SIMULATION OF PARTITIONED SYSTEMS USING AVERAGING TECHNIQUES FOR COUPLING VARIABLES
by
Lajoo Narain Motwani

A Thesis Submitted to the Faculty of the DEPARTMENT OF ELECTRICAL ENGINEERING

In Partial Fulfillment of the Requirements For the Degree of

MASTER OF SCIENCE
In the Graduate College
THE UNIVERSITY OF ARIZONA

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.

SIGNED:

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

ACKNOWLEDGEMENTS

This research was supported by National Science Foundation's Grant ENGR77-01431. Thanks are given to Dr. O. A. Palusinski and Dr. J. V. Wait for their supervision and to Dr. R. H. Mattson for providing the facilities to carry out the research.

TABLE OF CONTENTS

Page
LIST OF ILLUSTRATIONS vi
ABSTRACT viii

1. INTRODUCTION 1
2. SYSTEM DESCRIPTION: NOTATION 3
Combined Linear-Nonlinear Case 4
Partitioned Nonlinear Case 5
Time Discretization 5
Slow Subsystem Discretization 5
Averaging the Fast Linear Subsystem 6
Averaging of the Fast NonTinear Subsystem 7
3. DESCRIPTION OF COMBINED ALGORITHMS 9
Mathematical Representation of Algorithms 9
Modified Euler Algorithm 10
Programming Conventions 11
Use of Combined Linear-Nonlinear
Algorithms: An Example 13
4. DESCRIPTION OF PARTITIONED ALGORITHMS 19
Mathematical Representation of the
Nonlinear Algorithms 19
General Nonlinear Algorithm with Averaging 19
General Nonlinear Algorithm with Shifted Averaging 20
Programming Conventions 21
Use of Nonlinear Algorithms; an Example 22
5. DESCRIPTION OF EXPERIMENTS 28
Combined Linear Nonlinear Experiments 28
General Nonlinear Experiments 29
Error Computation 34

TABLE OF CONTENTS--Continued

Page
6. RESULTS AND CONCLUSIONS 36
Results of Combined Experiments 37
Results of General Nonlinear Experiments 43
Conclusions 53
APPENDIX A: PROGRAM LISTINGS 61
APPENDIX B: SUBROUTINE MXCAL3 88
APPENDIX C: TABLES OF PEAK ERRORS 89
APPENDIX D: COMBINED ALGORITHM WITHOUT AVERAGING 108
LIST OF REFERENCES 110

LIST OF ILLUSTRATIONS

Figure Page

1. Block diagram showing partitioned system 3
2. Flow chart of subroutine INTRGX for Improved Euler method 14
3. Flow chart of INTRGX for Modified Euler method 16
4. Flow chart of general nonTinear algorithm with averaging 23
5. Flow chart of subroutine INTRGX of general nonlinear algorithm with shifted averaging 25
6. Block diagram of autopilot system. 31
7. Mean peak error vs. h. Pendulum 38
8. Peak error in TAUl vs. h. Pendulum 39
9. Execution times vs. h. Pendulum 40
10. Pendulum cost 41
11. Mean peak error vs. h. Mine-shaft 42
12. Peak error in V vs. h. Mine-shaft 44
13. Execution times vs. h. Mine-shaft 45
14. Mine-shaft cost 46
15. Mean peak error vs. h. Oscillator (partition A) 47
16. Execution times vs. h. Oscillator (partition A) 48
17. Mean peak errors vs. h. Oscillator (partition B) 50
18. Peak errors in X_{2} vs. h. Oscillator (partition B) 51

LIST OF ILLUSTRATIONS--Continued

Figure Page
19. Oscillator (partition B) cost 52
20. Mean peak error vs. h. Autopilot (partition 1) 54
21. Peak error in X_{2} vs. h. Autopilot (partition 1) 55
22. Execution times vs. h. Autopilot (partition 1) 56
23. Autopilot (partition 1) cost 57
24. Mean peak error vs. h. Autopilot (partition 2) 58
25. Peak error in X_{2} vs. h. Autopilot (partition 2) 59

ABSTRACT

This thesis describes a study of partitioned system integration algorithms which use averaging of variables at the interface between a fast subsystem and a slower subsystem. The algorithms were coded for the DAREP continuous system simulation language. Two so-called combined algorithms are useful when the fast subsystem is linear (the slow subsystem may be nonlinear). Other algorithms studied are valid in the case when both subsystems are nonlinear.

The algorithms were tested by simulating several partitioned systems and the results were compared to simulations done with conventional partitioned algorithms not employing averaging. It was found that averaging improved worst-case peak fractional errors for larger step sizes for the experiments, but as expected, the mean peak error was found to be problem dependent. In addition, execution times, and thus, costs were improved when using the combined algorithms, but both nonlinear algorithms required longer execution times, and therefore, higher costs.

CHAPTER 1

INTRODUCTION

This thesis reports on the coding and testing of four integration algorithms employing averaging techniques to be used in the DAREP (Lucas and Wait, 1975) package for the simulation of partitioned systems (Palusinski and Wait, 1978)。 The general class of partitioned systems referred to here consist of those which may be divided into one fast and one slow continuous-time subsystem. The four algorithms take advantage of this property by using a Targe step size and an average of the appropriate fast subsystem variables over this large step size in the integration of the slow subsystem.

The first two alrogithms considered were taken from thoeritical work originally presented in Palusinski (1977a) and were intended for use with systems having a slow subsystem which is nonlinear and a fast subsystem which is linear. These two algorithms will be referred to as the combined methods. The two remaining algorithms, labelled the partitioned methods, were derived from Palusinski (1978) to be used with a fast and a slow nonlinear subsystem.

The strategy utilized in the coding of these simulation methods consisted of writing FORTRAN subroutines which would be compatible with the DAREP simulation language. This resulted in each algorithm being expressed as an integration subroutine, named INTRGX, containing
expressions for the computation of the next states of both subpartitions, together with several accompanying subprograms performing initialization, etc. The combined methods required extensive matrix manipulations due to the description of the linear subsystem in matrix form. These manipulations were performed with the aid of a library of matrix subroutines (Ferguson, 1972).

After programming, the first combined method was tested on three problems: a sine loop (harmonic oscillator) problem, the simulation of a servo-controlled pendulum, and the simulation of a mineshaft elevator. A second combined method was tested on the servocontrolled pendulum. The partitioned methods were tested on the models of a nonlinear electronic oscillator (two different partitions) and an. autopilot hydraulic servo-system. In all cases, the results were compared to previous partitioned system algorithms that do not use averaging.

The organization of this thesis is as follows: Chapter 2 examines the notation and conventions used and describes standard variable names and assumptions. Chapter 3 covers the combined methods including a general description of each algorithm together with the special considerations of coding and use. Chapter 4 presents the partitioned methods. Chapter 5 is devoted to the description of the test problems, and overall results and conclusions are discussed in Chapter 6. The program listings and detailed results have been placed in the appendices.

CHAPTER 2

SYSTEM DESCRIPTION: NOTATION

The description of the integration rules under consideration in the form of next-state equations requires a discussion of the notation. This notation arises from modeling the general partitioned systems.

The general class of partitionable systems of interest here are assumed to be composed of a fast and a slow subsystem as shown in Figure 1.

Figure 1. Block diagram showing partitioned system

The slow nonlinear subsystem may be represented by state differential equations (Palusinski, 1977a, p. 1)

$$
\begin{equation*}
\dot{y}=f(y, t, w) \tag{2,1}
\end{equation*}
$$

with initial state $y(0)$ and output coupling equation

$$
\begin{equation*}
u=g(y, t) \tag{2.2}
\end{equation*}
$$

where: y - state vector of dimension k_{1}
u - output vector of dimension k_{2}
w - input vector of dimension k_{3}
t - independent variable
Of course, additional output variables may be obtained from each subsystem, but only those which interconnect the two regions are of interest here.

Combined Linear-Nontinear Case

Here the fast subsystem is characterized by linear state differential equations (PaTusinski, 1977a, p. 2)

$$
\begin{equation*}
\dot{x}=A x+B u \tag{2.3}
\end{equation*}
$$

and output coupling equation

$$
\begin{equation*}
w=C x+D u \tag{2.4}
\end{equation*}
$$

where: x - state vector of dimension k_{4}
u, w - input and output vectors as before
A - constant state matrix
B - constant input matrix
C, D - constant output matrix

Thus the linear system is denoted by the A, B, C, and D matrices, the initial conditions $x(0)$, and the input u.

Partitioned Nonlinear Case

In this case it is assumed that both the fast and slow subsystems are nonlinear. The slow nonlinear subsystem is described again by the state differential equation (2.1) with $w=x$ and (2.2) and the fast nonlinear subsystem by another set of differential equations (Palusinski, 1978, p. 1)

$$
\begin{equation*}
\dot{x}=f_{1}(x, t, y) \tag{2.5}
\end{equation*}
$$

with initial state $x(0)$.
where: x - state vector of dimension T_{1}
y - input coupling vector of dimension 1_{2}
t - independent variable

Time Discretization

A simulation is assumed to begin at $t=0.0$. Values of the system variables are then calculated at equally-spaced time intervals, $t_{n}=n h, n=0,1,2, \ldots$ In some cases, values of the system variables are calculated at intermediate times and may also be output. The value of a variable x at $t=t_{n}$ is denoted by x_{n}, and x at $t=t_{n}$ $+q h$ by x_{n+q} where q has a value between zero and one.

Slow Subsystem Discretization
The slow subsystem discretization technique (Palusinski, 1977a, pp. 3-6) used by all the algorithms is derived from equation (2.1) written in the form

$$
\begin{equation*}
y_{n+1}-y_{n}=\int_{t_{n}}^{t_{n+1}} f(y, t, w) d t \tag{2.6}
\end{equation*}
$$

The variable w may be represented in the interval t_{n}, t_{n+1} by an average value plus a variation:

$$
\begin{equation*}
w=\bar{w}_{n}+w \tag{2.7}
\end{equation*}
$$

where $\bar{w}_{n}=\frac{1}{h} \int_{t_{n+1}}^{t_{n}}$ wdt and w is the variation in w. Taking
into account equation (2.7), it is possible to develop a Taylor series around \bar{W}_{n}. This tranforms equation (2.6) into

$$
\begin{align*}
y_{n+1}-y_{n}= & { }^{t_{n+1}} f\left(y, t, \bar{w}_{n}\right) d t+\int_{t_{n}}^{t_{n+1}} F_{n} . \delta w+ \\
& 0\left(11 \delta \cdot w 11^{2}\right) d t \tag{2.8}
\end{align*}
$$

wjere the matrix F_{n} is given by

$$
\begin{equation*}
\left.F_{n}=\frac{\partial f(y, t, w)}{\partial w} \right\rvert\, \quad w=\bar{w}_{n} \tag{2.9}
\end{equation*}
$$

Averaging the Fast Linear Subsystem

The technique (Palusinski, 1977a, pp. 12-17) used by the combined linear-nonlinear algorithms in the averaging of the linear system is based on an equation (2.3) which is used to derive

$$
\begin{equation*}
x_{n+}=e^{A \delta} x_{n}+\int_{0}^{\delta} e^{A(\delta-\delta)} B u_{n+\delta} d \sigma \tag{2.10}
\end{equation*}
$$

where $0 \S \delta \leqq h$. From this, an average value of x over the interval

$$
\left[t_{n}, t_{n+1}\right] \text { given by }
$$

$$
\begin{equation*}
\bar{x}_{n+1}=\frac{1}{h} \int_{0}^{h} x_{n+\sigma} d \sigma \tag{2.11}
\end{equation*}
$$

may be computed by integrating both sides of equation (2.10) and replacing

$$
\begin{equation*}
u_{n+s}=0=1+2(\delta / h)^{2}+\ldots+(\delta / h)^{1} \tag{2.12}
\end{equation*}
$$

The vectors are the linear combinations of the given values $u_{n+}{ }_{i}$ Following some manipulation, \bar{x}_{n+1} may be defined by

$$
\begin{equation*}
\bar{x}_{n+1}=\left(A V_{0}+I\right) x_{n}+\sum_{i=0}^{1} V_{i} B \lambda_{i} \tag{2.13}
\end{equation*}
$$

where the matrices V_{i} are computed as follows

$$
\begin{align*}
& v_{j}=j!\stackrel{@ Q}{\sum}_{k}^{=} j+1 \quad \frac{A^{k-j-1}}{(k+1)!} \quad h^{k-j} \tag{2.14}\\
& v_{i-1}=\frac{h}{i}\left(A V_{i}+\frac{1}{1+1} \quad I\right)
\end{align*}
$$

and $i=j, j-1, j-2, \ldots, 1$. The matrices, M_{1}, used in the combined linear nonlinear algorithms are related to V_{i} by

$$
\begin{equation*}
M_{i}=i V_{i-1} \tag{2.16}
\end{equation*}
$$

Averaging of the Fast Nonlinear Subsystem

The partitioned nonlinear algorithm averages the fast subsystem variables as follows (Palusinski, 1978, p. 2).

$$
\begin{equation*}
\bar{x}_{n}=\sum_{i=1} A_{i} x_{n+a_{i}} \tag{2.17}
\end{equation*}
$$

where $a_{i}(i=1,2, \ldots, n)$ are the variable step sizes used in the
integration of the fast subsystem. The fractions a_{i} have to satisfy the relation

$$
\begin{equation*}
\sum_{i=1}^{n} \quad a_{i}=1 \tag{2.18}
\end{equation*}
$$

The preceding discussion has described the background information and underlying assumptions essential to the understanding of the mathematical representation of the simulation methods in subsequent chapters.

CHAPTER 3

DESCRIPTION OF COMBINED ALGORITHMS

The description of the two combined algorithms is divided into three parts: presentation of the algorithms, programming conventions, and the use of the programs.

Mathematical Representation of Algorithms

The first combined linear-nonlinear algorithms investigated is based on the Improved Euler equation (PaTusinski, 1977a, pp. 7-8). The nonlinear system integration is performed by first computing derivatives k_{1} and k_{2} at t_{n} and t_{n+1} as shown in the following equations.

$$
\begin{align*}
& k_{1}=f\left(y_{n}, t_{n}, \bar{w}_{n}\right) \tag{3.1}\\
& k_{2}=f\left(y_{n}+k_{1}, t_{n+1}, \bar{w}_{n}\right) \tag{3.2}
\end{align*}
$$

Next, the value u_{n+1} is computed using k_{1} and k_{2} as follows

$$
\begin{equation*}
y_{n+1}=y_{n}+(h / 2)\left(k_{1}+k_{2}\right) \tag{3.3}
\end{equation*}
$$

This results in a nonlinear output given by

$$
\begin{equation*}
u_{n+1}=g\left(y_{n+1}, t_{n+1}\right) \tag{3.4}
\end{equation*}
$$

The linear system is based upon the following equations (Palusinski, 1977a, pp. 24-25).

$$
\begin{equation*}
\bar{x}_{n+1}=\left(A V_{0}+I\right) x_{n}+\left(V_{0}-V_{1}\right) B u_{n}+V_{1} B u_{n+1} \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
\bar{w}_{n+1}=C \bar{x}_{n+1}+1 / 2 D\left(u_{n}+u_{n+1}\right) \tag{3.6}
\end{equation*}
$$

The discrete value, x_{n+1}, of the linear system and the output w_{n+1} are computed as follows

$$
\begin{align*}
& x_{n+1}=\left(A M_{0}+I\right) x_{n}+\left(M_{0}-M_{1}\right) B u_{n}+M_{1} B u_{n+1} \\
& w_{n+1}=C x_{n+1} D u_{n+1} \tag{3.7}
\end{align*}
$$

The algorithm is completed with the nonlinear system correction

$$
\begin{equation*}
y_{n+1}^{c}=y_{n+1}+h F_{n}\left(\bar{w}_{n+1}-\bar{w}_{n}\right) \tag{3.8}
\end{equation*}
$$

Modified Euler Algorithm

The second combined algorithm is derived from the Modified Euler Equation (Palusinski, 1977a, pp. 7-8). Here, solutions to the nonlinear system are first computed at the half step interval (i.e., $t_{n+1 / 2}$) as shown below (Palusinski, 1977a, pp. 21-22).

$$
\begin{align*}
& k_{1}=f\left(y_{n}, t_{n}, \bar{w}_{n}\right) \tag{3.9}\\
& y_{n+1 / 2}=y_{n}+(h / 2) k_{1} \tag{3.10}\\
& u_{n+1 / 2}=g\left(y_{n+1 / 2}, t_{n+1 / 2}\right) \tag{3.11}
\end{align*}
$$

This leads to a full step computation achieved by

$$
\begin{align*}
& k_{2}=f\left(y_{n+1 / 2}, t_{n+1 / 2}, \bar{w}_{n}\right) \tag{3.12}\\
& y_{n+1}=y_{n+1 / 2}+(h / 2) k_{2} \tag{3.13}\\
& y_{n+1}=g\left(y_{n+1}, y_{n+1}\right) \tag{3.14}
\end{align*}
$$

The linear system averaging is computed as follows (Palusinski, 1977a, p. 23).

$$
\begin{gather*}
\bar{x}_{n+1}=\left(A V_{0}+I\right) x_{n}+\left(V_{0}-3 V_{1}+2 V_{2}\right) B u_{n}+4\left(V_{1}-V_{2}\right) B u_{n+1 / 2}+ \\
\left(2 v_{q}-V_{1}\right) B u_{n+1} \tag{3.15}\\
\bar{w}_{n+1}=\bar{x}_{n+1}+(D / 6)\left(u_{n}+4 u_{n+1 / 2}+u_{n+1}\right) \tag{3.16}
\end{gather*}
$$

The linear full step solution is given by

$$
\begin{gather*}
x_{n+1}=\left(A M_{0}+I\right) x_{n}+\left(M_{0}-3 M_{1}+2 M_{2}\right) B u_{n}+4\left(M_{1}-M_{2}\right) B u_{n+1 / 2}+ \\
\left(2 M_{2}-M_{1}\right) B u_{n+1} \tag{3.17}
\end{gather*}
$$

Finally, the nonlinear system correction has the form

$$
\begin{equation*}
y_{n+1}^{c}=y_{n+1}+h F_{n}\left(\bar{w}_{n+1}-\bar{w}_{n}\right) \tag{3.18}
\end{equation*}
$$

Programming Conventions

The coding of the above simulation methods was governed by the requirement that both programmed algorithms had to be compatible with DAREP. This resulted in the implementation of each integration rule as a FORTRAN subroutine named INTRGX. It was found necessary to include in each program two more subroutines named INICON and LINKW. In the case of the Modified Euler method, the matrix library subroutine MXCAL (Ferguson, 1972) was modified to suit the algorithm.

These are two major functions performed by the subroutine INTRGX. The first is the computation of the state-spaced and other matrices needed in the averaging and solution of the linear system.

These include $M_{1}, V_{1} e^{A t}$, etc. The execution of this portion of INTRGX is performed only once during each run at $t=0.0$ and constitutes the precomputation or initialization section of the subroutine. The main part of the subroutine is associated with actual solution computation. Each time INTRGX is called, all state variables, defined variables, and average values are updated from t_{n} to t_{n+1}. Due to the matrix representation of the linear subsystem, extensive matrix manipulations are involved. The matrix operations are implemented using a library of subroutines available on permanent file (Ferguson, 1972).

The main purpose of INICON, is to compute initial conditions. This is done by first zeroing all matrices and vectors--an especially useful feature in multiple run simulations. Next, user defined subroutines are called to initialize the A, B, C, D, and F matrices. Finally, the initial values of the u, w, and \bar{w} vectors are calculated. The subroutine LINKW links the linear subsystem variables and averages needed in the derivative block to the values computed in INTRGX. This type of arrangement is necessary to avoid searching through the undefined parameter array created by DAREP to determine which elements of the array correspond to the proper linear variables.

In addition to the coding of these three subroutines for each combined linear nonlinear method, the algorithm based on the Modified Euler equation required the alteration of subroutine MXCAL from the subroutine library. The alteration was needed for the computation of matrices M_{3} and V_{2} which are used in that algorithm. A short description of the changes made to MXCAL appears in Appendix B and a listing
of the new routine, MXCAL3, may be seen as part of the listing for the Modified EuTer Method (Appendix A).

In all subroutines coded, care was taken to assign variable names according to those used in the next-state equations. This feature is seen in the program listings of the algorithms in Appendix A. As seen from these listings, subroutines INICON and LINKW are very straightforward and therefore no flow charts for these appear. Flow charts for the INTRGX subroutines for the two combined algorithms are found in Figures 2 and 3.

Use of Combined Linear-Nonlinear Algorithms: An Example

The simulation of a servo-controlled pendulum (Palusinski and Wait, 1978, pp. 14-16) by means of the Improved Euler based method was performed. The description is shown in Appendix A. In this example, it is found that apart from the three subroutines described previously, all the code shown is a user supplied description in accordance with Chapter 2.

The \$D1 block contains the differential equations corresponding to the slow nonlinear portion of the pendulum and a procedure section which calTs LINKW (the \$DT characteristics, as those of other DAREP blocks, are described in Korn and Wait, 1977). This call to LINKW updates averages of the linear variables needed by the nonlinear subsystem and values of w needed for output. The specifications of the nonlinear system is completed by the subroutine GFUNC which computes the output function u according to equation'(2.2).

Figure 2. Flow chart of subroutine INTRGX for Improved Euler method

Figure 2--Continued

Figure 3. Flow chart of INTRGX for Modified Euler method

Figure 3--Continued

The linear subsystem description is provided in DEFLIN which defines the A, B, C, D, and F matrices, the initial conditions on x and the number of variables that are to be linked.

The two subroutines GFUNC and DEFLIN, are placed in the $\$ F$ block followed by the algorithm subroutines INTRGX, INICON, and LINKW in the $\$ 0$ block. Finally, initial conditions on the nonlinear system and output requests are entered.

By following the procedure outlined below, the user may simulate any linear-nonlinear partitioned system with the two combined algorithms. It is noted here that the Modified Euler based algorithm requires the inclusion of MXCAL3 in the $\$ 0$ block.

CHAPTER 4

DESCRIPTION OF PARTITIONED ALGORITHMS

The description of the general nonlinear algorithms follows the format used in the previous chapter, viz., the presentation of the algorithms followed by programming conventions and an example of program use.

Mathematical Representation of the Nonlinear ATgorithms

General Nonlinear Algorithm with Averaging

The first general nonlinear algorithm studied (Palusinski, 1978) employs a fixed step four point Runge-Kutta integration rule to compute solutions to the slow subsystem and a variable step Runge-Kutta Merson method to integrate the fast system (Korn and Wait, 1977, Appendix A). Averages of the fast subsystem variables are computed over the half step intervals $t_{n}, t_{n+1 / 2}$ and $t_{n+1 / 2}, t_{n+1}$, as follows

$$
\begin{align*}
& \bar{x}_{n+1 / 2}=\sum_{i=1}^{m} a_{j} ; \tag{4.1}\\
& x_{n+\bar{a}_{i}} \tag{4.2}\\
& \bar{x}_{n+1}=\sum_{i=1}^{m} b_{1} \cdot x_{n+1 / 2+\bar{b}_{1}}
\end{align*}
$$

where the fractions a_{i} and b_{i} are constrained by

$$
\begin{equation*}
\sum_{i=i}^{m} a_{i}=T / 2 \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
\sum^{m} \quad b_{i}=1 \tag{4.4}
\end{equation*}
$$

$i=1$
and $(h / 2) a_{i}$ and $(h / 2) b_{i}$ are the variable step sizes used in the first and second half steps: These averages are then used in the solution of the slow subsystem variables as seen here.

$$
\begin{align*}
& k_{1}=f\left(y_{n}, t_{n}, \bar{x}_{n}\right) \tag{4.5}\\
& k_{2}=f\left(y_{n}+h / 2 k_{1}, t_{n+1 / 2}, \bar{x}_{n+1 / 2}\right) \tag{4.6}\\
& k_{3}=f\left(y_{n}+(h / 2) k_{2}, t_{n+1 / 2}, \bar{x}_{n+1 / 2}\right) \tag{4.7}\\
& y_{n+1 / 2}=y_{n}+(h / 4)\left(k_{1}+k_{2}\right) \tag{4.8}\\
& k_{4}=f\left(y_{n}+k_{3}, t_{n+1}, \bar{x}_{n+1}\right) \tag{4.9}\\
& y_{n+1}=y_{n}+(h / 6)\left(k_{1}+k_{4}\right)+h / 3\left(k_{2}+k_{3}\right) \tag{4.10}
\end{align*}
$$

General Nonlinear Algorithm with Shifted Averaging
The second nonlinear algorithm is based on the preceding method.
In this technique, the fast subsystem averages \bar{x}_{a} and \bar{x}_{b} are computed over the intervals $\left[t_{n+1 / 4}, t_{n+3 / 4}\right]$ and $\left[t_{n+3 / 4}, t_{n+5 / 4}\right]$ respectively. This difference results in evaluating the fast subsystem variables at quarter steps. The fast system is integrated over two quarter steps with averages computed in the second of those steps. At this point, an approximation to the slow system is computed as shown

$$
\begin{equation*}
k_{1}=f\left(y_{n}, t_{n}, x_{n}\right) \tag{4.11}
\end{equation*}
$$

$$
\begin{align*}
& k_{2}=f\left(y_{n}+(h / 2) k_{1}, t_{n+1 / 2}, x_{n+1 / 2}\right) \tag{4.12}\\
& y_{n+1 / 2}^{a}=y_{n}+(h / 4)\left(k_{1}+k_{2}\right) \tag{4.73}
\end{align*}
$$

This value of $y_{n+1 / 2}^{a}$ is then used in the fast system integration over the third quarter where the computation of \bar{x}_{a} is completed. This average is used as in the previous algorithm (equation 4.5 to 4.8) to yield the half step solution of the slow subsystem. The fast subsystem is integrated again over the third quarter step using the new value of $y_{n+1 / 2^{\circ}}$ The fourth quarter step integration is performed for the fast again with averages compiled. A full step approximation to the slow system is then obtained as follows:

$$
\begin{align*}
& k_{4}=f\left(y_{n}+k_{3}, t_{n+1}, x_{n+1}\right) \tag{4.14}\\
& y_{n+1}^{a}=y_{n}+(h / 6)(k 1+k 4)+(h / 3)\left(k_{2}+k_{3}\right) \tag{4.15}
\end{align*}
$$

This approximation value is used in the integration of the fast system from t_{n+1} to $t_{n+5 / 4}$ to complete the calculation of x_{b}. With this average, the full step solution is obtained as in the first nonlinear algorithm (equations 4.9 and 4.10).

Programming Conventions

The coding of the partitioned nonlinear algorithms consisted of modifying an existing program (coded by 0. A. Palusinski) to include averaging. The original program contains a subroutine INTRGX which updates the next states for the slow nonlinear subsystem according to a four point Runge-Kutta rule. The fast subsystem integration is performed by a Runge-Kutta Merson subroutine called RKM (coded by
J. V. Wait and 0.A. Palusinski) which includes provisions for partitioned integration. Among its function is the extrapolation of the slow system variables for the integration of the fast subsytem.

Both partitioned algorithms required a change in INTRGX only. The first partitioned algorithm was completed by adding code to compute averages of the fast variables following returns from subroutine RKM. The second algorithm required a more extensive modification. Here, code was added not only to compute averages, but also to keep track of the shifted time interval. Flow charts for subroutines INTRGX for both algorithms are shown in Figures 4 and 5, and source listings of RKM and the two INTRGX routines may be found in Appendix A.

Use of Nonlinear Algorithms: An Example

The use of the nonlinear algorithms to perform a simulation consists of writing the differential equations for the fast system in \$DT and the differential equations for the slow system in \$D2 in accordance with the rules of DAREP (Korn and Wait, 1977, pp. 79-105). In addition, each derivative block must contain a procedural section which links variables needed in that block to the appropriate extrapolated or averaged values (see example in Appendix A). This linking is performed by convention by two user supplied subroutines. LINKW links extrapolated values of the slow system variables to the fast system equations. This is seen in the example in Appendix A which shows that the extrapolated values of the first and sixth state variables of the slow system are needed by the fast subsystem. By convention, LINKW links the average values of the fast system to the slow system. In the example, it is

Figure 4. Flow chart of general nonlinear algorithm with averaging

Figure 4--Continued

Figure 5. Flow chart of subroutine INTRGX of general nonlinear algorithm with shifted averaging

Figure 5--Continued
seen that the average of the fourth state variable of the fast system is needed by the slow subsystem.

Finally, parameter values and initial conditions on both subsystems and output requests are entered.

CHAPTER 5

DESCRIPTION OF EXPERIMENTS

The simulations conducted to test the four algorithms are presented here together with techniques for error estimation. This chapter is divided according to the combined Tinear-nonTinear experiments and the partitioned nonlinear tests followed by a discussion on errors.

Combined Linear Nonlinear Experiments

Three test examples were used to study these methods. These were a harmonic oscillator, simulation of a servo-controlled pendulum and simulation of a mine-shaft elevator. All three were used with the Improved Euler method. Simulations of the servo-controlled pendulum also were carried out with the Modified EuTer method.

The harmonic oscillator problem was used mainly to test the integration algorithm for proper behavior on a simple problem of known solution. The problem consisted of solving the differential equation

$$
\begin{equation*}
\ddot{y}+y=0 \tag{5.1}
\end{equation*}
$$

This second order equation was broken down into two first order equations:

$$
\begin{align*}
\dot{y} & =z \tag{5.2}\\
\dot{z}+y & =0 \tag{5.3}
\end{align*}
$$

By setting the initial value of y and \dot{y} to 0 and 100 respectively, a solution of $100 \sin t$ and $100 \cos t$ is obtained for y and \dot{y}.

The description of this problem in a format acceptable by the combined linear-nonlinear integration schemes required that equation (5.2) be treated as the nonlinear equation

$$
\begin{equation*}
Y_{0}=W A V \tag{5.4}
\end{equation*}
$$

The linear system was therefore described by

$$
\begin{align*}
& X=0 * X+1 * U \tag{5.5}\\
& W=1 * X+0 * U \tag{5.6}
\end{align*}
$$

In addition, the coupling equation for U was replaced

$$
\begin{equation*}
U=Y \tag{5.7}
\end{equation*}
$$

It should be noted that X, Y, U, and WAV are scalars. Finally, F, defined as

$$
\begin{equation*}
F=\frac{\partial(Y, t, \bar{W})}{\partial \bar{W}} \tag{5.8}
\end{equation*}
$$

in also a scalar ($F=1$).
The servo-controlled pendulum and mine-shaft elevator models are described in Palusinski and Wait (1978, pp. 14-21) and for the sake of brevity will not be discussed here.

General Nonlinear Experiments

The two nonlinear algorithms were tested first on two partitions of an electric oscillator labelled A and B and then on two partitions of an autopilot system named P1 and P2. The two partitions of the electronic oscillator are discussed in Palusinski (1977b, pp. 9-15). The general block diagram of the autopilot system is shown in Figure 6.

The autopilot system model was developed by modeling each of the subsystems shown in the block diagram and then combining all these subsystems to produce the overall model.

The first subsystem dealt with was the vertical sensing unit which may be thought of as a gyroscope which converts angular deflection to a voltage. This gyro may be described by the transfer function (Gille, Pelegrin, and Decaulne, 1959, pp. 710-712).

$$
\begin{equation*}
\frac{u(s)}{\square(s)}=k_{d} \frac{s}{1+(1.2 / 40) s+s^{2} / 1600} \tag{5.9}
\end{equation*}
$$

where \emptyset is the pitch angle input to the gyroscope, u is the voltage output and k_{d} is a constant. This results in the following differential equation

$$
\begin{equation*}
\ddot{u}=-48 \dot{u}-1600 u+1600 k_{d} \dot{\emptyset} \tag{5.10}
\end{equation*}
$$

with zero initial conditions.
The next system considered was the compensating network and amplifier, and is defined by the following transfer functions (Gille et a1., 1959, pp. 713-716).

$$
\begin{align*}
& \frac{W(s)}{E(s)}=\frac{k_{a}}{1+0.10 s} \tag{5.11}\\
& \frac{X(s)}{W(s)}=\frac{1}{10} \quad \frac{1+10 \% s}{1+7 s} \tag{5.12}
\end{align*}
$$

where E is the input to this subsystem, W is the output of the amplifier, K_{a} is the gain of the amplifier, X is the output and τ is the time constant of the compensating network. These result in the differential equations.

Figure 6. Block diagram of autopilot system

$$
\begin{align*}
& \dot{W}=-100 W+100 K_{a} E \tag{5.13}\\
& \dot{x}=-X /+K_{a} W /(10 \tau)+10 K_{a} W / r \tag{5.14}
\end{align*}
$$

with initial conditions.
The third block consisting of flight dynamics was taken from Korn and Korn (7956, pp. 115-124) and the differential equations describing the model are shown below.

$$
\begin{align*}
& \dot{V}=-.22 V-16.6 C-g \cos \theta, \sin \theta \tag{5.15}\\
& \dot{0}=(0.237 \mathrm{~V}+238 \mathrm{C}-26.6 \mathrm{AZ}(\mathrm{YY}) \\
& +1.68 \dot{\emptyset}+\mathrm{g} \sin \theta, \operatorname{cox} \theta) \tag{5.76}\\
& \ddot{\emptyset}=M_{V} V-11.9 C+10.3 \text { AS }(Y Y)-679 \dot{\emptyset} \tag{5.17}\\
& c=\varnothing-\theta \tag{5.18}
\end{align*}
$$

where V is the velocity, θ is the lift angle, \emptyset is the pitch angle of the plane. The function $A S(Y Y)$ is described by way of a table containing a set of points approximating

$$
\begin{equation*}
A S(Y Y)=\sin ^{-1} \quad(Y Y / K) \tag{5.79}
\end{equation*}
$$

where K was chosen to produce $-0.54 \mathrm{rad} \mathrm{AS}(\mathrm{YY})<0.5 \mathrm{rad}$. Again, zero initial conditions are assumed.

Finally, the hydraulic servomotor and pressure stabilizer were investigated. The hydraulic servo may be determined by

$$
\begin{align*}
& \ddot{Y}=-R_{m} \dot{Y} / J+k S_{0} P X / J \tag{5.20}\\
& P=x_{3} \cdot 10^{5} \tag{5.29}
\end{align*}
$$

where Y is the displacement output of the servo, P is the pressure obtained from the pressure stabilizer through X_{3}, R_{m} is a damping factor, So is the surface area of the actuator piston, and J is the moment of inertia of the piston.

The pressure stabilizer is presented in Palusinski, Skowronek, and Znamirowski (1976, pp. 211-218) and the equations are repeated here

$$
\begin{align*}
\dot{x}_{T}= & \left(8 x_{2}\right) 250 \tag{5.22}\\
\dot{X}_{2}= & \left(-6.59 x_{2}-0.0746 F\left(X_{1}\right) x_{3}-0.54 x_{1}\right. \\
& \left.+28.7 x_{3}-655.227\right) 250 \tag{5.23}\\
X_{3}= & \left(78.674-0.638 F\left(X_{1}\right) \sqrt{x_{3}}-0.67 x_{2}\right. \\
& \left.+2.78 Q_{T}+Q_{2}\right) 250
\end{aligned} \quad \begin{aligned}
Q_{1}= & K_{p} \dot{Y} \tag{5.24}
\end{align*}
$$

where X_{1} is a valve displacement, X_{2} is proportional to the speed of valve movement, X_{3} is the pressure in atmospheres, and Q_{2} is a periodic train of pulses representing disturbance in the system. The function $F\left(X_{7}\right)$ described in Palusinski et a1. (1976, p. 215) was approximated by

$$
\begin{equation*}
F\left(X_{1}\right)=0.25 X_{1} \tag{5.26}
\end{equation*}
$$

In the first partition investigated (PI), the hydraulic servo and the pressure stabilizer were placed in the fast subsystem and the vertical sensing unit, compensating network, and flight dynamics comprised the slow subsystem. In the second partition (P2), the fast subsystem was made up of only the pressure stabilizer.

Error Computation

All simulations were performed by executing the algorithms with the appropriate differential equations in conjunction with DAREP of the Control Data Corporation model CYBER 175 computer at The University of Arizona. Each of the simulations was first run using a Runge-Kutta Merson rule with no partitioning of the system. When a desired response was obtained, several more runs using the same Runge-Kutta Merson rule were performed each with a smaller error bound than the previous run. When two consecutive runs were found to be identical to six significant digits, the latter of the two was taken as the final solution. The maxima of the variables were noted in each case and scaled to a value of 100 . These scaled values were stored on a permanent file and comprised the benchmark or reference values for error computation. Each experiment was run for various values of h, various partitions, and characteristic parameters and the same variables were scaled by the same scale factors. The differences between the values obtained in these runs and those obtained in the benchmark thus constitutes the percent error in those variables. For each experiment, the peak percent errors were compiled in the form of tables (Appendix C). Similar tables were prepared for the combined linear-nonlinear tests not using averaging by 0. A. Palusinski. The method used in these tests has been labelled CRK2HI.C (Palusinski, 1977b) standing for Combined RungeKutta method based on the Improved Euler Method and shall be referred to as such from here on. A short description of this method appears in Appendix D. The general nonTinear experiments were run using the original program from which the averaged nonlinear programs were
derived to produce tables have all been placed in Appendix C and a comparison between the averaged methods and the methods that do not use averaging is made in Chapter 6.

CHAPTER 6

RESULTS AND CONCLUSIONS

The comparison of the four algorithms employing averaging to similar algorithms that do not use averaging is presented here followed by conclusions that were drawn from the results. The comparison was performed by examining mean peak fractional errors, the variables with the worst peak errors, and execution times for all experiments except the harmonic oscillator.

For each method and experiment, the mean peak error is defined to be the average of all peak fractional errors obtained for a particular step size, and the variable with the worst peak error (Chebyshev measure) for the largest measure step size in that experiment is defined to the the worst-case peak error. The execution time or run time is the time taken by the Central Processing Unit to solve the initial value problem in question using a particular method and step size.

The "cost" of simulation (Palusinski, 1978, p. 38) for a particular step size is defined as
COST = WORST CASE ERROR + RUN TIME

Results of Combined Experiments

The plot of mean peak errors versus step size obtained for the pendulum problem is shown in Figure 7. The Improved Euler, Modified Eulwe, and CRK2HI.C (without averaging) methods were employed. It is seen that averaging raises mean peak error by as much as three times in the Improved Euler case ($h=0.03$) and over ten times in the Modified Euler case ($h=0.09$). However, the graph displayed in Figure 8 shows that the worst-case peak error (corresponding to variable TAUT) is improved by as much as 50% (at $h=0.09$) using the Improved EuTer method, but is still worse by as much as 2.5 times (at $h=0.09$) for the Modified Euler algoritnm. The execution times for the three algorithms are seen in Figure 9. It is observed that the Improved Euler method shows a speed improvement of up to three times as fast and the Modified Euler method up to twice as fast as CRK2HI.C. In addition, these execution times range from 0.01 to 0.1 seconds compared to a Benchmark execution tìme of 0.787 seconds.

The costs of these methods are shown in Figure 70. As seen, the cost of the Improved Euler method is about a third less than that of CRK2HI.C, but the Modified Euler shows costs three times higher.

The plot of the mean peak errors for the mine shaft experiment is seen in Figure 11. Here, the combined algorithm with averaging is noted to have up to a 50% reduction in mean peak error for smalt values of h, but for larger h, displays up to twice as much error ($H=0.12$). It is also noted that the mean peak error curve is smoother for the

Figure 7. Mean peak error vs. h. Pendulum.

Figure 8. Peak error in TAUl vs. h. Pendulum

Figure 9. Execution times vs. h. Pendulum

Figure 10. Pendulum Cost

Figure 11. Mean peak error vs. h. Mine-shaft
averaged method. The worst-case peak errors (noted for the variable V) are plotted in Figure 12. Again, no real improvement is noted, but as before, the averaged case results in a smoother curve which appears to be an average of the oscillatory worst-case error curve obtained for CRK2HI.C. The corresponding execution times, ranging from 0.13 to 0.32 seconds, for the two methods are displayed in: Figure 13. The averaged method results a speed improvement of approximately 25%. The mine-shaft benchmark took 33.15 seconds to run. The costs of these two methods is shown in Figure 14. As seen, the cost of the averaged method is about 80% that of the method without averaging.

The speed improvement of the combined methods over the CRK2HI.C method may be justified by noting that the latter method is a more complicated version of the Improved Euler without averaging in that extra half-step computations are employed.

Results of General Nonlinear Experiments

The mean peak errors for partition A of the electronic oscillator are plotted in Figure 15. The best mean errors correspond to the algorithm not using averaging followed by those of the shifted averaging algorithm, which are approximately 10 times worse, and those of the nonlinear algorithm with shifted averaging, which are about 100 times worse. These results may be attributed to the fact that the coupling variable that is averaged is itself an average of the oscillatory variables in the fast system. Therefore, any further averaging cannot help. The execution times, ranging from 5.88 to 25.66 seconds, are seen in Figure 16.

Figure 12. Peak error in V vs. h. Mine-shaft

Figure 13. Execution times vs. h. Mine-shaft

Figure 14. Mine-shaft cost

Figure 15. Mean peak error vs. h. Oscillator (partition A)

Figure 16. Execution times vs. h. Oscillator (partition A)

As seen, simple averaging slows execution slightly, but shifted averaging reduces speed by as much as twice. The oscillator benchmark required 55.698 seconds to execute.

The mean peak errors for partition B are plotted in Figure 17. Here the coupling variable that is averaged is very fast and averaging improves these errors for the larger step sizes (up to 50% reduction in error for the shifted averaging case and 35% reduction for simple averaging).. The plot of worst-case peak errors (corresponding to X_{2}) for the same partition as seen in Figure 18 shows improvements of comparable magnitudes for the larger step sizes when averaging is used. The execution times for partition B are very close to those obtained for partition A so that Figure 16 may be considered as an estimate of speed performance for partition B. The costs for these methods for the simulation of partition B are displayed in Figure 19. Simple averaging raises the cost by approximately 10% for smaller values of h, but lowers the cost by almost 20% at $h=0.2$. Shifted averaging costs from 10% to 150% higher than the method without averaging.

The mean peak errors for partition 1 of the autopilot model were identical for the nonlinear algorithms with simple averaging and without averaging. The shifted averaging mean errors were significantly larger. In order to obtain a meaningful comparison, onty those variables, namely \emptyset, X, and Y, which were noted to differ in the two identical cases, but whose magnitudes were so small that the differences were not affecting the original mean errors, were considered in a recomputed mean peak errors. .This plot of the recomputed mean errars for the simple averaged

Figure 17. Mean peak errors vs. h. Oscillator (partition B)

Figure 18. Peak error in X_{2} vs. h. Oscillator (partition B)

Figure 19. Oscillator (partition B) cost
and the averaged case is shown in Figure 20. Here, differences are only slight, but the plot of worst-case errors, displayed in Figure 21, show that the averaging method results in up to a 50% improvement. Execution times ranging from 2.91 to 70.25 seconds for partition 1 are plotted in Figure 22. Again the simple averaged method is only slightly slower than the method without averaging, but the shifted averaging method is slightly 3 times slower than both. The benchmark ran in 71.74 seconds. The costs for these methods for the simulation of partition 1 , seen in Figure 23, again indicate slightly higher costs for the simple averaging method with costs for the shifted averaging case ranging over twice that of the non averaged case. Simple averaging improves the mean peak errors and worst case errors (again corresponding to X_{2}) slightly as seen in Figures 24 and 25, but shifted averaging is still worse by as much as a factor of 2 . The execution times for the second partition are also very close to those of partition 1, and so the run times of Figure 22 may serve as an indicator for the performance of partition 2.

Conclusions

The results obtained from this study have shown that two of the averaging methods considered are useful in the simulation of partitioned systems. As for the other methods, it was observed that existing methods that do not use averaging, in general, yield improved errors and lower execution times. This is especially true of the Modified Euler method where percent errors were as much as ten times larger than the

Figure 20. Mean peak error vs. h. Autopilot (partition 1)

Figure 21. Peak error in X_{2} vs. h. Autopilot (partition 1)

Figure 22. Execution times vs. h. Autopilot (partition 1)

Figure 23. Autopilot (partition 1) cost
\% Error 10^{+0}

10^{-1}

Figure 24. Mean peak error vs. h. Autopilot (partition 2)

Figure 25. Peak error in X_{2} vs. h. Autopilot (partition 2)
method not using averaging. It is obvious then that this method would be an unlikely choice in a simulation.

The Improved Euler method, on the other hand, showed slight improvement in worst-case errors and costs in the pendulum example. This, however, was accompanied by increased avearage peak errors. No real improvement was achieved in the errors of the mine-shaft experiment, but cost was lowered significantly when the Improved Euler method was used. These results therefore indicate that this averaging method is certainly worth considering as an alternate technique to simulate a linear-nonlinear system.

The high cost of and in most cases larger errors obtained from the shifted averaging method used with general nonlinear systems hardly justifies its use. The nonlinear method without averaging is seen to produce significantly lower errors and execution times for both partitions of the autopilot and partition A of the oscillator: The improved errors seen from partition B of the oscillator were at the expense of much higher cost.

The error performance of the simple averaged method is difficult to define. In some experiments, slight improvements were noted, but in others, drastic reductions in accuracy were observed. The inconsistency of performance indicates that further research should be performed to understand why improvements are observed in some cases and not others.

Further experiments using all four methods may also provide insight into when and what type of averaging. The fact that some error improvements were noted show that averaging may prove to be a valuable tool in the simulation of partitioned systems.

APPENDIX A

PROGRAM LISTINGS

This section contains program listings of all algorithms and the two examples that show the use of the two types of simulation methods.

```
    SUBROUTINES LINKW AND INICCN ARE NEEDED BY THE COMBINED
    ALGORITHMS FCE INITIALIZATICN ETC.
        SUBROUTINE IINKH (WAV1,HAV2, WAV3, HAV4, पAV5,
            1
            WAV6,WAV7,WAV8,WAV9,WAV10)
THIS SUBROUTINE LINKS OUTPUT VARIABLES AND AVERAGES
PROM THE FAST LINEAR SISTEM TO TEE NCNLINEAR SYSTEM.
COMMON/LINK/W(10),WAV (10).,LINKNC
COMMCN/IINS/IINORD,IININE,I INOUT, A (10, 10), E (10, 10)
COMMON/LINS/C (10,10),D(10,10),F(10,10),U(10),X(10)
LINKNO IS THE NUMBER OF AVERAGES TO EE LINRED
AND HAS TO BE DEFINED IN DEFLIN.
GO TO (1,2,3,4,5,6,7,8,9,10), LINKNO
    MAV10=WAV(10)
    MAY9=NAV (9)
    HAV8=WAV (8)
    WAV7=UAV (7)
    WAV6=MAV (6)
    MAY5=\AV (5)
    WAV4= WAV (4)
    MAV 3=WAV (3)
    WAV2=HAV (2)
    WAV1=WAV (1)
    RETURN
    END
    SUBROUTINE INICON
    INICCN INITIAIIZES MATRICES A,E,C,D, AND F
    AND VECTORS X.U. AND W
LOGICAL EXIT,RLDONE
COMMCN/LINK/W (10),WAV (10), LINKNO
COMMON/SYSVAF/DI,DTMAX,DIMIN,EMAX,EMIN,SY(35)
COHMCN/IINS/LINOED,LININP,IINOUT,A (10, 10), E (10, 10)
COMMON/LINS/C (10,10),D(10,10),F(10,10),U(10),X(10)
DIMENSION BNO(10), BN1(10)
CLEAR ALL MAIRICES AND VECTCRS
CALL MXCLR1(A, 10,10)
CALL MXCLE1 (E,10,10)
CALL MXCLR1 (C,10,10)
CALL MXCLE1 (D, 10, 10)
CALL MXCLR1(F,10,10)
CAIL VECCIR(X,10)
CALL VECCIR (U,10)
CalL VECCLR(W,10)
CALI VECCIR(NAY,10)
INITIALIZE MATRICES AND THE VECTCF X
CALL DEFLIN
INITIALIZE THE U VECTOR
CALL GFUNC
```

INITIALIZE THE H AND WAV VECTOES
CALL MXCOL (C, X, BNO, LINODT,LINORE)
CALL HXCOL(D,U, BN1,LINOUT,LININP)
CALL VECACD (ENO, BN1, W, LINCOI)
CALL VECADD (ENO, EN1, WAV,LINOUT)
RETURN
END

SUBROUTINE INTRGX

```
    YIZ. (AM0+I),(M0-M1)B,M1E
YIZ．（A \(10+I)\) ，（M0－M1）B，M1E
```

 CALL MATMUL (A, MO, BETPI, IINOFD,IINCRL,IINORD)
 CALL \(\operatorname{adDID}(E E T P 1, B E T P O, I I N O K D)\)
 CALL MXSUE (M0,M1,BETP2,IINOFD,IINCRL)
 CALI MATMUL (EETP2, E, EETP1,LINOKD, IINORD,LININP)
 CALL MATMUL (M1,B, BETP2,LINCED,LINCRE,LININP)
 CALL INICCN

COMBINED ALGCBITHM BASED CN IMEECYED EULER METHOD

LOGICAL EXIT，RIDONE，MPRT
COMMCN／LINK／W（10），WAV（10）．LINKNO
COMMON／TVAR／T11，MPRT
COMMCN／SYSVAF／EXIT，RIDONP，ICOT，IFIIE，IRUNNO，T，TMAX，TNEXT
COMMCN／SYSVAR／DT，DTMAX，DTMIN，EMAX，EMIN，SY（35）
COMMCN／STATE1／NOREK1，Y（200），GN（200）
COYMON／IINS／IINORD，LININP，LINOUT，A（10，10），B（10，10）
COBMCN／LINS／C $(10,10), D(10,10), F(10,10), U(10), X(10)$
REAZ $\mathbb{O}(10,10), M 1(10,10), M 2(10,10)$
DIGENSION GNSAV（200），BNO（10），EN1（10），XAV（10），USAV（10）
DIMENSICN WSAV $(10), Y S A V(10)$
DIMENSICN TRANPA $(10,10), \operatorname{EETPO}(10,10) \operatorname{EETP} 1(10,10), \operatorname{BETP} 2(10,10)$
DIMENSION USUM（10），AYNO $(10,10)$ ，AYN1 $(10,10)$ ，AVN2 $(10,10)$
DIAENSICN VO $(10,10), V 1(10,10), L 2(10,10), B N 2(10), F H(10,10)$
IP（T．GT．0．0）GO TO 30
IF（DI．GT．DIMAX）DT＝DTUAX
DTO2＝DT／2．0
gRITE（IOUT，20）
FORMAT（／／1X，35HIMPR EUIER HITH COERECIEE AYERAGING）
1．PRECOMPOTATION

COMPUTATION OF D／2 AND G＊F
CALL SCALR1（D，0．5，D2，IINCUT，LININE）
CALL SCALR1（F，DT，FH，LINOFD，LINOUT）
COMPUTATION CF TRANPA，MO，M1，M2
CALL MXCAL（A，TRANPA，M0，M1，M2，LINOFD，LT，14，MPRT）
COMPOTATION OF VO AND V1
CALL MXEQL（M1，VO，LINORD，LINORE）
CALL SCALR1（M2，0．5，V1，LINORD，IINCED）
COMPUTATICN CF COEFF．MATRICES FCE AVERAGING
VIZ．（AVO＋I），（VO－V1）B，V1E
CALL MATMUL（A，VO，AVN1，LINORL，LINCED，LINORD）
CALL ADDID（AVN1，AVNO，LINCRC）
CALL MXSUE（VO，V1，AVN2，LINORD，LINOED）
CALL MATMUL（AVN2，B，AVN1，IINCEL，IINOFC，LININP）
CALL MATMUL（V1，B，AVN2，IINORL，IINOFD，LININP）
COMPUTATICN CF COEFF．MATRICES FOK LINEAR DISCRETE VALUES

CALL MATMUL（A，MO，BETPI，IINOFD，IINCRE，IINORD）
CALL $A D D I D(E E T P 1, B E T P O, I I N O K D)$
CALI MATMUL（EETP2，E，EETP1，LINOKD，IINORD，LININP）
CALL MATMUL（M1，B，BETP2，LINCED，LINCRE，LININP）
CALL INICCN

CALL VECADD (ENO, BN1, H, IINOUT)
RLDONE=-TEUE.
CALL DIFEQ1
RETURN
END

SUBROUTINE INIRGX

```
COMBINED ALGORITHM BASED CN MOLIEIED EDLER
```

LOGICAL EXIT,RLDONE, MPRT
COMBCN/LINK/W (10), HAV (10), LINKNO
COMMON/TVAR/I 11 .MPET
COMBCN/SYSVAR/EXIT, RIDONE, IOUT, IFILE, IRUNNO,T,TMAX,TNEXT
COHBCN/SYSVAR/DT, DTMAX, DIMIB, EMAX,EMIN,SY(35)
COEMCN/STATE1/NORDR1, Y (200), GN (200)
COMBON/LINS/LIHOKD, LININP, LINOUT, A $(10,10)$, $\overline{(10,10)}$
COMMON/LINS/C (10, 10), D (10, 10), F $(10,10), U(10), X(10)$
REAL HO $(10,10), M 1(10,10), 42(10,10), M 3(10,10)$
DIMENSIOA GNSAV(200), BNO (10), EN1 (10), XAV (10), USAV (10)
DIMENSION V2 $(10,10)$, AVN3 $(10,10)$, AVN4 $(10,10)$, USAV2 (10)
DIBEMSION $\operatorname{BETP}(10,10)$, EETP4 $(10,10)$
DIMENSICN KSAY(10), YSAV(10), EN3(10)
DIMENSICN TEANPA $(10,10), \operatorname{BETE} 0(10,10), \operatorname{BETP} 1(10,10), \operatorname{BETP} 2(10,10)$
DIMENSION USUM (10), AVNO $(10,10)$, AVN1 $(10,10)$, AVN2 $(10,10)$
DIMENSICN V0 $(10,10), V 1(10,10), D 6(10,10)$, $B N 2(10), F H(10,10)$
IF (T.GT.0.0) GO TO 30
IF (DI.GT. DTMAX) DT=DTMAX
DT02=DT/2.0
WRITE(IOUT, 20)
FORMAT U/1X,35HMOD EULER WITE COEEECIED AYERAGING)
PRECOMPUTATION

COBPUTATION OF D/6 AND $H * F$
CALL SCALR1(D,1./6., D6,LINOOI,LININE)
CALL SCALR1 (F, DT, PH,LINCRD,LINOUI)
COAFOTATION OF TRANPA, MO, M1, M2, M3
CALL MXCAL3 (A,TRANPA, MO, M1, M2, M3.IINORD, DT, 14, MPET)

CALL SXEQI (M1, VO, IINORD, LINORE)
CALL SCAIR1 (M2,0.5,V1, LINCED,IINCED)
CALL SCALR1 (M3.1./3.,V2, IINCED,LINORE)
COMPUTATION CF COEFF. MATRICES FOR AYERAGING
VIZ. (AVO+I), (V0-3V1+2V2)B,
$4(V 1-V 2) B,(2$ V $2-V 1) B$
CAIL MATMUI (A, VO, AVN1, IINORD, LINOED, IIHORD)
CALL ADDID (AYN१, AYNO,LINCRD)
CALL SCALE1 (V1, -3.0, AVN1, LINOED, LINOFD)
CALL SCALR1 (V2,2.0, AVN4, IINCEC,IINGFE)
CALI MATADD(VO, AVN1, AVN1, LINORD, LINOFD)
CALL MATADD (AVN1, AVN4, AVN4, IINOFD,LINCFD)
CALL HATMUL (AVN4, E, AVN1, LINOFD, IINORD,LININP)
CALL KXSUB(V1, $\mathrm{Z} 2, A Y N 4, L I N C E D, I I N C F E)$
CALL SCALRT(AVN4, 4.0,AVN4, IINCED,IINORD)
CALL MATMUL (AVN4, B, AVN2, IINCEL,IINOFE,IININP)
CALI SCALE1 (Y2, 2.0, AVN4, IINORD,IINORD)
C上I! MXSUB (AVN4, VI, AVN4, IINCEL,IIKCE[)

60	COSTINUE
	CALL MXCOL (C, XAV, DNO, LINCOT, IINOFL)
	CALL SCALRT (USAV2,4.0, BN1, IININE,LININP)
	CALL VECADD(USAV, BN1, BN2,LININE)
	CaLl VECADD (BN2, U, USUU, LININP)
	CALL MXCOL (DG, USUM, BNY, LINCUI, IININE)
	CALL VECADD (ENO, BN1, WAY, IINOUT)
C	
C	ADDITIOS OF CORRECTICN FACTOR TO $Y(N+1)$
C	
	DO $70 \mathrm{~J}=1$, NORDR1
	BN $2(J)=Y(J)$
70	CONTINUE
	CALL VECSUB (WAV,WSAV, ENO, LINCUT)
	CALL MXCOL (FH, ENO, BNI, LINORE, IINOUT)
	CALL VECADD (BN2, BN1, Y, LINCFD)
	CALL GFONC
C	
C	COMPUTATICN OF $X(N+1)$
C	
	CALL BXCCL (BETPO, X, ENO, LINOED, LINORD)
	CALL $\triangle X C C L(B E T P 1, U S A Y, B N 1, L I N C R C, I I N I N P) ~$
	CALL VECADD (ENO, BN1, BN2, LINORD)
	CALL MXCOL (BETP2, USAV2, 3NO, LINCRL, IINCFD)
	CALL VECADD (ENO, EN2, BN2, LINORD)
	CALL MXCCL (BETP3, U, BNO, IINORL, LININE)
	CALL VECADD (ENO, BN2, X, LINOEL)
C	
C	COMPUTATICN CF H
C	
	CALL $\triangle X C O L(C, X, B N O, L I N O U T, L I N O R L)$
	CALL MXCCL (D, U, EN1,LINOUT,LININE)
	CALL VECADD (ENO, BiA1, M, LINOUT)
	RLDCNE=.TRUE.
	CALL DIFEQ1
	RETURN
	END

```
        SUBROUTINE INTRGX
C
C
C
C
C
        LOGICAL EXIT,RLDONE
        COMMCN/SYSVAR/EXIT,RIDCNE,ICUT, IFILE,IRUNNO,T,TMAX,DUMM
        COMHON/SYSVAR/DI, DTMAX, LTMIN, EMAX,EMIN,SY(35)
        COMMCN/STATE1/NORDR1,Y(200),GN (200)
        COEMCN/STATE2/NORDR2,Y2(200),GN2(200)
        COUMCN/AVER/YAY (200)
        DIMENSICN GIEM(200), YTEM(200)
        REAL K1(200),K2(200),K3(300)
        IP(T.GT.0.0) GO TO 30
C ****** REMINDER: DTMAX_IE.TMAX/(NPOINT- 1)
        IF(DT.GT.DTMAX) DT=DTMAX
        DIA=DT
        DT2=DT/2.0
C DTMAX = DT2 SET IF DTMAX.GT.DI2 IN ORDER TO AVOID
C
    HANG UP ON DTMAX IN RKM - SEE COMMENIS IM RKM SUBR.
            IP(DTMAX.GI.DT2) DTMAX= DT2
        WRITE(IOUT,11) DTMAX
        FORMAT(14H NEM DTMAX =, E12.5/)
            DT 3=DT/3.0
            DT4=DT/4.0
            DT6=DT/6.0
            WRITE(IOUT,1)
        PORMAT(/52H PAFTITIONED INTEGRATION- R K - 4 FOR SLOH SYSTEM)
            RLDCNE=.FALSE.
        PAST SYSTEM INTEGRATICN (NH<= I <= (N+1/2)H) USING RKM
        TEMP=T
        TNEXT=T+DT2
C DT4 SET INSTEAD DT AT T=0.0 TO SIARI STEP CONTROL
C IN RKM SCEROUTINE
C
        IF(T.EQ.0.0) DT=DT4
C
C***** ZERO AYERAGES FOR HALF SIEE INTEEVAL
C
    DO 35 II=1,NORDR?
    YAV (II) =0.0
    T1=T
        CALL RKM(TEME,TNEXT)
    DLT=T-T1
C COMPUTE AVERAGES
    DO 45 II=1,NORDR }
45 YAV(II)=YAV(II) +DLT*Y(II)
    IF(INEXI.GI.T) GO TO 40
    DO 46 II = 1, NCRDR1
46 YAV(II)=YAV(II)/DT2
C IN GENERAL NEXT STEF HCULD BE COMEUIATICN CF U(N+1/2)
C 2. SLOH SYSTEM INTEGRATION - SECOND CRDER IMPROVED EUIER
C 2.1. COMEUTATICN OF K1,K2,K3
    DO 100 I=1,NORDR2
    K1(I)=GN2(I)
```

```
                                    YTEM(I)=Y2(I)
                                    Y2(I) = Y 2(I) +DT2*K1(I)
                                    CALL DIFEQ2
                                    DO 110 I=1,NORDR2
                                    K2(I)=GN2(I)
                                    Y2(I)=YTEM(I) +DI 2*K2(I)
            CALL DIFEQ2
                                DO 120 I=1,NORDR2
                            K3(I) =GN2(I)
    120
c
    2.2. COMPUTATION OF Y(N+1/2) AND EVALDAIICN OF SIOM SYSTEM EQU.
        DO }130I=1,NCRDR
        I2(I)= YTEM(I) +DT4*(K1(I) +K2(I))
        CALL DIFEQ2
C 3. FAST SYSTEM IINTEGRATICN
C
        TEMP=T
        TNEXT=T+DT2
    C***** ZERO AVERAGES FOR FUIL STEP INTERVAL
C
47 IAV(II) =0.0
50 T1=T
        CALL RKM(TEMP.TNEXT)
        DLT=T-T1
C
C***** COMPUIE AVERAGES FOR FUIL STEP
        DO 55 II=1,NCRDR1
55 YAV(II)=YAV(II)+DLT*Y(II)
        IF(INEXI.GT.I) GO TO 50
        DO }56II=1,NORDR
        IAV(II)=YAV(II)/DT2
        CALL DIFEQ2
        IN GENERAL NEXT STEP WOULD EE COMPOTATION OF U(N+1)
C INGENERAL NEXT STEP WOULD
    200 Y2(I)=YTEM(I)+DTA*K3(I)
        CALI DIFEQ2
        DO 210 I=1,NORER2
    210 Y2(I)=YTEM(I)*DT6*(K1(I) +GN2(I))+CT3*(K2(I) +K3 (I))
C
                    DC 200 I=1, NCRDR2
    NEXT STEP PREPARATICN
        RIDONE=. TRUE.
        CALL DIEEQ2
            RETURN
            END
```


SUBROUTINE INTRGX

```
**)
NONLINEAR ALGCRIIHM WITH SHIFTEC AVERAGING
    LOGICAL EXIT,RLDONE
    COEMCN/SYSVAR/EXIT,RLDCNE,IOOT,IFILE,IRUNNO,T,TMAX,DUMM
    COMMON/SYSVAR/DT,DTMAX,DTMIN,EMAX,EMIN,SY(35)
    COHMCN/STATE1/NORDR1,Y (200),GN(200)
            COBMON/STATE2/NORDR2,Y2(200),GN2(200)
COMMON/AVER/YAV (200)
    DIMENSION GTEM(200), YTEM(200),YSAV (200), ISAV2(200)
DIMENSION AV(200), YAVSV(200)
    REAL K1(200), K2(200), K3(300)
    IF(T.GT.0.0) GO TO 30
C
C ****** REMINDER: DTMAX.LE.TMAX/(NPOINT- 1)
C
        IF(DT.GT.DTMAX) DT=DTMAX
        DTA=DT
        DT2=DT/2.0
C
C DTMAX = DT2 SET IF DTMAX.GI.DT2 IN ORDER TO AVOID
C HANG UP CN DTMAX IN RKM - SEE CCMMENTS IH KKM SUBR.
C
            IP(DTMAX.GT.DT2) DTMAX = ET2
        WRITE (IOUT,11) DTMAX
        FORMAT(14H NEW DTMAX =,E12.5/)
        DT 3=DT/3.0
        DT4=DT/4.0
        DT6=DT/6.0
            WRITE(IOUT, 1)
        FORMAT(/52H PARTITIONEL INTEGRATION- R K - 4 FOR SIOW SYSTEM)
        RLDONE=.FALSE.
        FAST SYSTEM INTEGFATION (NH<= T <= (N+1/2)H) USING RKG
        TEMP=T
        TNEXT=T+DT4
C
C DTU SET INSTEAD DT AT T=0.0 IO SIART STEP CONTROL
C IN RKM SUBROHIINE
C
    IF(T.EQ.O.O) DT=DT4/2.
C
C*** FIRST QUARTER STEP
C
40 CALL RKM(TEMP,TNEXT)
    IF (TNEXT.GT.T)GO TO 40
    TEMP=T
    TNEXT=T+DT4
C
C*** SECCND QUARTER STEP - START AVERAGING
C
    DO 41 II=1,NORDR1
    AV (II) =0.0
    T1=T
    CALL RKM(TEMP,TNEXT)
    DLT=T-T 1
C
C*** COMPUTE AVEFAGE
C
    DO 43 II=1,NORDR1
4 3
    AV(II) =AV(II) +DLT*Y(II)
```

```
            IF(TNEXT.GT.T) GO TO 42
        DO 44 II=1, NORDR1
        YSAV(II) =Y(II)
44 YAY(II)=Y(II)
C IN GENERAL NEXT SIEP WCOLD BE COMEUTATICN CFU(N+1/2)
C 2. SLOM SYSTEG INTEGRATION - SECOND ORDER IMPEOVED EULER
C 2.1. COMPUTATION OF K1, K2,K3
    DO 100 I=1,NCRDR2
    K1(I)=GN2(I)
    YTEM(I)=Y2(I)
    Y2(I)= Y2(I)+DT2*K1(I)
        CALL DIEEQ2
        DO }110\textrm{I}=1,\textrm{NORDR2
        K2(I)=GN2(I)
C
C 2.2. COMPUTATION OF APPEOX. Y(N+1/2)
    DO 130 I=1,NORDR2
    130 Y2(I)=YTEM(I) +DT4* (K1(I)+K2(I))
        CALL DIFEQ2
        TEMP=T
        TNEXT=T+DT4
C
C*** THIRD QUARTER STEP - COMPLETE AVEEAGE
C
46 T1=T
    CALL RKM(TEME,TNEXT)
    DLT=T-T1
    DO 49 II=1,NORDR1
    \DeltaV(II) =AY(II) +DLT*Y(II)
    YAV(II) = YAVSV(II)
    IF(TNEXT.GT.T)GO TO 46
    T=TEMP
    DO 47 II=1,NCRDR1
47 Y(II)=YS&V(II)
    DO 48 II=1,NCRDR2
    Y2(II)=YTEM(II)
        CALL DIFEQ2
        DO 501 II=1,NORDR1
        YAV (II)=AV (II)/DT2
        DO }150I=1,NORDE
        K1(I)=GN2(I)
        YTEM(I)= % 2(I)
C
C*** RECOMPUTE K1 AND K2, FIND K3
C
    150 Y2(I)=Y2(I) +DT2*K1 (I)
            CALI DIPEQ2
                        DO }160I=1\mathrm{ ,NORDR2
                        K2(I)=GN2(I)
        Y2(I)=YTEM(I) +DT2*K2(I)
        CALI DIFEQ2
        DO 170 I=1, NORDR2
    K3(I)=GN2(I)
C
    2.2. COMPOTATION OF Y(N+1/2) AND EVALUATICN OF SLON SYSTEM EQU.
    DO 180 I=1,NORDR2
180 Y2(I)=YTEM(I) +DT4* (K1(I) +K2(I))
    CALL DIFEQ2
c
```

```
C 3. PAST SYSIEM IINTEGRATICN
C
C
C*** DO THIRD QUARTER AGAIN
C
        TEMP=T
        TMEXI=T+DT4
    CALL RKM(TEMP,TNEXT)
    IF(TNEXT.GT.T)GO TO 50
    C*** FOURTH QUARTER - START AVERAGING
    C
        TEMP=T
        TNEXT=T+DT4
        DO 51 II=1, NORDR1
    AV (II) =0.0
    T1=T
    CALI RKM(TEMF,TNEXT)
    DLT=T-T1
    DO 53 II=1, NORDR1
    AV(II) =AV(II) +DLT*Y(II)
        IF(TNEXT.GT.T) GO TO 52
    DO 54 II=1,NORDR2
    ISAV2(II) = Y2(II)
    DO 55 II=1,NORDR1
    YSAV(II) =Y(II)
    YAV(II)=Y(II)
    CALL DIFEQ2
        IN GENERAL NEXT STEP HOULD EE COMPUTATION OE U(N+1)
    COMFUTATION OF K4 AND APPRCX. Y (N+1)
        DO 200 I=1,NORDR2
        Y2(I) =YTEM(I) + DTA*K3 (I)
        CALL DIFEC2
        DC 210 I=1,NORDR2
        Y2(I)=YTEM(I) + DT6*(K1(I) +GN2(I)) +DI 3* (K2(I) +K3(I))
            CALL DIFEQ2
        FIFTH QUARTER - COMPLETE AVERAGING
        TEMP=T
        TNEXT=T+DT4
        T1=T
        CAII RKH(TEME,TNEXT)
        DLT=T-T1
        DO 59 II=1, HORDR1
        AV(II) =AV(II) +DIT*Y(II)
        YAV(II)=AV(II)/DT/2
        IF(TNEXT.GT.T)GO TO 56
        T=TEMP
        DO 57 II=1,NCRDR1
        Y(II) = YSAV(II)
        DO 58 II=1,NOKDR2
        Y2(II) =YSAV2(II)
        CALL DIFEC2
C
C*** RECOMPUTE K4 AND FIND FINAL Y(N+1)
        DC 250 I=1,NCRDR2
    250 Y2(I)=YTEK (I) +DTA*K3 (I)
        CAIL DIFEC2
        DO 260 I=1,NORDR2
```


260

Y2 (I) = YTEM (I) + DT6* (K1 (I) +GN2 (I)) + LI 3* (K2 (I) +K3 (I))
C
NEXT STEP PREPARATION 270 DO 270 II=1, NCRDE1 YA YSV (II) =YAV (II) RIUONE=-TRUE. CALL DIEEQ1

CALI DIEEQ2

RETURN
END

```
        SUEROUTINE RKM(TEMP,TNEXT)
C
C PROGRAM.. INTRGX SUBROUTINE
C
C RUNGE-KUTTA-MERSON RULE MODIFIED FOF FARTIIIONED INTEGRATION
    (COMMMENTS MARKED WITH ****)
        UNIVERSITY CF ARIZCNA , HAY 1977
        OLGIEKD A. PALUSINSKI
        TECHNICAL UNIVERSIIY OF SILESIA
        44-100 GLIUICE,POLAND
    TYPE OF PFCGRAM.. SUNGE-KOTTA-MERSON VARIARLE STEP INIEGRATION
        RULE FCR INIEGRATING CRDINARY [IFFERENTIAL
        EQUATIONS.
    VERSION AND DATE.. 4.0 MAY }197
    AUTHOR.. JOHN V. HAIT
        ELECTRICAI ENGINEERING DEPARTMENT
        UNIVERSITY OF ARIZCNA
        TUCSON, ARIZONA 85721
    MODIPICATICNS OF ERRCR CONTROL LOGIC INCLUDED
```



```
    LANGUAGE.. ANSI STANDARD FORTGAN IV
    ABSTRACT..
        SEE -APPIIED NUMERICAL METHODS- EY CARNAHAN, LUTHER, AND HIIKES
        JOHN WILEY AND SCNS, INC, 1969, NEW YCRK, LONDCN, SYDNEY, TCRONTO
            (A GENERAI DISCUSSION IS GIVEN OF RUNGE-KUTTA EULES AND SPECIFIC
            DISCUSSIONS ARE GIVEN FOR THE RUNGE-KUITA SECCND, THIRD, AND
            FOURTH OREER SYSTEMS. HOWEVER, THE RUNGE-KUTTA-MEFSON METHCD
            IS NOT DISCUSSED IN PARTICULAR.)
        IF SY(1) .GE. 1.0, USE ABSOLUTE TEST CN.. Y(IFIX(SY(1)))
        IF SY(1).LT. 1.0, USE RELATIVE EFROR CN .. AIL Y
        IN SY(2) IS KEPT THE MAXIMUM DEADLOCKED ERROR
        IF SY(6) .GT. O.0, CUTPUT CHANGES TC DT
    THIS IS THE SINGIE PRECISICN VERSION OF RULEO1.
    SUBROUTINE CONYET WILL CONVERT THE PRECISICN OF THIS SUBROUTINE
    SER SUERCUTINE CCNYRT CR SUEROUTINE FULET1 FCR AN EXPLANATICN
C OF THE ORDERING AND FLAGGING CONVENTIONS USED IN IHIS
C CONVERTABLE SUBROUTINE
C
C
    LOGICAL A,B,FO,X,LIST
C(2
CD DOUBIE PRECISICN RK1(200),RK3(200),FK4(200),RK5(200)
CD DOUBLE PRECISICN YOLD(200),DPY(200),DPI,TIME
C) }
    REAL RK1(200),RK3(200), 5K4 (200), EK5 (200),YOLD(200)
```

```
C/5
            LOGICAL EXIT,ELDONE
            COMMON /SYSVAR/ EXIT,RLDONE,IOUT,IFILE,IRUNNO,T,TMAX,DUMM
            COMMCN /SYSVAF/ DT,DTMAX,DTMIN, EMAX,EMIN,SY (35)
            COMMCN /STATE1/ NORDR1.Y(200),GN (200)
C*************** WAICH OUT *************************
    COMMCN/STATE2/ NORDR2,Y2(200) ,GN2(200)
    COMMCN/EXTR/YEXTR(200),W(10)
C*********************************************************
C
    INITIALIZE
        A=.TRUR.
        IP(T.GT.O.) GO TO 5
C(3
CD DO 1 I=1,NORDE 1
CD1 DPY(I)=Y(I)
CD DPT=O.DO
C) }
C/5
        IP(IFIX(SY(1)). IE. NORDR1) GO TO 3
        WRITE(IOUT,2)
        FORMAT(48H WAENING - SY(1) TOO LARGE FOB EQUATIONS GIVEN.
        2 17HSY(1) SET IO 2ERO)
        SY(1)=0.
        SY(2) = EMAX
        LIST=SY(6) - NE.0.
        WRITE(IOUT,4)
        FORMAT(52H RUNGE-KUTTA-MEFSCN INTEGFATICN FUIE FOF FAST SYSTEM)
c
C MESSAGE FOR PARTITIONED INTEGRATICN ONIY **************
C
        WRITE(IOUT,444) IRUNNO
    444 FORMAT (33H LINEAR EXTRAPOLATION , RUN NO. .I3/)
C
C
        ISY1=SY(1)
5 FO=T.LT.TNEXT.AND.INEXT.IT.T+LT
        DTEM=DT
        IF(FO) DT=TNEXI-T
C(2
CD DT3=DBLE(DT)/3.DO
CD TIME=DPT
C) }
        DT3=DT/3.
        TIME=T
C/6
C FIND K1
C DIFEQ1 WAS CALIED BEPORE ENTRY
    RLDCNE=,FALSE.
        DO }7\textrm{I}=1,NORDR
C(4
CD RK1(I)=DBLE(GN(I))*DT3
CD YOLD(I)=DPY(I)
CD DPY(I)=DPY(I)+RK1(I)
CD Y(I)=SNGL(DPY(I))
C) }
            RK1(I)=GN(I) *DT3
            YCLD(I) =Y(I)
            Y(I)=Y(I) +RK1(I)
C/9
```

```
7 CONTINUE
C(2
CD DPI=TIME+DT3
CD T=SNGL(DPT)
C) }
    T=TIME+DT3
C/5
C FIND K2
C ****************** WATCH OUT ******************** LINEAK EXTRAPOLATION
            DELTA=TーTEMP
            DO 991 I=1,NORDR2
    991 YEXTR(I) = Y2(I) +GN2(I) *DELTA
C******************************************
    CALL DIFEQ1
    DO 8 I=1,NORDR1
C(2 DP DPY(I)=YOLD(I)+.5DO*(RK1(I) +DELE(GN(I))*DT3)
CD Y(I) =SNGL(DPY(I))
C) }
    Y(I)=YOLD(I) +0. 5*(RK1(I) +GN(I)*DTE)
C/5
8 CONTINUE
C FIND K3
        CALL DIFEQ1
    DO }9\textrm{I}=1,NOKDR
C(3
CD RK3(I) =4.5D0*DT3*DBLE(GN(I))
CD DPY(I) = YOID(I) +.375DO*RK1(I) +. 25LO*RK3(I)
CD Y(I)=SNGL(DPY(I))
C)}
RK3(I)=4.5*DT3*GN(I)
I(I) = YOLD (I) +0.375*RK1(I) +0. 25*RK3(I)
C/7
9 ~ C O N T I N U E
Cl2
CD DPT=TIME+.5DO*[日LE(DT)
CD T=SNGL (DPT)
C) }
    T=TIME+. 5*DT
C/5
C FIND K4
C ************* 由ATCH OUS ****#************** IINEAR EXTRAPOLATION ***
            DELTA=T-TEMP
            DO 992 I=1,NCRDR2
    992 YEXTR(I) = Y2(I) +GN2 (I) *DELTA
C ******************************************
    CALL DIFEQ1
    DO 10 I=1,NORDR1
Cl3
CD RK4(I)=4.DO*DT3*DELE(GN(I))
CD DPI(I) = YOLD(I) +1.5DO*(RK1(I)+FK4(I))-RK3(I)
CD Y(I)=SNGL(DEY(I))
C) }
RK4(I)=4.*DI 3*GN(I)
Y(I)=YOLD (I) +1. S* (RK1 (I) +RK4 (I))-RK3(I)
C/7
10 CONTINUE
C(2
CD DPT=TIME+DBLE (DI)
CD T=SNGI(DPT)
```

```
C) }
        T=TIME+DT
    C/5
    FIND K5 AND NEXT POINT
        DELTA=T-TEMP
        DO }993I=1, NORDR
    993 YEXTR(I)=Y2(I) +GN2(I) = DELTA
C ********************************************
CALL DIFEC1
DO \(11 \mathrm{I}=1\), NORDR1
C \((3\)
\(C D \quad\) RKS (I) \(=\) DBLE (GN(I)) *DT 3
\(C D \quad D P Y(I)=Y C I D(I)+.500 *(E K 1(I)+R K 4(I)+\operatorname{RK} 5(I))\)
CD \(\quad Y(I)=S N G I(D P Y(I))\)
C) 2
RK \(5(I)=G N(I) * D T 3\)
\(Y(I)=\) YOLD (I) +. 5* (RK 1 (I) + RK 4 (I) +RK5 (I))
C/7
11 CONTINUE
C \(\begin{gathered}\text { C } \\ \text { C\% } \\ \text { CODIPICATION OF LOGIC : BYPASS "C" PUT IN CCL. } 1 \text { IN NEXT ST. }\end{gathered}\)
C THIS MEANS EREOR IS CHECKED ALHAYS (EEGARDLESS OF "FO")
C IF (FO) GO TO 20
```



```
C
C FIND ERROR
C IF(ISY1.GT.0) GO TO 13
C
C SY(1) \(=0\), DC KELATIVE ERROR CHECK
\(E R R O R=0\).
DO \(12 I=1\), NORDR 1
C \({ }^{(2}\)
CD RK6=(RKI(I)-RK3(I) +RK4 (I))*.2D0-RKS (I)*. 100
\(C D \quad \forall E I G H T=A B S(Y(I))+A E S(S N G L(Y O L D(I))-Y(I))+1\).
C) 2
RK6 \(=\{\operatorname{RK} 1\) (I) - RK \(3(I)+\) RK 4 (I) ) *. \(2-\) EK 5 (I) *. 1
WEIGHT=ABS (Y(I)) +ABS (YOLD(I) -Y(I)) +1.
c/6
ERRCR \(=\) AMAX 1 (ERFOR,ABS (RK6)/HEIGHT)
12 CONTINUE
GO TO 14
C
C SY(1).GT.0, DO ABSCIUTE TEST CNY(IFIX(SY(1))
C
C ( 2
CD13 EKROR=SNGL (DAES ((KK1 (ISY1)-RK3(ISY1) + KK4 (ISY1))*. 2D0
CD \(2-\) RKS (ISY1)/.1D0))
C) 1
13 ERROR=ABS ( (RK1 (ISY1)-RK3(ISY1) +RK4 (ISY1))*-2-RK5 (ISY1)*.1)
C/5
C
C TEST ERROR
C
\(14 B=(E R K O R \cdot G E \cdot E M I N) \cdot C R \cdot(D I \cdot G E \cdot D I M A X) \cdot C R \cdot(\cdot N C T \cdot A)\)
\(A=(E R E O R \cdot L E, E M A X) \cdot C R \cdot(D T-L E \cdot D I M I N)\)
```

```
    X=(ERFCR.LE.SY(2)).OR.(DT.GT.DTAIN)
C
C IF X=.FALSE., DEADIOCK AND EKEOR IS GREATER THAN BEFOEE
C
        IF(X) GO TO 151
            WRITE(IOUT, 15) ERROR,T,DI
        FORMAT(20H DEADLOCK - EGKOR =,1PE14.7.5# T =,
        2 E14.7.6H DT =,E14.7)
        SY(2) = ERRCR
        GO TO 19
C
C IF A=.FALSE., HALVE DT
C %右% &ODIFICATION CF LOGIC : %22 EOT INSTEAD OF #18 IN NEXT ST.
```



```
C
151 IF (A) GO TO 222
C
C(2
CD DPT=TIME
CD T=SNGL(DPT)
C) }
    T=TIME
C/5
    DT=AMAX1(DT/2.,DTMIN)
    IF(LIST) URITE(ICUT,16) DT,I
    FORMAT(10H NEW DT =,1PE14.7.5H I =,E14.7)
    DO }17\textrm{I}=1,NCRDR
C(3
CD DPY(I)=YOLD(I)
CD Y(I)=SNGL(DPY(I))
CD17 CCNTINUE
C) }
    17 Y(I)=YOLD (I)
C/6
C **************VATCH OUT ******************** LINEAR EXIRAPCLATICN **
            DELTA=T-TEMP
            DO 994 I=1, NORDR2
    994 YEXTR(I)=Y2(I) +GN2(I) *DELTA
C ********************************************
            CALI DIFEC1
            GO TO 5
C
C 5%% MODIFICATICN CF LOGIC : NEW STATEMENT TO CHECK VALUE OF "FO"
C IN ORDER TO PREVENT DOUBLING WHEN "FC"=.TRUE.
222 IP(FC) GO TO 20
```



```
C THAT MEAHS DTMAX = LT2 POR EKM ERROE CONTBCL
C IF DTMAX.GT.DI2 : SEE "INTEGX" FOF T=0.
C
    DT=ABIN1(DT*2.,DTMAX)
C
C
    IF(LIST) WRITE(IOUT, 16) DT,I
19 RLDONE=.TRUE.
C *************** WATCH OUT ******************* LINEAR EXTRAPOLATION **
                        DELTA=T-TEMP
                        DO }995I=1,NORDR
                            YEXTR(I) = Y2 (I) +GN2(I) *DELIA
C ***********************************************
        CALL DIFEQ1
        RETURN
C
C FO=.TRUE., RESTORE DT
C
20 DT=DTEM
C %%%%%%% MODIF. OF IOGIC: "C" PUT IN COL. 1 IN NEXI THO ST.
C A=.TRUE.
C B=.TROE.
```



```
    RLDONE=, TRUE.
C************** UATCH OUT ****************** LINEAR EXTRAPOLATICN #**
    DELTA=T-TEME
    DO 996 I=1,NORDR2
    996 YEXTR(I)=Y2(I)+GN2(I) * DELTA
```



```
    CALL DIFEQ1
    RETURN
    END
```

SUBROUTINE MXCAI3 (A, PHIOFT,MO,M1,M2,M3,ID,DT,NDIG,PT)

```
C
C GXCAL3 FINDS MO,M1,M2,M3 OF A MAIRIX A
C
C*** ADD DIMENSION OF M3 AND M33
C
    BEAL MO (10, 10), M1 (10,10),M2(10, 10), M3(10,10), MO0(10,10),
    $&11(10,10),M22(10,10), M33(10,10), MEHI(10,10)
            DIMENSION A(10,10), PHIOFT (10,10)
            INTEGER SIGDIG(14)
            LOGICAL PT
            DATA (SIGDIG(I),I=1,14)/4,6,7,8,9,10,11,12,13,14,
            $15,15,16,17/
            AIJMAX = 10.0**(-NDIG)
            DC 05 I=1,ID
            DO 05 J=1,ID
            TEMP = ABS (A (I,J))
    05 IF(TEMP.GT.AIJMAX) AIJMAX = TEMP
            KOUNT = 1
            DTMAX = 1.0 / AIJMAX
            TFRAME = DT / 2.0
    10 IF (TFRAME. LE.DTMAX) GO TO }1
    TPRAME = TFRAME/2.0
    KOUNT = KOUNT + 1
    GO TO 10
    12 IF(.NOT.PT) GO TO 14
    gRINT 10G, DT, AIJMAX, DTMAX,TFRAME, KCUNT
C
C
C*** WHERE M2 CR M22 CHANGED TO M3 ANL M33
C
C
    14 CALL MXCLR1 (M3,ID,ID)
            CALL ADDID (M3,M3,ID)
            NTERM = SIGDIG (NDIG)
            DO }15\mathrm{ I=1,NTEEM
            PACTCR = NTERM - I + 5
            TFEYFAC = TFRAME / FACTOR
            CALL MATMUL(A,M3,M33,ID,ID,ID)
            CALL SCALR1 (MJ3,TFEYFAC,M33,IL,ID)
    15 CALI ADDID(M33,M3,ID)
            COEFF1 = TFRAME / 12.0
            CALL SCALR1(M3,CCEFF1,M33,ID,ID)
C
C
C*** THIS SECTION OF CODE ADDED TO EIND M2 FFCM M3
C
    20 COEFF2 = TFRANE / 3.0
            CALL MATMUL(A,M33,M22,ID,ID)
            CALL ADDID(N22,M22,ID)
            CALL SCALR1(M22,COEFF2,M22,ID,ID)
            COEFF3=TFRAME/2.0
    CALL MATMOL(A,M22,G11,ID,ID,IE)
    CALI &DDID(M11,M11,ID)
    CALL SCALR1(M11,COEFF3,M11,ID,ID)
    CALL MATMUL(A,M11,MOO,ID,ID,ID)
    CALL ADDID(MOO,MOO.ID)
    CALL SCALR1(MOO,TFFAME,MOO,ID,ID)
    CALL MATUUL(A,NOD,MPHI,ID,ID,ID)
    CAT.L ADDID.(MPHI,MPKI,ID)
```

```
        IF(KOUNT.EQ.0) GO TO 30
    18 KOUNT = KCUNT - 1
        TPRAME = 2.0 * TFRAME
        CALL MATMUL (MPHI,M33,B3,ID,ID,ID)
        DO 25 I=1,ID
        DO 25 J=1.ID
C
C
C*** CHANGED EXPEESSIOJN TO PIND M3
C
        25⿴3(I,J)=0.125*(M3(I,J) + M33(I,J) + 3.0*\22(I,J)
    $ + 3.0 % M11(I,J) +M00(I,J))
        CALL MXEQL (M3,M33,ID,ID)
        GO TO 20
    3O CALL MXEQI(MPHI,PHIOFT,ID,ID)
        CALL HXEQL(MOO,MO,ID,ID)
        CALL MXEQL (B11, M1,ID,ID)
        CALL MXEQL(M22,M2,ID,ID)
        CALL MXEQL (M33,M3,ID,ID)
    IF(.NOT.PT) GO TO }9
    RRINT }20
    CALL MATPT(A,ID,ID,0)
    PBINT 210
    CALL \ATPT(PHIOFT,ID,ID,O)
    PRINT 220
    CALL GATPT(MO,ID,ID,O)
    PRINT }23
    CALL MAIPT(M1,ID,ID,0)
    PRINT 240
    CALL MATPT(M2,ID,ID,0)
^
C*** ADDED TO PRINT M3
c
            PRINT }25
            CALL MATPT(M3,ID,ID,0)
        9 9 ~ R E T U R N ~
    100 FORMAT(1H1.////.10X,9HDT=,E20.13.//.,10X.
        $9HAIJMAX = ,E20.13.//, 10X,9HLIMAX = E20.13.
        $//.10X,9HTFRAME = .E20.13,5X,8HBYTWC = .I3)
    200 FORMAT (//////,14X,8HMATRIX A,/,14X,8(1H*))
    210 FORMAT (//////,14X,8HPHI OF T./.,14X,8(1H*))
    220 FORMAT (//////.14X,9HMATRIX MO./.14X,9(1H*))
    230 FORMAT (//////, 14X,9hMATRIX M1,/,14X,9(1H*))
    240 FORMAT(//////,14X,9HMATRIX M2./.14X,9(1H*))
C
C*** ADDED
    250 FORMAT(//////.14X,9HMATRIX M2./.14X,G(1H*))
        END
```

```
*
$D1
*
    EXAMPLE TC SHCM OSE OF CCMBINEL AIG.
    SERVO-CONTRCLIED PENDULUM
    LINK LIMEAR VARIAELES TO D1 ELOCK
    PROCED WAV1, WAV2,WAV3,NAV4, RAV5.
        HAV6, HAV7,HAV8, WAV9, WAV10= DUMMY
        CALL LINKH(WAV1,UAV2,WAV3,WAV4,.WAV5,
        WAV6,WAV7,WAV8,WAV9,WAV 10)
    ENDPRO
    NONLINEAR EQUATICNS
    TET1.=TET2
    TET2.=-0.3*TET2+SIN(TET1) +HAV1
    SUBROUTINE GFUNC
C
    GFONC DEEINES THE FUNCTION G
    FOR THE SERVO PENDULUM WHERE
        O=G(Y,T)
COMMCN/STATE1/NORDR1,Y(200),GN(200)
COBMON/LINS/LINORD,LININP,IINCUT,A (10,10),E (10,10)
COMMCN/LINS/C (10,10),D(10,10),F(10,10),U(10),X{10)
    U(1)=Y(1)
    U(2)=Y(2)
RETURN
END
    SUBFCUTINE DEFLIN
c
    DEFLIN DEFINES THE MATRICES A, B,C,D, AND P,
    THE INITIAL CONDITICNS CN X.
    AND THE SIZES OE THE MATRICESAND VECTORS
    COMMCN/LINS/LINORD,IININE,IINOUT,A (10,10),B(10,10)
    CCMMON/LINS/C (10,10),D(10,10),F(10,10),U(10),X(10)
    DEFINE A,E,C,D, AND F MAIRICES FOR PENDULUM
    INITIAL CCNDITIONS FOR X ARE ZEFC
    OMEG 1=10.0
    OMEG2=1000.0
    DER=0.11
    AA=10.0
    A (1, 2) = 1.0
    A (2,1)=-CMEG 1*OMEG2
    A (2, 2) =- (CMEG 1+OMEG 2)
    B (2,1) =-AA*OMEG1*CMEG2
    B (2,2) =-A A*DEK*OMEG1*OMEG2
    C}(1,1)=1.
    C(2,2)=1.0
    F(2,1)=1.0
|nのnのロ
    DEFINE SIZES:
        IINOFD - LENGTH OF X VECTOR
        LININP - LENGTH CF VECICR
        LINOUT - LENGTH CF U VECTOR
        LINKNO - NO. OF AVEFAGES
```

```
        LINORD=2
        LININP=2
        LINOOT=2
        LINKNO=1
        RETUEN
        END
$0
*
*
END
    TMAX=1.8.DT=0.015, NPOINT=121. TET 1=0.5
END
    2 TET1,TET2
END
```


EXAMPLE TO SHOM USE OF GENERAL NCNLINEAE ALG.

ELECTRCNIC OSCILLATOR - PARTITICN B

FAST SYSTEM EQUATIONS

CALL LINKH TO OBTAIN SLOW VARIABIES
PROCED W1,W2,W3,W4,W5,W6,W7,W8,W9,W10= CUMMY
CALL LINKW (H1, W2,W3,W4,W5,W6,W7,W8,W9,W10)
ENDPRO
Y1. $=12$
Y2. $=-64.0 * Y 1+7.5 *(C+W 1-Y 1 * * 2) * Y 2$
X1. $=1.0 / R 1 * 2.0 * Y 1 * Y 2-1.0 /(R 1 * C 1) * \mathbb{1}+1.0 /(F 1 * C 1) * W 2$

SLOW SYSTEM EQUATIONS
CALL LINKY TO OBTAIN FAST SYSTEM AYERAGES
PROCED HAV= DUMMY
CALL LINKY(GAV)
ENDPRO
X 2. $=1 . /(R 2 * C 1) * X 1-(1 . /(R 2 * C 1)+1 . /(R 2 * C 2)) * X 2+1 . /(R 1 * C 1) *$ 有 $A V$
X3. $=1 . /(R 3 * C 2) * \times 2-(1 . /(R 3 * C 2)+1 . /(R 3 * C 3)) * X 3+1 . /($ R $3 * C 3) * X 4$
X4. $=1 . /($ R $4 * C 3) * X 3-(1 . /(R 4 * C 3)+1 . /(R 4 * C 4)) * X 4+1-/($ ($4 * C 4) * \times 5$
X 5. $=1 . /($ R $5 * C 4) * \times 4-(1 . /(R 5 * C 4)+1 . /(R 5 * C 5)) * X 5+1 . /($ R $5 * C 5) * \times 6$
X6. $=1 . /($ R6*C5 $) * X 5-(1 . /(R 6 * C 5)+1 . /(R 6 * C 6)) * X 6$
マ. $=1.0 / C 6 * \times 6$
$\mathrm{E}=\mathrm{FK} 3 *(\mathrm{AD}-\mathrm{FK} 1 * 0.75 * \operatorname{SQRT}(A B S(\mathrm{~V})))$
S. $=0.02 *(\operatorname{AES}(E)) * * 1.2 * S I G N(1.0, E)-0.02 * S$

SUBROUTINE IINKW (W 1,W2,W3,W4, W5,W6,W7,W8,W9,W10)
COMMON/STATE2/NORDR2, Y 2 (200), GN2 (200)
COMMON/SYSVAK/EXII,RLDCNE,IOUT,IFIIE,IRUNNC,T,TMAX,TNEXT
COBMON/SYSVAR/DT, DTMAX, DTMIN, EMAX, EEIN,SY(35)
COMMON/LINK/LINKOR
COMMON/EXTR/YEXTR (200),H(10)
VATCH OUT *************
LINKOR=2
GO TO $(1,2,3,4,5,6,7,8,9,10)$, LINKCR

- $10=0.0$
$W 9=0.0$
$48=0.0$
$W 7=0.0$
N $6=0.0$
$\mathrm{H} 5=0.0$
- $4=0.0$

W3 $=0.0$
W2=YEXTE (1)
$W 1=Y E X T R(7)$
RETURN
END
SUEROUTINE LINKY (HAV)
COMMON/AVEE/YAV (200)
WAV=YAV (3)

```
CALL MATMUL(AVN4,E,AVN3,LINORD,IINORD,LININP)
```

 compotaticn of cceff. matrices fch linear discrete values
 VIZ. (AMO + I) , (\(\mathrm{MO}-3 \mathrm{M} 1+2 \mathrm{M} 2\)) B 。
 $4(\mathrm{~B} 1-\mathrm{B} 2) \mathrm{B},(2 \mathrm{M} 2-\mathrm{M} 1)$
CALL MATMUL(A, MO, BETP1, LINOKD, LINCRC, IINORD)
CALL ADDID (BETP1, BETPO, LINORD)
CALL SCALR1 (M1, -3.0.BEIF1.IINCRD.IINCRD)
CALL SCALR1 (M2, 2.0, 日ETP4, LINORL, IINOFD)
CALL MATADO(MO, 日ETP1, BETP1, LINCBC, LINCED)
CALL MATALD (BETP1, BETP4, EETP4, IINORD,LINORD)
CALL MATBUL (BETP4, B, EETF1, IINCED,IINCRD,LININP)
CALL MXSUB(M1,M2,EETPU, IINOFD,LINCRD)
CALI SCALR1(BETP4,4.0.BEIP4,IINCFD,IINCRD)
CALL MATMUL(BETP4, B, EETP2,LINORC,IINCRD,LININP)
CALL SCALR1 ($\mathrm{B} 2,2.0$, BETE4, LINOFE, IINCED)
CALL MXSUG(BETP4, M1, BETE4, IINORL, IINORD)
CALL MATMUL (BETP4, B, BETP3. LINCFD,IINCRD,LININP)
CALI INICCN
2. RUNTIMECCBEUTATION
COMPUTATION CF $\mathrm{Y}(\mathrm{N}+1)$ AND $\mathrm{U}(\mathrm{N}+1)$
RLDCNE = FAISE.
DO $35 \mathrm{~J}=1$, NORDR1
YSAV (J) =Y (J)
$Y(J)=Y(J)+D I C 2 * G N(J)$
CONTINUE
DO $40 \mathrm{~J}=1$. LININP
USAV $(J)=U(J)$
CONTINUE
T=T+DTO2
CALL GFUNC
DO $45 \mathrm{~J}=1$, LININP
USAV2 (J) $=0$ (J)
CONTINUE
CALL DIFEQ 1
DO $50 \mathrm{~J}=1$, NOFDR1
$Y(J)=Y S A V(J)+D T * G N(J)$
CONTINUE
T=T+DTO 2
CALL GFUNC
COMPUTATION CF XAV $(N+1)$
CALL MXCOL (AVNO, X, BNO, LINORL,IINORD)
CALL MXCOL(AVN1, USAV,BN1, LINCKD, LININF)
CALL VECADD (ENO, EN1, EN2, LINORE)
CALL MXCOL (AVN2, USAV2, BNO, LINCFD, IININF)
CALL VECADD (ENO, EN2, EN2, LINOKD)
CALI MXCOL (AVN3, U, BNO, LINOEL,LININP)
CALL YECADD (ENO, BN2, XAV,LINOEL)
COMPUTATION OF WAV $(N+1)$
DO $60 \mathrm{~J}=1$. LINOUT
MSAV (J) = MAV (: 1)

RETURN
END

INSERT RKM AND INTRGX HERE
$D T=1.0, T M A X=100.0, N P O I N T=51, Y 1=0.1, R 1=8,0, R 2=8.0, R \bar{I}=8.0$ $R 4=8.0, C 1=6.25, C 2=4.25, C 3=1.25, C 4=1.25 . D T M I N=1.0 E-6$ DTMAX $=0.3, R .5=8.0, R 6=8.0, C 5=1.25, C 6=1.25$
$C=2.0, F K 1=1.41, F K 3=5.0, A D=7.2, E M A X=1 . E-5, E M I N=1 . E-7$
L $\mathbb{Y}, \times 1, \times 2, \times 3, \times 5, V, 5$

APPENDIX B

SUBROUTINE MXCAL3

Subroutine MXCAL3 was derived from subroutine MXCAL (Ferguson, 1972) in order to compute matrix M3. The changes made to MXCAL are denoted by comment cards in the listing of MXCAL3 found as part of combined algorithm based on the Modified Euler Method in Appendix A. These changes are summarized here. First, the matrix M3 had to be declared as a parameter passed to the subroutine and dimensioned along with its corresponding work space matrix M33. The next several changes required only a parameter change from M2 to M3 or M22 to M33 in the computation of $M_{3}(T)$ (Palusinski and Wait 1978, pp. 34-46). Following this, statements had to be added to find M2 from M3 as shown here.

$$
\begin{equation*}
M_{2}=(h / 3)\left(A M_{3}+I\right) \tag{C-1}
\end{equation*}
$$

Finally $M_{3}(h)$ had to be calculated from $M_{3}(T)$ and printed and this required a change from the original formulation of $M_{2}(h)$.

After the changes were made, MXCAL3 was tested by comparing its matrices M_{0}, M_{1}, and M_{2} with those computed by MXCAL for a fixed matrix A. The two subroutines were found to produce the same results for the three matrices thus verifying the subroutine MXCAL3.

APPENDIX C

TABLES OF PEAK ERRORS

The peak errors found for the experiments described in Chapter 5 are presented in this section in the form of tables.

Table C-1. Harmonic oscillator errors. Improved Euler Method

$D T$	$E 2$	$E 3$
0.08	$5.06 \mathrm{E}-2$	$5.75 \mathrm{E}-2$
0.02	$2.02 \mathrm{E}-1$	$2.30 \mathrm{E}-1$
0.04	$8.08 \mathrm{E}-1$	$9.85 \mathrm{E}-1$
0.08	$3.25 \mathrm{E}+0$	$3.63 \mathrm{E}-0$

Table C-2. Pendulum errors. Improved Euler without averaging

| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table C-3. Pendulum errors. Improved Euler Method

DT	CPU TIME	TET 1	TET2	TAU1	TAU2
0.01	0.077	$5.87 \mathrm{E}-2$	3.35E-2	1.56E-2	8.72E-2
0.02	0. 045	5.87E-2	3.3.9E-2	6.06E-2	1.72E-2
0.03	0.030	2.33E-1	8.66E-1	2.39E-1	7.58E-2
0.05	0.020	$5.89 \mathrm{E}-1$	3.89E-1	5.33E-1	1.77E-1
0.06 .	0.020	1.43E-0	1.10E +0	1.45E 50	$4.99 \mathrm{E}-1$
0.09	0.015	2.04E 0	1.60Es 0	$2.08 \mathrm{E}+0$	7.16E-1.
0.10	0.013	$4.57 \mathrm{E}+0$	$3.60 E+0$	$4.59 \mathrm{E}+0$	1.92 E 40

Table C-4. Pendulum errors. Modified Euler Method

DT	Cgu mias	TET1	¢ET2	TAU1	T802
0.08	0.097	8.65Em	$6.44 \mathrm{E}-2$	1.05E- 1	$2.68 \mathrm{E}-2$
0.02	0.050	$3.46 \mathrm{E}=8$	2.77w-1	$4.19 \mathrm{E}-1$	$8.09 \mathrm{E}-1$
0.03	0.038	$7.78 \mathrm{E}-1$	$6.35 E-1$	9.41E-1	$2.47 \mathrm{E}-1$
0.05	0.023	2.16Et0	1.78E:0	2.59E+0	$6.865-1$
0.06	0.022	3.12E+0	2.58Eヶ0	$3.74 \mathrm{E}+0$	1.13E +0
0.09	0.018	7.90E+0	5.90E0	8.47E40	5.06E +1
0.80	0.087	8.83Eか0	7.28E*0	2. 2484	2.24E ${ }^{\text {2 }}$

Table C-5. Mine-shaft errors. Improve Euler without averaging

DT	CQu xIme	OM	Y 1	V2	V 1	01	\%2
0.02	0.321	7. $37 \mathrm{E}-3$	8. $36 \mathrm{E}-3$	7066E-3	1. $39 \mathrm{E}-3$	4,09E-4	7.40E-4
0.03	0.251	$3.35 E-2$	$3.47 \mathrm{E}-3$	$3.48=-2$	3. $54 \mathrm{Em}-3$	$1 \sim 39 E-4$	$1.03 \mathrm{E}-4$
0.04	0.230	3.46E-2	6.27e-3	$3.59 \mathrm{E}-2$	$6.45 E-3$	$2059 \mathrm{E}-3$	$3.56 E-3$
0.05	0.288	$4023 E-3$	8.54E-3	$4.07 \mathrm{E}-3$	E.77E-3	2. 58E-3	$4.064 \mathrm{E}-3$
0.06	0.200	20067E-2	1025E-2	2.83E-2	1.28E-2	3.92E-3	$6.80 \mathrm{E}-3$
0.09	0.185	7073E-2	2.75E-2	8.69E-2	2083E-2	8002E-3	8048E-2
0.010	0.898	9-39E-2	3.82E-2	7008E-1	$3.90 \mathrm{E}-2$	1047E-2	2012E-2
0.12	0.179	$2044 E-2$	$4.88 \mathrm{E}-2$	$2035 \mathrm{E}-2$	$5001 \mathrm{E}-2$	8038E-2	2061E-2

Table C-6. Mine-shaft errors. Improved Euler Method

DT	CPU TIME	OM	Y 1	V2	V1	K	\% 2
0.02	0.249	1047E-2	$807 \mathrm{E}-2$	$8.49 E-2$	1008E-2	2.37E-3	4.20E-3
0.03	0.0198	$9.31 \mathrm{E}-3$	3.91E-3	9.53E-3	3089E-3	3.57E-3	8.067E-3
0.04	0.8171	1004E-?	10.34E-3	1.07 $5-2$	10 31E-3	9006E-3	5035E-3
0.05	0.162	$8.58 \mathrm{E}-2$	7-70E-3	1.66E-2	7.98E-3	8. $52 \mathrm{E}-2$	$9.80 \mathrm{E}-3$
0.06	O. 150	ग-92E-2	1026E-2	2004E-2	8.29E-2	2ه35E-2	1-61E-2
0009	0.136	$3049 \mathrm{E}-2$	3027E-2	$3.75 \mathrm{E}-2$	3. $36 \mathrm{E}-2$	5-73E-2	4015E-2
0.10	0.132	$4081 E-2$	4.11E-2	$4-42 k-2$	$4.22 \mathrm{E}-2$	$7.14 \mathrm{E}-2$	5022E-2
0.12	0.827	$5.60 \mathrm{E}-2$	$6.16 \mathrm{E}-2$	$6.05 z-2$	$6032 \mathrm{E}-2$	1005E-1	7.75E-2

Table C-7. Oscillator (partition A) errors. Nonlinear method without averaging

DT	cru time	צ1	X 1	$\times 2$	83	X5	v 1
0.005	10.15	1.10E-2	4.89E-3	1.73E-3	$1.02 \mathrm{E}-3$	8.74E-4	8.065E-4
0008	9. 2220	1.10E-2	$3.05 \mathrm{E}-3$	1.49E-3	$1.04 \mathrm{E}-3$	8.68E-4	$6084 \mathrm{E}-4$
0.025	7.140	1,09E-2	1030E-3	1-55E-3	$8.08 \mathrm{E}-3$	9.08E-4	70.11E-4
0.05	6.290	8.07E-2	$2012 \mathrm{E}-3$	1.019E-3	8.40E-4	$6{ }_{60} 19 \mathrm{E}-4$	$4{ }_{6} 54 \mathrm{E}-4$
0.10	6.860	1000E-2	$9.34 \mathrm{E}-3$	2029E-3	$1060 \mathrm{E}-3$	$8.03 \mathrm{E}-3$	6.64804
0.20	5.880	$80088-2$	20.89E-2	$2.70 \mathrm{E}-2$	2051503	18015E-3	6.23804

Table C-8. Oscillator (partition A) errors. Nonlinear method with averaging

DT	CPU TIME	Y 1	81	K2	$\times 3$	X 5	$\text { Y } 1$
0.005	10.078	1051E-1	20049E-1	$2 \sim 58 \mathrm{E}-2$	7.94E-3	3-28E-3	3-22E-3
0.08	9.730	$2.83 \mathrm{E}-1$	$4066 \mathrm{E}-1$	他91E-2	$1.058 E-2$	8:46E-3	$5.308-3$
0.025	7.500	$6.23 \mathrm{E}-\mathrm{f}$	1.02E*0	$8.74 \mathrm{E}-2$	$3.9 .8 \mathrm{E}-2$	2063E-2	$20.18 \mathrm{E}-2$
0.05	6.620	$8.16 \mathrm{E}+0$	1.91E*0	1099E-1	$7.78 \mathrm{E}-2$	$5.49 E-2$	$5.04 \mathrm{E}-2$
0.10	6.210	$2023 \mathrm{E} \%$	3ns 62E*0	$3 \mathrm{~m} 68 \mathrm{E}-1$	7055E08	$8009 E-8$	$80048=9$
0.20	6.8180	4.58 ± 40	7.20E*0	$6 \mathrm{B4E}=1$	2099 -1	$2.178-1$	$2008 \mathrm{E}-\mathrm{f}$

Table C-9. Oscillator (partition A) errors. Nonlinear method with shifted averaging

DT	CPU TIME	41	$\times 1$	82	X3	$\times 5$	V 1
0.005	25.66	3.22E-2	4.5 5 E - 2	9022E-3	8.71E-3	8. $40 E-3$	1007E-2
0.00	14.57	$4.53 E-2$	$6.79 \mathrm{E}-2$	1.59E-2	9.51E-3	9.62E-3	1.65E-2
0,025	10.082	8.60E-2	1. 35E-1	2.16E-2	1053E-2	$11053 \mathrm{E}-2$	$2.08 \mathrm{E}-2$
0.05	10.01	10.19E-1	1. $855 \mathrm{E}-1$	2.063E-2	2. $22 . \mathrm{E}-2$	2.0 2 EE-2	$4.00 \mathrm{E}-2$
0.80	9.030	J.72E-1	2.70E- 1	3.11E-2	3.62E-2	$3.60 \mathrm{E}-2$	$6.38 \mathrm{E}-2$
0. 20	8-760	2.89E-1	$4059 \mathrm{E}-1$	5-70E-2	$6.36 \mathrm{E}-2$	$6.16 \mathrm{E}-2$	1009E-1

Table C-10. Oscillator (partition B) errors. Nonlinear method without averaging

-							
DT	CPU TIME	I 1	81	82	83	X 5	V 1
0.0005	9.340	Da $10 \mathrm{E}-2$	7. 13E-3	1.08E-2	$\mu_{0} 27 E-3$	$2087 E-3$	2038E-3
0.01	8. 260	$8.97 \mathrm{E}-2$	3. $24 \mathrm{E}-2$	$4086 E-2$	$2003 \mathrm{E}-2$	1. $34 E-2$	ग.31E-2
0.0025	6.350	1, 46E-1	2. $28 \mathrm{E}-1$	2.045E-9	1-26E-1	$9.54 E-2$	1034E-1
0.05	5.430	6.06E-2	1. 17E-1	3.86E-1	$071 \mathrm{E}-1$	- $882 \mathrm{c}-1$	9.78E-2
0.10	5.290	9.29E-2.	2.09E- 1	9.74E-1	$6.63 \mathrm{E}-1$	4.0 52E-1	2.65E-1
0.20	5. 180	$9.01 \mathrm{E}-1$	81036 Es 0	2062Es0	1.31E*0.	8.52E-1	3.94E-1

Table C-11. Oscillator (partition B) errors. Nonlinear method with averaging

DT	CPU TIME	88	81	82	X 3	85	V8
0.005	10.63	8.065E-8	2-51E-1	8 80E- 9	70 26E-\%	1025E-8.	8042E-4
0.08	8.890	2040E-1	3.63801	2*15E-1	9-46E-8	8052E-1	1087E-1
0.0025	6.320	1-46E-9	2029E-1	$2045 \mathrm{E}-1$	$8.26 E=1$	$9.55 z-2$	1034E0\%
0.05	5.760	3. $39 E-8$	5013E-1	$3.86 \mathrm{E}-1$	2. $16 \mathrm{E}-1$	2087801	2079E-1
0.80	5.270	$6.54 \mathrm{E}-1$	8.00 Et 0	1.06E*O	$5.64 \mathrm{E}-1$	$4025 E-8$	$40878=8$
0.20	50020	8082E0	$1.82 \mathrm{E}+0$	1807E +0	5-18E-1	$4079 \mathrm{E}-1$	6.65801

Table C-12. Oscillator (partition B) errors. Nonlinear method with shifted averaging

DT	CRU TIME	41	\% 1	X 2	X3	85	8.8
0,005	23.65	$1 \sim 54 \mathrm{E}-2$	2.11E-2	$5078 \mathrm{E}-2$	5.29E-2	5. 14E-2	$4.76 E-2$
0×07	83.48	1-33E-1	1098E-1	$1084 \mathrm{E}-1$	$1054 \mathrm{E}-1$	1.43E-1	$1053 \mathrm{E}-1$
0, 025	9.0650	2043E-1	$3.87 \mathrm{E}-1$	$2600 \mathrm{E}-8$.	8.4 42E-	1034E- 8	8.80E09
0.05	8.910	1044E-8	1089E-1	$50425-1$	3.66E-8	2068E-9	$3.36 \mathrm{E}-8$
0.80	7.900	7-80E-2	1.80E-1	$71095 \mathrm{E}-1$	$3.66 \mathrm{E}-1$	1074E-1	1.04E-9
0.20	70530	$3.70 \mathrm{E}-1$	$9.20 \mathrm{E}=1$	1048E*0	9020 E-8	5.20Em ${ }^{\text {c }}$	$2040 \mathrm{E}-8$

Table C-13. Autopilot (partition 1) errors. Nonlinear method without averaging

DT	RUN TIME	PH	X	Y	X 1	82	X 3
2.5E-5	27.49	$2.05 \mathrm{E}-6$	6. 308-6	1081E-6	3.33E-3	$2.03 \mathrm{E}-1$	$4.24 E-3$
$4.0 \mathrm{E}-5$	17.09	3. 15E-6	6.28E-6	1.90E-6	3.29E-3	7, 80E-1	3.72E-3
5.0E-5	13.93	3-29E-6	6.32E-6	2ms 12E-6	3-33E-3	2003E-1	U. $24 \mathrm{E}-3$
$8.00 \mathrm{E}-4$	7.020	. $1019 \mathrm{E}-5$	16. $25 \mathrm{E}-5$	$7.0545-6$	3. $32 \mathrm{E}-3$	2003E-8	$4.228-3$
$2.00 \mathrm{E}-18$	3.640	8008E-4	10 16E-48	7005E-5	3021E-3	1094E-1	$4.00 E-3$
$2.5 E-4$	29980	$4810 \mathrm{E}-4$	$44_{0} 4 \mathrm{E}-4$	2 m 5 Em	$3.07 E-3$	8070E-8	$3045 \mathrm{E}-3$

Table C-14. Autopilot (partition 1) errors. Nonlinear method with averaging

DT	RUN TIHE	PH	X	4	89	x 2	X3
2. $5 E-5$	28.29	To $26 E-6$	$6.26 \mathrm{E}-6$	1881E-6	3. $33 \mathrm{E}-3$	$2003 \mathrm{E}-1$	$4-24 E-3$
$4.0 \mathrm{E}-5$	77. 72	T. 70E-6	6.20E-6	2.96E-6	3-29E-3	1080E-1.	$3.72 \mathrm{E}-3$
5.0E-5	14.36	4.11E-6	6.19E-6	$3.51 \bar{y}-6$	3. $33 \mathrm{E}-3$	2-03E-1	$u_{80} 24 \mathrm{E}-3$
1.0E-4	7.190	1-24E-5	$1.14 \mathrm{E}-5$	7-55E-5	3.32E-3	$2.03 \mathrm{E}-1$	4.22E-3
2.0E-5	3.700	$8.01 \mathrm{E}-4$	9.58E-5	8.49E-4	3.19E-3	$1.94 \mathrm{E}-8$	$4.00 \mathrm{E}-3$
2 20 5E-5	3.100	9.97E-5	$2.04 \mathrm{E}-4$	$4.045-4$	2.99E-3	$8070 \mathrm{E}-1$	3.65E-3

Table C-15. Autopilot (partition 1) errors. Nonlinear method with shifted averaging

DT	RUN TIME	PH	\%	Ψ	81	$\times 2$	83
205E-5	70.25	$8.87 \mathrm{E}-$ is	8062E-4	5-56E-4	3.42E-3	$2003 \mathrm{E}-1$	$44^{4} 2 \mathrm{E}-3$
$4.0 \mathrm{E}-5$	43.01	8042E-3	1038E-3	8589E-4	$3 \mathrm{H} 43 \mathrm{E}-3$	1.80E-8	3. $73 \mathrm{E}-3$
5.0E-5	34.38	1.77E-3	7072E-3	$1011 \mathrm{E=} 3$	$3.51 \mathrm{E}-3$	2003E-1	$4025 \mathrm{E}-3$
8.0E-4	77.58	$3.55 \mathrm{E}-3$	3.47E-3	$2022 \mathrm{E}-3$	$3.69 \mathrm{E}-3$	2003E-7	$4026 E-3$
2.0E-4	8.690	7.16E-3	$6.96 \mathrm{E}-3$	$4 \times 42 \mathrm{E}-3$	$4.05 \mathrm{E}-3$	2002E-1	4028E-3
$2-5 E-5$	78120	$9.28 \mathrm{E}-3$	8*99E-3	$5.47 \mathrm{E}-3$	4-28E-3	70988-7	$8_{0} 06 \mathrm{E}-3$

Table C-16. Autopilot (partition 2) errors. Nontinear method without averaging

Table C-17. Autopilot (partition 2) errors. Nonlinear method with averaging

DT	RUN TIME	PH	8	צ	88	82	83
$2.5 \mathrm{E}-5$	27.39	1.65E-5	6.36E-5	\% 15E-5	3.33E-3	2.04E-1	4.025E-3
$4.08-5$	17.05	4.14E-5	3.45E-5	3.09E-5	3.31E-3	1.81E-1	3.76E-3
5.0E-5	83.84	6.0.25E-5	5.31E-5	$4.72 \mathrm{E}-5$	$3 \mathrm{c} 35 \mathrm{E}-3$	$2.05 \mathrm{E}-1$	4. $30 \mathrm{E}-3$
1.0E-4.	6.910	20044E-4	$2014 \mathrm{E}-4$	1.88E-4	3.41E-3	2.07E-1	M, 48E-3
$20.0 \mathrm{E}-4$	3¢570	5. 2550.4	50085-4	3.23E-4	3.66E-3	2, 04E-1	4,93E-3
2.5E-5	3.800	10.86E-3.	$2.578-3$	1.87E-3	5.09 Em - 3	1.90E-9	$4084 \mathrm{E}-3$

Table C-18. Autopilot (partition 2) errors. Nonlinear method with shifted averaging

DT	RON TIME	PH	X	Ψ	X 8	82	83
$205 E-5$	68.062	2. $79 \mathrm{E}-5$	2-46E-5	$8853 \mathrm{E}-5$	$3.878-3$	2.15E-8	$4.26 E-3$
$4.0 \mathrm{E}-5$	42.87	4.19E-5	3-82E-5	2038E-5	3091E-3	1998E-1	3.76E-3
5.0E-5	34.42	5.022E-5	4.80E-5	2098E-5	$4{ }_{4} 11 \mathrm{E}-3$	2-26E-1	$4.29 \mathrm{E}-3$
100E- 4	97,44	9.01E-5	8-94E-5	5.55E-5	5.27E-3	$2.58 \mathrm{E}-1$	$4040 E-3$
200E-48	8.740	$8.34 \mathrm{E}-4$	1052E-4	91060E-5	9.49E-3	3.03E-8	$4.75 \mathrm{E}-3$
205E-5	7.090	To 45E-4	2000E-4		\%o $85 \mathrm{E}-2$	3. $19 \mathrm{E}=1$	$4.77 \mathrm{E}-3$

APPENDIX D

COMBINED ALGORITHM WITHOUT AVERAGING

The combined algorithm without averaging (labelled CRK2HI.C) that was compared with the combined algorithms with averaging is described in Palusinski, 1977b, pp. 21-23. This algorithm performs the half step calculations

$$
\begin{align*}
& k_{1}=f\left(y_{n}, t_{n}, w_{n}\right) \tag{D-1}\\
& y_{n+1 / 2}=y_{n}+(h / 2) k_{1} \tag{D-2}\\
& u_{n+1 / 2}=g\left(y_{n+1 / 2}, y_{n+1 / 2}\right) \tag{D-3}
\end{align*}
$$

The nonlinear full step solution is then predicted as

$$
\begin{align*}
& y_{n+1}^{p}=y_{n}+h k_{1} \tag{D-4}\\
& u_{n+1}^{p}=g\left(y_{n+1}^{p}, t_{n+1}\right) \tag{D-5}
\end{align*}
$$

The linear system based on the predicted u_{n+1}^{p} value is given by

$$
\begin{align*}
x_{n+1}^{p}= & e^{A h_{n}}+\left(M_{0}-3 M_{1}+2 M_{2}\right) B u_{n} \\
& +4\left(M_{1}-M_{2}\right) B u_{n+1 / 2}+\left(2 m_{2}-M M_{1}\right) B u_{n+1}^{p} \tag{D-6}\\
w_{n+1}^{p}= & C x_{n+1}^{p}+D u_{n+1}^{p} \tag{D-7}
\end{align*}
$$

The nonlinear full step solution is obtained from

$$
\begin{align*}
k_{2} & =f\left(y_{n}+h k_{1}, t_{n+1}, w_{n+1}^{p}\right) \tag{D-8}\\
y_{n+1} & =y_{n}+(h / 2)\left(k_{1}+k_{2}\right) \tag{D-9}\\
u_{n+1} & =g\left(y_{n+1}, t_{n+1}\right) \tag{D-10}
\end{align*}
$$

Finally, the nonlinear correction is computed

$$
\begin{align*}
x_{n+1}= & e^{A h_{1}} x_{m}+\left(M_{0}-3 M_{1}+2 M_{2}\right) B u_{n}+4\left(M_{1}-M_{2}\right) \\
& +2\left(m_{2}-M_{1}\right) B u_{n+1} \tag{D-11}\\
w_{n+1}= & C x_{n+1}+D u_{n+1} \tag{D-12}
\end{align*}
$$

As seen, this algorithm is more complicated than the Improved Euler algorithm since half step solutions are required.

LIST OF REFERENCES

Ferguson, R. E. A Matrix-Vector Manipulation Software Package. Tucson: Department of Electrical Engineering CSRL Memo 231, 1972.

Gille, J. C., Pelegrin, M. J., and Decaulne, P. Feedback Control Systems. New York: McGraw Hill Book Co., 1959.

Korn, G. A. and Korn, T. M. Electronic Analog Computers. New York: McGraw Hill Book Co., 1956.

Korn, G. A. and Wait, J. V. Digital Continuous-System Simulation. Englewood Hills, N. J.: Prentice Hall, 1977.

Lucas, J. J. and Wait, J. V. DAREP--a portable CSSL-type simulation language, Simulation, January 1975, 24, 17-28.

Palusinski, 0. A. Averaging in Simulation of Coupled Linear and Nonlinear Dynamic Systems. Tucson: Department of Electrical Engineering CSRL Memo 312, 1977a.

Palusinski, 0. A. Multirate Integration Routines for Partitioned Dynamic Systems. Tucson: Department of Electrical Engineering CSRL Memo 314, 1977b.

Palusinski, 0. A. Averaging in Simulation of Partitioned Dynamic Systems. Tucson: Department of Electrical Engineering, 1978.

Palusinski, O. A., Skowronek, M., and Znamirowski, L. Analog and Hybrid Simulation. Warsaw: WNT, 1976.

Palusinski, O. A., and Wait, J. V. Simulation Methods for Combined Linear and Nonlinear Systems, Simulation, March 1978, 30, 85-94.

$$
\text { E } 33 \quad 3750 \quad 5
$$

