J)

IF (D.GE.0.) GO TO 280 IF (D.GT.(-2.)) GO TO 290 D = ~ D - 2 .
280 IF (D.LE.MAX ) GO TO 290MAX = D 

IN-J290 CONTINUEIF (MAX.LE.TOLER) GO TO 310 IF (A(M1,IN >.GT.0.) GO TO 100 DO 300 1=1,M2 A(I,IN > = -A<I,IN)
300 CONTINUEA( Ml,IN)=A(Ml,IN )-2.GO TO 100
CC PREPARE OUTPUT.
C310 L=KL-1DO 330 1=1,L

IF (A(I,N1).GE.0.) GO TO 330 DO 320 J=KR,N2 
A( I,J> = -A(I ,0 )

320 CONTINUE330 CONTINUEA< M2,N1)=0.IF (KR.NE.l) GO TO 350 
DO 340 J=1,N D=ABS(A(Ml,0 > )IF (D.LE.TOLER.OR.2.-D.LE.TOLER) GO TO 350 

340 CONTINUEA(M2,N1 )=1.350 DO 380 1=1,M
K=A(I,N2 )D=A(I,N 1 >

IF (K.GT.0) GO TO 360 K = -K 
D = -D360 IF (I.GE.KL) GO TO 370X(K)=D GO TO 380 

370 K=K-NE(K ) = D 380 CONTINUEA(M2,N2)=KOUNT A(Ml,N2 ) = N1-KR 
SUM=0.D0 
DO 390 I =KL,M SUM=SUM+A(I,N1)

390 CONTINUEA(Ml,N1 ) = SUM 
RETURN

C END
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SUBROUTINE MAT INV<A,N,B,M,DETERM,IPIVOT,INDEX,NMAX,I SCALE > DIMENSION IPIVOT(N),A(NMAX,N),B(NMAX,M ) ,INDEX(NMAX,2 ) EQUIVALENCE ( IROW,JROW),( I COLUM,OCOLUM),(AMAX,T,SWAP )

C INITIALIZATION
5 ISCAL E *06 R1 = 10.J0TE367 R2«l.J0f/Rl10 DETE RM=1.015 DO 20 J=1,N20 IPIVOT(0)-0
30 DO 550 1=1,N
C SEARCH FOR PIVOT ELEMENT
40 AMAX=0.45 DO 105 J=1,N50 IF(IPIVOT(J >-1)60, 105, 60
60 DO 100 K=1,N70 IF( IPIVOT(K )-l)80, 100, 74080 IF{ABS(AMAX>-ABS<A<J,K> >)85,100,10085 IROW=J90 ICOLUM=K95 AMAX=A<J,K)100 CONTINUE105 CONTINUEIF (AMAX)110,106,110
106 DETERM=0.ISCAL E =0 GO TO 740110 IPIVOT(ICOLUM > = IPIVOT(ICOLUM) + l
C INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL
130 IF (I ROW-ICOLUM>140,260,140
140 DETERM=-DETERM
150 DO 200 L = 1,N160 SWAP =A( I ROW,L)170 A(IROW.L)=A(ICOLUM,L)200 A(ICOLUM,L > = SWAP205 IF(M ) 260,260,210210 DO 250 L = 1,M220 SWAP = B(I ROW,L)230 B<IROW.L > = B(ICOLUM,L >250 B( ICOLUM,L > = SWAP260 INDEX( I,1 ) = I ROW
270 INDEX(I,2)=ICOLUM310 PIVOT=A(ICOLUM,ICOLUM)
C SCALE THE DETERMINANT
1000 PIVOTI=PIVOT1005 IF(ABS(DETERM)-Rl>1030,1010,1010
1010 DETERM=DETERM/R1ISCALE=ISCALE+1IF(ABS(DETERM)-Rl)1060,1020,1020 
1020 DETERM=DETERM/R1

ISCAL E = ISCAL E + 1 GO TO 1060 1030 IF(ABS(DETERM)-R2)1040,1040,10601040 DETERM=DETERM*R1ISCALE=ISCALE-1IF( ABS(DETERM)-R2)1050,1050,1060 1050 DETERM=DETERM*R1ISCALE=ISCALE-1 1060 IF(ABS(PIVOTI)-Rl>1090,1070,1070
1070 PIVOTI=PIVOTI/R1
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ISCAL E * ISCAL E +1
IF(ABS(PIVOT!)-R 1)320,1080,1080 
PIVOTI=PIVOTI/Rl 
ISCAL E=ISCALE + 1 
GO TO 320IF(AB S(PIVOTI)-R212000,2000,320 PIVOTI=PIVOTIwRl 
ISCAL E = ISCALE-1
IF(ABS(PIVOTI)-R2 >2010,2010,320 
PIVOTI=PIVOTI*Rl 
ISCAL E = ISCALE-1 
DETERM=DETERM*PIVOTI

DIVIDE PIVOT ROW BY PIVOT ELEMENT
A(ICOLUM,ICOLUM)=1.DO 350 L = 1,NA(ICOLUM,L)=A( ICOLUM,L >/PIVOT 
IF(M >380,3 80,360 
DO 370 L = 1,MB(ICOLUM,L > = B(ICOLUM,L >/PIVOT
REDUCE NON-PIVOT ROWS
DO 550 L 1 = 1 ,NIF(Ll-ICOLUM)400,550,400
T=A(L1,ICOLUM)A(L1,ICOL UM > =0.DO 450 L = 1,NA(L1 ,L >=A(LI,L >-A(ICOLUM,L)*T 
IF(M >550,550,460 DO 500 L = 1,MB(L1,L) = B(L1,L)-B(ICOLUM,L >*T 
CONTINUE
INTERCHANGE COLUMNS
DO 710 1=1,N 
L = N + 1 - IIF ( INDEXtL,1 )-INDEX(L,2)>630,710,6 30 JROW=INDEX(L,1)
JCOLUM=INDEX(L,2>DO 705 K=1,N SWAP = A(K,J ROW)
A(K,JROW)=A(K,JCOLUM>A(K,JCOLUM)=SWAPCONTINUE
CONTINUERETURNEND
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PROGRAM INVMATC THIS PROGRAM OBTAINS THE LEAST SQUARES SOLUTION TO THEC CLASSICAL IMAGING EQUATION BY DETERMINING THE PSEUDO-INVERSEC OF THE PSF-MATRIX THAT WAS INITIALLY USED TO BLUR THE OBJECT.DIMENSION Y( 256 >,OBJ< 256 ),H( 256, 256 ),HTH( 256 ,256 ),IPIVOT( 256 ) 
DIMENSION INDEX! 256,2 ),DATA< 256 )CHARACTER PLOTFIL* 16,INFIL* 16,OUTFIL* 1 6 
WRITE!5,5 )

5 FORMAT! ' ENTER INFIL, FORMAT!A16)' )
READ!5,1*)INFIL 10 FORMAT!A16)WRITE!5,15 >15 FORMAT! 1 ENTER OUTFIL ' )READ!5,10)OUTFIL 
WRITE!5,20)20 FORMAT!' ENTER N!# OF OBJ PTS.), NPSF!# OF PSF PTS.),FORMAT213')
READ!5,25 )N,NPSF 25 FORMAT!213 >
OPEN!UN IT®1.NAME®INFIL,TYPE®'OLD* >OPEN!UN IT®2,NAME = OUTFIL,TYPE=lNEW')
M=N+NPSF-1READ!1,30)!Y!I),1=1,M>

30 FORMAT!10F10.6)READ!1,30)!OBJ!I ),1 = 1,N>
DO 35 1=1,MREAD!1,30)!H!I,J >,J = 1,N )35 CONTINUEREAD!1,36 )SNR,AVENOI,STANDV

36 FORMAT(F10.1.2F10.6)
NONNR = MC H IS M BY N. HT !H-TRANSPOSE ) IS N BY M. HTH IS THUS N BY N.

C COMPUTE HTH.C INITIALIZE.DO 40 1=1,N DO 45 J =1 , N 
HTH!I,J)=0.45 CONTINUEDATA!I)=0.40 CONTINUEDO 50 1=1,N 
DO 55 K=1,N DO 60 J=1 ,MHTH!I,K)=HTH(I,K)+H!J,I)*H!J,K)

60 CONTINUE55 CONTINUE
50 CONTINUEC COMPUTE DATA!I ) = HT!I,J )*Y!J) = H!J,I>*Y!J >

DO 51 1=1,N DO 53 J=1,MDATA! I ) = DATA! I ) + H(J , I )*Y(J )
53 CONTINUE
51 CONTINUE

CALL MATINV!HTH,N,DATA,1,DETERM,IP IVOT,INDEX,256,I SCALE)
WRITE!2,85)85 FORMAT!' LEAST SQUARES RESULTS VIA PSEUDO-INVERSE METHOD'>
WRITE!2,65)65 FORMAT!' IMAGE DATA:')WRITE!2,70)!Y( I) ,1 = 1,M)



FORMAT(12F10.4)
WRITE(2,71 )SNR,AVENOI^STANDV WRITE(5,71 ) SNR,AVE NO I,STANDVFORMAK ' SNR=1,F10.1,/,1 AVERAGE NOISE VALUE=',F10.6,/,
1' NOISE STANDARD DEVIAT ION=' ,F10.6 )WRITE(2,75 )FORMAT(1 ORIGINAL OBJECT:')WRITE(2,70)(OBJ( I ),1 = 1,N)WRITE(2,80)FORMAT('OBJECT ESTIMATE VIA LEAST SQUARES')
WRITE(2,70)(DATA( I ) , I = 1 ,N )RMSERR=0.DO 90 1=1,NRMSERR = RMSERR+(OBJ( I )-DATA(I) )**2 
RMSERR = (RMSERR/FLOAT(N ) >**.5 WRITE(5,95 )RMSERR 
WRITE(2,95)RMSERRFORMAT(' ROOT MEAN SQUARE DISCREPANCY=',F10.6)
WRITE(5,100)FORMAT( ' DO YOU WANT A FILE WRITTEN FOR PLOTTING? YES=1,NO=0'> 
READ(5,105 )IDEC 
F ORMAT( 11)
IF(IDEC.EQ.0)GO TO 101 
WRITE(5,110)FORMAT(' ENTER 1 FOR OBJECT,2 FOR OBJECT ESTIMATE,3 FOR IMAGE' > 
READ(5,105>IDEC 
WRITE(5,115)FORMAT( ' ENTER FILENAME OF DATA TO BE PLOTTED-FORMATA16' )
READ(5,10)PLOTFILOPEN(UNIT=4.NAME=PLOTFIL,TYPE='NEW' >IF(I DEC.EQ.1 )WRITE(4,30)(OBJ(I),I = 1,N)
IF(IDEC.EQ.2)WRITE(4,30)(DATA(I),1=1,N)
IF( IDEC.EQ.3)WRITE(4,30XY( I >, I = 1 , M )STOPEND
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CCc
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320
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PROGRAM NOCORRTHIS PROGRAM OBTAINS THE MMSE SOLUTION TO THE CLASSICAL IMAGING EQUATION. THE OBJECT ENSEMBLE IS ASSUMED UNCORRELATED, GIVING A DIAGONAL AUTO-CORRELATION MATRIX. DIMENSION Y< 256 ) .OBJ< 256 >,H( 256,256 ),RF(256,256 ),IPIVOT( 256 > 
DIMENSION INDEX(256,2),DATA( 256 >DIMENSION HMESS(256,256)CHARACTER PLOTFIL* 16,INFIL* 16,OUTFIL* 16 
WRITE!5,5 )FORMAT! 1 ENTER INFIL, FORMAT!A16 ) ' )
READ!5,10)INFIL FORMAT!A16)
WRITE!5,15)FORMAT!' ENTER OUTFIL')READ!5,10)OUTFIL 
WRITE!5,20)FORMAT! ' ENTER N!# OF OBJ PTS. ), NPSF(# OF PSF PTS. ),FORMAT213' ) 
READ!5,25 )N,NPSF FORMAT!213)
OPEN!UNIT=1,NAME=INFIL.TYPE»'OLD')OPEN!UN IT = 2,NAME = OUTFIL.TYPE31 NEW')M=N+NPSF-1
READ!1,30)1Y!I),1=1,M)FORMAT!10F10.6)READ!1,30)!OBJ(I),1=1,N)DO 35 1=1,MREAD!1,30)!H!I,J),J=1,N)
CONTINUEREAD!1,36)SNR,AVENOI,STANDV 
FORMAT!F10.1,2F10.8)WRITE!5,400)FORMAT!' DO YOU WISH TO ALTER SNR AND STANDV? YES=1,NO=0')
READ!5,105 )ICHNGIF!ICHNG.EQ.0)GO TO 420WRITE!5,440)FORMAT!' ENTER STANDV,SNR. FORMAT!F10.2,F10.8)')READ!5,460)STANDV,SNR 
FORMAT!F10.2,F10.8)VAR IAN = STANDV*STANDV S IGF2 = VARIANTSNR*SNR 
IF!SNR.EQ.-l. )S IGF2 = 1.INITIALIZE HMESS DO 291 1=1,M DO 292 J = 1 ,M HMESS!I,J)=0.CONTINUECONTINUEFORM HMESS=H*RFHT+RN 
DO 300 1=1,M DO 310 K=1 ,M DO 320 J = 1 ,NHMESS! I,K) = HMESS!I,K) + H!I,J )*H(K,J )HMESS! I,K) = HMESS!I,K )*SIGF2
IF!I.EQ.K)HMESS(I,K)=HMESS(I,K)+VARIAN
CONTINUE
CONTINUEWRITE!2,65)FORMAT! ' IMAGE DATA: 1 )WRITE!2,70)!Y(I),1=1,M>
FORMAT!12F10.4)
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CALL MAT INV(HMESS,M,Y,1,DETERM,IPIVOT,INDEX,256,ISCALE)

150 FORMAT(8F10.6)C Y NOW CONTAINS (HMESS)^-1*Y. SO, NOW WANTC DATA=RFHT*Y, WHERE DATA IS FINAL RESTORATION.
C INITIALIZE.DO 330 1=1,N 330 DATA!I>=0.DO 340 1=1,N

DO 350 J = 1,M 350 DATA<I>=DATA(I)+H(J,I)*Y(J)*SIGF2
340 CONTINUEWRITE(2,71 )SNR,AVENOI.STANDV WRITE(5,71 ) SNR,AVENO I.STANDV 71 FORMAT(' SNR=',F10.1,/,1 AVERAGE NOISE VALUE=',F10.8,/,1' NOISE STANDARD DEVIATION”' .F10.8 )

WRITE(2,75)75 FORMAT(' ORIGINAL OBJECT:' >
WRITE(2,70)<OBJ<I),1=1,N)WRITE(2,80)80 FORMAT; 'OBJECT ESTIMATE VIA MMSE, UNCORRELATED OBJECT ENSEMBLE' )write;2,70);data;i),1=1,n)
RMSERR=0.DO 90 1=1,N 90 RMSERR=RMSERR+;OBj;I)-DATA(I))**2RMSERR=(RMSERR/FLOAT(N))**.5 
WRITE;5,95)RMSERR WRITE;2,95)RMSERR 95 FORMAT;' ROOT MEAN SQUARE DISCREPANCY”',F10.6)
WRITE;5,100)100 FORMAT;' DO YOU WANT A FILE WRITTEN FOR PLOTTING? YES-1,NO=0')
READ!5,105 )IDEC105 format;I 1 )if;idec.eq.0 >go to 101 
write;5,110)110 FORMAT;' ENTER 1 FOR OBJECT,2 FOR OBJECT ESTIMATE,3 FOR IMAGE')
READ;5,105 >IDEC WRITE;5,115)115 FORMAT;' ENTER FILENAME OF DATA TO BE PL0TTED-F0RMATA16' >
READ(5,10)PLOTFILOPEN;UNIT=4,NAME=PL0TFIL,TYPE=’NEW') 
if;IDEC.EQ.1 )WRITE(4,30)(OBJ( I ),1 = 1,N > 
if; I DEC.EQ.2 )WR1TE;4,30)(DATA; I ) ,I = 1 , N )
IF;IDEC.EQ.3)WRITE(4,30);Y; I),I = 1,M)

101 STOP 
END



PROGRAM STARGENC STARGEN IS SIMILAR TO OBJGEN. INSTEAD OF THE RAMP-RECT-SINEC OBJECT PRODUCED BY OBJGEN, STARGEN CREATES AN OBJECT THATC SIMULATES VARIOUS IMPULSE OBJECTS ('STARS') SEPARATED BYC 1, 2, OR 3 PIXELS.
DIMENSION Y( 256 ),PSF(9),OBJ( 256 >,H( 256 ,256 >CHARACTER OUTFILM6 
WRITE!5,5)5 FORMAT!' ENTER THE NUMBER OF PTS. IN THE PSF, FORMAT!12)')READ!5,10)NPSF 10 FORMAT!12)WRITE!5,15 )15 FORMAT!' ENTER VALUES OF PSF, FORMAT!8F10.0)')
READ!5,20)!PSF!K) ,K=1,NPSF )20 FORMAT!8F10.0)

C NORMALIZE PSF VALUES SUCH THAT SUM OF ALL PSF!I>1S=1.0
SUMP SF =0.
DO 21 1=1,NPSF21 SUMPSF = SUMPSF + PSF( I )DO 22 1=1,NPSF

22 PSF!I) = PSF!I )/SUMPSF N = 1 2 4
DO 2000 1=1,N 2000 OBJ!I)=0.C INSERT 'STARS'OBJ!10)=1.OBJ!30)=1.
OBJ!31 ) = . 5 OBJ!50)=1.
OBJ!51 ) = 1 .OBJ!70)=1.OBJ!72 )=1 .
OBJ!85 ) = 1 .OBJ!88 ) = 1 .OBJ!110)=1.OBJ!114 ) = 1 .

C CALCULATE M, NO. OF IMAGE POINTS
M=N+NPSF-1

C DETERMINE ELEMENTS OF PSF MATRIX H(I,J >. BLOCK CIRCULANT.
DO 50 1=1,MDO 45 J = 1 , N
IF (I.EQ.J)GO TO 55IF!J.GT.I )GO TO 60
I JDEL=I-JLPSF = NPSF-IJDELIF!LPSF.LT.1 )GO TO 60
H!I , J ) = PSF!LPSF >GO TO 4555 H!I,J) = PSF<NPSF )GO TO 45 

60 H(I,J)=0.GO TO 45 45 CONTINUE
50 CONTINUE
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C NOW CALCULATE IMAGE VALUESC INITIALIZEDO 65 1=1,M 65 Y( I)=0.

DO 70 1=1,M DO 75 J=1,NY<I) = Y( I) + H(I,J >*OBJ(J >75 CONTINUE70 CONTINUEWRITE(5,80)80 FORMAT! ’ ENTER NAME OF OUTFIL' )READ!5,85 10UTFIL 
85 FORMAT!A16)OPEN!UN IT=1,NAME = OUTFIL,TYPE='NEW' ) 

WRITE!1,90)!Y!I),1=1,M>
90 FORMAT!10F10.6 >WRITE!1,90)!OBJ!I),1=1,N)

DO 100 I=1,MWRITE!1,90)!H!I,J),J=1,N>
100 CONTINUESTOP END
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