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ABSTRACT

This thesis-deals with the problem of diffraction 
of a plane wave through a square slot into a cavity. The 
cavity is formed by.two infinite planes of conducting mate
rial, and the plane wave is normally incident. ■ Propagation 
is in the, 2-direction- and the initial polarization is in the
x-direction. .Fields are broken into TE, and TM, modes.to y to y
The problem is then met numerically. Coupled mode solutions 
are found, Edge boundary conditions are set up as linear 
equations in which the coefficients are coefficients of the 
coupled mode solutions. The solutions for these coefficients 
indicate that the total TM̂ _o solution is negligible at 
frequencies less than the half'-wave length resonance of the 
aperture. At frequencies away from the resonances of the. 
cavity, a change from a 20 to 1 to a 10 to 1 ratio between 
the aperture dimension and the cavity dimension produced 
little change in the fields. Magnitudes of some resulting 
fields are presented.



CHAPTER 1

INTRODUCTION

Suppose the response inside a building to an exter
nal electromagnetic pulse (BMP) is . desired. ..Mathematically, 
such a problem would be very complex. ■ Maxwell's equations 
would have to be solved under very unwieldy boundary condi- • 
tions, a formidable task. The problem this thesis sets 
out to solve numerically is a simplification of such a 
problem. The building is.replaced with a cavity that is 
infinite in two directions. Instead of many windows of 
various shapes and sizes as there would be in a building, 
this cavity has one window of square shape.. Even with such 
a simplified geometry the problem has not been solved ana
lytically. Suzuki (1956) gives an approximate analytical, 
solution to the problem of electromagnetic diffraction through 
a thin rectangular aperture into free space;, however, his 
results cannot readily be reapplied to the problem at hand 
because of the nature of his approximations. The approach 
of this thesis is therefore of a basically numerical nature, 
search for an analytical solution being waived because of 
the complexities involved.
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The diffraction problem is as follows; . The problem 
seeks a solution to Maxwell1s equations on the geometry in 
Fig. 1 assuming a plane wave impinges normally to a sheet 
which is infinitely conductive and infinitely extended and 
in which there is a square slot. The wave then diffracts 
through the slot into a cavity formed by another infinitely 
extended, infinitely conductive sheet a distance W from the 
sheet with the slot in it. The two sheets are parallel to 
each other. The z-direction of the coordinate system is set 
in the direction of propagation. The conducting sheets then 
lie in constant-z planes. The x-axis and the y-axis are 
set parallel to the sides of the’ slot. The origin of the 
coordinate system is set in the middle of the slot. Thus, 
the points C±s/2,±s/2,0) would represent the vertices of 
the square slot. z < 0 implies the free space region from . 
which the plane wave impinges, and 0 <z < W implies the , 
cavity region. We denote the former as region 1 and the 
latter as region 2, The plane z=0 we will denote as .sheet 
1 and the plane z=W as sheet 2. On sheet 1 the area of the . 
aperture will be called surface A f and the area outside A 
on sheet 1 will be called surface S. The plane wave, polar— 
ization is taken such that the■electric field vector is in . 
the x-direction.

In chapter 2 the mathematics of. the problem is
set up. Use of a breakdown of the fields into TE, andto y
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Figure 1. Two views of the geometry of the 
problem.



TM^o modes allows solution of the problem with a set of
integral equations for.two.aperture fields, EA and .x y
Some .familiarity; with the use of ..'green'1 s functions is 
assumed as they are used extensively in the setting up of 
the machinery of- the problem,.

Xn chapter 3 the numerical details of the problem 
are examined. Such things as the numerical solution of the 
integral equations and the removal of singularities' from the 
kernels of these equations are discussed. A numerical solu
tion to the diffraction problem is then presented.

In..chapter 4 results are briefly discussed and sug
gestions for future work are presented. The appendix gives 
the computer program used in the research. It is based on 
the method presented in chapter 3 and is included for those 
who may want to duplicate these results.



CHAPTER 2

THEORETICAL REDUCTIONS

Lack of a closed form solution to this problem is 
unfortunate but not catastrophic. With the aid of a com
puter it is possible to do many things, in particular, 
solve many problems, and this problem is no exception.
As in many numerical solutions, the sampling theorem and 
the storage of the computer together will place limitations 
on the generality of the solution. For the purpose of EMP 
analysis, this limitation is not severe because the fre
quency spectrum of the pulse is mostly within the limitation. 
Outright programming of Maxwell's equations, however, is 
unpractical, and it will be necessary to cast the problem 
into a more tractable form.

Green's Functions 
For Region One and Two

As in most diffraction problems, the Dirichlet 
green's functions of the Helmholtz equation for the two 
regions under the condition that the slot is shorted out 
are needed.

g 2  ̂2 g 2
Let V = + — r + . In region 1 we have

the problem of expressing (x,y,z,£,nrC) where:



(V2+k2) G^lx,y,z,S,n,C) = 5 (x~C) 5 (y-n) 6 (z-;) 
with:

-oo<2<0 ; -oo<^<0 ; -oo<x,y, £ /ri<00 ; 
k some constant parameter; and with (x,y, 0 , £ /f| / C) = 0 . 
The solution of this problem is seen to be:

-ikr+ -ikr-
G1 (x,y,z,C,n,C) = ----- 4̂ r -  ; Im(k) <0 ;

r+2 = (x-^)2 + (y-n)2 + (z-c)2 ; and
r-2 = (x-C) 2 + (y-n) 2 + (z+c) 2

The first term of G^ takes care of the singular point at 
(£,n, C) ; the second term forces G^ to zero on sheet 1, since 
at z=0 r+ = r- .

Similarly in region 2 we have the problem:
(V2+k2) G2 (x,y,z,C/n / C) = (S(x-S) 5 (y-n) 5(z-;) ;
0<z<W ; 0<C<W ; -<*><x,y ,E, zn<0° ; and with

G2 (x,y,0,C/n,C) = G2 (x,y,W,S,n,S) = 0 .
Let Z be the set of all integers. The solution to this 

problem is: _ik^+ -ikr^-
G,Cx,y,2,5,n,s) = I ^r-z-r- ~ I eneZ 4TCn+ nsZ 47rrn'
(rn+) 2 = (x -^) 2 + (y-n) 2 + (z-£+2nW) 2
(rn-)2 = (x-£)2 + (y-n)2 + (z+c+2nW)2

The n=0 term of the first sum takes care of the singular
point, and the rest of the terms meet boundary conditions
on sheet 1 and sheet 2.



Useful Identities 
We will now use Green's second identity to obtain 

some useful formulae. Green's second identity is:

fffv  dv = J7S (it|£ ds

Let V be region 1. Let cp be some solution to the Helmholt 
equation in region 1 with boundary conditions on # chosen 
such that <£ = 0 on surface S of sheet 1. No stipulation 
is made on <J) over the aperture surface, A. Let ^(x,y,z) = 
G1 (x,y,z,C,n/C) • Resulting is:

/// I G1 (x,y,z,C/n,C)V24)(x,y/z) - 
Region 1

4)(x,y,z)V2G1 (x/y,z,C,n7C) ] dxdyd

= // [ G (x,y,z,5,ri,U -
Sheet 1 9Gt (x ,y, z , C , n / C)

 ̂̂X/y'z)~Jz---------------  ̂ds
The right-hand side of the equation simplifies because of 
boundary conditions on G^ and on cb :

// [ G,(x,y,z,S,n,;) 
Sheet 1 i dz

3(f) (x,y,z)

3G1(xzy,z,C,n/C)
(f) (x,y, z) ^ --------------  JdS

= -//A 4> Cx, y , 0) [
3G^ (x/ y, z / ̂ / n / ?)

] dx dy
z=0

The left-hand side simplifies upon substitutions made from 
the Helmholtz equation:



fff I G, Cx/y,z, £,ri/S) V2cf> (XfY/z) - 
Region 1

*(x,y,z)V2G^(x,y,z,S,n,C) ] dxdydz 
=///{G1 (x,y,z,C,nzC) ( -k24> (x,y,z) ) - <f) (x, y, z) [

-k2G1 (xfy,z,C/n,C) +
6(x-C) 6 (y-n) 6 (z~c) ] } dx dy dz

=/// - <p Cx,y,z) [6 (x-C) 6 (y-n) 6 (z-£) J dx dy dz 
= - 4>(€,n,G)

The result:
4>(C,n,G) = //, #(x,y,0) [

3G^ (x ,y, z, C / h , C)
3z z=0

] dx dy

Now

and

Thus

9 e-ikr+
9z r+

3 e-ikr"
9z r-

k  GiCx

z-c -ikr+e
r+ r+

k )
z+; - ikr-e
r- r-

= h [ ("ik " r+. ) r+?
-ikr+e
r+

-ik - 1_
r-

N II O , therefore, define r:
;2 = r+ 2 0IIN

<M1uIIoIINr2 = (x-C)2 + (y-n)2 + £2 = ~+ z. —u z
 ̂ 1 9 i r _-ikrThus l*-G i (x ,y,Z f ?:,n ,z)] I J ,  Z £  C-ik-1 ) I —

- 2 9 e-ikr
4tt 3 C r

Substituting back into our integral identity:



The differentiation is independent of the integration.
Removal yields the final result:

% 9 -ikr
<K5 / n # C) = - //A <f>(x,y, 0) — -—  dx dy

The corresponding result in region 2 can be obtained
by letting V be the volume of region 2, and setting \fj(x,y,z)
equal to G2 (x,y,z,£#n# C). $ is again a solution to the
Helmholtz equation which we require to vanish on surface S
of sheet 1. We also require that <p vanish on sheet 2. The
left-hand side of Green's identity again becomes -4> (x ,y, z) .
The right-hand side becomes:

grf) 91/; 9G_(x,y,z,£,n,£)
// dS = [ - ^ ------------- J dx dy

The minus sign in the bracketed term arises because the 
outward normal is in the minus z-direction. As before:

1_ y e lkrn+ _ y (_ik_i ) e lkrn+ z-;+2nW
3z nez rn+ neZ rn+ rn+ En+

3_ y e~lkrn~ = y e~lkrn~ z+;+2nW
neZ rn neZ rn rn rn

At z=0
2 = (x-£)2 + (y-n)2 + (~£+2nW)2
2 _ /„_r\2 ,  \ 2 , z -,nnT.T\2(rn““) - (x-£) + (y-n) + ( G+2nW)

Define:
r^ 2 = (x-£)2 + (y-n)2 + (£+2nW)2

= (x-£) 2 + (y~n) 2 + (-£-2nW) 2 =(r -) 2 |
z=0 z=0

=(r-n+)



The summations are carried out over all the integers, 
therefore, the index n can be replaced with -n in either 
series without affecting the value of it. Performing 
such a replacement in the r^+ series yields:

3G.
9z -n -n 

-ikr -
r-n+

n £ + 2nW
neZ ‘n 4mrn* rn-

Substituting r^ and factoring a minus sign from the first
series: 

3G„
9z z=0

-2
47T I (-ik - 1_) tiinw

^ r  r  r*neZ n n n

- = 1 L .  y
417 3; neZ rn 

Green's second identity becomes

<P CC f n, C) = //* <t>(x, y, 0) [ -
9G.
9 z z=0

J dx dy

Let

_2 3 
4it 3̂   ̂J A

-ikr
//a <f)(x,y,0) I I —  --- ] dx dy

neZ n
Definition of §1 and §2 , and their restrictions.

-ikr
§1 Cx,y,z,C/n) = ^2ttF- 7 where r2= (x-C) 2+(y-n) 2+z2

-ikr
and §2 (x,y, z , £ ,n) = ^2Trr"'"' ;rn2= 2+ 2+ (z+2nW)

Note that r = rQ . The two identities become:
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<p (x,y,z) = - 37 ffA <P (x,y,0) 91 (x,y, z , C r n) dC dn

Cx, y, z) = |̂ - //A <j) (x, y, 0) §2 (x,y,z,C ,n) d^ dn ,
the former holding in region 1 and the latter holding in 
region 2. Frequent use will be made of them in what 
follows. The functions g^(x,y,0,£,n) and §2(X 'Y'0'5/n)
will also find frequent use. Define:

9llx,y,C,n) = ^  (x,y,0,£,n)
g2 (x,y,C fn) = g2 (X /Y/ C / n )

Note that:
-ikr  ̂ -ikr

^1 + ^2 ~ 2Trr + ̂ 27rrneZ n
At z=0 , we have r = r which makes it possible ton -n
double over the second series. Let I be the set of non
negative integers. We find:

a + „ = e-ikr + e~ikr0 . e~ikrn
1 ^ 2 27rr 2Trrn ^  2wr_0 neI-{0} n

-ikr
= 2 I ? r 2 = (x-5) 2+ (y-n) 2+ (2nW) 2

nel n n
To reduce the tedium of writing out the independent

variables and to avoid the possible confusion that might
arise from so doing, a set of conventions is adopted for
working with §, 0 and with g, 0 . Let C represent some i. z z -L / z
arbitrary three-dimensional function, and let Y represent 
some arbitrary two-dimensional function. Also let be 
an arbitrary two-dimensional function non-trivial only 
in the region -s/2 <x,y<s/2. Superscript A will always
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imply triviality outside this region. Then, when we write:

C = //BA §lf2 dA

we mean:

C (x, y, z) = //A BA (C ,n) §1,2 ̂x,y,Z/^,n  ̂ dri 
Similarly, when we write:

Y = ff BA g, 2 dA 
we mean: *

Y(x,y) = //A BA (^,n) g.^ 2 (x,y,£,n) dC dn 
Thus a phrase like (3 2/3y2 + k2 )// BA g, 9 dA carries 
meaning because of our agreement on the use of the indepen
dent variable y.

Maxwell’s Equations 
Consider Maxwell's equations in the frequency 

domain. In a source-free homogeneous region we have:
VxE =-2H 7xH = yE 7*E=0 7-H=0

The notation is as in Harrington (1961) with 2 = iwu and 
$ - ia)E . These equations imply the two vector wave 
equations:

(72+k2)E = 0 ; (V2+k2)H = 0 ; where k2 =-zy .
The derivation is well-known; the important result is that 
the rectangular components of the E and H fields must 
satisfy the Helmholtz equation.

Because of the divergenceless nature of the E and H 
fields, it is possible to make use of vector potentials.
In our problem it is convenient to let:



where y is the unit vector in the y-direction. This is
equivalent to considering E and H as the superposition of
TE, and TM. fields. We shall require that A andto y co y  ̂ y
F satisfy the Helmholtz equation. Here are the modal 
decompositions:

1 32A 3A
™ t o  y EX = ? 3 3 ^  Hx =

Ey = ? (fp" + k2)Ay Hy = 0
1 a2Av 3Av

Ez y 3z9y Ez 3x

3Fy 1 32Fy
TEto y Ex ' ‘ Hx ~ I H i f

E y  =  0 H y  =  |  t f p -  + k 2 } F y

3Fz »E = x— *- H = -n-  ̂ ^z 3x z z dZdy

These decompositions are also shown in Fig. 2 for conve
nience.

Boundary Conditions 
and Continuity Requirements

The boundary conditions on A and F are thosey y
dictated by the boundary conditions on E and H. The bound
ary conditions on E and H for the problem are that the 
tangential components of E, namely E^ and E^ , vanish on



TMto y E =
3 2A
3x3y Hx - 3z

E = (^ - + k2)Ay H = 0

3z3y H  =  -
3A
3x

TEto y = _ 3z

E_ = &

Hx =
i i Z i
"5 3x3y

H =

H =

| c 32

1
I

3y 
3 2 F___y
3z3y

+ k2) F

Fig. 2. Reproduction of the modal decomposition as 
given on page 13 of text.
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area S of sheet 1 and on sheet 2. Also required is that 
the normal component of H , namely , be zero on the same 
regions, .

The fields must be continuous throughout the two 
regions, and they must have continuous first derivatives. 
There is also a continuity requirement on and on 
sheet 1. E should be continuous in y on sheet 1, and 
E should be continuous in x on sheet 1. This fact impliesy
the conditions:

E Cx,.±s/2) = 0 ; for all x-X
Ey C+s/2,y) = 0 ; for all y

In diffraction problems one frequently assumes one 
field in the region of incidence and another.in the shadow 
region. Continuity requires a matching of these two solu
tions over the aperture- region, for all components of the 
fields.

Finally, we shall .require that E (x,y, 0). , the ÊX X
field on the aperturebe symmetric in both x and y. The 
geometry of the problem is completely symmetric in y , there
fore, the condition of y symmetry. The condition of symme
try in x arises because, physically, E as a function of x 
should be independent of the initial direction of polariza
tion.
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Resonance Solution 
A plane wave incident on sheet 1 will be reflected 

from all but surface A. Without loss of generality, then.
we can assume that the incident field is :

region 1
E3"' = E C e”ikz - eikz) x o 1
H1 = nE Ce“lkz + elkz) y o --

where f) is the intrinsic impedance of the medium. If we 
extend this solution into region 2, we see that all boundary 
conditions and continuity requirements are met, if and only 
if, kW is an integer multiple of tt. Under this condition 
g2 / §2 / and fail to converge, and it is only under 
this condition that they fail to converge. By the unique
ness theorem the solution :

Ex = Eo ( e-ikz - eikz)

Hy = nEo ( e~lkz + elkz)
both regions

is thus the solution when the cavity becomes resonant.

Coupled Mode Solution 
Assume that the wavenumber, k, is such that the 

cavity is not resonant. Under these conditions $2 ' ^2 ' 
and Gg all converge. Moreover, the resonant solution no 
longer meets the boundary conditions on sheet 2. The field 
in region 2 cannot be trivial for would then suffer a 
discontinuity across the aperture. More complex solutions 
must be looked for.
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Let:
Fyl = +J7  g1 dA + E0 ( e"lkZ+ elkz) / ik

Fy2 = Ex #2 dA
For the moment, let = A^^ = 0 . ^
Using our identities we see that:

Ex <x ,y,0) = lj?0 - // Ex dA = 4 ? 0  h n  Ex 92 dA
= E^(x,y)

Thus, is appropiately named. A similar use of the iden
tities shows that is continuous across the aperture and 
has the value:

Hz tx,y,0) = - f EA (x,y)
Thus Ex and meet continuity requirements and boundary 
conditions on S. They are solutions to the Helmholtz 
equation and meet boundary conditions on sheet 2 because

3g.2 meets these requirements. Continuity of on A
implies:

z+o ^  " "z+o s'ay' ' " ' > 2
lim i(|— 2- + k2) F T = lira i(|—T + kz) F

lira (|^2- + k2)//EA g.dA - ikE C e"lkz + elkz) 
z+0 y

= lim (f-r +k2) -// E" §, dA 
z + 0 Y

Now
lim S I E^ §1 dA = //E^ dA
zt 0
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and,
lim f f EA g, da = ff EA g_ da 
ztO x x ^

Thus the equation for continuity of becomes:
tfp- + k2)// ea C gx + g2 ) da = 2ikEo (on a)

AThroughout has been some unknown field of the aperture.
The above equation is the first equation that allows us to 

A *solve for E^ . The above equation can be written:
A -2E

ff Ex I g;i + g2 ) = + A(x) cosky + B (x) sinky

aSymmetry of Ex Cx,y,0) = E^ implies that the B(x) sinky term 
must be zero. We now check the continuity of E^ and Hx :

"4™ Hxl~ ll™ H x 2 f 3x3y ff Ex ( gl + g2) dAzt0 z4 0 ^

= f 1 il Eo + A(x) cos^y> i

= i k sin(ky) (on A)

l i m  E z l  -  l i m  e ^2  =  H  / /  E x  ( 9 l  +  g 2 ) d A  ztO ziO x i z

= COS (ky) (on A)

If we let A(x) = 0 or a constant we would have met all 
continuity requirements. The only unmatched requirement 
is the requirement on Ex along the y = ±s/2 edges of the 
aperture. It would be fortuitous, indeed, if inversion

Aof the integral equation for Ex yielded a solution that 
met these conditions; and, in fact, such a solution is not
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obtained. Thus, the edge requirements make necessary the
addition of TM, modes.to y

Let:

Ayl ~ f c "  Ay 9l dA '• Ay2 = ? 17 "  Ay *2 dA 
Note that;

Since E (x,y,0) ’= L ~ r  + k2)AA , it meets the boundary
conditions on S. On sheet 1, and Hz are non-trivial
on the aperture only, for similar reasons. , and
H are all continuous across the aperture, z

Ex (X'y'0) = H 3 ?  Ay ' Hz(x,y,0) = - $ aA

To analyze continuity of and we first note:

iim // AA §1 dA = - ( 5 ^  + 3 ^  + k2)// AA ^  dA
zt 0

1^ n Tz2- ff Ay ^2 dA ~ ” ( h c r + fy2" + k2 )ff Ay g2 dAz40
Then,

Ezl " = 2 = ( ^  + + k2) fe //Ay (9l+g2) ^

^iO H-Xl " ^To Hx2 = y ( I3F + + k2) -r/Ay (9l+92) dA

The above four equations are valid only on A.
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Intermode Coupling to Match 
Continuity Requirements

Remembering:

A “2Eoff Ex (9. ^ 2) dA = — r̂ - + A(x) cos(ky) (on A)

we can combine the two mode solutions to find a more general 
solution. and continuity conditions imply:

Hx

Ez

? ^  + Ip" + k2)J"-f Ay ^ l +g2) dA = f k si"(ky)

P  (liF + I p  + k2)/J" A y  (9i+92) d A  = " °°s(ky)
Both of the above are valid on A. Noting y2 = -k2 , we 
have that the above two equations are satisfied if:

<!P IP »y 1V’2> “ - - IP P 21
Equivalently:

ff AA (gpg^ dA = - //A ||iil --1-f-(krl)- j  Ho (kr) dg dq +
h(x,y)

where r2 = (x-^)2 + (y-n)2 , h (x,y) is any solution to the 
homogeneous two-dimensional Helmholtz equation, and 
stands for the zeroth order Hankel function of the second 
kind (Stakgold 1968, section 7.12 in vol. II). A purely 
theoretical solution would be to try to find the proper A(x) 
and homogeneous solutions so that E^ and E^ meet the bound
ary conditions on A at the appropriate edges. This is not 
our path; instead, a numerical solution is presented.



CHAPTER 3

NUMERICAL REDUCTIONS

In Chapter 2 solution of Maxwell's equations in the
regions of the diffraction problem was reduced to the soiu-

A A Ation of some integral equations for E^ and A^ . E^ and
A^ were coupled through boundary conditions on A and conti
nuity requirements across A.

A key problem to the solution of these integral 
equations is the following: Given f (x,y) on A , find
hA (x,y) with:

ff hA ( g1 + g2) dA = f(x,y) ; where
-ikr

9i + 9? = I ---— —  / and r 2 = (x-C) +(y-n) +(2nW) .
 ̂ nel ^ n n

Assuming that h^"(x,y) has some degree of uniformity, we 
can approximate hA (x,y) with two-dimensional pulse func
tions. That is, divide A into a grid of squares with hA 
constant over each square. Now, if f (x,y) and the integral 
are sampled at the center of each of these grid squares, the 
integral equation breaks down into a set of solvable linear 
equations. Knowing the integral of the kernel over each 
of the squares for all of the sampling points makes it 
possible for the linear equations to be inverted by matrix 
methods. .
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Kernel Evaluation 

- The integral of the kernel over a grid square is 
approximated by the value of the kernel at the centerpoint 
of the grid square with the exception of the grid square 
that is sampled. At the sampled grid square the integral 
of the kernel would go singular if this method were applied 
because rQ = 0 and the term in rQ would , consequently, 
blow up. On this square the integral is approximated as

,£SN fDSN _ikr . ,2tt rDSN/2 -ikre oi = £ ^ 2 d x d y , i
•'-DSN*'-DSN o 0 ro

where DSN is the length of the grid square, rQ2=r2= xz+yz ,
and the factor of 4/tt arises from the ratio of the areas
of the square and the circle. Thus:

-ikr DSN/2 
I = 8iSL— °

0
This term is finite. The integral of the rest of the terms 
of the kernel for this grid square are evaluated by the 
centerpoint method.

The kernel series converges rather slowly. Also, 
when n is large the (x-£) term and (y-n) term become insig
nificant. For these reasons, the value of

00 -ikr
1 ^ 4 — ^ ; rn = 2nW

NGI n
is evaluated separately, NGI,being large, and is then added

r dr d0
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onto:
NGI-1 -ikr

I — -— - ; r 2 = (x-C) 2 + (y-n) 2 + (2nW) 2
n=0 n n

The savings in computational time more than make up for the 
small loss of accuracy when this technique is used.

Solution for EA and AA x v
The integral equations can now be inverted, and a

numerical solution can be attempted. Let EA , 11 thexp
particular TE^^ solution” , be the solution to:

A -2E
// Exp (g1 + g2) dA = (on A)

AAs noted before, E does not meet the boundary conditionsxp
at the edge of the slot. Suppose we found E ^  , "homoge
neous TE. solution", the solution to: to y

// Exh (g1 + g2) dA = cos(ky) (on A)

Since any constant factor times this meets all the boundary
conditions and continuity requirements, excepting, of

Acourse, the jump requirement in which is met by Exp, 
we might try to find B such that:

♦ « 4 ,
meets the edge conditions. This approach is the classical 
diffraction approach when working with a single mode solu
tion, e.£., see Suzuki (1956). For this problem, however, 
a proper B cannot be found to meet all the boundary
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Aconditions. Let , "homogeneous solution", be the

solution to:

ff A^h (g1+g2) dA = x sin (ky) (on A)
Note:

+ |yr + k2) x sin (ky) = 0
AThus any multiple of A ^  meets all the boundary and con

tinuity requirements excepting the jump in . Note also
that A ^  is made odd so that (9 2/8x3y) A ^  will be even, 
and therefore meet symmetry requirements on . We are
now tempted to try to find B and C such that:

A A  ̂2 *E (x ,y, 0) = + B E_, + C:x xp xh 3x9y yh
meets the E^ edge conditions, and

Ey (x,y,0) = ( 1^, + k2)
meets the E^ edge conditions. This solution will not work 
in general again, however, through all these blind alleys we 
are leading up to a method of solution.

Suppose that there are 2nx2n grid squares. Symmetry 
will reduce the E^ edge conditions to n equations and the 
Ey edge conditions to n more equations. We thus have 2n 
equations to meet with only three solutions. If n is not 
trivially small, then we need more solutions. Solutions with 
coupled continuity across A provide a source of these needed 
solutions.
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ALet E , be the solution to:
x X

// k (g^ + g2) dA = cos(k^x) cos(ky) (on A)

Aand let A , be the solution to: 
y x

A i// Ay k Cg1 +g2) dA = ffh k~ sin(kx£) sin(kn)jHq (kr)dA

where, r2 = (x-C) 2 + (y-n) 2 , and dA = d£ dri . Together
A A( E , , A , ) , " a coupled solution" , meet continuity

x y x
and boundary conditions, excepting the jump in The
solutions have been chosen so that (x,y,0) is symmetric.
The number of solutions obtained in this manner is unlimited 
because of the ability to change k^ and obtain a new solu
tion. On a 2nx2n grid we need 2n-2 coupled solutions. 
Suppose that 2n=6. Solution to the diffraction goes as
follows: Define 4 = 2n-2 values of k ; k ,,k 0,k ,,k . •x xl x2 x3 x4

A AFind associated A . and E , solutions. Also, find
y X j x X j

Ayh ' EXh ' and EXP • Then!

B Exh + ci w A? h + X Dj ( E x kxj + kxj> = -Exp
C at y = s/2)

B (0) + C Ayh + U. Aj = 0
 ̂ ^ ( at x = s/2)

represent six equations with six unknowns. Note that we
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have set to zero at x = s/2 by setting the total field 
to zero there. This procedure eliminates any numerical in
stability in taking O  2/8y2 + k2) . The unknown coeffi
cients can be solved for by using matrix routines. The 
result is a set of fields that meet all boundary conditions 
and continuity requirements, and hence, an approximation of 
the actual solution of the diffraction problem.

Removal of the Singularity of Hq (kr)
The integral:

ffA  Ho (kr) sin(kx£) sin (kn) d£ dn

is performed by a Riemann sum. Center point values of 
sin(kx£) sin(kn) were used as were all but the sampled 
grid square values of Hq (kr). The excepted value would be 
singular on the sampled grid if such a technique were used. 
The desired value is found in a manner similar to the re
moval of the singularity of exp(-ikr^) / rQ :

;/A 1  Ho (kr) dX dy “ W (
2tt /-DSN/2 .

~ Hq (kr) r dr d

t x H1 (x)
DSN/2

]
0

where r = x +y , and is the first order Hankei func
tion of the second kind. The diffraction problem is now 
suitable for programming.



CHAPTER 4

RESULTS AND FUTURE WORK

Results have recently been obtained using the method 
discussed in chapter 3. Most significant was that the mag
nitude of the effect of the total TM, field was three orto y
four orders less than the magnitude of the effect of the
total TE. field on the resultant E aperture field. to y x c
Also, the coefficient of the homogeneous TM̂ _ field, Â \ ,to y yn
was essentially zero. Based on these results we might con
clude that a pure TÊ _o solution would yield valid results 
at lower frequencies if the edge conditions could be met.

Results are shown in Figs. 4-11. At low frequencies 
the magnitude of the electric field goes linearly with k. 
Near the value of k where the slot length is a half-wave
length, however, the fields increase in a resonance effect; 
see Fig. 12. The effect of changing W seems small away from 
cavity resonance; see Figs. 9 and 10.

Suggested for future work is a time domain analysis 
of the EMP problem. This task will require a fairly large 
computer run as far as computational time is concerned. The 
program runs approximately 4 0 decimal seconds for one value 
of k with a 12 by 12 grid over the aperture, and it requires 
60K of core. A recommendation: in such an analysis k values

27
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s—1
+

S = 1 J
Fig. 3. The sampling points of the program.



Figures 4 through 11: Calculated fields' for various values
of k and W ( k= .01 - "3.0; ; W = 10 or 20 ).

. . . The numbers..in the arrays, . Figures 4. through 11/ . 
represent the magnitudes of their respective fields. The 
numbers are arrayed to give the effect of.a..two-dimensional 
plot. They represent values taken over the grid squares of 
the fourth quadrant. These sampling points are indicated in 
Fig. 3. Thus, reading, down an array means reading in the 
minus-y direction, and reading across from left.to right, 
means reading in the direction of increasing x . The. origin 
is in the upper left corner of the array. ■

It is important to note that the values of the 
y-component of the vector A are magnified by a factor of : 
100,000. The magnitude of the incident electric field is 
taken to be unity, and the initial direction of,this field 
is in the x- direction. Both electric fields are symmetric 
in both x and y , while the y-component of A is anti- . ■
symmetric in.the two variables.
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Total A Fieldy

o 0000 . 0000 . 0000 . 0000 . 0000 .0000
.0000 .0000 .0000 ,0000 .0000 .0000
. 0000 .0000 .0000 .0000 . .0000 . 0000
. 0000 . 0000 . 0000 . 0000 . 0000 .0000
.0000 . 0000 .0000 . 0000 .0000 .0000
.0000 .0000 .000 0 . 0000 .0000 .0000

i

Component of Fy Field

.0032 . 0032 .0032 . 0033 .0036 .0041

.0030 .0030 .0031 .0032 .0034 .0039

. 0027 . 0027 .0027 . 0028 . 0030 . 0034

. 0021 . 0021 .0022 . 0022 .0023 .0027

. 0013 . 0013 . 0013 . 0013 . 0014 . 0016

. 0000 . 0000 .0000 . 0000 . 0000 . 0000

i Total E Field x

. 0032 . 003 2 . 0032 . 0033 .0036 . 0041

.0030 . 0030 . 0031 ,0032 . 0034 . 003 9

. 0027 .0027 ,0027 . 0028 . 0030 . 0034

. 0021 , 0021 . .0022 . 0022 ,0023 . 0027

. 0013 .0013 . 0013 .0013 . 0014 ,0016

. 0000 . 0000 ,0000 .0000 . 0000 . 0000

Fig. 4. Calculated fields for wavenumber of .01 and a cavity
dimension of 20.0
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jTotal A Fieldy

0001
0001
0001
oooo
0000
0000

0000
0000
0000
oooo
0000
oooo

oooo
oooo
oooo
oooo
oooo
oooo

oooo
oooo
oooo
oooo
oooo
oooo

oooo
oooo
oooo
oooo
oooo
oooo

.0000 

.0000 

.0000 

.0000 

. oooo 

.0000

Component of Field

.0317 . 0320 . 0325 .0335 .0357 .0415
,0301 .0303 . 0308 .0317 .0337 . 0391 j
.0267 . 0269 .0273 . 0281 .0297 .0342 !
.0213 ,0214 . 0217 .0222 . 0234 .0266 |
. 0130 .0131 . 0132 .0135 . 0141 .0157 :. 0000 . 0000 ,0000 . 0000 .0000 .0000 !

Total E Field j
I

0317 , 0320 .0325 .0335 .0357 .0415
0301 .0303 . 0308 .0317 . 0337 .0391
0267 . 0269 ,0273 . 0281 .0297 .0342
0213 . 0214 .0217 . 0222 .0234 . 02 6 6
0130 .0131 ■ . 0132 .0135 .0141 . 0157
0000 , 0000 ,0000 . 0000 .0000 . 0000

I

Fig. 5. Calculated fields for wavenumber of .1 and a cavity
dimension of 20.0.
See legend of Fig. 4.
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Total A Field
y .

. 0018 . .0014 .0003 . 0001 .0001 .0000

.0015 .0011 . 0003 .0001 .0001 .0000

.0012 . 0008 . 0002 . 0001 . 0000 .0000 1

. 0009 . 0006 . 0002 . 0001 . 0000 .0000 1

.0005 . . 0004 . 0001 .0000 . 0000 .0000 j

. 0002 .0001 .0000 , . 0000 .0000 •oooo j

IE. Fieldy

.2758 .2775 • .2817 . 2902 .3084 .3575

.2615 .2631 .266 9 .2746 .2914 .3367

.2317 .2330 .2362 . 2426 .2565 .2943

.1839 .1849 .1872 .1917 .2015 .2284

.1121 .1126 .1139 .1162 .1212 .1346. 0000 . 0000 .0000 . 0000 . 0000 .0000.

JTotal E FieldI ^

2758 .2775 ,2817 .2902 .3084 .3575
2615 .2631 .2669 . 2746 ,2914 .3367 !
2317 .2330 .2362 .2426 .2565 .2943 !
1839 .1849 ,1872 .1917 .2015 .22 84 !
1121 .1126 . .1139 .1162 ' .1212 .1346 i
0000 . 0000 . 0000 . 0000 . 0000 .0000 1

Fig. 6. Calculated fields for wavenumber of .8 and a cavity
dimension of 2 0.0.
See legend of Fig. 4.
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Total A Field Y

.0059 .0030 . .0005 . 0001 . 0002 .0000

. 0050 . 0024 .0004 . .0001 , 0002 .0000

. 0040 .0018 . 0004 . ,0001 .0001. : . 00 00

.0030 . 0013 .0 003 .0001 . 0001 ,0000

.0018 .0008 . 0002 .0000 . 0001 . 0000

.0006 .0003 . 0001 .0000 . 0000 .0000

j E Component of F Field

.3615

y

.3637 .3688 .3795 .4028 .4658
.3425 .3445 .3493 .3591 .3804 . 4385
.3033 .3049 .3089 ,3170 " .3345 .3830
.2404 .2416 .2444 .2501 .2624 ,2968
.1463 .1469 .1484 .1514 ,1575 ,1746
. 0000 . 0000 . .0000 . 0000 . 0000 . 0000

Total Ex Field

.3615 .3637 .3688 ;3795 . .4028 .4658
,3425 .3445 .3493 .3591 .3804 ,4385
.3033 ,3049 .3089 .3170 .3345 .3830
.2404 .2416 .2444 ,2501 ,2624 .2968
.1463 .1469 ,1484 .1514 .1575 .174 6
. 0000 . 0000 . 0000 . 0000 .0000 , 0000

Fig. 7. Calculated fields for wavenumber of 1.0 and a cavity
dimension of 20.0.
See legend of Fig. 4.
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Total Ay Field

iE x Component of Field

. 4896 

.4636 

.4099 

.3242 

.1967 . 0000

.4923 

.4660 

.4119 

.3256 
,1974 . 0000

[Total E Field i x

4986
4718
4166
3289
,1992
0000

.5120 

.4840 

. 4266 

.3359 

. 2027 . 0000

.5416 

.5111 

. 4489 

.3514 

.2104 

.0000

.0043 .0049 .0013 . . 0006 . 0002 . 0000

. 0037 . 0040 .0011 . 0004 .0002 . 0000

.0030 .0031 .0009 . 0004 . 0001 . 0000

.0022 .0022 . 0006 . 0003 .0001 .0000 j

.0013 . 0013 .0004 . 0002 .0001 .0000 s

.0004 . 0004 .0001 . 0001 . 0000 .0000 1

6236
5867
5118
3959
2322
0000

.4896 . 4923 .4986 .5120 . 5416 . 623 6

.4636 .4660 .4718 .4840 .5111 .5867
I .4099 .4119 .4166 .4266 .4489 . 5118
1 .3242 .3256 .3289 .3359 .3514 .3959

.1967 .1974 .1992 .2027 .2104 .23 22

.0000 . 0000 . 0000 . 0000 . 0000 . 0000

Fig. 8. Calculated fields for wavenumber of 1.25 and a cavity
dimension of 20.0.
See legend of Fig. 4..
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Total A Fieldy

. 0203 .0161 . 0028

.0178 . 0136 . 0024

.0147 . 0109 . 0019

.0109 . 0079 .0014

. 0067 .0048 . 0009

.0022 .0016 . 0003

0015 . 0007 .oooo
0012 .0006 . 0000
0009 . 0005 .0000
0007 .0004 . 0000
0004 . .0002 . 0000
0002 .0001 .0000

E Component of F Field x Y

1.
1,

1078
0452
9176
7181
4297
0000

1.1078 
1.0451 
.9171 
.7174 
.4291 
. 0000

1.1100 
1.0467 
.9179 
.7173 
.4284 . 0000

1.1205 
1.0558 
. 9244 
. 7207 
. 4292 
. 0000

1.1568 
1.0884 
. 9500 
.7368 
.4357 

, .0000

1.2889 
1.2092 
1.0487 
.8044 
.4667 . 0000

STotal E Field 1 x

1.1078 1.1078 1.1100 1.1205 1.1568 1.2889
1.0452 1.0451 1.0467 1.0558 1.0884 1.2092
.9176 . 9171 . 9179 .9244 . 9499 1.0487
.7181 .7174 .7173 .7207 .7368 .8044
.4297 .4291 .4284 .4292 .4357 .4667. 0000 . 0000 . 0000 . 0000 . 0000 . 0000

Fig. 9. Calculated fields for wavenumber of 2.0 and a cavity
dimension of 20.0
See legend of Fig. 4.



Total A Fieldy

.0201 .0159 . 0028 . 0014 . .0007 . 0000

.0177 .0134 .0023 .0011 . 0006 . 0000

. 0145 . 0107 .0019 . 0009 .0005 . . 0000

. 0108 .0078 . 0014 .0007 .0 004 . 0000

.0066 . 0048 . 0009 . 0004 . 0002 .0000

.0022 .0015 . 0003 . 0002 . 0001 . 0000

Component of Field

1.1004 
1.0382 
.9114 
.7132 
.4268 . 0000

1.1004 
1.0382 
. 9110 
.7126 
.4262 . 0000

1.1025 
1.0397 
.9117 
.7125 
. 4255 
. 0000

1.1129 
1.0487 
..9182 
.7158 
.4263 
.0000

1.14 90 
1.0810 
.9435 
.7318 
. 4327 
. 0000

1.2801 
1.2009 
1.0416 
.7989 
.4635 
. 0000

I Total E Field ■; x

1.1004 1.1004 1.1025 1.1129 1.1490 1.2801
1.0382 1.0381 1.0297 1.0487 1.0810 1.2009
.9114 . 9110 . 9117 . 9182 . 9435 1.0416
.7132 .7126 .7125 .7158 .7318 .7989
.4268 .4262 .4256 .4263 .4327 .4635
. 0000 . 0000 . 0000 . 0000 . 0000 . 0000

i

Fig. 10. Calculated fields for wavenumber of 2.0 and a cavity
dimension of 10.0. •
See legend of Fig. 4.
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Total A Fieldy

. 0472 .0496 .0328 . 0090 . 0056 . 0000

.0440 .0445 .0295 . 0086 . 0053 . 0000

.0377 . 0377 . 0252 . 0074 . 0045 . 0000

.0289 . 0288 . 0190 . 0057 . 0034 . 0000

.01.83 . 0178 .0118 . 0036 .0022 .0000

. 0063 . 0056 .0035 .0016 . 0009 .0000

jE^ Component of F^ Field

3.2283 
3.0116 
2.5841 
1.9537 
1.1164 . 0000

2.9229 
2.7277 
2.3423 
1.7730 
1.0148 
. 0000

iTotal Ex Field

2.3937 
2.2361 
1.9241 
1.4609 
. 8396 . 0000

1.8520 
1.7329 
1.4959 
1.1415 
. 6604 . 0000

1.7286 
1.6150 
1.3901 
1.0558 
. 607 2 
.0000

2.3826
2.2137
1.8828
1.4019
.7813
.0000

3.2284
3.0116
2.5841
1.9537
1.1164
.0000

2.9229 
2.7277 
2.3423 
1.7730 
1.0148 
. 0000

2.3937 
2.2361 
1.9241 
1.4609 
. 8396 
. 0000

1.8520 
1.7329 
1.4959 
1.1415 
' .6604 . 0000

1.7286 
1.6150 
1.3901 
1.0558 
. 6072 . 0000

2, 
2 
1. 
1,

3826
2137
8828
4019
7813
0000

Fig. 11. Calculated fields for wavenumber of 3.0 and a cavity
dimension of 20.0
See legend of Fig. 4.
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3

. 001

Fig. 
The f

12. Graph of field versus wave number.
ield is evaluated at the point nearest the center of A.
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that give cavity resonances, should be used as much as pos
sible. Resonances of the cavity will play a dominant role 
in the response of the system. Also., corresponding fields 
are found relatively easily.

Also.suggested is a closer look at the theoretical 
approach. Even the more basic theorems, such as, a proof 
of the uniqueness of the integral equation inversion, seem 
to be lacking. Also, through a theoretical approach, the 
validity of the given numerical solution might be corrob
orated.

’ - 
In conclusion, we submit that another interesting.

and fruitful area would be generalizations of the problem 
to, for example, propagation through a square aperture into 
various types of cavities. Such a problem would require two 
things: a changing of the kernel of the integral equations
by the addition of a different green’s function and a re
examination of the resonance solution. Eventually, through 
enough such generalizations, the problem of diffraction into 
an actual structure might become in some sense solvable.



APPENDIX

PROGRAM FOR COUPLED MODE SOLUTION

The numerical scheme set forth in chapter 3 for 
finding the solution to the diffraction problem was pro
grammed. This program is presented here preceded by a list 
of the more important symbols:

AK the wavenumber, k
AM(1,3) initially the storage for anti-symmetric-field- 

mat rix inversion, later storage for finding 
coefficients of field solutions

AN (Iz J) storage for symmetric-field-matrix inversion
BC(1,J,K) - storage for field solutions; in K dimension

first 2 (NPS-2) for coupled fields; the two homo 
geneous fields, particular field, and two total 
'fields are next in K; J gives y-value; and 1 
gives x-vaiue

Cl the square root of minus one
DSN the grid square dimension

storage for g^ + g^FR
FRR storage for zeroth order Hankel function of

second kind
NBK parameter in finding TAIL, roughly, the number

of half-cycles of the series before a 2-cycle ■ 
averaging routine starts

NGI starting point for the calculation of TAIL
NN the number of grid points along a side of a

quadrant
39
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NPS the number of grid points along a side of the

aperture which equals 2*NN
NT ' the maximum number of terms per half-cycle

allowed in the calculation of TAIL
SS the aperture side length
SUMO the value of the singularity of g, + g_ ; see

page of text
TAIL . the result of summation from NGI to infinity of 

(exp(-ikrn) )/rn , where r^ = ,2nW ; see pp.
and of text 

W the distance between the plates of the cavity



P R O G R A M  C H A R L Y ( I N P U T * O U T P U T )
C THE A P E R T U R E  IS D I V I D E D  INTO F O U R  Q U A D R A N T S  AND S Y M M E T R Y  IS 
C A P P L I E D .  NN IS THE N U M B E R  OF G R I o  S Q U A R E S  A L O N G  THE E D G E  OF A SID E  
C S U C H  A Q U A D R A N T .  NFS  IS THE N U M 3 E P  A L O N G  THE E D G E  OF THE A P E R T U R E  
C AK IS THE W AV E  N U M B E R .

C O M P L E X  T AI L 
C O M P L E X  ZHAT 
c o m p l e x  S UM O 
c o m p l e x  a m i
C O M P L E X  b c
c o m p l e x  f r r  C O M P L E X  t e m p ,b e t a *s u m  
c o m p l e x  F R , C , A M , B , A E X ,  Cl 

C O M P L E X  AN* A SUM 
D I M E N S I O N  S T O (6*4)
D I M E N S I O N  B C (6*6,26)
D I M E N S I O N  F R (78) , F R R (78) 
D I M E N S I O N  A M ( 3 6 , 3 6 ) , B ( 3 6 ) , C(3&) 

D I M E N S I O N  A N (36*36)
D I M E N S I O N  A M I (36,36)
D I M E N S I O N  A A A (10)
NN s 4 
NN c 3  
NN k 5 
NN = 6  
N N 1 = N N - 1 
NFS  = 2 <*NN 
N PSl s N PS -1  

N P T S  a N N * * 2  
NV = NPS  
MVl = NV -2 
FNV a NV



Cl ■ CMPLX(0.tl.)
PI e 3.141592653589 
W » 200000.
w * I5 .
w= 10;iw 20.
ss 1.
S2 55/2
AK s .005
AK .05
AK 6.
AK r 3.
AK := 1.

AK .1
AK = 2.5 
AK = 3.5
Z HAT = C M P L X ( 0 . , 2 . )

PH I NT 1 7 0 , A K , N N  
170 h O R M A T  («- WA V£NuMBER<», F 1 0 . 5 » o I N D E X * , 110)

F N P S  = N PS  $ DSN  = S S / F N P s  
A D 5 N  = A K * D S N
D S N 2  = 2 , * D S N  $ D2 = n S N * * 2
AA = DSN /2 ,  $ D2 = D 2/PI
DO 400 N = 2 , NPS  $ FN = N
FN c ( ( F M - 1 . ) " D S N ) * * 2  5 Nl = ( N - l) *N /2
DO 401 M = 1*N $ FM s M
NM a N1 ♦M

FM = ( ( F M ~ 1 . ) * D S N ) * » 2  $ FP = A K * S Q R T (F N * F M )
F HR(N M)  = , 2 5 * D 2 * C M P L X ( B E S 6 Y  (Fo.0. ,0) .0 E S 6 J (F P ,0.,0)) 

401 C O N T I N U E  
400 c o n t i n u e

FP = AK * AA

NJ



FRR(l) » ( D S N O C M P L X ( B E S 6 Y ( F P t 1, . 0 ) » 8 E S 6 J (F P » 1 . » 0 ) ) ) /AK 
1 ♦ C M P L X ( 4 . , 0 . ) / ( P I * A K * A K )
DO 402 N = 1*6 $ N1 = N * ( N ~ l ) / 2
DO 403 M = 1 »N $ NM = N l * M  

AAA (M) = C A B S ( F R R ( N M ) ) * 1 0 0 ,
403 C O N T I N U E

P R I N T  1 6 0 * (AA A( MA )t  MA = 1*N)
4 02  . C O N T I N U EW2 = 2 , * W  

P E A C H  = A K * W / ( 2 . * P I )
S U M O  = 2 , * P I * C I * ( C E X P ( ~ A K * A A * C I ) - 1 . ) / A K  

S U M O  = S U M O  # 4 , /PI 
P R I N T  2 ? S U M O  

2 F O R M A T ( 4 E 1 8 . 8,110)
P R I N T  145 

145 F O R M A T (» G R E E N E S  M A T RI X* )
NT = 40 
DPA = 500,
NDK = 40 
NGI = Is

LPS  = UPC = U M S  = LMC  * M U M S  = M L M C  * M L P S  a M L P C  = N B L S  = N 8 LC =0 
J = NGI _1

R P S S  = R M S S  = R P S C  = R M S C  33 SU^l = S UM ?  = 0,
NbKl = N B K + 1  $ N B K 2  * N P K + 2
N B K 3  s NBK ♦ 4
CSM = CSP  = CCM  « CCP = 0.

120 J = J+l 
FJ = J
I F ( (NBLC .GE. NBK3) .AND. ( NBL S  ,GE. N B K 3 ) > GO TO 130 
RJ « W 2 » F J  

ARJ  = A K * R JI F ( N BL C  ,GE. NBK3) GO TO 123 
CJ = C O S ( A R J )  /RJ

•uU)



. ACJ = ABS(CJ)SUM 1 s SUMl * CJ
I F ( CJ ,LT, ACJ) GO TO 122
LHC  = IRC *1
I F ( IPC .GT. NT) GO TO 125 
IF ( LPC .NE, 1) GO TO 126 
I F ( M LM C  ,LT, LMC) M L M C  » L M c  
LMC  = 0 
N B L C  = N B L C  ♦ 1 

GO TO 126
122 L MC  = LMC  +1

IF( L M C  .GT, NT) GO TO 125 
I P < LMC .NE. 1) GO TO 126 
I F ( M LP C  .LT, LPC) M L P C  » LPC 
LPC = 0 
N B L C  = N B L C  ♦ 1 126 IF ( NBLC ,LT. N B K > GO TO 123

I F ( RJ .LT, DPA) N B L C  = N B L C  -4
I F ( RJ .LT. DPA) GO TO 123
R P S C  = R P S C  ♦ SUMl
CCP = CCP + 1.
I F ( NBL C  .LT. NBKl) GO TO 123 
I F ( N B L C  .GT. NRK2) G 0 T 0 1 2 3  

R M S C  = R M S C  ♦ SUMl 
C CM  c CCM  *1,

123 I F ( N R L S  ,GE. NBK3) GO TO l^n 
SJ = S I N ( A R J ) / R J

ASJ « ABS(SJ)
S U M ?  e S UM 2  4 SJ 
I F ( SJ .IT. A S J ) GO TO 127 

L PS  „ LPS ♦1
IF ( LPS ,GT. NT) GO TO 129 
IF< LPS  ,NE. 1) G O T O  1126 

IF ( M LMS .LT, L M S  ) M L M S  = LMS



I MS  a 0
N B L S  = N % L S  *1 
GO T 0 1 1 2 6  

127 I MS  = L M S  *1
I F ( L M S  ,GT, NT) GO TO 129 

I F ( LMS  ,NE, 1) GO TO 1126
I F ( M L P S  ,LT, LPS) M I P S  = LPS 

LPS  = 0
N B L S  = N R L S  * 1 

1 126 I F ( N B L S  .LT, NBK) GO TO 120
I F ( RJ ,LT, DPA) N B L S  = N B L S  - 4 
I F ( RJ ,LT, DPA) GO TO 120 
R P S S  = R P S S  + S UM 2  
CSP a CSP ♦1.
I F ( N B L S  ,LT. NBK1) GO TO 120 
I F ( N B L S  .GT, NBK2) GO TO 120 
R M S S  = R M S S  * SUM2 
CSM = CSM 
60 TO 120

130 C S U M  = R P S C / (  4 .* C C P )  ♦ R M S C / (  2 ,*CCM)
S S U M  = R P S S /  < CSP) ♦ R M S S /  ( 2 .*CSM)
T AI L  = ( C M P L X ( C S U M , - S S U M ) ) * D 2

133 F O R M A T ( o S I N E  P O S I T I V E  N EG  , C O S I N E ,  B L O C K  L E N G T H S * , 4 1 10)
IJ = 2 GO TO 12 

125 PRINT 131,LMC,LPC
131 F O R M A T  (» NON  C O N V E R G E N C E  C O S I N E * ,  2 H 0 )

N B L C  = N B K 3
GO TO 120 

129 P R I N T  132, LMS, LPS
132 F O R M A T ( * N O N  C O N V E R G E N C E  S j N E* ,  2110)

N B L S  = N BK 3
GO TO 12012 DO 135 N a 1 iNPS $ FN = N

Ln



Nl « ( N - l ) * N/2
= ( ( F N m l , ) " D S N ) * * 2  

DO 136 M = 1 ,N $ FM = M
NM = Nl + M 

FM = ( ( F M - 1 . ) * D S N ) * * 2  $ FP = FN + FM
SUM = CMPI„X(0.»0,)
DO 155 J = I J » N 6 I $ FJ =J
FJ = ( ( F J - 1 , ) * W 2 ) * * 2  
RJ = S O R T (F J + F P ) $ ARJ  = A K * R J

SUM = SUM ♦ C E X P ( - A R J * C I ) / R J  
155 C O N T I N U E  '

FR(Nvi) = SUM<>D2 * TAI L
IU ~ 1 

136 C O N T I N U E  
135 C O N T I N U E

F R (1) = FR(1) ♦ S U M O

DO 163 N s 1,6 $ Nl c NO(N,l)/2
DO 164 M = 1,N $ NM = Nl +M 
AAA(M) = C A B S (FR(NM))*100.

164 C O N T I N U E
PRINT 160,(AAA(MA), MA » 1,N)

163 CONTINUE 
02 = OSN**2
FNN = NN $ FNN = FNN * ,5
DO 100 N a 1,NN $ Nl = (M-1)#NNJ DO 101 M = 1,NN $ NM = N%+M 
DO 102 L = 1 • NPS $ FL a L

C SP = 1.
IF( L .LE. NN) CSP » -1.
FLA = ABS(FNN-FL) -.5 $ LA * FLA

00 103 K s 1 ,NPS $ FK = K
c\



CCP = leI F ( K .LE. NN) CCP  « -I.
FKA = A B S ( F N N - F K )  ♦ ,5 $ KA =FKA
LK = L A * N N + K A  

NL = I A B S ( N -L +N N)  ♦ 1 
MK = IABS ( M-K + NN) +1

I F ( NL .GT, MK ) N L M K  = N L * ( N L ~ l ) / 2  ♦ MK 
I F ( NL .LE, MK) N L M K  = M K * ( M K - 1 ) /2 *NL 
AM 1 (NM,LK) = AMI (NMiLK) * F P ( N L M K ) * C S P * C C P  
AN (NM,LK) = AN (NM ? L K ) ♦ F R ( NL MK )

103 C O N T I N U E  
102 C O N T I N U E  
101 C O N T I N U E  
100 C O N T I N U E

CSP = PI * F N P S * S S / 5 ,
IF ( CSP ,LT. AK) CSP = AK 
IF ( CSP A T .  AK) P R I N T  2 7 3 , CSP 

273 F O R M A T ( ///, * W A R N I N G  .... W A V E  N U M B E R  E X C E E D I N G  S A M P L I N G  
1 M A X I M U M « , F 1 2 . 5 )
CSP  = C SP  / 1,5 
SJ = C S P / (F N V - 2 .)
DO 203 N = 1,NN $ FN = M
S T O (N , 1 ) = C O S ( ( F N - . 5 ) » A D S N )  $ ST0 (N *2 )  = -■ S I N ( ( F N - . 5 ) # A D S N )

203 C O N T I N U E
DO 201 N L O  = 1 , N V 1 $ FL = NLO
XK = F L * S J  $ CCM = X K * D S N
DO 263 N as 1 ,NN $ FN = M
S T O (N ,3) = C O S ( ( F N - , 5 ) * C C M )
S T O (N ,4) = - S I N ( ( F N - , 5 ) o C C M )

263 C O N T I N U E
MK = 2 * N L O  $ NL = MK-1
FP = X K / A K
DO 264 N = 1 , NN $ S = STO (N tl )
T = S T O (N .2 )



00 265 M a IfNN $ 0 » ST0(Vt*3)
P = S T 0 ( M ♦4 ) $ 8 C ( M » N f M K )  ■ f M P L X (P*T f 0 •) 
RC(M,N,N|_) = C M P L X ( S " D , 0 . )• 265 C O N T I N U E

264  C O N T I N U E  
201 C O N T I N U E  C I N T E G R A  ION OF O D D  F U N C T I O N  W I T H  H a N K E U  F U N C T I O N  

N9K1 = 2 * N V - 4
00 294 N L O a 2 ,N 6 K 1*2
DO 280 N = 1,NN
DO 281 M = 1,NN S SUM e C M P L X  < 0 • 9 0•)
DO 282 L = 1,N PS  $ NL = IaBS(N-L) ♦1
CSM  « 1. S I F ( L .LE. Nn ) C S M  = -1.
FL = L $ F L A  » A B S ( F N N - F L )  *.5
LA = FLA

1 , N P S  S MK a IaBS(M-K) ♦!DO 283 K =
CCM  = 1. $ I F ( K .LE. NN) C C M  = -1.
FK = K 5 F KA  = A B S ( F N N  - kK) *.5
KA a FKA
IF( NL •GT. MK) N L M K  = N L * ( N L - 1 ) / 2  ♦ MK
I F ( NL .LE. MK) N L M K  a M K » ( M K - ) )/2 + NL
SUM  = SUM  + F R R ( N L M K )  » B C ( K A , L A , N L O ) * C S M * C C M

283 c o n t i n u e
282 c o n t i n u e

A M (M •N ) a SUM
281 c o n t i n u e
280 c o n t i n u e

d o  285 N « 1»N N
DO 206 M = 1 ,NN
B C ( M , N , N l 0) a A m (M fN)

286 c o n t i n u e
285 c o n t i n u e
284 C O N T I N U E

N L O  = NBK1 *1



DO ?R7 N s 1,NN $ S = STO(N',l>DO 288 M a 1 ,NN 
B C ( M , N , N L O )  = C M P U X ( S f0 « )

288 C O N T I N U E  
287 C O N T I N U E

N LO  = NHK1 *2 
DO 289 N « 1,NN $ S a D S N » S T O ( N , 2 )
DO 290 M = 1,NN $ FM = M 
F M = S *♦ (F M i „ 5 )

8 C (M ♦N * N L O ) = C M P L X ( F M » 0 , )
290 C O N T I N U E
289 C O N T I N U E

NLO = NHK1 *3 
DO 291 N * 1,NN 

DO 292 M = 1 *NN 
8 C ( M , N , N L O )  = 2 , * C I / A K  

292 C O N T I N U E
291 C O N T I N U E  

N B K 1 = NLO 
N P T S  a N N * * 2  
LPS a 1
DO 293 N L O  = 1 fNBKl 
P R I N T  2 3 4 , N L O , L P S

234 F O R M A T  (//,«• O D D  NLO  I M P L I E S  FX F I E L D , L P S  C H E C K S  IF 1 , E V E N  NLO 
1 I M P L I E S  AY F I E L D  , LPS C H E C K S  IF 0 * , / , *  N LO  IS *• , ~I5,* LPS IS*, 
2l5,//)
I F ( LPS  .EQ. 0) GO TO 294 
DO 295 N = 1 , N P T S  
DO 296 M a 1 .NPTS 
AM(M,N) a A N(M,N)

296 C O N T I N U E  
295 C O N T I N U ELPS  = 0 $ 60 TO 3 0  3

4*VO



294 CONTINUE
00 360 N = 1 , N P T S  
00 361 M = 1 , N P T S  
AM (N»M) * A MI (N tM )

361 C O N T I N U E  
360 C O N T I N U E  

I P S  = 1 
303 C O N T I N U E

DO 298 N a 1 ,NN $ N1 = N N * (N -1 )
DO 299 M = 1 9 NN $ NM = N l + M  C <N M) = BC (M,N,Nt_0)
AAA(M) = C A B S ( C ( N M ) )

2 99 C O N T I N U E
P R I N T  1 6 0 , ( A A A ( M A ) , M A = 1 , N N )

2 98  C O N T I N U E  
P R I N T  340

340 F O R M A T (//,* A B O V E  IS THE O B S E R V A T I O N  M A T R I X  B E L O W  THE R E S U L T * , / / )  
C AM M A T R I X  S O L U T I O N  •. G A U S S -  J O R D A N

NM1 a N P T S  - 1
DO 693 KK a 1 ,NM1
KKPl = KK +1 
L = KKC C O L U M N  S E A R C H  F OR  THE L A R G E S T  M A G N I T U D E  V A L U E  L 
DO 600 I = K K P l , N P T S  
D = R E A L  ( A M ( I , K K ) )
P = A I M A G  ( AM (I *K K ))
S = R E A L  ( AM ( L , K K ) )
T a A I M A G ( A M ( L » K K ) )

600 IF ( (D* 0  +P*P) .GT. (S*S +T*T ) ) L=I IF ( L ,EQ. KK) GO TO 620 
DO 610 J = K K ,N P T S  
TEM P  = A M ( K K  * J )
AM (KK,J) = AM(L,J)

Ulo



610 A M ( U  J> * TEMP
T e m p  = c(KK)

C(K><) B C(L)
C(L) a T EM P  620 DO 693 I = KKP 1 , N P T S
B E T A  a A M( I, KK )  / A M ( K K » K K >
DO 650 J s K KPlt N P T S  

650 AM(I, J)  - AM ( I fJ) - B E T A *  A M ( KK,J)
693 C(I) = C (I > - B E T A  * C(KK)

c b a c k  s o l u t i o n
B (NPTS) = c(N PT S)  / A M ( N P T S , N P T S )
I = NMl 

710 IP1 = I ♦ 1 
SUM = (0,,0*)
DO 700 J = IP1 , N P T S  

700 SUM = SUM  + A M (I »J) * B (J)
B (I ) = ( c m  - SUM ) / A M ( I , n  
1 = 1 - 1  IF ( I .GE, 1) GO TO 710 

C END OF MATRIX SOLUTION
DO 215 N = IfNN $ N1 = ( N - l )*NN
DO 216 M r 1 ,NN $ NM = m I+M
B C ( M , N , N L O )  = B(NM)
AAA (M) a C A B S ( B ( N M ) )

2 16  C O N T I N U E
P R I N T  160,( A AA(MA) * MA * 1 ,NN)

215 C O N T I N U E  
293 C O N T I N U E

P = D S N * D S N 2  
DO 362 N L O  = 2 , N « K 1  , 2 

C A L C U L A T E  THE EX ‘F I E L D  C O M P O N E N T  OF THE TM TO Y SOLN. 
DO 363 N = 1,NN 

363 A M ( N L O , N )  » (B C (N »N N l ,N L O ) - B C ( N , N N , N L O ) )



DO 364 N = 2 ,N N1  55 NL e N*1
LA = N-l

364 A M I ( N ^ N L O )  = (AM(N LO fN L)  - A M ( M L O t L A ) )/P 
A M l ( l , N L O )  = ( A M (N L O f2) + A M ( M L O f 1 ) ) /P
a m i  (NN,NLO) = ( A M ( N L O » N N )  - a m ( N L O , N N 1 ) ) / D 2  

3 62 C O N T I N U E
M B K 2  = 2 * N P S  - 4
DO 365 N L O  = 2 , N 8 K 2 , 2  $ N! » NLO  -I
MK = N L O / 2  

DO 366 N a 1,NN
366 AMI (N,MK) = A M l ( N , N L O )  ♦ 8 C ( N , N N , N L )
365 C O N T I N U E  

N B K 3  = 2 * N P S - 2
DO 367 N = 1 ,NN 

AMl ( N ♦ N P S ) = AMl (N»N8K3)
367 AM 1 ( N * NPS  1) = BC(N*NN,.N8K3-1)

C THE AY F I E L D  IS SET TO Z ER O  ON THE E DG E 
DO 1366 NLO  = 1,NV1 $ NL = 2 * N L O
DO 1367 N = 1,NN $ N1 = MN + N

1367 AM%(Nl,NLO) = B C ( N N , N , N L )
1366 C O N T I N U EN B K 2  = 2 * N P S - 1

DO 369 N = 1 ,N N  $ Nl = N N + N  
C ( N ) = B C ( N , N N , N B K 2 )
A M I ( N l , N P S )  = B C ( N N , N , N B K 3 )

AMI ( N l , N P S 1 ) = C M P L X (0•,0•)
369 C ( N l ) = C M P L X ( 0,,0,)

N P T S  = NPS
DO 370 N = 1 ,NPTS 
DO 371 M = 1 *N P T S  
A M( M, N)  = A M I ( M , N )

371 C O N T I N U E
370 C O N T I N U E

inNJ



C a m  M A T R I X  S O L U T I O N  .. G A U S S -  J O R D A N
NM1 = N P T S  - 1 

DO I 693 KK = 1 »NM1 
KKP1 = KK ♦ I 
L = KK

C C O L U M N  S E A R C H  FOR THE L A R G E S T  M A G N I T U D E  V A L U E  L 
D O 160 0 I = K K P 1 , N P T S  
D = R E A L  ( A M (I * K K ))
P = A I M A G  ( A M ( I » K K ) )
S = R E A L  ( AM ( L f K K ) )
T = A I M A G ( A M ( L » K K ) )

1600 IF ( (D*D ♦POP) ,GT, (S*S +T*T ) ) L=I 
IF ( L .EO, KK) GO T 0 1 6 2 0  
D O 1 M 0  J = K K e N p T S  
TEM» - AM( KK »J )
A M ( k K»J> = AM(LtJ)

1610 A M(LtJ) = TEMP
T EM P  = C(KK)

C(KK) = C(L)
C(L) = T EMP 

1620 D 0 1 6 9 3  % = K K P l f N P T S
B E T A  = A M (I »K K ) / A M ( K K , K K )
D 0 1 6 5 0  J = K KPl, N P T S  1650 AM( I, J)  - AM (I , J) - B E T A *  AM'f KK,J)

1693 C (I ) = C(I) - B E T A  * C(KK)
C B A C K  S O L U T I O N

B (NPTS) = C ( N P T S ) / A M ( N P T S , N P T S )
I = N M 1 

1710 IPl = I +1 
SUM = (0.,0*)
D O 170 0 J = IPl , N P T S  

1700 SUM  = SUM ♦ A M (I * J ) * B (J)
B (I ) = ( C (I > - S U M  ) / AM(I,T)
1 = 1 - 1



IF ( I ,GE. I) GO T O 1 7 1 0  
C END OF M A T R I X  S O L U T I O N

P R I N T  2 3 5 9 (B (M A )♦M A »MA « 1*NPTS)
N B K ? s N R K ^  +2 
P R I N T  236

236 F O R M A T (//,* T O T A L  AY F I E L D * . / / )
NHKl « NPSl - 1
DO 373 N = l,NN 
DO 374 M = 1,NN 
S UM « B ( M PT S)  * B C ( M f N » N 8 K 3 )

DO 3f2 N L O  = 1 »N r K 1 $ wL * 2 * N L 0
SUM s SUM ♦ B ( N L O ) * B C ( M , N , N L )

372 C O N T I N U E  
B C ( M , N , N B K 2 )  = SUM
AAA (M) = C A B S ( S U M )  * 100 ^0 0.

374 C O N T I N U E
P R I N T  1 6 0 » ( A A A ( M A ) * M A « 1 f N N )

373 C O N T I N U E  
P R I N T 1 3 8 2

1382 F O R M A T ( / /, *  EX C O M P O N E N T  OF FY F I E L D * , / / )  
N H K 2  = N R K 3  *3 
DO 375 N = 1 ,NN 
DO 376 M = 1,NN
SUM = B (NPSl) * 8 C ( M , N , N 8 K 3 - 1 )  - B C ( M , N , N B K 3  + 1) 
DO 377 NLO  = 1,NBK1 $ NL = 2 * N L 0 - 1  
SUM = SUM ♦ 0 ( N L O ) * B C ( M , N , N L )

3 77 C O N T I N U E
B C ( M * N , N B K 2 )  = SUM AAA(M) = C A B S ( S U M )

3 76 C O N T I N U E
P R I N T  160, ( A A A ( M A ) » M A  = 1,NN)

375 C O N T I N U E  P R I N T  237
237 F O R M A T (//,» T O T A L  EX F I E L D * , / / )

Ul



P = D 5 N 2 " D S N 2  
N B K 3  s 2#rjPS 
NBK1 = N B K 3  +1 
N B < 2  = N R K 3  *2 

DO 368 N s 1 *NN
00 378 M = 2 «NNl $ NL * M-l
M K  e M * 1

378 A M( M, N)  = B C ( N , M K i N B K 3 )  - 8 C ( N . N L , N B K 3 )
A M (1»N ) e B C (N • 2• N B K 3  > ♦ B C ( N . i , N B K 3 )

368 A M ( N N , N )  = 2 , * ( B C ( N , N N , N 8 « 3 )  w B C (N »N N 1 t N 8 K 3 )>
DO 379 N s 1 iNN
DO 3u0 M = 2,NN1 $ NL = m -1
M K = M ♦ 1

380 B C ( M , N , N B K 2 )  = B C ( M , N , N B K l )  ♦ f A M ( N » M K ) - A M ( N  t N L ) ) /P
B C ( 1 , N » N B K 2 )  « B C ( l » N f N B K l )  4- (AM(N»2) ♦ A M ( N , 1 ) ) / P

379  RC ( NN »N»NBK2) = BC (N N , N , N B K 1 ) ♦ 2 . * ( A M ( N , N N )  - A,M(N»NN1))/P 
DO 381 N e 1 ♦ NN
DO 382 M = 1 ♦ NN

382 AAA(M) = C A 9 S (B C <M ,N ,N B K 2 ))
P R I N T  160 » (A A A ( M A ) ’MA = 1,NN)

381 C O N T I N U E  P R I N T  19%, AK, W
192 F O R M A T  ( //, » AK IS *, F l 2 , 5 ,  * W IS* f F12.5)

PEACH = AK*W / ( 2.*PI)
P R I N T  200 »N G I ,N B K ,M L M C ,M L M S ,P F A C H  

200 F O R M A T (///,* TAIL R O U T I N E  W I T H  S T A R T I N G  P O I N T  NGI * , 1 1 0 , / ,  * NUM 
1BER OF B L O C K S * , 1 10 ,*  B L O C K  L E N G T H  R E G I S T E R S * , 2 1 1 0 , *  INTEGRAL' PAR 
2 A M E T E R  *, F12«5)
P R I N T  194

194 F O R M A T  ( * R U N N I N G  W I T H  NO C O N S T R A I N T  E Q U A T I O N S * )
160 F O R M A T ( 10F12.4)235 F O R M A T ( 2 E 1 8 . 8,110)

STOP
END
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