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ABSTRACT

This thesis describes a study of partitioned system integration 

algorithms which use averaging of variables at the interface between a 

fast subsystem and a slower subsystem. The algorithms were coded for 

the DAREP continuous system simulation language. Two so-called com­

bined algorithms are useful when the fast subsystem is linear (the 

slow subsystem may be nonlinear). Other algorithms studied are valid  

in the case when both subsystems are nonlinear.

The algorithms were tested by simulating several partitioned 

systems and the results were compared to simulations done with con­

ventional partitioned algorithms not employing averaging. I t  was 

found that averaging improved worst-case peak fractional errors for 

larger step sizes for the experiments, but as expected, the mean peak 

error was found to be problem dependent. In addition, execution times, 

and thus, costs were improved when using the combined algorithms, but 

both nonlinear algorithms required longer execution times, and there­

fore, higher costs.



CHAPTER 1

INTRODUCTION

This thesis reports on the coding and testing of four integra­

tion algorithms employing averaging techniques to be used in the DAREP 

(Lucas.and Wait, 1975) package for the simulation of partitioned sys­

tems (Palusinski and Wait, 1978). The general class of partitioned 

systems referred to here consist of those which may be divided into 

one fast and one slow continuous-time subsystem. The four algorithms 

take advantage of this property by using a large step size and an 

average of the appropriate fast subsystem variables over this large 

step size in the integration of the slow subsystem.

The f ir s t  two alrogithms considered were taken from thoeritical 

work originally presented in Palusinski (1977a) and were intended for 

use with systems having a slow subsystem which is nonlinear and a fast 

subsystem which is linear. These two algorithms w ill be referred to as 

the combined methods. The two remaining algorithms, labelled the 

partitioned methods, were derived from Palusinski (1978) to be used 

with a fast and a slow nonlinear subsystem.

The strategy utilized  in the coding of these simulation methods 

consisted of writing FORTRAN subroutines which would be compatible with 

the DAREP simulation language. This resulted in each algorithm being 

expressed as an integration subroutine, named INTRGX, containing

1



expressions for the computation of the next states of both subparti­

tions, together with several accompanying subprograms performing 

in it ia liz a tio n , etc. The combined methods required extensive matrix 

manipulations due to the description of the linear subsystem in matrix 

form. These manipulations were performed with the aid of a library of 

matrix subroutines (Ferguson, 1972).

After programming, the f ir s t  combined method was tested on 

three problems: a sine loop (harmonic oscillator) problem, the simu­

lation of a servo-controlled pendulum, and the simulation of a ihine- 

shaft elevator. A second combined method was tested on the servo- 

controlled pendulum. The partitioned methods were tested on the models 

of a nonlinear electronic oscillator (two different partitions) and an, 

autopilot hydraulic Servo-system. In a ll cases, the results were com­

pared to previous partitioned system algorithms that do not use 

averaging.

The organization of this thesis is as follows: Chapter 2

examines the notation and conventions used and describes standard 

variable names and assumptions. Chapter 3 covers the combined methods 

including a general description of each algorithm together with the 

special considerations of coding and use. Chapter 4 presents the par­

titioned methods. Chapter 5 is devoted to the description of the test 

problems, and overall results and conclusions are discussed in Chapter

6. The program listings and detailed results have been placed in the 

appendices.



CHAPTER 2

SYSTEM DESCRIPTION: NOTATION

The description of the in tegration rules under consideration 

in the form o f next-state equations requires a discussion of the nota­

t io n . This notation arises from modeling the general partit ioned 

systems.

The general class of pa rt it ionab le  systems of in te res t here 

are assumed to be composed of a fas t and a slow subsystem as shown in 

Figure 1.

SLOW

FAST

Figure 1. Block diagram showing part it ioned  system



The slow nonlinear subsystem may be represented by state d ifferentia l 

equations (Palusinski, 1977a9 p, 1)

y = f  (y, t ,  w) (2.1)

with in it ia l  state y (0) and output coupling equation

u = g (y, t )  (2.2)

where: y - state vector of dimension k-j

u - output vector of dimension k̂  

w - input vector of dimension kg 

t  -  independent variable 

Of course9 additional output variables may be obtained from each sub­

system, but only those which interconnect the two regions are of

interest here.

Combined Linear-Nonlinear Case 

Here the fast subsystem is characterized by linear state d if ­

ferential equations (Palusinski, 1977a, p. 2)

x = Ax + Bu (2.3)

and output coupling equation

w = Cx + Du (2.4)

where: x -  state vector of dimension k^

u, w - input and output vectors as before

A - constant state matrix

B - constant input matrix

C, D - constant output matrix



Thus the linear system is denoted by the A, B, C, and D matrices, the 

in it ia l  conditions x (0 ), and the input u.

Partitioned Nonlinear Case 

In this case i t  is assumed that both the fast and slow sub­

systems are nonlinear. The slow nonlinear subsystem is described 

again by the state d ifferentia l equation (2.1) with w -  x and (2.2) and 

the fast nonlinear subsystem by another set of d ifferen tia l equations 

(Palusinski, 1978, p. T)

x = f-j (x, t ,  y) (2.5)

with in it ia l  state x (0 ). 

where: x - state vector of dimension 1̂

y - input coupling vector of dimension Ig 

t  - independent variable

Time Discretization 

A simulation is assumed to begin at t  = 0.0. Values of the 

system variables are then calculated at equally-spaced time intervals, 

t n = nh, n = 0, 1, 2, . . . In some cases, values of the system vari­

ables are calculated at intermediate times and may also be output.

The value of a variable x at t  = t  is denoted by x^, and x at t  = t n 

+ qh by xfl+q where q has a value between zero and one.

Slow Subsystem Discretization 

The slow subsystem discretization technique (Palusinski,

1977a, pp. 3-6) used by a ll the algorithms is derived from equation

(2.1) written in the form
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/  n+T
yn+l - yn = 1  f  w) dt (2-6)

n
The variable w may be represented in the interval t^ , t fi+  ̂ by an 

average value plus a variation:

w = w +■ w . (2.7)

where w = r (  n wdt and w is the variation in w. Taking 
!!+l

into account equation (2 .7 ), i t  is possible to develop a Taylor series 

around w .̂ This tranforms equation (2.6) into

yn+l -  yn ’  "+1 f  (y - dt +/ . n+lFn- 5  w *
n n

0 (115 w ll2) dt (2.8)

wjere the matrix Fn is given by

Fn = ^ f  (y» t ,  w) 
n % w

(2.9)
w -

Averaging the Fast Linear Subsystem 

The technique (Palusinski, 1977a, pp. 12-17) used by the com­

bined linear-nonlinear algorithms in the averaging of the linear system 

is based on an equation (2.3) which is used to derive

xn+ = eA!\  +i )  eA( $ ^  1 BV s d,r (2 -10)
\

where 0 5 S 5 h. From th is , an average value of x over the interval
My e-a

V i j  s1ven by



may be computed by integrating both sides of equation (2.10) and re­

placing

un+s = ° = 1 + 2 ( V k ) 2 ( ^ A ) 1 (2.12)

The vectors are the linear combinations of the given values u , .
_ i

Following some manipulation, xn+  ̂ may be defined by

V l  = tAV0 + I > xn + X! V1 B\  <2"13)1-U

where the matrices V. are computed as follows

v. - j :  A ^ j - 1 h k' j  (2.14)
J K "  J 1 ( k + l ) i

(AV. + yiy I) (2.15)
1

and i = j ,  j -1 ,  j -2 ,  1. The matrices, Mp used in the combined

linear nonlinear algorithms are related to V. by

H1 = 1 V1V, (2.16)

Averaging of the Fast Nonlinear Subsystem 

The partitioned nonlinear algorithm averages the fast subsystem 

variables as follows (Palusinski, 1978, p. 2).

Ai xn+a. C2 "17’1 -  I 1

where a. ( i = 1, 2, . . . ,  n) are the variable step sizes used in the
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integration of the fast subsystem. The fractions a. have to satisfy  

the relation

£  ai = 1 (2.18)

The preceding discussion has described the background informa­

tion and underlying assumptions essential to the understanding of the 

mathematical representation of the simulation methods in subsequent 

chapters.



CHAPTER 3

DESCRIPTION OF COMBINED ALGORITHMS

The description of the two combined algorithms is divided into 

three parts: presentation of the algorithms, programming conventions,

and the use of the programs.

Mathematical Representation of Algorithms 

The f ir s t  combined linear-nonlinear algorithms investigated is

based on the Improved Euler equation (Palusinski, T977a, pp. 7-8). The

nonlinear system integration is performed by f ir s t  computing derivatives

k-j and kg at t fi and t  +-j. as shown in the following equations.

kl "  f  (yn- t n ’ " n ’  (3- , )

k2 = f  (yn + kV  t n+1’

Next, the value u^y is computed using k̂  and kg as follows

yn+l '  yn + ^  /2  ̂ k̂l + k2̂  (3.3)

This results in a nonlinear output given by

un+i = g Cy„+ r  t n+1) (3.4)

The linear system is based upon the following 

equations (Palusinski, 1977a, pp. 24-25).

xn+l = tAV0 + ^  xn + ^ 0  " VV  Bun + Vl Bun+l (3.5)

9
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wn+1 = Cxn+1 + 1/20 + un+1 \ (3.6)

The discrete value9 xn+^, of the linear system and the output 

w +-j are computed as follows

xn+l = (AM0 + l )  xn + (M0 " Ml ! Bun + Ml Bun+l

wn+l = Cxn+] Dun+1 (3.7)

The algorithm is completed with the nonlinear system correction

y°n+l. = yn+l + hFn ( i n+l " "h1 (3-8)

Modified Euler Algorithm

The second combined algorithm is derived from the Modified 

Euler Equation (Palusinski, 1977a, pp. 7-8). Here, solutions to the 

nonlinear system are f ir s t  computed at the half step interval ( i . e . ,  

t n+i / 2 ) as shown below (Palusinski, 1977a, pp. 21-22).

kl = f  (yn. t ns Sn> (3 ' 9)

yn+l/2 = yn + (h/2 k̂l (3-10)

V l / 2  = 9 (yn+l/29 (3"11)

This leads to a fu ll step computation achieved by

k2 = f  (yn+ l/2s ^ + 1 /2 ’ wn̂  (3.12)

yn+l = y n+l/2 + (h/2) k2 (3.13)

yn+l = 9 (yn+ r  yn+l) • (3 - 14)



The linear system averaging is computed as follows (Palusinskis 

1977a, p. 23).

V l  '  <AV0 + D xn + (V0 - 3V1 + 2V2> Bun + 4(Vr V2> Bun+l/2  +

(2Vg-Vp Bun+1 (3.15)

V l  " V l  + (0/6) (un + 4un+1/2 + un+1) (3.16)

The linear fu ll step solution is given by

V l  = <AM0 + I) xn + <M0 - 3M1 + 2M2>Bun + 4(Mr M2>Bun+l/2  +
(2Mr M1)Bun+1 ■ (3.17)

Finally, the nonlinear system correction has the form

yW ' V l  + hFn (V l  - 5n> (3- 18)

Programming Conventions 

The coding of the above simulation methods was governed by the 

requirement that both programmed algorithms had to be compatible with 

DAREP. This resulted in the implementation of each integration rule as 

a FORTRAN subroutine named INTRGX. I t  was found necessary to include 

in each program two more subroutines named INICON and LINKW. In the

case of the Modified Euler method, the matrix library subroutine MXCAL

(Ferguson, 1972) was modified to suit the algorithm.

These are two major functions performed by the subroutine 

INTRGX. The f ir s t  is the computation of the state-spaced and other 

matrices needed in the averaging and solution of the linear system.
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AtThese include My, e , etc. The execution of this portion of 

INTRGX is performed only once during each run at t  = 0.0 and consti­

tutes the precomputation or in itia liz a tio n  section of the subroutine.

The main part of the subroutine is associated with actual solution 

computation. Each time INTRGX is called, a ll state variables, defined 

variables, and average values are updated from t n to t ^ . Due to the 

matrix representation of the linear subsystem, extensive matrix manip­

ulations are involved. The matrix operations are implemented using 

a library of subroutines available on permanent f i le  (Ferguson, 1972).

The main purpose of INICON, is to compute in it ia l  conditions. 

This is done by f ir s t  zeroing a ll matrices and vectors—an especially 

useful feature in multiple run simulations. Next, user defined sub­

routines are called to in it ia liz e  the A, B, C, D, and F matrices. 

Finally, the in it ia l  values of the u, w, and w vectors are calculated.

The subroutine LINKW links the linear subsystem variables and 

averages needed in the derivative block to the values computed in 

INTRGX. This type of arrangement is necessary to avoid searching 

through the undefined parameter array created by DAREP to determine 

which elements of the array correspond to the proper linear variables.

In addition to the coding of these three subroutines for each 

combined linear nonlinear method, the algorithm based on the Modified 

Euler equation required the alteration of subroutine MXCAL from the 

subroutine lib rary . The alteration was needed for the computation of 

matrices M̂  and which are used in that algorithm. A short descrip­

tion of the changes made to MXCAL appears in Appendix B and a lis ting
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of the new routine, MXCAL3, may be seen as part of the lis tin g  for the 

Modified Euler Method (Appendix A).

In a ll subroutines coded, care was taken to assign variable 

names according to those used in the next-state equations. This fea­

ture is seen in the program listings of the algorithms in Appendix A.

As seen from these lis tin gs , subroutines INICON and LINKW are very 

straightforward and therefore no flow charts for these appear. Flow 

charts for the INTRGX subroutines for the two combined algorithms are 

found in Figures 2 and 3.

Use of Combined Linear-Nonlinear Algorithms;
An Example"" ~

The simulation of a servo-controlled pendulum (Palusinski and 

Wait, 1978, pp. 14-16) by means of the Improved Euler based method was 

performed. The description is shown in Appendix A. In this example, 

i t  is found that apart from the three subroutines described previously, 

a ll the code shown is a user supplied description in accordance with 

Chapter 2.

The $D1 block contains the d ifferen tia l equations corresponding 

to the slow nonlinear portion of the pendulum and a procedure section 

which calls LINKW (the $01 characteristics, as those of other DAREP 

blocks, are described in Korn and Wait, 1977). This call to LINKW up­

dates averages of the linear variables needed by the nonlinear sub­

system and values of w needed for output. The specifications of the 

nonlinear system is completed by the subroutine GFUNC which computes 

the output function u according to equation (2 .2 ).
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INTRGX

no
T«a

yes

n+1

n+l

= Cxn+l n+l

n+l

SAVE w

CALL INICON

SAVE u

DEFINE DTMAX AND DT/2

n+l

COMPUTE COEFFICIENT MATRICES:

Figure 2. Flow chart o f subroutine INTRGX 
fo r  Improved Euler method
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Figure 2

5
V i  “ CAM0 * D xn > (% * Ml)Bun * MlBV l

wn+l * CV l * Dun+1

|NEXT STEP PREPARATION' 

Q RETURN ^

—Continued
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Q INTRGX ^  

yesf
DEFINE DTMAX AND DT/2

COMPUTE COEFFICIENT MATRICES:

4(M

CALL INICON

SAVE un, un+lj

n+1

Figure 3. Flow chart of INTRGX fo r  Modified Euler method



RETURN

SAVE w

NEXT STEP PREPARATION

n+1

n+1

n*l “ CV l  * D/6(un + 4V %

= Cx

n+1

n+1 + Dun+1

n+1

Figure 3 --Continued
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The linear subsystem description is provided in DEFL1N which 

defines the A, B, C, D, and F matrices, the in it ia l  conditions on x and 

the number of variables that are to be linked.

The two subroutines GFUNC and DEFLIN, are placed in the $F 

block followed by the algorithm subroutines INTRGX, INICON, and LINKW 

in the $0 block. F inally , in it ia l  conditions on the nonlinear system 

and output requests are entered.

By following the procedure outlined below, the user may simu­

late any linear-nonlinear partitioned system with the two combined 

algorithms. I t  is noted here that the Modified Euler based algorithm 

requires the inclusion of MXCAL3 in the $0 block.



CHAPTER 4

DESCRIPTION OF PARTITIONED ALGORITHMS

The description of the general nonlinear algorithms follows 

the format used in the previous chapter, v iz . ,  the presentation of the 

algorithms followed by programming conventions and an example of 

program use.

General Nonlinear Algorithm with Averaging

The f ir s t  general nonlinear algorithm studied (Palusinski,

1978) employs a fixed step four point Runge-Kutta integration rule to 

compute solutions to the slow subsystem and a variable step Runge-Kutta 

Merson method to integrate the fast system (Korn and Wait, 1977, Appen­

dix A). Averages of the fast subsystem variables are computed over the 

half step intervals t^ , t^+^g anc* ^n+l/E’ Vt-1 as fo^ ows

Mathematical Representation of the 
Nonlinear Algorithms

bT  xn+l/2+b

xnfa1 (4.1)

(4.2)

where the fractions a. and b. are constrained by

m

i=i
I  a. = 1/24-4 «

(4.3)

19
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m
% b. = 1 (4.4)

1=1

and (h/2)a^ and (h/2)b^ are the variable step sizes used in the f irs t  

and second half steps. These averages are then used in the solution 

of the slow subsystem variables as seen here.

kl = f  (yn’ V / V  (^.S)

k2 = f  (yn + h/2kV  t n+l/2'’ ^n+1/2  ̂ (4’ 6^

k3 ” f  (yn + '(h /2)k2 , t n4.-|/2» ^n+1/2^ (4“7^

yn+i/2  = yn + (h/4)(k^ + kg) (4.8)

k4 = f  + k3’ V l , V l  > (4-9)

yn+i = yn + (h/6)(k^+ k4) + h/3(kg + kg) (4.10)

General Nonlinear Algorithm with Shifted Averaging

The second nonlinear algorithm is based on the preceding method. 

In this technique, the fast subsystem averages 5c and are computed

over the intervals [ t n+1/4. V s / J  and |}n+3/4' V 5/ 4 J  

respectively. This difference results in evaluating the fast subsystem 

variables at quarter steps. The fast system is integrated over two 

quarter steps with averages computed in the second of those steps. At 

this point, an approximation to the slow system is computed as shown

kl = f  (V  V  V  (4J1)
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K2 = f  (yn + (h/2)K-j 9 n+1/29 V l / 2 (4.12)

yn+l/2 " yn + (h/4)(Ki + Kg) (4.13)

This value of 15 then used in the fast system integration over

the third quarter where the computation of xa is completed. This aver­

age is used as in the previous algorithm (equation 4.5 to 4.8) to yield  

the half step solution of the slow subsystem. The fast subsystem is 

integrated again over the third quarter step using the new value of

again with averages compiled. A fu ll step approximation to the slow 

system is then obtained as follows:

This approximation value is used in the integration of the fast system

average, the fu ll step solution is obtained as in the f ir s t  nonlinear 

algorithm (equations 4.9 and 4.10).

The coding of the partitioned nonlinear algorithms consisted 

of modifying an existing program (coded by 0. A. Palusinski) to 

include averaging. The original program contains a subroutine INTRGX 

which updates the next states for the slow nonlinear subsystem according 

to a four point Runge-Kutta rule. The fast subsystem integration is 

performed by a Runge-Kutta Merson subroutine called RKM (coded by

yn+ l/2 ‘ T*16 fourth quarter step integration is performed for the fast

K4 = f  (yn + k39 V l 9 x n+V

y^+i = yn + (K/6 ) (kl + K4) + (h/3)(kg + kg)

(4.14)

(4.15)

to complete the calculation of x.

Programming Conventions
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J„ V. Wait and 0. A, Pal usinski) which includes provisions for parti­

tioned integration. Among its  function is the extrapolation of the 

slow system variables for the integration of the fast subsytem.

Both partitioned algorithms required a change in INTRGX only.

The f ir s t  partitioned algorithm was completed by adding code to compute 

averages of the fast variables following returns from subroutine RKM.

The second algorithm required a more extensive modification. Here, 

code was added not only to compute averages, but also to keep track of 

the shifted time in te rva l. Flow charts for subroutines INTRGX for both 

algorithms are shown in Figures 4 and 5, and source listings of RKM and 

the two INTRGX routines may be found in Appendix A.

Use of Nonlinear Algorithms: An Example

The use of the nonlinear algorithms to perform a simulation con­

sists of writing the d ifferen tia l equations for the fast system in $D1 

and the d ifferentia l equations for the slow system in $D2 in accordance 

with the rules of DAREP (Korn and Wait, 1977, pp. 79-105). In addition, 

each derivative block must contain a procedural section which links 

variables needed in that block to the appropriate extrapolated or 

averaged values (see example in Appendix A). This linking is performed 

by convention by two user supplied subroutines. LINKW links extrapo­

lated values of the slow system variables to the fast system equations. 

This is seen in the example in Appendix A which shows that the extrapo­

lated values of the f ir s t  and sixth state variables of the slow system 

are needed by the fast subsystem. By convention, LINKW links the aver­

age values of the fast system to the slow system. In the example, i t  is
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INTRGX

TEMP « T

DEFINE DTMAX

TEMP = T

n+1

INTEGRATE FAST SYSTEM UNTIL T = TEMP + h/2 
AND COMPUTE

4 3* n+1* n+1''
yn+l c yn + h/6(kl + k4̂  + h/3(k2 + k3)

INTEGRATE FAST SYSTEM UNTIL T = TEMP + h/2 
AND COMPUTE Xn+1

k2 = f(yn + h/2(k1)> t
k3 * f(yn + h/2(k2), t

- yn + h/4(lci * k25

Figure 4. Flow chart o f general nonlinear algorithm with averaging



PREPARE FOR NEXT STEP

RETURN

Figure 4--Continue^
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INTRGX

TEMP = T

DEFINE DTMAX

TEMP = T

TEMP =

INTEGRATE FAST SYSTEM UNTIL T = TEMP + h/4

INTEGRATE FAST SYSTEM UNTIL T = TEMP + h/4 
START xn+jj

f(.Vn > h/2(K1)> t.

INTEGRATE FAST SYSTEM UNTIL T = TEMP + h/4
COMPLETE x .n+%

kl = fCV V  V
k2 ” f^n * h/2(k1), w
k3 ♦ h/2(k2).

“ y. ♦ h/4(k1 >

Figure 5. Flow chart of subroutine INTRGX of general 
nonlinear algorithm with sh ifted  averaging
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9
INTEGRATE FAST SYSTEM UNTIL T = TEMP + h/4

RETURN

TEMP = T

NEXT STEP PREPARATION

n+1 
TEMP = T

INTEGRATE FAST SYSTEM UNTIL T = TEMP + h/4 
COMPLETE xn+1

n+1
n+1

INTEGRATE FAST SYSTEM UNTIL T = TEMP + h/4 
START xn+1

n+1
n+1

Figure 5^-Continued
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seen that the average of the fourth state variable of the fast system 

is needed by the slow subsystem.

Finally , parameter values and in it ia l  conditions on both sub­

systems and output requests are entered.



CHAPTER 5

DESCRIPTION OF EXPERIMENTS

The simulations conducted to test the four algorithms are pre­

sented here together with techniques for error estimation. This chap­

ter is divided according to the combined linear-nonlinear experiments 

and the partitioned nonlinear tests followed by a discussion on errors.

Combined Linear Nonlinear Experiments 

Three test examples were used to study these methods. These 

were a harmonic oscilla tor, simulation of a servo-controlled pendulum

and simulation of a mine-shaft elevator. All three were used with the<"
Improved Euler method. Simulations of the servo-controlled pendulum 

also were carried out with the Modified Euler method.

The harmonic oscillator problem was used mainly to test the 

integration algorithm for proper behavior on a simple problem of known 

solution. The problem consisted of solving the d ifferen tia l equation

y + y = 0 (5 .1)

This second order equation was broken down into two f ir s t  order

equations:

y = z (5.2)

' z + y = 0 (5.3)

28
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By setting the in it ia l  value of y and y to 0 and 100 respectively, a 

solution of 100 sin t  and 100 cos t  is obtained for y and y.

The description of this problem in a format acceptable by the 

combined linear-nonlinear integration schemes required that equation 

(5.2) be treated as the nonlinear equation

Y. = WAV (5.4)

The linear system was therefore described by

X. = 0 * X + 1 *  U (5.5)

W = 1 * X  + 0 * U  /  (5.6)

In addition, the coupling equation for U was replaced

U = Y (5.7)

I t  should be noted that X, Y, U, and WAV are scalars. F inally, F, 

defined as

F = h (Y, t ,  w)
% w

in also a scalar (F = 1). ' (5.8)

The servo-controlled pendulum and mine-shaft elevator models 

are described in Palusinski and Wait (1978, pp. 14-2]) and for the sake 

of brevity w ill not be discussed here.

General Nonlinear Experiments 

The two nonlinear algorithms were tested f ir s t  on two partitions  

of an e lectric  oscillator labelled A and B and then on two partitions 

of an autopilot system named PI and P2. The two partitions of the elec­

tronic oscillator are discussed in Palusinski (1977b, pp. 9-15), The 

general block diagram of the autopilot system is shown in Figure 6.
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The autopilot system model was developed by modeling each of the sub­

systems shown in the block diagram and then combining a ll  these sub­

systems to produce the overall model.

The f ir s t  subsystem dealt with was the vertical sensing unit 

which may be thought of as a gyroscope which converts angular deflection 

to a voltage. This gyro may be described by the transfer function 

(G ille , Pelegrin, and Decaulne, 1959» pp. 710-712).

u(s) = kd ____  s   (5 .9 )
01s) 1 + (1 .2 /40 )s  + s2/1600

where 0 is the pitch angle input to the gyroscope, u is the voltage

output and is a constant. This results in the following differen­

t ia l  equation

u = -48 u -  1600 u + 1600 kd 0 (5 .10)

with zero in it ia l  conditions.

The next system considered was the compensating network and 

am plifier, and is defined by the following transfer functions (G ille  

et aT., 1959, pp. 713-716).

W(s) = â_______ (5.11)
EliT 1 + 0.10s

X(s) = 1 1 + lOfs (5.12)
W(s) 10 1 +<s

where E is the input to this subsystem, W is the output of the ampli­

f ie r ,  K is the gain of the am plifier, X is the output and / t  is the3.
time constant of the compensating network. . These result in the d if ­

ferential equations.



x i n :

XINP

Com pensating  
N etw ork and 
A m p li f ie r

P ressu re
S t a b i l i z e r

Servo
M otor

11,

Z "
_ /

F l ig h t
Dynamics

TL V e r t ic a l
Sensing

Figure 6. Block diagram of au top ilo t system CO
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w = -TOO W + 100 K E (5.13)a

x = -X / + K W/(10 't ) + 10 K W/C (5.14)a cl

with in it ia l  conditions.

The third block consisting of f lig h t dynamics was taken from 

Korn and Korn (1956, pp. 115-124) and the d ifferentia l equations 

describing the model are shown below.

V = -.22V - 16.6C - g cos 9, sin 9 (5.15)

0 = (0.237 V + 238 C - 26.6 AZ (YY)

+ 1.68 0 + g sin 9, cox 9) (5.16)

0 = MyV - 11.9 C + 10.3 AS (YY) - 679 0 (5.17)

c = 0 -  9 - . (5.18)

where V is the velocity, 9 is the l i f t  angle, 0 is the pitch angle of 

the plane. The function AS(YY) is described by way of a table con­

taining a set of points approximating

AS (YY) = sin"1 (YY/K) (5.19)

where K was chosen to produce -0.5<rad AS(YY)'<0,5 rad. Again, zero 

in it ia l  conditions are assumed.

Finally, the hydraulic servomotor and pressure s tab ilizer were 

investigated. The hydraulic servo may be determined by

Y = - Rm Y/J + k SoPx/J (5.20)

P = X3.105 (5.21)
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where Y is the displacement output of the servo, P is the pressure 

obtained from the pressure s tab ilizer through Xg, Rm is a damping fac­

tor, So is the surface area of the actuator piston, and J is the moment 

of inertia  of the piston.

The pressure s tab ilizer is presented in PaTusinski, Skowronek, 

and Znamirowski (1976, pp. 211-218) and the equations are repeated 

here

where X-j is a valve displacement, Xg is proportional to the speed of 

valve movement, Xg is the pressure in atmospheres, and Qg is a periodic 

train of pulses representing disturbance in the system. The function 

F(X-j) described in Palusinski et a l . (1976, p. 215) was approximated by

In the f ir s t  partition investigated (P I), the hydraulic servo 

and the pressure s tab ilizer were placed in the fast subsystem and the 

vertical sensing unit, compensating network, and f lig h t dynamics com­

prised the slow subsystem. In the second partition (P2), the fast sub­

system was made up of only the pressure s tab ilize r.

X-j = (8 X2) 250

X2 = ( -6 .59  X2 -  0.0146 F(X^) X3 -  0.54X1

(5.22)

+ 28.7X3 - 655.227) 250 

X3 = (78.674 - 0.638 F(X^) - 0.67X2

+ 2.78 Q1 + Q2) 250

(5.23)

(5.24)

(5.25)

F(X1) = 0.25 X1 (5.26)



34

Error Computation 

All simulations were performed by executing the algorithms with 

the appropriate d ifferen tia l equations in conjunction with DAREP of the 

Control Data Corporation model CYBER 175 computer at The University of 

Arizona. Each of the simulations was f ir s t  run using a Runge-Kutta 

Merson rule with no partitioning of the system. When a desired 

response was obtained, several more runs using the same Runge-Kutta 

Merson rule were performed each with a smaller error bound than the pre­

vious run. When two consecutive runs were found to be identical to six 

significant d ig its , the la tte r  of the two was taken as the final solu­

tion. The maxima of the variables were noted in each case and scaled 

to a value of 100. These scaled values were stored on a permanent f i le  

and comprised the benchmark or reference values for error computation. 

Each experiment was run for various values of h, various partitions, 

and characteristic parameters and the same variables were scaled by the 

same scale factors. The differences between the values obtained in 

these runs and those obtained in the benchmark thus constitutes the 

percent error in those variables. For each experiment, the peak per­

cent errors were compiled in the form of tables (Appendix C). Similar 

tables were prepared for the combined linear-nonlinear tests not using 

averaging by 0. A. Pal usinski. The method used in these tests has been 

labelled CRK2HI.C (Pal us inski, 1977b) standing for Combined Runge- 

Kutta method based on the Improved Euler Method and shall be referred 

to as such from here on. A short description of this method appears 

in Appendix D. The general nonlinear experiments were run using the 

original program from which the averaged nonlinear programs were



35

derived to produce tables have a ll been placed in Appendix C and a com­

parison between the averaged methods and the methods that do not use 

averaging is made in Chapter 6.

)



CHAPTER 6

RESULTS AND CONCLUSIONS

The comparison of the four algorithms employing averaging to 

similar algorithms that do not use averaging is presented here followed 

by conclusions that were drawn from the results. The comparison was 

performed by examining mean peak fractional errors, the variables with 

the worst peak errors, and execution times for a ll experiments except 

the harmonic oscillator.

For each method and experiment, the mean peak error is defined 

to be the average of a ll peak fractional errors obtained for a particu­

lar step size, and the variable with the worst peak error (Chebyshev 

measure) for the largest measure step size in that experiment is 

defined to the the worst-case peak error. The execution time or run 

time is the time taken by the Central Processing Unit to solve the in i­

t ia l  value problem in question using a particular method and step size.

The "cost" of simulation (Palusinski, 1978, p. 38) for a partic­

ular step size is defined as

COST = WORST CASE ERROR + RUN TIME (6.1)

36
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Results of Combined Experiments 

The plot of mean peak errors versus step size obtained for the 

pendulum problem is shown in Figure 7. The Improved Euler, Modified 

Eulwe, and CRK2HI.C (without averaging) methods were employed. I t  is 

’ seen that averaging raises mean peak error by as much as three times in 

the Improved Euler case (h = 0.03) and over ten times in the Modified 

Euler case (h == 0.09). However, the graph displayed in Figure 8 shows 

that the worst-case peak error (corresponding to variable TAU1) is 

improved by as much as 50% (at h = 0.09) using the Improved Euler 

method, but is s t i l l  worse by as much as 2.5 times (a t h = 0.09) for 

the Modified Euler algorithm. The execution times for the three algo­

rithms are seen in Figure 9. I t  is observed that the Improved Euler 

method shows a speed improvement of up to three times as fast and the 

Modified Euler method up to twice as fast as CRK2HI,C. In addition, 

these execution times range from 0.01 to 0,1 seconds compared to a 

Benchmark execution time of 0,787 seconds.

The costs of these methods are shown in Figure 10. As seen, 

the cost of the Improved Euler method is about a third less than that of 

CRK2H.LC, but the Modified Euler shows costs three times higher.

The plot of the mean peak errors for the mine shaft experiment 

is seen in Figure 11, Here, the combined algorithm with averaging is 

noted to have up to a 50% reduction in mean peak error for small values 

of h, But for larger h, displays up to twice as much error (H = 0.12).

I t  is also noted that the mean peak error curve is smoother for the
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% E rro rs

+0

CRK2IH.C  

Im p r . E u le r  

Mod. E u le r

- 2

02 04 .0 6 .0 8 10 h

Figure 7. Mean peak e r ro r  vs. h. Pendulum.
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Figure 8. Peak e r ro r  in TAU1 vs. h. Pendulum
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CRK2IH.C  
im pr E u le r

Mod. E u le r
W

- 210
.02 04 06 08 10

Figure 9, Execution times vs. h. Pendulum
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 CRK2HI.0
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Figure 10. Pendulum Cost
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% E rro rs CRK2IH.C  
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2

310
h.121008060402

Figure 11. Mean peak e r ro r  vs. h. Mine-shaft
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averaged method. The worst-,case peak errors (noted for the variable 

V) are plotted in Figure 12. Again, no real improvement is noted, but 

as before, the averaged case results in a smoother curve which appears 

to be an average of the oscillatory worst-case error curve obtained for 

CRK2HI.C. The corresponding execution times, ranging from 0.13 to 

0.32 seconds, for the two methods are displayed in Figure 13. The 

averaged method results a speed improvement of approximately 25%. The 

mine-shaft benchmark took 33.15 seconds to run. The costs of these two 

methods is shown in Figure 14. As seen, the cost of the averaged 

method is about 80% that of the method without averaging.

The speed improvement of the combined methods over the CRK2HI. C 

method may be ju s tifie d  by noting that the la tte r  method is a more com­

plicated version of the Improved Euler without averaging in that extra 

half-step computations are employed.

Results of General Mbnlinear Experiments

The mean peak errors for partition A of the electronic oscilla­

tor are plotted in Figure 15. The best mean errors correspond to the 

algorithm not using averaging followed by those of the shifted averaging 

algorithm, which are approximately 10 times worse, and those of the non­

linear algorithm with shifted averaging, which are about 100 times worse. 

These results may Be attributed to the fact that the coupling variable 

that is averaged is i ts e lf  an average of the oscillatory variables in 

the fast system. Therefore, any further averaging cannot help. The 

execution times, ranging from 5.88 to 25.66 seconds, are seen in 

Figure 16.
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Figure 12. Peak e r ro r  in V vs. h. Mine-shaft
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Figure 13. Execution times vs. h. M ine-shaft



V

46

CRK2HI.CCOST

Im pr E u le r
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Figure 14. Mine-shaft cost
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Figure 15. Mean peak e r ro r  vs. h. O s c i l la to r  ( p a r t i t io n  A)
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Figure 16. Execution times vs. h. O s c i l la to r  ( p a r t i t io n  A)
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As seen, simple averaging slows execution s ligh tly , but shifted 

averaging reduces speed by as much as twice. The oscilla to r benchmark 

required 55.698 seconds to execute.

The mean peak errors for partition B are plotted in Figure 17. 

Here the coupling variable that is averaged is very fast and averaging 

improves these errors for the larger step sizes (up to 50% reduction in 

error for the shifted averaging case and 35% reduction for simple 

averaging)., The plot of worst-case peak errors (corresponding to Xg) 

for the same partition as seen in Figure 18 shows improvements of 

comparable magnitudes for the larger step sizes when averaging is used. 

The execution times for partition B are very close to those obtained 

for partition A so that Figure 16 may be considered as an estimate of 

speed performance for partition B. The costs for these methods for the 

simulation of partition B are displayed in Figure 19. Simple averaging 

raises the cost by approximately 10% for smaller values of h, but lowers 

the cost by almost 20% at h=0.2„ Shifted averaging costs from 10% to 

150% higher than the method without averaging.

The mean peak errors for partition 1 of the autopilot model were 

identical for the nonlinear algorithms with simple averaging and without 

averaging. The shifted averaging mean errors were significantly larger. 

In order to obtain a meaningful comparison, only those variables, namely 

0, X, and Y, which were noted to d iffe r  in the two identical cases, but 

whose magnitudes were so small that the differences were not affecting 

the original mean errors, were considered in a recomputed mean peak 

errors. .This plot of the recomputed mean errors for the simple averaged
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Figure 17. Mean peak errors  vs. h. O s c i l la to r  ( p a r t i t io n  B)
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Figure 18. Peak e r ro r  in  vs. h. O s c i l la to r  ( p a r t i t io n  B)
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and the averaged case is shown in Figure 20. Here, differences are 

only s ligh t, but the plot of worst-case errors, displayed in Figure 21, 

show that the averaging method results in up to a 50% improvement. 

Execution times ranging from 2.91 to 70.25 seconds for partition 1 are 

plotted in Figure 22. Again the simple averaged method is only slightly  

slower than the method without averaging, but the shifted averaging 

method is s lightly  3 times slower than both. The benchmark ran in 71.74 

seconds. The costs for these methods for the simulation of partition 1, 

seen in Figure 23, again indicate s lightly  higher costs for the simple 

averaging method with costs for the shifted averaging case ranging over 

twice that of the non averaged case. Simple averaging improves the 

mean peak errors and worst case errors (again corresponding to Xg) 

slightly  as seen in Figures 24 and 25, but shifted averaging is s t i l l  

worse by as much as a factor of 2. The execution times for the second 

partition are also very close to those of partition 1, and so the run 

times of Figure 22 may serve as an indicator for the performance of 

partition 2.

Cone!usions

The results obtained from this study have shown that two of the 

averaging methods considered are useful in the simulation of parti­

tioned systemsb As for the other methods, i t  was observed that existing 

methods that do not use averaging, in general, yield improved errors and 

lower execution times. This is especially true of the Modified Euler 

method where percent errors were as much as ten times larger than the
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method not using averaging. I t  is obvious then that this method would 

be an unlikely choice in a simulation.

The Improved Euler method, on the other hand, showed slight 

improvement in worst-case errors and costs in the pendulum example.

This, however, was accompanied by increased avearage peak errors. No 

real improvement was achieved in the errors of the mine-shaft experi­

ment, but cost was lowered significantly when the Improved Euler method 

was used. These results therefore indicate that this averaging method 

is certainly worth considering as an alternate technique to simulate a 

linear-nonlinear system.

The high cost of and in most cases larger errors obtained from 

the shifted averaging method used with general nonlinear systems hardly 

ju s tifies  its  use. The nonlinear method without averaging is seen to 

produce significantly lower errors and execution times for both parti­

tions of the autopilot and partition A of the oscillator. The improved 

errors seen from partition B of the oscillator were at the expense of 

much higher cost.

The error performance of the simple averaged method is d if f ic u lt  

to define. In some experiments, s light improvements were noted, but in 

others, drastic reductions in accuracy were observed. The inconsistency 

of performance indicates that further research, should be performed to 

understand why improvements are observed in some cases and not others.

Further experiments using a ll four methods may also provide 

insight into when and what type of averaging. The fact that some error 

improvements were noted show that averaging may prove to be a valuable 

tool in the simulation of partitioned systems.



APPENDIX A

PROGRAM LISTINGS

This section contains program listings of a ll algorithms and 

the two examples that show the use of the two types of simulation 

methods.
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SDBBCUIINES LINKW AND INICCN ARE NEEDED BY THE COMBINED 
ALGORITHMS FCR INITIALIZATION ETC.

SUBROUTINE LINKW (WAV1,HAV2,MAV3,HAV4,BAV5,
1 HAV6,WAV7,WAV8,WAV9,HAV10)

THIS SUBROUTINE LINKS OUTPUT VARIABLES AND AVERAGES 
FROM THE FAST LINEAR SYSTEM TO TEE NONLINEAR SYSTEM.

C OM M O N / L I N K / W (10),UAV(10),LINKNC
COMMCN/LINS/LINORD,LININE,LINOUT,A(10,10),B (10,10) 
COMMON/LINS/C (10,10) , D (1 0, 1 0) ,F (10 , 10) , U (10) ,X (1 0)

LINKNO IS THE NUMBER OF AVERAGES TO EE LINKED 
AND HAS TO BE DEFINED IN DEFLIN.

GO TO (1,2,3,4,5,6,7,8,9,10),LINKNO 
0 HAV10=WAV (10)

BAV9 = WAV (9)
WAV8= WAV (8)
HAV7 = BA V (7)
HAV6= WAV (6)
HA V5=UA V (5)
HAV4= WAV (4)
HAV3=UAV (3)
HAV2= WAV (2)
HAV 1 = HA V (1)
RETURN
END
SUBROUTINE INICON

INICCN INITIALIZES MATRICES A,E,C,D, AND F 
AND VECTORS X,U, AND H

LOGICAL EXIT,RLDONE 
C O M MC N /L I NK / W(10),W A V (10),LINKNO 
COMMON/SYSVAR/Dl,DTMAX,DTMIN,EMAX,E MIN,SY(35) 
COMMCN/LINS/LINORD,LININP,LINOUT,A(10,10) ,E (10, 10) 
COMMON/LINS/C (10, 10),D (10, 10),F (10, 10),U (10),X (10) 
DIMENSION BNO (10) ,BN1 (10)

CLEAR ALL MATRICES AND VECTORS

CALL M X C L R 1 (A,10,10)
CALL MXCLR1(B,10,10)
CALL M X C L R 1 (C,10,10)
CALL MXCLR1(D,10,10)
CALL M X C L R 1 (F,10,10)
CALL VECCLR (X,10)
CALL VECCLR(U,10)
CALL VE C CLR(W,10)
CALL VECCLR(WAV,10)

INITIALIZE MATRICES AND THE VECTCR X 

CALL DEFLIN

INITIALIZE THE U VECTOR

CALL GFUNC
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INITIALIZE THE W AND WAV VECTCBS
CALL MXCOL(C,X,BNO,LINODT,LINCBC) 
CALL ?1XCOL(D,U, BN1,LINOUT,LININP) 
CALL VECADD (ENO,B N 1,W ,LINCOI)
CALL VECADD(ENO,BN1,WAV,LINOUT)
RETURN
END
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S U B R O U T I N E  I N T R G X

COMBINED ALGORITHM BASED ON IMPROVED EULER METHOD

LOGICAL EXIT,RLDONE,MPRT 
COMMCN / LI N K/ W (10),W A V (10),LINKNO 
COMMON/TVAR/T11,MPRT 

COMMCN/SYSVAR/EXIT,RLDONE,ICUT,IFI1E,IRUNNO,T,TMAX,TNEXT 
COMMCN/SY SVAR/DT,DTMAX,DTMIN,EMAX,EMIN,SY(35)
COMMCN/STATE1/NORDR 1,Y (200),GN (200)
COMMCN/LINS/LINORD,LININP,LINOUT,A(10,10), B (10,10)
C O MM C N/ L IN S /C (10,10),D (10,10),F (10,10),U ( 10),X (10)
REAL M0 (10,10),M l (10,10),M2(10,10)
DIMENSION GNSAV (200) ,BN0 (10) ,BN1 (10) , XAV (10) ,USAV (10)
DIMENSION WSAV (1 0) , YSAV (10)

DIMENSION TRANPA(10, 10),BETP0 (10, 10) ,EETP 1 (10,10) , B ET P 2(10,10) 
DIMENSION USUM(10),AVN0(10,10),AVN1(10,10),AVN2(10,10) 
DIMENSION V0 (10, 1 0) , VI (10,10) ,D2 (10,10) ,BN2( 10) ,FH(10,10)

IF (T.GT. 0.0) GO TO 30 
IF (DT.GT.DTMAX) DT=DTMAX 
DT02= DT/2.0 
0RITE (IOUT,20)

0 FORMAT (//IX,35HIMPR EULER WITH CORRECTED AVERAGING)

1. P R E C O M P U T A T I O N

COMPUTATION OF D/2 AND H*F

CALL SCALR1(D,0.5,D2,L I NC U T,LININF)
CALL SCALR1 ( F,DT,FH,LINOED,LINOUT)

COMPUTATION OF T R A N PA , M0 , M1,M2

CALL MXCAL(A,TRANPA,MO,Ml,M2,LINOED,DT,14,MPRT)

COMPUTATION OF VO AND VI

CALL MXEQL(M1,VO,LINORD,LINORD)
CALL SCALR1 (M2,0.5,VI,LINOED,LINOED)

COMPUTATION OF COEFF. MATRICES FOR AVERAGING 
VIZ. (AVO + I) , (V0-V1) B,V1E

CALI MATMUL(A,VO,AVN1,LINOED,LINOED,LINORD)
CALL ADDID(AVN1,AVN0,LINORD)
CALL MXSUE(VO,V1,AVN2,LINORD,LINORD)
CALL MATMUL (AVN2,B ,A V N 1,II N C5 D ,LINO E C ,LININP)
CALI MATMUL(VI,B,AVN2,LINORD,LINORD,LININP)

COMPUTATION OF COEFF. MATRICES FOR LINEAR DISCRETE VALUES 
VIZ. (AMO+I) , (M0-M1) B,M1E

CALL MATMUL(A,MO,BETP1,LINORD,IINCRD,LINORD)
CALL A D D I D (E E T P 1,BETPO,LINORD)
CALL MXSUB(MO,Ml,BETP2,1IN0BD,IINCRD)
CALL MATMUL(EETP2,E,EETP1,LINORD,LINORD,LININP)
CALL MATMUL (Ml,B,BETP2,LINOED,IINCRD,LININP)
CALL INICCN



65

C 2. R U N  T I M E  C O M P U T A T I O N
C
c
C 4. COMPUTATION OF Y(N+1) AND U(N+1)
30 RLDCNB = . FALSE.

DO 35 J=1,NORDR1 
YSAV (J)=Y (J)
Y(J)=Y(J) +DT*GN(J)
GNSAV (J) = GN (J)

35 CONTINUE
DO 40 J = 1,LININP 
USAV (J) =U (J)

40 CONTINUE
t = t + d t
CALL DIFEQ1 
DO 50 J=1,NORDR1
Y (J) = YS AV (J) +DT02* (GNSAV (J) +GN (J) )

50 CONTINUE
CALL GFUNC

C
C COMPUTATION OF XAV(N+1)
C

DO 60 J=1,LINOUT 
HSAV (J) =WAV (J)

60 CONTINUE
CALL MXCOL (A V N 0 ,X ,BN0,LINCRC,LINCBD)
CALL MXCOL(AVN1yUSAV,BN1,LINOED,LININP)
CALL VECADD (BN0,BN 1,B N 2 ,LINCBD)
CALL MXCOL(AVN2,U,BN 1,LINORC,LININP)
CALL VECADD (BN 1,B N 2 ,X A V ,LINCBD)

C
C COMPUTATION CF WAV(N+1)
C

CALL MXCOL (C,X A V ,BNO,LINCUT,LINCED)
CALL VECADD (USAV,U,USUM,LININP) ■
CALL MXCOL (D2,USU M ,BN 1,L I N C U 1,LININP)
CALL VECADD(BNO,BN 1,WAV,LINOUT)

C
C ADDITION OF CORRECTION FACTOR TO Y(N+1)
C

DO 70 J= 1,NOB DR 1 
BN2 (J) = Y (J)

70 CONTINUE
CALL VECSUB (HAV,WSAV,BNO, LINOUT)
CALL MXCOL (FH,BNO,BMl,LI N O E D ,LINCUT)
CALL VECAED (EN2,BN1,Y ,LINOED)
CALL GFUNC

C
C COMPUTATION CF X(N+1)
C

CALL MXCOL (BETPO,X,BN O ,L I N C E D ,LINCRD)
CALL MXCOL(BETPI,USAV,BN 1,LINCED,LININP) 
CALL VECADD (BNO,BN 1,BN2,LINCEC)
CALL MXCOL(EETP2,U,EN1, LINOEE,LININP)
CALL VECADD (BN?,BN 1,X ,LINCRC)

C
C COMPUTATION CF W
C

CALL MXCOL (C,X,BNO,LINCUT,LINCED)
CALL KXCCL(D,U,BN 1,LINOUT,LININP)



CALL YECADD(BN0,BN1,W,LIN0U1) 
ELDCN E = .T R U E .
CALL DIFEQ1
RETURN
END
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S U B R O U T I N E  I N T R G X

COMBINED ALGORITHM BASED CN MOEIFIED EULER

LOGICAL EXIT/RLDONE,MPRT
COMMC N/LINK/W(10) ,H A V (10),LINKNO
COMMON/TVAR/111,MPRT
COMMCN/SYSVAR/EXIT,RLDONE,I0UT,IFILE,IRUN NO ,T ,T M A X ,TNEXT 
COMMCN/SYSVAR/DT# DTMAX/DTMIK,EMAX,EMIN,SY (35)
COMMCN/ST AT E 1/NORDR 1, Y (200) , GN (200)
COMMON/LINS/LIHOED,LININP,LINOUT,A (10,10) ,5(10,10) 
COMMON/LINS/C (10, 10) , D (1 0 , 1 0) , F (1 0 , 1 0) , U (10) , X (10)
REAL M0 (10, 10) , Ml (10, 10) ,M2 (10, 10) , M3 (10,10)
DIMENSION GNSAV (200) ,3N0 (10),EN1(10),XAV (10) ,U S A V (10)
DIMENSION V 2 (10,10) ,AVN3 (10,10) ,AVN4 (10,10) ,USAY2 (10)
DIMENSION BETP3 (10,10),E E T P 4 (10,10)
DIMENSION NSAV (10) ,YSAV (10) ,BN3 (10)
DIMENSION T B A N P A (10,10), BETP0 (10,10) ,BETP1 (10,10) ,BETP2 (10, 10) 
DIMENSION USUM (10),A V N 0 (10,10) ,A V N 1 (10,10) ,A V N 2 (10,10) 
DIMENSION V0 (10, 10) ,V1 (1 0,10) ,D6 (10,10) rBN2 (10) ,FH (10, 10)
IF (T.GT.0.0) GO TO 30 
IF (DT.GT.DTMAX) DT=DTMAX 
DT02=DT/2. 0 
WRITE (IOUT#2 0)

0 FORMAT (//IX,35HMOD EULER WITH CORRECTED AVERAGING)

P R E C O M P U T A T I O N

COMPUTATION OF D/6 AND H*F

CALL S C A LR 1 (D,1./6.,D6,LINOUT,LININF)
CALL S C A LR 1 (F,DT,FH,LINCRD,LINOU1)

COMPUTATION OF TBANPA,M0,Ml,M2,M3

CALL M X C A L 3 (A,TRAN P A, M O,M 1,M2,M3,1 I NO RD,DT,14,MPRT)

COMPUTATION OF VO ,VI AND V2

CALL MXEQL(M1,VO,LINORD,LINORE)
CALL SCA LR 1 (M2,0.5,VI,LINCRD,1INCED)
CALL SCALR1 (M3, 1./3.,V2,LINCRD,LINORL)

COMPUTATION OF COEFF. MATRICES FOR AVERAGING 
VIZ. (AVO + I) , (V0-3VV2V2) B,
4 (V1-V2) B, (2V2-V 1) B

CALL MATMUL(A,V0,AVN1,LINOBB,LINOED,LIHORD)
CALL ADDID(AVN1,AVN0,LINCRD)
CALL SCALR1(V1,-3.0,AVN1,LINOFD,LINOFC)
CALL SCALP. 1 (V2,2 . 0,AVN4,LINCRD,LINOFD)
CALL M A T A D D (V O, A VN 1,A V N 1,LINCRD,LINOFD)
CALL MATADD(AVN1,AVN4,AVN4,LINCRD,LINOFD)
CALL M ATMUL(AVN4,E,AVN1,LINOBD,LINORD,LININP)
CALL MXSUB(VI,V2,AVN4,LINCRD,LINCFD)
CALL SCALR1(AVN4,4.0,AVN4,LINCRD,LINORD)
CALL MATMUL(AVN4,B,AVN2,LINCRD,LINOFD,LININP)
CALL SCALE1 (V2,2.0,AVN4, LINORD,LINORD)
CALL MXSUB(AVN4,VI,AVN4,LINCFD,LINOFD)
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60 CONTINUE
CALL MX COL(C,X A V ,d N O ,LINCUT,LINGBE)
CALL SCALBT(USAV2,4.0,BN 1,LININF,LININP) 
CALL VECADD(USAV,BN1,BN2,LININE)
CALL VECADD(BN2,U,USUH,LININP)
CALL MXCOL(D6,USUM,BN1,LINCUT,IININE)
CALL VECADD(ENO,BN1,WAV,LINOUT)

C
C ADDITION OF CORRECTION FACTOR TO Y(N+1)
C

DO 70 J = 1,NORDR1 
BN 2 (J) = Y (J)

70 CONTINUE
CALL VECSUB(WAV,WSAV,BN0,LINCUT)
CALL MXCOL(FH,ENO,BN1,LINORE,LINOUT)
CALL VECADD(BN2,BN1,Y,LINCFD)
CALL GFUNC

C
C COMPUTATION OF X(N+1)
C

CALL M X C O L(BETPO,X,BNO,LINORB,LINORD)
CALL dXCOL(BETP1,USAV,BN1,LINCRE,LININP) 
CALL VECADD(ENO,BN1,BN2,LINORD)
CALL MXCOL (BETP2,USAV2,3NO,L I N C R D ,LINORD) 
CALL VECADD(ENO,EN2,BN2,LINORD)
CALL MXCOL(BETP3,U,BNO,LINORD,LININE)
CALL VECADD(ENO,BN2,X,LINORE)

C
C COMPUTATION OF W
C

CALL MXCOL(C,X,BNO,LINOUT,LINORD)
CALL MXCOL(D,U,BN1,LINOUT,LININE)
CALL VECADD (ENO,BUI,W,LINOUT)
RLDCNE=.TRUE.
CALL D I F E Q V
RETURN
END



S U B R O U T I N E  I N T R G X
C
c
C NONLINEAR ALGORITHM WITH AVERAGING
C
c

LOGICAL EXIT,RLDONE
COMMCN/SYSV AR / EX I T,RLDC NE,ICUT,IFILE,IRUNNO,T ,T M A X ,DUMM 
COMMON/SYSVAR/DI,DTMAX,ETMIN,EMAX,E MIN,SY(35) 
COMMON/STATE 1/NORDR 1,Y (200) ,GN (200) 
COKMON/STAIE2/NORDR2,Y2 (200) ,GN2 (200)

COMMON/AVER/YAV (200)
DIMENSION GIEM (200),YTEM (200)
REAL K1 (200) ,K2 (200) ,K3 (300)
IF (T.GT. 0. 0) GO TO 30

C
C ****** REMINDER : DTMAX-LE.TMAX/(NPOINT-1)
C

IF (DT.GT.DTMAX) DT=DTMAX
DTA=DT
DT2=DT/2.0

C
C DTMAX = DT2 SET IF DTMAX.GT,D12 IN ORDER TO AVOID 
C HANG UP ON DTMAX IN RKM - SEE COMMENTS IM RKM SUER.
C

IF (DTMAX.G1.DT2) DTMAX = DT2 
WRITE (IOUI,11) DTMAX 

11 FORMAT (14H NEW DTMAX =,E12.5/)
Dl3=DT/3.0 
DT4=DT/4.0 
DT6=DT/6.0 
WRITE (IOUT, 1)

1 FORMAT (/52H PARTITIONED INTEGRATION- R K - 4 FOR SLOW 
30 RLDCNE=.FALSE.

C FAST SYSTEM INTEGRATION ( NH<= 1 <=(N+1/2)H ) USING RKM
TEMP=T 
TNEXT-T+DT2

C
C DT4 SET INSTEAD DT AT T=0.0 TO START STEP CONTROL 
C IN RKM SUBROUTINE 
C

IF (T.EQ.0.0) DT=DT4
C
C***** ZERO AVERAGES FOR HALF STEP INTERVAL 
C

DO 35 11= 1,NCRDR1 
35 YAV (II)=0.0
40 T1=T

CALL RKM (TEMP,TNEXT)
DLT=T-T 1 

C COMPUTE AVERAGES
DO 45 11=1,N O R D R 1

45 YAV (II) = YAV (II) *DLT*Y (II)
IF (TNEXT.GT.I) GO TO 40

DO 46 1 1 = 1 , N O RD R 1
46 YAV (II)=YAV(II)/DT2
C IN GENERAL NEXT STEP WOULD BE COMPUTATION CF U(N+1/2)
C 2. SLOW SYSTEM INTEGRATION - SECOND ORDER IMPROVED EULER 
C 2.1. COMPUTATION OF K1,K2,K3 

DO 100 1= 1,NORDR2 
K 1 (I) = GN2 (I)
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XTEM (I) =Y2 (I)
100 Y2 (I) =Y2(I) *DT2*K1 (I)

CALI DIFEQ2 
DO 110 I=1,NOBDR2 
K2 (I) =GN2 (I)
Y2 (I) =YTEM (I) +DT2 + K2 (I)
CALI DIFEQ2 
DO 120 1= 1 ,NORDB2 
K3 (I) =GN2 (I)

2.2. COMPUTATION OF Y(N+1/2) AND EVALUATION OF SLOB SYSTEM EQU,

110

120

DO 130 1 = 1 , NCBDE2 
130 Y2 (I) = YTEM (I) +DT4* (K1 (I) +K2 (I) )

CALL DIIEQ2

: 3. FAST SYSTEM IINTEGRATICN

C
c*****
c
47
50

C

55

56

C
C
C

TEMP=T 
TNEXT=T+DT2

ZERO AVERAGES FOR FULL STEP INTERVAL

DO 47 II=1,NORDR1 
YAV (II) =0.0 
T 1 = T
CALL RKM (TEMP/TNEXT)

DLT=T-T1

COMPUTE AVERAGES FOR FULL STEP 
DO 55 11= 1 /NCRDR 1 
YAV (II) =YAV (II) +DLT*Y (II)
IF (TNEXT.GT.T) GO TO 50 

DO 56 1 1 = 1 , NORDR1 
YAV (II) =YAV (II) /DT2 
CALL DIFEQ2
IN GENERAL NEXT STEP WOULD EE COMPUTATION OF U(N+1)

4. COMPUTATION OF K4 AND X(N+1)
DC 200 1 = 1 , NCRDR2 

200 Y2 (I) = YTEM (I) +DTA*K3 (I)
CALL DIFEQ2 
DO 210 1=1,NORDR2 

210 Y2 (I) = YTEM (I) <DT6* (K1 (I) +GN2 (I)) +CT3* (K2 (I) +K3 (I) )

NEXT STEP PREPARATION 
RLDONE=.TRUE.
CALL DIFEQ2
RETURN
END



S U B R O U T I N E  I N T R G X
C
: NONLINEAR ALGORITHM WITH SHIITED AVERAGING

LOGICAL EXIT,RLDONE
COEflCN/SYSVAR/EXIT,RLDCNE,TOUT,IFILE,IBUNNO,T,TMAX,DUMM 
COMMON/S YSVAP./DT, DIM AX, DTMIN, EM AX, EMIN,SY (35)
COMMON/STATE 1/NORDR 1,Y (200) ,GN (200)
C OM M ON / STATE2/NORDR2,Y2(200), G N 2 (200)

C O M M O N/ A VE R /Y A V(200)
DIMENSION GTEM (200),Y T E M (200) ,YSAV (200) ,YSAV2 (200)

DIMENSION AV (200) ,Y A V S V (200)
REAL K1 (200) ,K2 (200) ,K3 (300)
IF (T.GT. 0. 0) GO TO 30

C
C ****** REMINDER : DTMAX.LE.TMAX/ (NPOINT-1)
C

IF (DT. GT. DTMAX) DT=DTMAX
DIA=DT
DT2=DT/2.0

C
C DTMAX = DT2 SET IF DTMAX.Gl.DT2 IN ORDER TO AVOID
C HANG UP ON DTMAX IN RKM - SEE COMMENTS IM EKM SUBR.
C

IF (DTMAX.GT.DT2) DTMAX = CT2 
WRITE (IOUT,11) DTMAX 

11 FORMAT (14H NEW DTMAX =,E12.5/)
DT3=DT/3.0 
DT4=DT/4.0 
DT6=DT/6.0 
WRITE (IOUT, 1)

1 FORMAT (/52H PARTITIONED INTEGRATION- R K - 4 FOR SLOW SYSTEM) 
30 RLDONE=.FALSE.

C FAST SYSTEM INTEGRATION ( NH<= T <=(N+1/2)H ) USING RKM
TEMP=T 
TNEXT=T+DT4

C
C DT4 SET INSTEAD DT AT T=0.0 TO START STEP CONTROL 
C IN RKM SUBROUTINE 
C

IF (T.EQ.0.0) DT=DT4/2.
C
C*** FIRST QUARTER STEP
C
40 CALL RKM (TEMP,TNEXT)

IF (TNEXT. GT. T) GO TO 40
TEMP=T
TNEXT=T+DT4

C
c*** SECOND QUARTER STEP - START AVERAGING
C

DO 41 11= 1 ,NO RD R 1
41 AV (II)=0.0
42 T 1=T

CALL RKM (TEMP,TNEXT)
D L T= T -T 1

C
C*** COMPUTE AVERAGE
C

DO 43 11=1,NORDR1
43 AV (II) =AV (II) +DLT*Y (II)



IF (TNEXT.GT.T) GO TO 42 
DO 44 1 1 =1 , NORDR1 
YSAV(II) =Y (II)

44 YAV (II) = Y (II)
C IN GENERAL NEXT STEP tiCULD BE COMPUTATION CF U (N+1/2)
C 2. SLOW SYSTEM INTEGRATION - SECOND ORDER IMPROVED EULER
C 2.1. COMPUTATION OF K1,K2,K3 

DO 100 1 = 1 , NCRDR2 
K1 (I) = GN2 (I)
YTEM (I) = Y2 (I)

100 Y2 (I) = Y2 (I) ♦DT2*K1 (I)
CALL DIFEQ2 
DO 110 1 = 1 , NORDR2 
K2 (I) = G N 2 (I)

C
C 2.2. COMPUTATION OF APPROX. Y(N+1/2)

DO 130 1 = 1 , NORDR2 
130 Y2 (I) = YTEM (I) + DI4* (K1 (I) +K2(I))

CALL DIFEQ2
TEMP=T
TNEXT=T+DT4

C
C*** THIRD QUARTER STEP - COMPLETE AVERAGE
C
46 T1=T

CALL RKM(TEME,TNEXT)
DLT=T-T 1
DO 49 1 1 = 1 , NCRDR1 
AV (II) =AV (II) +DLT+Y (II)

49 YAV (II) =YAVSV (II)
IF (TNEXT.GT.T) GO TO 46 
T=TEMP
DO 47 1 1 = 1 ,NCRDR1

47 Y(II) =YSAV (II)
DO 48 11=1,NCRDR2

48 Y2 (II) =YTEM (II)
CALL DIFEQ2
DO 501 II=1,NCRDE1 

501 YAV (II) =AV (II)/DT2
DO 150 1 = 1 , NORDR2 
K1 (I) = GN2 (I)
YTEM (I) =Y2 (I)

C
C*** RECOMPUTE K1 AND K2, FIND K3 
C

150 Y2(I)=Y2(I)+DT2*K1(I)
CALL DIFEQ2 
DO 160 1 = 1 , NCRDR2 
K2 (I) = G N 2 (I)

160 Y2 (I) = YTEM (I)+DT2*K2 (I)
CALL DIFEQ2 
DO 170 1= 1 ,NORDR2 

170 K3 (I) =GN2 (I)
C
C 2.2. COMPUTATION OF Y(N+1/2) AND EVALUATION OF SLOW SYSTEM EQU.

DO 180 1 = 1 , NORDR2 
180 Y2 (I) = YTEM (I) +DT4* (K1 (I) +K2 (I) )

CALL DIFEQ2
C
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C 3. FAST SYSTEM IINTEGRATIC N
C
C
C*** DO THIRD QUARTER AGAIN 
C

TEMP=T
TNEXT=T+DT4

50 CALI RKM(TEMP,TNEXT)
IF(TNEXT.GT.T)GO TO 50

C
C*** FOURTH QUARTER - START AVERAGING
C

TEMP=T 
TNEXT=T+DT4 

DO 51 11= 1 /NO R DR 1
51 AV (II) =0. 0
52 I1=T

CALL RKM (TEMP,TNEXT)
DLT=T-T1
DO 53 11=1,N O R D R1

53 A? (II) =AV (II)+DLT*Y (II)
IF (TNEXT.GT-T) GO TO 52 

DO 54 11=1,NORDR2
54 YSAV2(II) =Y2 (II)

DO 55 11=1,N O R D R1 
YSAV (II) =Y (II)

55 YAV (II) = Y (II)
CALL DIFEQ2

C IN GENERAL NEXT STEP WOULD EE COMPUTATION OF U(N+1)
C
C 4. COMPUTATION OF K4 AND APPROX. Y(N+1)

DO 200 1=1,NORDR2 
200 Y2(I) =YTEK (I) +DTA*K3 (I)

CALL DIFEQ2 
DO 210 1 =1 , NORDR2 

210 Y2 (I) = YTEM (I) +DT6* (K1 (I) +GN2(I) ) +DT3* (K2 (I) +K3 (I) )
CALL DIFEQ2

C
C*** FIFTH QUARTER - COMPLETE AVERAGING 
C

TEMP=T
TNEXT=T+DT4

56 T1=T
CALL RKM (TEME,TNEXT)
DLT=T-T 1
DO 59 11= 1,N O R D R1 
AY(ll) =AV (II) +DLT*Y (II)

59 YAV (II) =AV (II)/DT/2
IF (TNEXT.GT.T)GO TO 56 
T=TEMP
DO 57 II=1,NCRDR1

57 Y(II) =YSAV (II)
DO 58 11= 1, NORDR2

58 Y2(II) =YSAV2 (II)
CALL DIFEQ2

C
C*** RECOMPUTE K4 AND FIND FINAL Y(N+1)

DO 250 1=1,NCRDR2 
250 Y2 (I) =YTEM (I) +DTA + K3 (I)

CALL DIFEQ2 
DO 260 1 = 1, NORDR2
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260 Y2 (I) = YTEM (I) +DT6* (K1 (I) +GN2 (I)) +C13* (K2 (I) +K3 (I) )

N3XT STEP PREPARATION 
DO 270 11=1 , NCRDR1 

270 YAVSV (II) =YAV (II)
RLDONE=.TRUE.

CALL DIE E Q 1 
CALL D1FEQ2 
RETURN 
END



S U B R O U T I N E  R K M  ( T E r t f , T N E X T )
C
C PROGRAM.. INTRGX SUBROUTINE 
C
C RUNGE-KUTTA-MERSON RULE MODIFIED FOR PARTITIONED INTEGRATION 
C (COMMMENTS MARKED WITH **** )
C UNIVERSITY OF ARIZONA , MAY 1977
C OLGIERD A. PALUSINSKI
C TECHNICAL UNIVERSITY OF SILESIA
C <44-100 GLIWICE,POLAND
C
c
C TYPE OF PROGRAM.. RUNGE-KUTTA-MERSON VARIABLE STEP INTEGRATION 
C RULE FCR INTEGRATING ORDINARY DIFFERENTIAL
C EQUATIONS.
C
C VERSION AND DATE.. 4.0 MAY 1976 
C
C AUTHOR.. JOHN V. WAIT
C ELECTRICAL ENGINEERING DEPARTMENT
C UNIVERSITY OF ARIZONA
C TUCSON, ARIZONA 85721
C
C MODIFICATIONS OF ERROR CONTROL LOGIC INCLUDED 
C ( COMMENTS MARKED WITH %%%%%% )
C
C
C LANGUAGE.. ANSI STANDARD FORTRAN IV 
C
C ABSTRACT..
C
C SEE -APPLIED NUMERICAL METHODS- EY CARNAHAN, LUTHER, AND WILKES 
C JOHN WILEY AND SONS, INC, 1969, NEW Y CR K , LONDON, SYDNEY, TORONTO
C (A GENERAL DISCUSSION IS GIVEN OF RUNGE-KUTTA RULES AND SPECIFIC
C DISCUSSIONS ARE GIVEN FOR THE RUNGE-KUTTA SECOND, THIRD, AND
C FOURTH ORDER SYSTEMS. HOWEVER, THE RUNGE-KUTTA-MERSON METHOD
C IS NOT DISCUSSED IN PARTICULAR.)
C
C IF S Y (1) .GE. 1.0, USE ABSOLUTE TEST CN.. Y(IFIX (SY (1)))
C ' IF S Y (1) .LT. 1.0, USE RELATIVE ERROR CN .. ALL Y
C IN SY (2) IS KEPT THE MAXIMUM DEADLOCKED ERROR
C IF SY (6) .GT. 0.0, OUTPUT CHANGES TO DT
C
c
c-------------------------------------------------------------------------------------------------------
c
C$ THIS IS THE SINGLE PRECISION VERSION OF RULED 1.
C
C SUBROUTINE CONVRT WILL CONVERT THE PRECISION OF THIS SUBROUTINE 
C SEE SUBROUTINE CONVRT OR SUBROUTINE R U L E 1 1 FCR AN EXPLANATION 
C OF THE ORDERING AND FLAGGING CONVENTIONS USED IN THIS 
C CONVERTABLE SUBROUTINE 
C
c------------------------------------------------------------------------------------------------
c

LOGICAL A,B,FO,X,LIST
C (2
CD DOUBLE PRECISION RK1 (200) , RK3 (200) ,RK4 (200),RK5 (200)
CD DOUBLE PRECISION Y O L D (200),D P Y (200),DPT,TIME
C) 1

REAL RK 1 (200) ,RK3 (200) ,EK4 (200) , EK5 (200) , YOLD (200)
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C / 5
LOGICAL EXII,ELDONE
COMMON /SYSVAR/ EXIT,RLDONE,IOUT,IFILE,IRUNN O ,I,TMAX,DUMM 
COMMON /SYSVAR/ DT ,DTMAX,DTMIN,E MA X ,E M I N , S Y (35)
COMMON /STATE 1/ NORDR1, Y (200) , GN (200)

C *************** WATCH OUT ***********************
CO MMON/STAT£2/ N O R DR 2 ,Y 2 (200), G N 2 (200)
COMMC N/E XTR/YEXTR (200),W (10)

C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
C INITIALIZE 

A=. TRUE.
IF (T.GT.0.) GO TO 5

C (3
CD DO 1 1= 1,N O R D R1
CD1 DPY (I) = Y (I)
CD DPT=0.DO
C) 0
C/5

IF (IFIX (SY (1) ) . IE. NORDR1) GO TO 3 
WRITE(IOUT,2)

2 FORMAT(U8H WARNING - SY(1) TOO LARGE FOB EQUATIONS GIVEN.
2 17HSY (1) SET TO ZERO)
SY (1) =0.

3 S Y (2) =E MAX 
L I S T = S Y (6).NE.O.
WRITE (IOUT,4)

4 FORMAT (52H RUNGE-KUTTA-MEFSCN INTEGRATION RULE FOR FAST SYSTEM)
C
C MESSAGE FOR PARTITIONED INTEGRATION ONLY **************
C

WRITE (IOUT,444) IRUNNO 
444 FORMAT (33H LINEAR EXTRAPOLATION , RUN NO. ,13/)

C
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C
ISY1 = SY (1)

5 FO=T.LT.TNEXT.AND.INEXT.LI.T+ET 
DTEM=DT
IF(FO) DT=TNEXT-T

C (2
CD DT3=DBLE(DT)/3.D0
CD TIME=DET
C) 2

DT3=DT/3.
TIME=T

C/6
C FIND K 1
C DIFEQ1 WAS CALLED BEFORE ENTRY 

RLDCNE=.FALSE.
DO 7 1 =1 , NORD R 1

C (4
CD RK1 (I) = DBLE (GN (I) ) *DT3
CD YOLD (I) =DPY (I)
CD DPY (I) =DPY (I) +RK1 (I)
CD Y (I) =SNGL (DPY (I) )
C) 3

RK1 (I) = GN (I) *DT3 
YCLD (I) =Y (I)
Y (I) =Y (I) +RK1 (I)

C/9
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7 CONTINUE 
C<2
CD DPT=TI2JE+DT3
CD T=SNGL(DPT)
C) 1

T=TIME+DT3
C/5
C FIND K2
C ****************** HATCH OUT ****************** LINEAR EXTRAPOLATION 

DELTA=T-TEMP 
DO 991 I=1,NORDR2

991 YEXTR(I)=Y2(I)+GN2(I)*DELTA
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * *

CALL DIFEQ1 
DO 8 1 = 1 ,NORDR1

C (2
CD DPY (I) = YOLD (I) +. 5D0* (RK 1 (I) +DELE (GN (I) ) *DT3)
CD Y (I) =SNGL (DPY (I) )
C) 1

Y (I) = YOLD (I) +0. 5* (RK 1 (I) +GN (I)*DTi)
C/5
8 CONTINUE 
C FIND K3

CALL DIFEQ1 
DO 9 1 = 1 , NOR DR 1

C(3
CD RK3 (I)= 4 . 5D0*DT3*DBLE(GN (I))
CD DPY (I) = YOLD (I) + . 375D0+RK1 (I) +.25C0*RK3 (I)
CD Y (I)=SNGL (DPY (I) )
C) 2

RK3 (I) = 4. 5*DT3*GN (I)
Y (I)=YOLD(I) +0.375*RK1(I)+0. 25*RK3(I)

C/7
9 CONTINUE 
C ( 2
CD DPT=TIME+.5D0*EBLE(DT)
CD T=SNGL (DPT)
C) 1

T=TIME+.5*DI
C/5
C FIND K4
C ************ HATCH OUT ***************** LINEAR EXTRAPOLATION *** 

DELTA=T-TEtlP 
DO 992 I=1,NCRDR2

992 YEXTR (I) = Y2 (I) *GN2 (I) * DELTA
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

CALL DIFEQ1 
DO 10 I=1,NORDR1

C (3
CD RK4 (I)= 4 . D0*DT3*DBLE(GN(I))
CD DPY (I) = YOLD (I) + 1. 5 D 0* (RK 1 (I) + RK4 (I) ) -RK3 (I)
CD Y(I) =SNGL (DPY (I) )
C)2

RK4 (I) =4.*DT3*GN (I)
Y (I) = YOLD (I) +1.5* (RK 1 (I) +RK4 (I) ) -RK3 (I)

C/7
10 CONTINUE 
C (2
CD DPT=TIME+DBLE(DT)
CD T=SNGL (DPT)
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C) i
T=TIME+DT

C/5
C FIND K5 AND NEXT POINT
C *************HATCH OUT ***************** LINEAR EXTRAPOLATION ** 

DBLTA=T-TEMP 
DO 993 1 = 1, NORDR2 993 YEXTR (I) = Y2 (I) + GN2 (I) * DELTA 

C ****************************************
CALL DIFEQ 1 
DO 11 1 =1,NORDR1

C ( 3
CD RK5 (I) =DBLE (GN (I) ) *DT3
CD DPY (I) =YCLD (I) +. 5D0* (RK1 (I) +RK4 (I) +RK5 (I) )
CD Y(I) =SNGL (DPY (I) )
C) 2

RK5 (I) =GN (I) *DT3
Y (I) = YOLD (I) +. 5* (RK1 (I) +RK4 (I) +RK5 (I) )

C/7
11 CONTINUE 
C
C %%%% MODIFICATION OF LOGIC ; BYPASS "C" PUT IN C O L . 1 IN NEXT ST.
C THIS MEANS ERROR IS CHECKED ALWAYS (REGARDLESS OF ”FO")
C
C IF (FO) GO TO 20
C

C
C
C FIND ERROR 
C

IF (ISY1.GT.0) GO TO 13
C
C SY (1)=0, DC RELATIVE ERROR CHECK 
C

ERROR=0.
DO 12 1=1,N O R DR 1

C (2
CD RK6= (RK 1 (I) -RK3 (I) +RK4 (I) ) *.2D0-RK5 (I) *. 1 DO
CD WEIGHT= ABS (Y (I) ) +ABS (SNGL (YOLD (I) ) -Y (I) ) +1.
C) 2

R K 6= (RK 1 (I) -RK3 (I) +RK4 (I) ) *.2-BK5 (I) *. 1 
WEIGHT= ABS (Y (I) ) +ABS (YOLD (I) -Y (I) ) +1.

C/6
ERRCR = AMA X 1 (ERROR,ABS(RK6) /HEIGHT)

12 CONTINUE 
GO TO 14

C
C SY(1).GT.O, DO ABSOLUTE TEST CN Y(IFIX(SY (1))
C
C (2
C D 13 E RR O R= SNGL(DAES((RK1 (ISY1) -RK3(ISY1)+RK4(ISY1)) *.2D0 
CD 2 -RK5(ISY1)/.1D0) )
C) 1

13 ERROR= ABS ( (RK 1 (ISY 1) -RK3 (ISY1) +RK4 (ISY 1) ) *. 2-RK5 (ISY1) *.1)
C/5
C
C TEST ERROR 
C
14 B= (ERROR. GE. EMIN) . CR. (DT.GE. DTMAX) .CR. (.NOT.A)

A= (ERROR. LE. EM AX) . CR. (DT.LE. D1MIN)



X= (ERFCR. LE.SY (2) ) .OR.. (DT. GT. DTMIN)
C
C IF X=.FALSE., DEADLOCK AND ERROR IS GREATER THAN BEFORE 
C

IF (X) GO TO 151
WRITE (IOUT,15) ERROR,I,DT 

15 FORM AT (20 H DEADLOCK - ERROR =,1PE14.7,5H T =,
2 E14.7,6H DT =,E14. 7)

SY (2)=ERRCR 
GO TO 19

C
C IF A=.FALSE., HALVE DT 
C
C %%% MODIFICATION OF LOGIC : #222 EOT INSTEAD OF #18 IN NEXT ST.
C THIS MEANS THAT BEFORE "E" THE VALUE OF "FO" IS CHECKED
C
151 IF (A) GO TO 222 
C
C %%%%*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
c
C (2 
CD 
CD 
C) 1

C/5

16

C(3 
CD 
CD
CD 17 
C) 1 

17 
C/6
C ************** h a t c h  OUT ****************** LINEAR EXTRAPOLATION ** 

DELTA=T-TEMP 
DO 994 I=1,NORDR2 

994 YEXTR (I)=Y2(I)+GN2(I)*DELTA
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

CALL D IF E Q1 
GO TO 5

C
C %%% MODIFICATION OF LOGIC : NEW STATEMENT TO CHECK VALUE OF "FO"
C IN ORDER TO PREVENT DOUBLING WHEN "FC"=.TRUE.
C
222 IF (FO) GO TO 20

C

C
C
c
C IF B=.FALSE., DOUBLE DT 
C
18 IF (B) GO TO 19 
C
C ********R£MINDER:****** DT2 PUT IN PLACE OF DTMAX WHEN 
C DTMAX.GT.DT2 IN ORDER TO PREVENT
C HANG " P n v  f'TMAX ;

DPT=TIME 
T=SNGL (DPT)

T=TIME

DT= AMAX 1 (DT/2. , DTMIN)
IF (LIST) WRITE (IOUT, 16) DT, T
FORMAT (10H NEW DT =,1PE14.7,5H T =,E14.7)
DO 17 1=1,NCRDR1

DPY (I) =YOLD (I)
Y (I) =SNGL (DPY (I) )
CONTINUE

Y (I) =YOLD (I)



C THAT BEAMS DTMAX = CT2 FOE EKK ERROE CONTROL
C IF DTKAX.GT.DT2 ; SEE "INTEGX" FOE T=0.
C

OT= AMIN 1 (DT*2. , DTMAX)
C
C * * * * * * * * * * * 4 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
IF (LIST) W R ITE(IOUT,16) DT,I

19 RLDONE=.TRUE.
C *************** WATCH COT ****************** LINEAR EXTRAPOLATION ** 

DELTA=T-TEMP 
DO 995 1 = 1, N0RDR2 

995 YEXTR (I) =Y2 (I) +GN2 (I) *DELTA
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

CALL DIFEQ1 
RETURN

C
C FO=.TRUE., RESTORE DT 
C
20 DT=DTEM
C %%%%%%% MODIF. OF LOGIC: "C" PUT IN C O L . 1 IN NEXT TWO ST.
C A=.TRUE.
C B=. TRUE.

RLDONE=.TRUE.
C ************* WATCH OUT *************** LINEAR EXTRAPOLATION *** 

DELTA=T-TEMP 
DO 996 1 = 1 , NORDR2 

996 YEXTR (I)=Y2 (I)+GN2 (I)*DELTA
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

CALL D I F E Q1
RETURN
END
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S U B R O U T I N E  M X C A I 3  ( A , P H I O F T , H O , M 1 , M 2 , H 3 , I D , D T , N D I G , P T )
C
C MXCA13 FINDS MO,Ml,M2,M3 OF A MATRIX A
C
C*** ADD DIMENSION OF M3 AND M33
C

REAL MO (10, 10) , Ml (10, 10) , M2 (10, 10) , M3 (10, 10) , MOO (10,10) , 
$M 11 (10,10) , M22(10,10) , M33 (10 , 10) , MFHI (10,10)
DIMENSION A (10,10) , P H I O F T (10,10)
INTEGER SIGDIG (14)
LOGICAL PT
DATA (SIGDIG (I) , 1= 1, 1 4)/4, 6, 7, 8, 9, 10, 11, 12, 13, 14,

$15,15,16,17/
AIJMAX = 10.0** (-NDIG)
DC 05 1=1,ID 
DO 05 J=1,ID 
TEMP = ABS (A (I,J) )

05 IF (TEMP.GT.AIJMAX) AIJMAX = TEMP 
KOUNT = 1
DTMAX = 1.0 / AIJMAX 
TFPAME = DT / 2.0 

10 IF(TFRAME.LE.DIMAX) GO TO 12 
TFRAME = TFRAME / 2.0 
KOUNT = KOUNT + 1 
GO TO 10 

12 IF (. NOT. PT) GO TO 14
PRINT 100, DT, AIJMAX, DTMAX,TFRAME, KCUNT

C
C
C*** WHERE M2 OR M22 CHANGED TO M3 AND M33
C
C

14 CALL MXCLR1 (M3,ID,ID)
CALL A D D I D (M3,M3,ID)
NTERM = SIGDIG (NDIG)
DO 15 1 = 1 , NTERM 
FACTOR = NTERM - 1 + 5  
TFEYFAC = TFRAME / FACTOR 
CALL MATMUL (A,M3,M33,ID,ID,ID)
CALL S C A L E 1 (M33,TFEYFAC,M33,IE,ID)

15 CALL ADDID(M33,M3,ID)
COEFF1 = TFRAME / 12.0
CALL SCALE 1 (M3,C C E I F 1,M3 3 ,ID,ID)

C
C
C*** THIS SECTION OF CODE ADDED TO FIND M2 FECM M3
C
C

20 COEFF2 = TFRAME / 3.0
CALL MATMUL (A,M 3 3 ,M22,ID,ID)
CALL ADDID(M22,M22,ID)
CALL SC ALE 1 (M 2 2 ,C O E F F 2 ,M 2 2 ,1 D ,ID)
COEFF3=TFRAME/2.0 

CALL MATMUL(A,M22,Mil,ID,ID,IE)
CALL ADDID(Ml 1,Mil,ID)
CALL SCALE 1 (Ml 1,C0EFF3,M11 ,ID,ID)
CALL MATMUL(A,Ml 1,MOO,ID,ID,ID)
CALL ADDID(MOO,MOO,ID)
CALL SCALH1(MOO,TFRAME,MOO,ID,ID)
CALL M ATMUL(A,K00,MPHI,I D ,I D ,ID) 
r 1 T.L ADDID. (MPHI,MPHI, ID)
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IF (KOUNT.EQ.O) GO TO 30 
18 KOONT = KCUNT - 1

TFEAHE = 2. 0 * TFRAME
CALL MATMUL (MPHI,M 3 3,M3,ID,ID,ID)
DO 25 1=1,ID 
DO 25 J= 1,ID

C
C
C*** CHANGED EXPEESSIOJN TO FIND M3 
C
c

25 M3<I,J) = 0.125 * (M3(I,J) ♦ H33(I,J) ♦ 3.0*M22(I,J) 
$ ♦ 3.0 * Mil (I,J) > MOO (I,J) )
C AL L  MXEQL (M3,M33,ID,ID)
GO TO 20

30 CALL MXEQL(MPHI,PHIOFT, ID, ID)
CALL MXEQL (MOO,MO,ID,ID)
CALL MXEQL (Mil,Ml,ID,ID)
CALL MXEQL (M22,M2,ID,ID)

CALL MXEQL(M33,M3,ID,ID)
IF (. NOT. PT) GO TO 99 
PRINT 200
CALL MATPT (A,ID,ID,0)
PRINT 210
CALL MATPT (PHIOFT,ID,ID, 0)
PRINT 220
CALL MATPT(MO,ID,ID,0)
PRINT 230
CALL MATPT (Ml , ID, ID, 0)
PRINT 240
CALL MATPT (M2, ID, ID, 0)

C
C*** ADDED TO PRINT M3 
C

PRINT 250
CALL MATPT (M3,ID,ID, 0)

99 RETURN
100 FORMA T (1 H 1,///,10X,9HDT = ,E 20 . 13 , // , 10X,

$9 HAIJMAX = ,E20.. 13,//, 10X, 9HCTMAX = ,£20.13,
$ / / , 10X,9HTFRAME = ,E20.13,5 X ,8HBYTNC = ,13)

200 FORMAT (/////,14X,8HMATRIX A,/ , 1 4 X ,8 (1H*))
210 FORMAT (/////,14X,8HPHI OF T ,/,14X ,8 (1H *))
220 FORMAT (/////,14X,9HMATRIX M0,/,14X,9(1H*))
230 FORMAT (/////,14X,9KMATRIX Ml,/, 14X,9(1H*))
240 F O R M A T (/////,14X,9HMATRIX M2,/,14X ,9 (1H*))

C
C*** ADDED

250 F O R M A T (/////,14X,9HMATRIX M2,/,14X ,9 (1K*))
END
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* EXAMPLE TC SHCH USE OF COMBINE: Alti.
*

* SERVO-CONTROLLED PENDULUM
*

$ D1
* LINK LINEAR VARIABLES TO D1 BLOCK
*

PROCED HAV1,BAV2,tiAV3,HAV4#HAV5,
$ HAV6,WAV7,MAV8,WAV9,WAV10=DUMMY

CALL LINKW (HA V 1 , UA V2, HAV3 , U AV4 ,.ti AV5 ,
$ WAV6,WAV7,HAV8#WAV9,WAV 10)

ENDPRO
*

* NONLINEAR EQUATIONS
*

T E T 1.=TET2
TET2.=-0.3*TET2+SIN(TET1)+HAV1

$F
SUBROUTINE GFUNC

GFUNC DEFINES THE FUNCTION G 
FOR THE SERVO PENDULUM WHERE 

U=G(Y,T)

COMMCN/STATE1/NORDR 1, Y (200) , GN (200) 
COMMON/LINS/LINORD,LININP,LINCUl,A(10,10) ,B (10,10) 
COMMCN/LINS/C (10,10),D (10,10),F (10,10),U (10),X (10) 
U(1) = Y (1)
U (2) =Y (2)

RETURN 
END
SUBROUTINE DEFLIN

DEFLIN DEFINES THE MATRICES A,B,C,D, AND F,
THE INITIAL CONDITIONS CN X,
AND THE SIZES OF THE MATRICESANC VECTORS

COMMC N/LINS/LINORD,LININE,LINOUT,A(10,10) ,B (10,10) 
CCMMON/LINS/C (10,10) , D (1 0, 1 0) , F (10 , 1 0) , U (10) , X (1 0)

DEFINE A,E,C,D, AND F MATRICES FOR PENDULUM 
INITIAL CONDITIONS FOR X ARE ZERO

OMEG 1 = 10.0 
O ME G 2 = 1000.0 
DER=0.11 
AA =10.0 
A (1,2) = 1.0 
A (2,1)=-CMEG1*OMEG2 
A (2,2) =- (CMEG 1+OMEG2)
B (2,1)=-AA*0MEG1*CMEG2 
B (2,2)=-AA*DER*OMEG1*OMEG2 
C(1, 1) =1. 0 
C (2,2) = 1.0 
F (2,1) =1.0

DEFINE SIZES:
LINCRD - LENGTH OF X VECTOR
LININP - LENGTH CF H VECTOR
LINOUT - LENGTH CF U VECTOR
LINKNO - NO. OF AVERAGES
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LINCRD=2
LININP= 2
LINOOT=2
LINKN0=1
RETURN
END

$0
*

* INSERT LINKti, INICON, AND INTBGX HERE
*

END
TtiAX=1.8,DT=0.015,NPOINT=121,TET1=0.5

END
L TET1,TET2

E N D



E X A M P L E  T O  S H O W  U S E  O F  G E N E R A L  N O N L I N E A R  A L G .

ELECTRONIC OSCILLATOR - PARTITION B

FAST SYSTEM EQUATIONS

CALL LINKti TO OBTAIN SLOW VARIABLES

PRO CEO W 1 , W2 , W3 #W<4,W5,N6,W7,W8,W9, H10=CUMMY 
CALL LINKW (W1,U2,U3,W4,W5,W6,W7,W8,119#W10)
ENDPRO
Y1.=Y2
Y2.=-64.0*Y1 + 7.5* (C+W1-Y1**2)*Y2
X1.=1. 0/R1*2. 0*Y1*Y2-1.0/(R1*C1) * X 1 +1. 0/ (R 1 *C 1) * W2

SLOW SYSTEM EQUATIONS

CALL LINKY TO OBTAIN FAST SYSTEM AVERAGES

PROCED WAV= DUMMY 
CALL LINKY(WAV)
ENDPRO

X2. = 1./(R2*C1) *X1-(1./(R2*C1)+1./(R2*C2)) *X2+1./(R1*C1) *WAV 
X3. = 1./(R3*C2)*X2- (1./(R3*C2) + 1 . / (R3*C3))*X3+1./(R3*C3)*X4 
X4.=1./(R4*C3) *X3- (1./(R4*C3) + 1./(R4*C4)) *X4 + 1./(R4*C4)*X5 
X5.=1./(R5*C4) *X4- (1./(R5*C4) +1./ (R5*C5)) *X5+1./(R5*C5)*X6 
X6. = 1./ (R6*C5)*X5- (1./(R6*C5) + 1 . / (R6*C6))*X6 
V.=1.0/C6* X6
E=FK3*(AD-FK1*0.75*SQRT (ABS(V) ))
S.=0.02* (AES(E))**1.2 *S I GN (1. 0,E)-0.02*S

SUBROUTINE LINKW (W 1,W 2,W 3,U4,H5,W 6 ,W7 , W 8 ,W9 , W 10)
COMMON/STATE2/NORDR2,Y2 (200) , G N 2 (200)
COMMON/SYS VAR/EXIT ,RL DONE, IOUT,IF H E ,  I RUN NO ̂ ^ M  AX, TNEXT 
COMMON/SYSVAR/DT,DTMAX,DTMIN,EMAX,E M I N ,SY (35)
COMMO N/LIN K/LINKOR 
COMMON/EXTR/YEXTR (200),W (10)

*** WATCH OUT *************

LINKOR=2 
* * * * * * * * * * * * * * * * * * * * * * * * * * *

GO T O (1,2,3,4,5,6,7,8,9,10),LINKOR
W10=0.0
W9=0.0
U 8=0.0
W7=0.0
W6 = 0. 0
W5 = 0. 0
W4 = 0. 0
W3=0.0
W2=YEXTP. (1)
W1 = YEXIR (7)
RETURN
END

SUBROUTINE LINKY(WAV)
COMMON/AVER/YAV (200)
NAV = YAV (3)
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CALL MAT MUL(AVN4,£,AVN3,LINORD,LINOSD,LINIMP)
C
C COMPUTATION OF CCEFF. MATRICES FCE LINEAR DISCRETE VALUES
C VIZ. (AMO+I) , (M0-3MV2M2) B,
C 4(M1-M2) B, (2M2-M1)
C

CALL MATMUL (A,MO,BE1P1,L I N O R D ,LINORC,LINORD)
CALL ADDID(BETP1,BETPO,LINORD)
CALL SCALR1(Ml,-3. 0 ,BETFI,LINORD,LINCRD)
CALL S C A L R 1 (M2,2.0,BETP4,L I N O R D ,LINOFD)
CALL MATADD(MO,BETP1,BETP1,LINORD,LINORD)
CALL MATADD(BETP1,BETP4,EETP4,LINORD,LINORD)
CALL MATMUL (BETP4,B,BETFI,LINOED,LINCRD,LININP)
CALL MXSU3(M1,M2,EETP4,LINORD,LINORD)
CALL SCA LR 1 (BETP4,4.0,BE T P4 ,L I N C R D ,LINORD)
CALL MAT M U L (BETP4,B,EETP2,LINORD,LINORD,LININP)
CALL SCALR 1 (M2, 2 . 0 , BETF4 , LI NOR D , U N O  ID)
CALL MXSUB(BETP4,M1,BETF4,LINORD,LINORD)
CALL MATMUL (BETP4,B,BETP3,LINCRD,LINORD,LININP)
CALL INICCN

C
C
C 2. R U N  T I M E  C O M P U T A T I O N
C
c
C COMPUTATION OF Y(N+1) AND U(N + 1)
C
30 RLDCNE = .FALSE.

DO 35 J=1,NORDR1 
YSAV (J)=Y (J)
Y(J)=Y(J) +D1C2*GN(J)

35 CONTINUE
DO 40 J=1,LININP 
USAV (J)=U (J)

40 CONTINUE
T=T+DT02 
CALL GFUNC 
DO 45 J=1,LININP 
USA V 2 (J) =U(J)

45 CONTINUE
CALL DIFEQ1 
DO 50 J = 1,NOEDR1 
Y(J) =YSAV (J) +DT*GN (J)

50 CONTINUE
T=T+DT02 
CALL GFUNC

C COMPUTATION OF XAV(N+1)
C

CALL MXCOL(AVN0,X,BNO,LINORD,LINORD)
CALL MXCOL (AVN1,USAV,3N1,L I N C R D ,LININP)
CALL VECADD (BNO,EN1,BN2,LINORD)
CALL MXCOL (AVN2,USAV2,BNO,LINORD,11NINF)
CALL VECADD(ENO,EN2,BN2,LINORD)
CALL MXCOL(AVN3,U ,BNO,LI NOR£,LININP)
CALL VECADD(ENO,BN2,XAV,LINORD)

C
C COMPUTATION OF WAV(N+1)
C

DO 60 J = 1,LINOUT 
USAV (J) = WAV (J)
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BETURN
END

$0
*
* INSERT RKM AND INTRGX HERE
*

INC
DT=1.0,TMAX=100.0,NPOINT=51,Y1=0.1,R1=8.0,R2=8.0,R3=8.0 
R4=8.0, C1=6.25,C2=4.25,C3=1.25,C4=1.25,DTMIN=1.0E-6 
DTMAX=0.3,R5=8.0,B6=8.0,C 5 = 1.25,C 6 = 1.25 
C = 2.0,FK1=1.<41,FK3 = 5. 0,AD=7.2,EMAX=1.I-5,EMIN=1. E-7

END
L Y1,X1,X2,X3,X5,V,S

E N D



APPENDIX B

SUBROUTINE MXCAL3

Subroutine MXCAL3 was derived from subroutine MXCAL (Ferguson, 

1972) in order to compute matrix M3, The changes made to MXCAL are 

denoted by comment cards in the lis tin g  of MXCAL3 found as part of com­

bined algorithm based on the Modified Euler Method in Appendix A,

These changes are summarized here. F irs t, the matrix M3 had to be 

declared as a parameter passed to the subroutine and dimensioned along 

with its  corresponding work space matrix M33. The next several changes 

required only a parameter change from M2 to M3 or M22 to M33 in the 

computation of Mg(T) (Palusinski and Wait 1978, pp. 34-46). Following 

th is , statements had to be added to find M2 from M3 as shown here.

M2 = (h/3)(AM3 + I)  (C -l)

Finally Mg (h) had to be calculated from Mg (T) and printed and this 

required a change from the original formulation of Mg (h).

After the changes were made, MXCAL3 was tested by comparing its  

matrices Mg, M ,̂ and Mg with those computed by MXCAL for a fixed 

matrix A. The two subroutines were found to produce the same results 

for the three matrices thus verifying the subroutine MXCAL3.
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APPENDIX C

TABLES OF PEAK ERRORS

The peak errors found for the experiments described in Chapter 

5 are presented in this section in the form of tables.
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Table C - l . Harmonic o s c i l la to r  e rro rs . Improved Euler Method

DT K2 H3

0.01 5 .06E -2  S.75E-2

0.02 2 .02E -1  2o30E-=1

0=04 8.08E-1 9 . 15E-1

0=08 3=25E+0 3o63E*0



Table C-2. Pendulum e rro rs . Improved Euler w ithou t averaging

DT CPU HUB TET1 TEi2 TAU1 IAU2

oo

0c 103 1...60S-2 9 = 6 IE -3 2=52E-2 7=77E-3

CN)o0o

0=064 7=82B"2 5= 29E-2 1 = 25E-1 3=21E-2

o o w 0=053 1 = 92B-1 . 1.41E-1 3= 03E-1 7= 48E-2

0.05 0=037 5.73B-1 4.29E-1 8 = 9 I E - 1 2.23E-1

0.06 0=040 8.41E-1 6.38B-1 1.31E+0 3.30E-1

o o %o 0=036 . 1= 96E+0 1.49E+0 3.02E+0 8=672-1

0. 10 0.035 2= 40E»0 1.83E+0 3=802+0 3=462+0



Table C-3. Pendulum e rro rs . Improved Euler Method

DT CPU TIH2 TIT1

oo

0=077 5=872-2

fNtOo

0=045 5=872-2

0= 03 0=030 2=332-1

0=05 0=020 5=192-1

o o o\ 0=020 1=432+0

oo

0=015 2=042+0

0=10 0= 013 4=572+0

T2 I2 TAU1 XAU2

3=392-2 1=562-2 1 = 722-2

3=392-2 6=062-2 1=722-2

1=662-1 2=392-1 7=582-2

3=892-1 5=332-1 1=772-1

1=102+0 1=452+0 4=992-1

1=602+0 2=082+0 7=162-1

3=602+0 4=592+0 1=922+0



Table C-4. Pendulum e rro rs . M odified Euler Method

DT CPU TIME TET1 21T2 IAU1 TA02 .

V=”Oo

0=097 8= 65E™2 6=44E"2 1 = 05E-1 2=688=2

oo

0=050 \3 = 4 6 E " 1 2=771=1 4= 19E-1 1 = 092=1

o o w 0=038 7=78E-1 6=35E“ 1 9 = 41E=1 2=471=1

Oo 05 0 = 023 2= 16E-8-0 1=78E*0 2= 59E+0 6=868=1

0o 06 0=022 3= 12E-5-0 .2 = 5884-0 3=74E+0 1=132+0

0=09 0=018 7 =10E+0 5=902+0 8= 47E+0 5=061+1

Do 10 . 0=017 8=83E»0 7=28E+0 2= 24B+1 2=248+3



Table C-5. M ine-shaft e rro rs . Improve Euler w ithou t averaging

DT 

0<, 02 

Oo 03 

0=04 

0=05 

0=06 

0=09 

0«, 10 

0=12

CPU XIHB 

0=321 

0=251 

0= 230 

0=218 

0=200 

0=185.  

0= 191 

0= 179

. OH Y1

7=378-3 1.= 36 E-3

3=358-2 3=478-3

3 = 46E-2 6=272-3

4=238-3 8=548-3

2=67E” 2 1=258-2

1=738-2 2=758—2

9=39E-2 3=822-2

2=448-2 4= 888-2

v2 ■ . ..vi v
7i= 66E"3 1,= 39E”=3

3=48E»2 3= 54E-3

3,= 5 9 2  . 6o 45E” 3 

4=07E-3 6=77E -3

2= 83E^2 1 = 28E=2

. 1 = 69E“ 2 2= 83E"2

1o 01E - 1 ' ■ 3o90E-2 

2=35E-2 5=0I E - 2

:■ . s i  ... . H2 ■

4= 09E-4  7o40E” 4

1= 39E” 4 1o 03 E"4

2 = 5 9 8 -3  3=56EH3

2= 58E-3 4.= 6 4E-3 f

3.= 9 2 8 -3  6.= 80E-3

8= 02B-3 1=488-2

1= 47E -2  2= 122-2

1 *3 8 8 -2  .2 = 6 1 2 -2  f,'

UD4̂



Table C-6. M ine-shaft e r ro rs . Improved Euler Method

DT CPU TIME OM Y1 V2 • VI : Ml M2 .
0=02 0,249 1 ,472 -2 1,072-2 1 = 49B-2 1. 08E-2 2=372-3 4=202-3
0=03 0=198 9 ,3 1 2 -3 3= 91E-3 9=53E-3 3 .89E-3 3=57E-3 1.6 72—3

0»04 0.171 1*042-2 1.34E-3 1= 07E -2 ■ 1.3 IE—3 9 .0 6 2 -3 5=35E-3
0 = 05 0= 162 1 = 58E” 2 7 . 70E” 3 1=662-2 7=982-3 1.52E-2 9=802-3
0.06 0. 150 1 ,922-2 1,262-2 2. 042-2 . 1 ,292-2 2.35E-2 1.6 IE-2
0.09 0=136 3®49E~2 3=272-2 3=752-2 :_3,36B«t2 5 .732-2 4 .152-2
0. 10 0= 132 4, H E - 2 4 ,112-2 4 .4 22 -2 4=222-2 7-= 14E-2 5=222-2
0.12 0. 127 5 ,6 0 2 -2 6= 162-2 , 6 .0 52 -2 6=322-2 ■ 1,052-1 7=752-2

U3m



Table C-7. O s c illa to r  (p a r t it io n  A) e rro rs . Nonlinear method w ithou t averaging

DT CPU TIME Y1 XI 12 X3 X5 .. VI

0=005 10c 15 1=102-2 4=892-3 1=731-3 1=022-3 • 8=742-4 8=652-4

P o 9.o 220 1=102-2 3=052-3 1=492-3 1=042-3 8=682-4 6=842-4

0=025 7= no 1=092-2 1= 30 2^3 1=552-3 1=082-3 9=082-4 7=112-4

0=05 6 = 290 1=072-2 2= 122-3 1=192-3 8=402-4 6= 192-4 4=542-4

OQO

6= 160 1=002-2 9=342-3 2=292-3 1=602-3 1=032-3 6=642—4
0=20 ' 5= 680 . 1=082-2 2= 192-2 2=702-2 2=512-3 1=152-3 6=232-4

UDO



Table C-8. O s c illa to r  (p a r t it io n  A) e r ro rs .

DT GPU TIME Y1 XI

0=005 10,= 78 1=512-1 2-492-1

0 = 01 9=730 2=832-1 4=662-1

0-025 7=500 6 = 232— 1 1=022+0

0=05 6=620 1=162+0 1=912+0

P O 6 = 210 2=232+0 3=622+0

0-20 ■ 6-110 4=512+0 7=202+0

Nonlinear method w ith  averaging

X2 

2«= 58E” 2 

91 E"2 ■' 

8= 74E-2 

1e99E-1 

3.68B-1 
6»84E” 1

X3 

7c 942-3 

1=582-2 

3 = 9-1E«2 

7=782-2

i„55B-l'
• 1

2=192-1

X5 

3-282-3  

8» 462-3 

2=632-2 

5=492-2 

1c 092-1 

2=172-1

VI

3=222—3 

5=302-3 

2-182-2  

56 042-2 

1=042-1 

2= 082=I

U3



Table C-9„ O s c illa to r  (p a r t it io n  A) e rro rs . Nonlinear method w ith  s h ifte d  averaging

D T C P U  T I M E Y 1 X I X 2 X 3 X 5 V I

0 , o  0 0 5 2 5 .  6 6 3 . 2 2 E - 2 4 , o  6 1  E ™ * 2 9 % 2 2 E - 3 8 . 0 . 7  1 E « 3 8 o 4 0 E “ 3

CMO
0

o 0 o «=
a

. 1 4 . 5 7 4 = 5 3 E - 2 6 . 7 9 E - 2 1 . 5 9 E - 2 9  =  5 1 . E ” 3 9 . 6 2 3 - 3 T o 6 5 E “ 2

0 . 0 2 5 1 0 , .  8 2 8 . 6 0 E - 2 1 . 3 5 E - 1 2 .  1 6 E - 2 1 o  5 3 E - 2 I , .  5 3 E - 2  • 2 , =  8 E - 2

0 .  0 5 1 0 . 0 1 ■ U 1 9 E - 1 T o  8 5 E - 1 2 . o  6 3  E - 2 2 o 2 2 E ~ 2 2 , o  2 1  B - 2 4 . 0 0 E - 2

0 .  1 0 9 .  0 3 0 1 . 7 2 E "  1 2 . 7 0 E " T  . 3 . o  1 1 B - 2 3 . 6 2 E - 2 3 - 6 0 E - 2 6 = 3  8  E - 2

0.20 8 . 7 6 0 2.89E-1 4.59E-1 5 . 7 0 E - 2 6 , o  3  6  E ~  2 6 o  1 6 E - 2 T o 0 9 E “ 1

lOCO.



Table C-10. O s c illa to r  (p a r t it io n  B) e rro rs . Nonlinear method w ithou t averaging

DT CPU TIME ' Y1 XI 12 ; . 3 X5 " VI

0„ 005 9.340 1. 10E-2 7. 13E-3 1.08E-2 4.27E-3 2*87E^3 2.38E-3

opo 8.260 1.97E-2 3.24E-2 4 . 86E-2 2.03E-2 1.34E-2 1.3 IE-2

0.025 6.350 1..46E-1 2.21E-1 2. 45E - 1 1.26E-1 9.54E-2 1.34E-1

0.05 5.430 6.06E-2 1. 17E-1 3 . 86E-1 1,0 71E - 1 1.22E-1 9. 7 IE-2

0*10 5.290 9.29E-2 2.09E-1 9.74E-1 6. 63E**1 4 . 52E-1 2.65E-1

Owgo 5.180 9.01E-1 1,. 36E-5-0 2o62E»0 1.31E+0 8.52E-1 3.94E-1



Table C-1T. O s c illa to r  (p a r t it io n  B) e r ro rs . Nonlinear method w ith  averaging

D I  C P U  T I M E  

0=005 10=63

0=01 8=890

0=025 6=320

0=05 5,760

ObfO ■ 5*270

0 o 2 0  S o  0 2 0

y i  x i

1,= 65B" 1 2=, 51E-1

2= 40E-1 3=-63B~1

U 4 6 E -!  2=2 I E - 1

3,= 3 9 E -1 5o 13E” 1

6=54E” 1 1 = O0E+0

1o 12E*0 " 1= 82B-6-0

12 X3

1*50E - i  • 1o26E^1

2« 15 I“ 1 1o461” !

2=45E” 1 1 = 26E” 1 .

3 = 86E” 1 2.= 1.6E“ 1 .

1=062*0 . 5=642” 1

1= 07E+0 So 18E” 1

X5 VI

1o25E” i : 1o42E” 1

1= 52E” 1 ' lo87E” 1 

9o 55B—2 1 = 34E"?1

2= 17B-1 . 2.= 79E” 1 

4o25E” 1 4= 17E” 1

4„79E” 1 6.='65B” 1



Table C-12. Oscillator (partition B) errors

DT CPU TIME Y1 XI

0.005 23*65 1 .542-2 2= 112-2

0.01 13 = 41 1.332-1 1.982-1

0.025 9.= 650 2 .432-1 3 .872-1

O 0 O 8=910 1=442-1 1.892-1

oV”0O 7=900 7 .80 2 -2 1=802-1

0.20 7. 530 3 = 702-1 7=202-1

Nonlinear method with shifted averaging

X2 

So 781 -2 

84E"1 

2»OOE-I 

5«42E»1 

7,095E“ 1 

1 .482*0

X3 

5.29E-2  

1® 542“ 1 

1,.422-1 

3® 662-1 

3.o 662-1  

9®202-1

X5 

S. 142-2 

1.432-1

1.312-1  

2.682-1  

1,0 742-1 

5.202-1'

VI 

4*762-2  

1.532-1  

1*802-1 

2*362-1  

1.042-1  

2.402-1



Table C-13. A u to p ilo t (p a r t it io n  1) e rro rs .

DT SON TIME PH X

2=5E“5 27 o 49 2.o 05E-6 6s 302—6

4=OB-5 esa& 0 O 3o152-6 6a28E-6

5o0E“ 5 13.o 93 3a29E-6 6= 322-6

T.oOE-4 7= 020 la 192-5 1= 25E-5

OE-4 3.= 640. 1»082-4 U  16E-4

2=52-4 2=910 4a 102-4 4a 432-4

Nonlinear method w ithou t averaging

Y

U 8 1 E - 6  

1 = 9 0 E - 6  

2 » 121“ 6  

7 . o  5 4  E « 6  

7 o  0 5 E “ 5  

2«68E°4

XI

3o33E“3 

2L29E-3 

3«33E“3 

3=32E-3 

3L21E-3 

.3a 07E"3

X2 

2.= 03E“ 1

1.o80E” 1

2«. 03E“ 1 

2«= 032“ 1 

1»94E“ 1 

• U70E-1

X3 

4= 242=^3 

3o72E-3

4o24E”3

4a22B“ 3

4oOOE“3

3 a 4 5 M .

o1X3



Table C-14. A u to p ilo t (p a r t it io n  1) e rro rs . Nonlinear method w ith  averaging

DT BUN TIME PH X Y XI X2 X3

2.5E-5 28 = 29 ■,i«26E**6 6=26E-6 % 81E-6 3=33E-3 2o 03E-1 4^24E-3

4=0E-5 17 = 72 1= TOE- 6 6= 20E-6 2=96E-6 3.29E-3 I 08OE-I . 3.= 72E-3

5.0E-5 14 = 36 4=1 IE- 6 6= 19E-6 3=51E— 6 3= 33E-3 2 .032-1 4=242-3

UOE-4 7« 190 1o 24E“ 5 1,= 1 4E-5 1» 55E-5 3=32E-3 2= 03E-1 4=222-3

2 .0E-5 3 = 700 1 = 0 IE -4 9»58E-5 1 = 49E-4 3= 19E-3 1.o 94E - 1 4=00E-3

2-5E-5 3=100 9 = 97E“ 5 2= 04E-4 4= 04E-4 2= 99E-3 1= 70E-1 3o6 5E-3

o
GO



Table C-15. A u to p ilo t (p a r t it io n  1) e rro rs . Nonlinear method w ith  s h ifte d  averaging

DT BUN TIME •PH : x Y XI X2 X3

2»5E” 5 70 = 25 8=87E” 4 8 .6 2 E -4 5 .5 6 E -4 3,= 42E-3 2 .  03E-1 4 .24E-3

4=0E"5 43 = 0? 1 .42E-3 1® 38E-3 8 .8 9E -4 3® 43E"=3 1=802-1 3 .7 3 2 -3

5»0E"5 34 = 38 1=77E-3 1.72B-3 1 . 11E-3 3® 51B-3 2 .0 3 2 -1 4 .2 5E -3

1o0E=4 0 Vi CO . 3o 55E” 3 3 .4 7 E -3  . 2 .2 2 E -3 3o69E"3 2 . 03E-1 4.26E-3

2oOE” 4 -8.690.-'." 7= 16E-3 6=96E-3 4 .4 2 E -3 4= 05E-3 2® 02E-1 4 .28E -3

2-0 5E=5 7.120 9031E-3 8 . 99E"3 5.47E-3 4 .2 8 1 -3  . 1.912*1 4 .062*3



Table C-16. A u to p ilo t (p a r t it io n  2) e rro rs . Nonlinear method w ithou t averaging

DI RON TIME PH X Y XI X2 X3

2o5E=5 26*97 2o01E«=6 6* 36E-6 1* 88E™6 3*332-3 2=042-1 4=252-3

4^0E” 5 16*87 2-45E-6 6«36E-6 1,= 88B"6 3*312-3 1*812-1 3=762-3

5.o OE-5 13-82 1o94E-6 6,o36E—6 1=882-6 3.=, 362—3 2o 052-1 4=302-3

KOE-4 6. 990 1-82E-6 6»36E” 6 1=882-6 3-422-3 2-102-1 4=4 72-3

2«,0E-4 3* 610 1 = 51E-=6 6»31E™6 1,0 731 - 6 3-872-3 2* 212-1 4=942-3

2o5E” 4 2*960 3* 6 I E™6 6o17B™6 2= 62 E -6 . 4*012^3 2= 132-1 4=012-3



Table C-17. A u to p ilo t (p a r t it io n  2) e rro rs . Nonlinear method w ith  averaging

DT BON TIME PH X

2=5E-5 27o39 U 65E-5 6»36E-5

4oOE” 5 17o 05 4 . 14E-5 3o45E=5

5 .0E-5 13.84 6.. 25E- 5 5o 31E"5

loOE-4 6o 910 2» 44E-4 2=14E-4

2« OE-4 3*570 5o25E” 4 5«08E” 4

2o5Ea5 3*100 1*.86E-3. 2L57E-3

¥ XI X2 X3

1o 15E-5 3.33E-3 2.o 042—1 4.252-3

3 . 09E-5 3«31E-3 I .81E-1 3*762-3

4 .72E-5 3«,35E"3 2* 05E-1 4=302-3

1.88E-4 3*412-3 2=07E-1 4.48E-3

3.23E-4 3* 6 6 E— 3 2* 04E?1 4*932-3

1 .872-3  . 5* 092-3 1* S0E-1 4*1 4E-3

oCT>



Table C-18. A u to p ilo t (p a r t it io n  2) e r ro rs . Nonlinear method w ith  s h ifte d  averaging

D T B O N  T I M E P H X

2 » 5 E - 5 6 8 . 0  6 2 2 =  7  9  E ”  5 2 L 4 6 E - 5

4 o O E ” 5 42o87 4 = 1 9 E - 5 3 U 8 2 E - 5

5 o O E - 5 3 4 < , 4 2 5 , o 2 2 E " 5 4 = 8 0 E - 5

1 . 0 E - 4 1 7  =  4 4 9  =  0 1 E “ 5 8 =  9 4 E “ 5

2 o O E " 4 8 .= 7 4 0 U 3 4 E - 4 1 L 5 2 E - 4

2« 5 E » 5 7 =  0 9 0 1 « =  4 5 B = 4 2 « .  0 0 E * = 4

Y X I . X 2 X 3

i m  5 3  B "  5 3 ^ 7  I E - 3 2 =  1 5 E - 1 4 = 2 6 2 — 3

2 - 3 8 E - 5 3 = 9  I E - 3 1 «  9 8 E - 1 3 =  7  6  E - 3

2 . o  9 8  E ”  5 4 «=  1 1 E - 3 2 = 2 6 2 - 1 4 = 2 9 2 - 3

5 , o  5 5 E - 5 5 = 2 7 E - 3 2 = 5 1 2 - 1 4 = 4 0 2 - 3

9 » 6 0 E - 5 9 = 4 9 2 - 3 3 = 0 3 2 - 1 4 =  7  5  E - 3

U 1 0 E - 4 1 =  1 5 B - 2 3 = 1 9 2 - 1 4 = 7 7 2 - 3

o



APPENDIX D

COMBINED ALGORITHM WITHOUT AVERAGING

The combined algorithm without averaging (labelled CRK2HI.C) 

that was compared with the combined algorithms with averaging is 

described in Palusinski, 1977b, pp. 21-23. This algorithm performs 

the half step calculations

kl = f  (V  V  V  (D-T)

yn+l/2 = yn + (D-2)

un+l/2 = 9 (yn+l/2» yn+l/2^ ^D™3^

The nonlinear fu ll step solution is then predicted as

yn+l '  yn + hk] (D"4)

un+l ’  9 (yw-T V P  (D"5)

The linear system based on the predicted u9^  value is given by

xn+l = eAhxn+ (Mo '3Ml + 2M2)Bun

+ 4(Mi-M,)B, + (Bnu-MJBuP (D-6)
1 L n+1/2  ̂ 1 n 1

wn+l = + Du9+1 (D-7)
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The nonlinear fu ll step solution is obtained from

k2 = f  (yn+hV  V i 5 wn+1 ̂  (D-

yn+1 = yn + (h/Zjfki+kg) (D-

V l  = 9 (yn + r tn+ l) CD-

Finally, the nonlinear correction is computed

V i  '  ^ i n  + (Mo '3Ml +2M2)BV 4(Mr M2)

+ 2(m2"Ml)  Bun+1 (D-

wn+l = Cxn+1 + Dun+1 (D-

As seen, this algorithm is more complicated than the Improved Euler 

algorithm since half step solutions are required.
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