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N ABSTRACT

© This theéis désCriBes a study of partitioned syétem integratibn
algorithms which use averaging of variables at the interface between a
fast subsystem and a slower subsystem. The algorithms were coded for
the'DAREP continﬁous system simulation Tanguage. Two so-called com-
bined algorithms are useful when the fast subsystem is linear (the
sTow subsystem may be nonlinear). Other algorithms studied are valid
-in the case when both subsystems are nonlinear.

The algorifhms were teéted}by simulating several partitioned
systems and the results were compared to simulations done with con-
ventional partitioned algorithms nét employing averaging. It was
found that averaging improved worst-case peak fractional errors for
larger step sizes for the experiments, but as expected, the mean peak
error was found to be problem dependent. In addition, execution times,
and thus, costs were improved when using the combined algorithms, but
‘both'nonlinear aTgorithms required longer execution times, and there-

fore, higher costs.

viii



CHAPTER 1
INTRODUCTION

This thesis‘feports on the coding and festing of four fntegra-
tion algorithms employing averaging techniques to be used in the DAREP
(Lucas .and Wait, 1975) package for the simulation of partitioned sys-
tems (Paiusinski-and Wait, 1978). The general class of partitioned
systems referred to here consist of those which may be divided into
one fast and one slow cbntinuous-time subsystem. The four algorithms
také advantage of this property by using a large steb size and an |
average of the appropriate fast subsystem variables over this 1arge'
step size in thé integfation bf the §1ow subsystem.

R The'first two alrogithms considered were taken from thoeritical
work originally presented in Palusinski (1977a) and were intended for
use}with systems having a_slow subsystem which ié'non1inear and a fast
subsystem which is Tinear. These two algorithms will be referred to as

the combined methods. The two remaining algorithms, labelled the

partitioned methods, were derived from Palusinski (1978) to_be used
with a fast and a slow nonlinear subsystem. |

| The strategy gti]ized in fhe codﬁng of these simulation methods
consisted of writing FORTRAN subroutines which would be compatible with
the DAREP simulation Tahguage, This resulted in each algorithim being
expressed as an integration subroutine, named INTRGX, containing

1



expressions for the computation of the neXt states of both subparti-
tions, together with several accompanying subprograms performing N
initialization, etc. The combined methods required extensive matrix
manﬁpulations due to the description of thellinearvsubsystem in matrix
form. These manipulations were performed with the aid of a Tibrary of
matrix subroutines (Férguson, 1972).

After programming, the first combined method was tested on
three problems: a sine Toop (harmonic oscillator) problem, the simu- .
Tation of a servo-controlled pendulum, and the simulation of a mine-
~shaft elevator. A second combined method was tested on the servo-
controlled pendulum. The partitioned methods were tested on the models
of a nonlinear electronic oscillator (two different partitions) and an,
‘autopilot hydraulic servo-system. In all cases, the results were com?
pared to previous partitioned system algorithms that do not use
averaging. A

The organization of this thesis is as follows: Chapter 2
examines theknotation and conventions used and describeé standard
variable nameé and assumptions. Chapter 3 covers'the combined methods
including a general description of each aTgorithm together with the
special considerations of coding and use. Chapter 4 presents the par-
titioned methdds° Chapter 5 is devoted to the description of tHe test
problems, and overall results and conclusions are discussed in Chapter‘
6. The program IiStings and detailed results have been placed in the

appendices.



CHAPTER 2
SYSTEM DESCRIPTION:  NOTATION

The description of the integration rules under consideration
in the form of next-state equations requires a discussion of the nota-

tion. This notation arises from modeling the general partitioned

systems.

The general class of partitionable systems of interest here

are assumed to be composed of a fast and a slow subsystem as shown in

Figure 1.

FAST

SLOW

Figure 1. Block diagram showing partitioned system



The sTow nonlinear subsystem may be repreéented by state differential

equations (Palusinski, 1977a, p. 1}

Y= (y, t, w) (2.1)

with initial state y (0) and output coupling equation

'

u=g (y, t) B (2.2)
where: y - state vector of dimension kg
u - output vector of dimension k, -
w - input vector of:dimension k3
t - independént variab]e

Of course, additional output variables may be obtained from each sub-
system, but only those which interconnect the two regions are of

interest here.

Combfned Lineér—NonIinear Case

Here the fast subsystem is characterized by Tinear state dif-

ferential equations (Palusinski, 1977a, p. 2)

x = Ax + Bu | (2.3)

and output coupling equation

"w = Cx + Du : (2.4)
where: x - state vector of dimeﬁsion k4
- input and output vectors as before

w
A - constant state matrix
B - constant input matrix

C, D - constant output matrix \



Thus the linear system is denoted by the A, B, C, and D matrices, the

initial conditions x(0), and the input u.

Partitioned Nonlinear Case

- In this case it is assumed that both the fast and slow sub-
systems are nonlinear. The slow nonlinear sub%ystem is described
again by the staté differentiai equation (2.71) with w = x and (2.2) and
the fast nonlinear subsystem by another set of differential'equations.

(Paiusinski, 1978, p. 1)

x = f (x, t, y) - - (2.5)
with initial state x(0). '
where: x - state vector of dimension T]
y - input coupling vector of dimension 12

t - independent variable

Time Discretization

A simulation is assumed to begin at t = 0.0. Values of the
system variables are then calculated at equally-spaced time intervals,
tn =nh,n=0,1,2, ... In some‘céses, values of the‘system vari-
ables are calculated at intermediate times and may also be output.
The value of a variable x at t = tn is denoted by Xy and x at t = t

n

+ gh by Xt where q has a value between zero and one.

q

STow Subsystem Discretizationl

The sTow subsystem discretization technique (Palusinski,
1977a, pp. 3-6) used by all the algorithms is derived from equation

(2.1) written in the form



. n+l : 4 . '
Ye1 ~ Y0 T St' £y, t, w) dt | (2.6)

: n ‘ ‘
The variable w'may be represented in the interval tn’ tn+] by an
average value pius a variation:
W= Wn + w ' : (2°7)
- 1 tn . . . .
where Wo SR S wdt and w is the variation in w. Taking
_ VIt _ o
n+1

into account equation (2.7), it 15 possible to develop a Taylor series
around @n, This tranforms equation (2.6) into
t ' ‘ t .
- n¥l - n+1
a1 = Y = £y, t, W) dt +f Fpo S w
t t
0 (1EwN?) dt | (2.8)
wjere the matrix Fn is given by . | |
Fn = éf (.ys t, W) i (2°9) )

O W w = wn

Averaging the Fast Linear Subsystem

- The technique (PaTusinski, 1977a, pp. 12-17) used by the com-
bined Tinear-nonlinear algorithms in the averaging of the linear system
is based on an equation (2.3) which is used to derive

§ -5 '
Xy = eAgxn +5O eA(S ) Bun+§ deo - (2.10)

N

where @ £ § £ h. From this, an average value of x over the interval

[?n, tn+{] given by



h.
- .1 ! . :
X4 = SO Xt da” ‘ (&IU

may be-computed by integrating both sides of equation (2.10) and re-

placing , |
uL=0=1 + 2 (8/h)2 « 4 (8/n)! (2.12)
The vectors =~ are the linear combinations of the given values Qn+ .
: i
Following some man'ipu]at'ion,_to'(m_.l may be defined by '
- _ L o 1 -
Xopp = (Vg + 1) x + Z VY BA, (2.13)
where the matrices Vi are computed as follows
%g . .
v. =3 & pk-d-1 h k-3 o (2.18)
! S (1 |
_h o, 1 '
Vi'l = ¥ (AV1~+‘T¥T I) (Zf?S)

and i = j, j-1, j-2, ..., 1. The matrices, Ml’ used in the combined
linear nonlinear algorithms are related to Vi_by

M, = 1 Viﬁ

i (2.15)

1

Averaging of the Fast Nonlinear Subsystem

The partitioned nonlinear algorithm averages the fast subsystem

variables as follows (Palusinski, 1978, p. 2).

X, = _Z.] A, Knta, (2.17)

where ai (i=1,2, ..., n) are the variable step sizes used in the



integration of the fast subsystem. The fractions a; have to satisfy

the relation

ﬁl a; =1 | (2.18)
1:

The preceding discussion has described the background informa- .
" tion and underlying assumptions essential to the understandihg of the
mathematical representation of the simulation methods in subsequent

chapters.



CHAPTER 3
DESCRIPTION OF COMBINED ALGORITHMS

The description of the two combined algorithms is.divided into
three parts: presentation of the algorithms, programming conventions,

- and the use of the programs.

~ Mathematical Representation of Algorithms

The first combined Tinear-nonlinear algorithms investigated is
based on the Improved Euler equation (Palusinski, 1977a, pb. 7-8). The
nonlinear system integration is performed by first computing derivatives

.kl and‘k2 at tn and tn+]'as shown in the following equations.

k] = f (yn’ tos wn) | (3.1)

k2 f (yn + k], tn+1’ wn) (3.2)
Next, the value un+]ris computed using k] and k2 as follows
Y1 = Y (B 72) (kg + k) (3.3)

This results in a nonlinear output given by

Uper = 9 Wpgpe toeq) (3.4)
The Tinear éystem is based upon the following
equations (Palusinski, 1977a, pp. 24-25).
X417 = (AVy + 1) x + (Vg - Vq) Bu + ViBu ., (3.5)
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om

' Wh+TE:C§n+1 + 1/2D (un + un+]) (3.6)

The discrete value, xn+]; of  the Tinear system and the dufput

w are computed as follows

n+1l

X

n+1 (AMO +1) Xp ¥ (MO - M1) Bun * M1Bun+1

W Du

nt1 = ey D | (3.7)

The algorithm is completed with the nonlinear system correction

Cc _ - -
Y a1 = Ve TR, (W - W) | (3.8)

Modified Euler Algorithm

The second combined algorithm is derived from the Modified
Euler Equation (Palusinski, 1977a, pp. 7-8). Here, solutions to the
nqn11near system are first computed at the half step 1nterva1-(1,e.,/

. tn+1/2) as shown below (Palusinski, 1977a, Pp. 21-22).

ky = f (yn’ t ﬁn) (3.9)

Yoe1jz = Vg * (/2K | (3.10)

Uitz = 9 Woerye thers2) (3.11)
This Teads to a full step computation achieved by

kp = F Una1/z Tnarjes o) (3.12)

yn+1 = Ypsise * (072) Ky | (3.13)
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The Tlinear system}averaging is computéd as follows (Palusinski,
1977a, p. 23). | .
Xo41 = (A\J0 + I) X (\/'0 - 3V, + 2v2) Bu  + 4_(v]-v2) Bu

n+1/2 *
(2vg=vq) Bu,, (3.15)
Wnel = Xnad +.(D/6) (ug + Bupq/n + Upyg) ~ (3.16)

The Tinear full step solution is given by ‘
X4 = (AM0 + 1) X, + (M0 - 3M1.+ ZMZ)Bun + ﬂf(M-!-MZ)B_un_,_V2 +
Finally, the nonlinear system correction has the form

c — - - .
Yy n+]__ .Yn+-| + th (Wn_*_] = Wn) ‘ (3«.18)

Programming Conventions

The coding of the above simulation methods was governed by the
requirement that both programmed algorithms had to be cdmpatibie with
'DAREP. This resulted in the implementation of each integration rule as
"a FORTRAN subroutine named INTRGX. It was found necéssary to include
in each program two more ‘subroutines named INICON and LINKK. In the
case of the Modified Euler method, the matrix Tibrary subroutine MXCAL
(Ferguson, 1972) was modified to suit the algorithm.

_ These are two méjor functions performed by’the subroutine

INTRGX. The first is the computation of the state-spaced and otﬁer

matrices needed in the averaging and solution of the linear system.
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These: include M, V, eAtg etc. The execution of this portion of

INTRGX s pefformed only once during each run at t = 0.0 and consti-
tutes the precomputation or initia]iiation Section of the subroutine.
The main part of the subroutine is associated with actual solution
computation. Each time INTRGX is called, all state variables, defined
variabTess and averagé values are updéted from tn to tn+]o Due to the
matrix representation of thé Tinear subsystem, extensive matrix manip-
ulations are involved. The matrix operations are imp]eménted‘using
a library of subroutines available on pérmanent file (Ferguson, 1972);
The main purpose of INiCON, is to compute initial conditions.
This is done by first zeroing all matrices and vectors--an especially
useful feature in multiple run simulations. Next, user defined sub-
roUtinés are called to initialize the A, B, C, D, and F matrices.
Finally, the initial values of the u, w, and w vectors are calculated.
The subroutine LINKW 1inks“the 1fnear subsystem variables and
averéges needed in the derivative block to the values computed in
INTRGX. This type of arrangement is necessary to avoid searching
through the undéfined parameter array created by DAREP to determine
which elements of the array correspond to the proper Tinear variables.
In addition to the coding of these three subroutines for each
combined iinear nonlinear méthod, the algorithm based on the Modified
Euler equation required the alteration of subroutine MXCAL from the
éubroutine Tibrary. The alteration wés needed for the computation of

matrices My and V, which are used in that algorithm. A short descrip-

tion of the changés made to MXCAL appears in Appendix B and a 1isting
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of the new routine, MXCAL3, may be seen as. part of the_1isting for the
Modified Euler Method (Appendix A).

In all subroutines coded, care.was,taken toassign variab]e
names acéording to those used in the next-state equation;.; This fea-
ture is seen in the program listings of the algorithms'iﬁ Appendix A.
As seen from these 1istings, subroutines INICON'and LINKW are very
straightforward and therefore no flow chartévfor fhese appear. Flow
charts for the INTRGX subroutines for the two combiﬁed algorithms are

found in Figures 2 and 3.

Use of Combined Linear-Nonlinear Algorithms:
An Example

The simu]ation of a servo-controlled pendulum (Palusinski and

Wait, 1978, pp. 14-16) by means of the Improved Euler baséd method was
performed. The description is shown in Appendix A. In thfs exampTle,
it is found that apart from the three subroutines described previously,
all the code showh is a user supplied descriptfon in accordanée with
Chapter 2. |

"The $D1 block contains the differential equatﬁons corresponding
to the slow nonlinear portion of‘tﬁe.pendulum and a‘procedure secﬁion
which calls LINKW (the $D1 characteristics, as those of other DAREP
blocks, are deécribedbin Korn and Wait, 1977). AThis call to LINKW up-
dates averages of the Tinear variables needed by- the nonlinear sub-
system and values of w needed for output. The specifications of the
nonlinear system is completed by the subroutine GFUNC which computes

the output function u according to . equation (2.2).



INTRGX

no
T«a

yes
DEFINE DIMAX AND DT/2

COMPUTE COEFFICIENT MATRICES:

CALL INICON
n+l
SAVE u
n+1l
n+l
SAVE, w
nl an+l
n+l

Figure 2. Flow chart of subroutine INTRGX
for Improved Euler method
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Figure 2—Continued

vi » @D *Dxn> (% * M1)Bun * MIBV 1

wn+l * CV 1 * Dun+i

INEXT STEP PREPARATION'

Q RETURN ~
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Q INTRGX *

yesf
DEFINE DIMAX AND DT/2

COMPUTE COEFFICIENT MATRICES:

4 (M

CALL INICON

SAVE, un, untlj

n+1l

Figure 3. Flow chart of INTRGX for Modified Euler method
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Figure

SAVE w

n*l “CV1 *D/6(un + 4V %

n+1 n+l

n+1l

ntl an+l * Dun+1

NEXT STEP PREPARATION

RETURN

3--Continued
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The Tinear subsystem.deécriptionris provided in DEFLIN which
defines the A, B, C, D, and F matrices, the initial conditions on x and
the number of variables that are to be Tinked.

" The two subroutines GFUNC and DEFLIN, are placed in the $F
block followed by the algorithm subroutines INTRGX, INICON, and LINKW
in the $0 block. Finally, initial conditions on the nonlinear system
and output requests are entered.

By following the procedure outTined below, the usef may simu-
late any linear-nonlinear -partitioned system with the two combined |
algorithms. It is noted here that the Modified Euler based algorithm
requires the inclusion of MXCAL3 in the $0 block. o



CHAPTER 4
DESCRIPTION OF PARTITIONED ALGORITHMS

The description of the general nonlinear algorithms fo]]ows
the format used in the previous chapter, viz., the presentation of the
algorithms followed by programming conventions and an example of

program use.

Mathematical Representation of the
Nonlinear Algorithms

General Nonlinear Algorithm with Averaging

The first general nonlinear algorithm studied (Palusinski,
1978) employs a fixed step four point Runge-Kutta integration rule to
compute solutions to the slow subsystem and a variable step Runge-Kutta
Merson method to integrate ﬁhe fasf system (Korn and Waif, 1977, Appen-
dix A). Averages of the fast subsystem variables are computed over the
half step intervals tn’ tn+1/2- and tn+1/2’ tn+1\ as follows

- - m T, _ v
i1/ T £ T el (4.1)

-

n+l = b

X1

1° Xn+1/2+5] (4.2)

M=

.i

where the fractions a; and bi are constrained by

. |
T oa, =172 (4.3)
z |

-

19
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m .
T by= 1 , ’ (4.4)
i=1 |
and (h/2)ai and (h/2)bi are the Variable.step sizes used in the first
and second half steps. These averages are then used in the solution |

of the slow subsystem variabiesAas seen here.

ky = (v tpo X)) | (4.5)
o = F Uy * /2Ky, Gsys Kogpe) (4.6)
k3 = F (0 +(0/2)kps Er4q /00 Riayp) ENR))
yn;ﬂ/z =y, * (h/4)(k, +.k2) | (4.8)
k= F Ly * ks By, R (4.9)
Ypaq = Yt (WE)(kq+ ky) + B/3(ky + k) (4.10)

General Nonlinear Algorithm with Shifted Ave?aging

The second nonlinear algorithm is based on the preceding method.
In this technique, the fast subsystem averages ia'and ib are computed
6ver the intervals [}n;1/4’ tn+3/4:1 énd [}n+3/4’ tn+5/4:]
respectively. This difference results in evaluating the fast subsystem
variables at guarter stepé, The fast system is integrated over two
quarter steps with averages computed in the second of those steps. At
this point, an approximation to the siow system is‘computed as shown

k] = f (yn, tn’.xn) (4.11)
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Ky = £ (y, + (0/2)Kps £ g /05 X4q/0) (4.12)
a1z = Yp + (/8K + Kp) O (4.13)

This value of yﬁ+]/2 is then used in the fast systém integration over
the third quarter wﬁere the computation of ia is completed. This aver-
age is used as in the previous algorithm (equation 4.5 to 4.8) to yield
the half step solution of the §1ow Subsystem. The fast subsystem is
integrated again over the third quarter step using the new value of
yn+]/2. The fourth qparter step integration is performed for the fast
again with averages compiled. A full step approximation to the slow
system is then obtained as follows:

Ky = f (yn * kg t

nt1? X pe1) (4J4)

Yai = Yy + (5/6) (K1 + k&) + (h/3)(k, * ky) (4.15)

This approximation value is used in the integration of the fast system
from tn+1 to tn+5/4 to complete the calculation of Xp e With this
average, the full step solution is obtained as in the first nonlinear

algorithm (equations 4.9 and 4.10).

Programming Conventions

The coding-of the partitioned nonlinear algorithms consisted
of modffying an éxisting program (coded by 0. A. Palusinski) to
include averaging. The original program contains a subroutine INTRGX
which updates the next states for the slow nonlinear subsystem according
to a four point Runge;Kutta rule. The fast subsystem integration is

performed by a Runge-Kutta"Merson subroutine called RKM (coded by
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J. V. Wait and 0,.Aa Palusinski) which includes provisions for parti-
tioned integration. Among its function is the extrapolation of the
slow system varfab1es for the integration of the fast subsytem.

Both partitioned aTgorifhms required a chénge.in INTRGX only.
The first partitioned aIgorithﬁ wasvcompleted by adding code to compute
averages of the fast variabjes following returns from subroutine RKM.
The second aTgorithm requifed a more extensive modification. Here;
code was added not only to compute éverages, but also to keép track of -
the shifted time interval. Flow charts for subroutinés INTRGX for both
algorithms are shown in ngures 4 and 5; and source listings of RKM and

the two INTRGX routines may be found in Appendix A.

USe_of Nonlinear Algorithms: .An.Examb?é

The use of the nonlinear algorithms to perform a simulation con-
sists of writing the differential equations for the fast system in $D1
and the differential equétions for the slow system in $D2 in accordance
with the rules of DAREP (Korn and Wait, 1977, pp. 79-105). In addition,
~ each derivatiﬁe block must contain a procedural section which 1inks
variables needed in that block to the appropriate extrapolated or
averaged values (see example in Appendix A). This linking is performed
by convention by two user supplfed subroutines. LINKW Tinks extrapo-
Tated values of the slow system variables to the fast system equations.
" This is seen in the example in Appendix A which shows that the extrapo-
lated values of the first and sixth state variables of the slow system
are needed by the fast subsystem. By convention, LINKW Tinks the aver-

age values of the fast system to. the slow system. -In the example, ﬁt is



INTRGX

DEFINE DTMAX

TEMP « T

INTEGRATE FAST SYSTEM UNTIL T = TEMP + h/2

AND COMPUTE

k2 = f(yn +h/2(k1)> t
k3 * f(yn +h/2(k2), t

- yn +h/4(lci * k25

n+1l

TEMP =T

INTEGRATE FAST SYSTEM UNTIL T = TEMP + h/2

AND COMPUTE Xn+1

4 3%  n+l* pHE"
yn+l ¢ yn + h/6(kl + k4~ + h/3 (k2 + k3)

Figure 4. Flow chart of general nonlinear algorithm with

averaging
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PREPARE FOR NEXT STEP

RETURN

Figure 4--Continue®



Figure 5.

INTRGX
DEFINE DTMAX
TEMP = T

INTEGRATE FAST SYSTEM UNTIL T = TEMP + h/4

TEMP =
INTEGRATE FAST SYSTEM UNTIL T = TEMP + h/4
START xn+jj

f(Vn > h/2(K1)> t

TEMP = T

INTEGRATE FAST SYSTEM UNTIL T = TEMP + h/4

COMPLETE x
b

kl=fv Vv V
k2 7 gan *B/20),
3 ¢ h/2(k2).

wy, ¥ /41>

Flow chart of subroutine INTRGX of general
nonlinear algorithm with shifted averaging
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INTEGRATE FAST SYSTEM UNTIL T = TEMP + h/4

n+1
TEMP =T

INTEGRATE FAST SYSTEM UNTIL T = TEMP + h/4

START xn+1

n+1

n+l

TEMP = T

INTEGRATE FAST SYSTEM UNTIL T = TEMP + h/4

COMPLETE xn+l

n+l

n+1

NEXT STEP PREPARATION

RETURN

Figure 5*-Continued
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seen that the average of the fourth statelvariab]e'of the fast system
is needed by the slow subsystem.
Finally, parameter values and initial conditions on both sub--

systems and output requests are entered.



CHAPTER 5
'DESCRIPTION OF EXPERIMENTS

The simulations conducted to test the four algorithms are pre-
sented here together with techniques for error estimation. This chap-
ter is divided according to the combined Tinear-nonlinear experiments

and the partitioned nonlinear tests followed by a discussion on errors.

Combined Linear Nonlinear Experiments

Three test examples were used to study these methods. ‘These
were a harmonic oscillator, simulation of a servo-cdntr011ed pendulum
agdvsimulation of a mine-shaft elevator. A1l three were used with the
Improved Euler met’hdd° Simulations of the servo-controlled pendu1um
also were carried out with the Modified Euler method.

The harmonic oscillator problem was used mainly to test the
integration:algorithm for proper behavior on a'simp1e'prob]em of known

solution. The problem consisted of solving the differential Equation

}°+ y=0 - . (5.1)

This second order equation was broken down into two first order

‘equations:
} =z - (5.2)
t %-l-‘yzo (5°3)
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By setting the initial value of y and 9 to 0 and 100 respectively, a
solution of 100 sin t and 100 cos t is obtained for y and &.

| The deséription of this problem in a format acceptable by the
. combined Tinear-nonlinear integration schemes required that'equation

(5.2) be treated as the nonlinear equation

Y. = WAV (5.4)
The linear system was therefore described by

Xe=0*X+1*U (5.5)

W 1T*X+0=*U : . (5.6)
In addition, the coupling equation for U was replaced
Uu =Y ’ (5'7)

It should be noted that X, Y, U, and WAV are scalars. Finally, F,

defined aé
Fo=_9o(Y, t, w
3w
in also a scalar (F = 1). ‘ (5.8)

The servo-controlled pendulum and mine-shaft elevator models
are described in Palusinski and Wait (1978, pp. 14-21) and for the sake

of brevity will not be discussed here.

General Nonlinear Experiments

- The two nonlinear algorithms were tested first on two partitions
of an electric oscillator labelled A and B and then on two partitions
of an autopilot system named Pl and P2. The two partitions of’théve]ec-
‘tronic oscillator afe discussed in Palusinski (1977b, pp. 9-15). The

general block diagram of the autopilot system is shown in Figure 6.



30

The autopiTot systém model was deveToped by modeling each of the sub-
systems shown in the block diagrém and then combining all these sub-
systems to produce the overall modeT.

The f1rst subsystem dealt with was the vertical sensing unit
which may be thought of as a gyroscope which converts angular deflection
to a voltage. This gyro may be described by the transfer function

(Gille, Pelegrin, and Decaulne, 1959, pp.-710-712).

() = &, s | (5.9)
BEIT T 1y (12/a0)s + s2/1600

where @ is the pitch angle input to the gyroscope, u is the voltage
output and kd is a constant. This results in the following differen-

tial equation
U = -48 u - 1600 u + 1600 kg 0 (5.10)

with zero initial conditions.

The next system considered was the compensating network and
amplifier, and is defined by the fd]Towing transfer fuhctions (Gille
et al., 1959, pp. 713-716).

u(s) & | | (5.11)
E(s) 1+ 0.10s

X(s) = 1 1 + 107s (5.12)
W(s) 10 T+4s

where E is the input to this subsystem, W is the output of the ampli-

fier, Ka is the gain of the amplifier, X is the output and € is the
time constant of the compensating network.  These result in the dif-

ferential equations.
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=
I

= -100 W + 100 K, E : (5.13)

°

b
i

X/ +KW/(0 T )+ 0K, W/ (5.14)

with initial conditions,
The third block consisting of flight dynamics was taken from
Korn and Korn (1956, pp. 115-124) and the differential equations

describing the model are shown be]ow°
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V= -.22V - 16.6C - g cos G, sin @ © (5.15)
0= (0.237 V + 238 C - 26.6 AZ (YY) .

+ 1.68 +gsin®, cox 8) (5.16)

g = MV - 11.9 C + 10.3 AS (YY) - 679 g (5.17)

c=0-08 , . A (5.18)

where V is the velocity, 8 is the 1ift angle, @ is the pitch angle of
the plane. The function AS(YY) is described by way of a table con-

taining a set of points approximating

AS (YY) = sin™ (YY/K) | (5.19)
where K was chosen to produce -0.5¢rad AS(YY)<0.5 rad. Agaih,’zero
initial conditions are assumed. |

Finally, the hydraulic servomotor and pfessure stabilizer were
investigated. The hydraulic servo may be determined by

YQ

- Rm Y/J + k SOPX/J : | | (5.20)

P =X

5 . .
3.10 | : ‘(5,21)
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where Y is the displacement output of the servo, P is the pressure
obtained from the préssure stabilizer through X5, R is a damping fac- '
tbf, So is the surface‘aréa;of the actuator piston, and J is the momeﬁt'
of inertia of tﬁe piston.

| The pressure stabilizer is presented in Palusinski, Skowronek,

and Znamirowski (1976, pp. 211-218) and the equations are repeated

here

X; = (8 X,) 250 ' ~ (5.22)

Ky = (-6.59 X, - 0.0146 F(X;) X; - 0.54;
+ 28.7X, - 655.227) 250 - (5.23)

X, = (78.674 - 0.638 F(X,) af X, - 0.67X

3 _ 1 3 2
+2.78 QI‘+ Q,) 250 - (5.24)
0y = K ¥ (5.25)

where X] is a valve displacement, X2 is proportional to the speed of
valve movement, X3 is the pfessure in atmospheres, and QZ is a periodic
train of pU]ses representing disturbance in the system, The function

F(X]) described in Palusinski et al. (1976, p. 215) was approximated by
F(X;) = 0.25 X, - (5.26)

In the first partition investigated (P1), the hydraulic servo
and the pressure stabilizer Were p]aced.in the fast éubsystem and the
vertical sensing unit, compensating network, and flight dynamics com-
prised the slow subsystem. In the second partition (P2), the fast sub-

system was made up of only the pressure stabilizer.
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Error Computation

A1l simulations were performed by executing tﬁe algorithms with
the appropriate differential equations in conjunction with DAREP of the.
Control Data Corporation model CYBER 175 computer at The University of
Arizona. Each of the simulations was first run using a Runge-Kutta
Merson rule with no partitioning of the syétem° When a desired
response was obtained, several more runs using the same Runge-Kutta
Merson rule were pérfOrmed each with a smaller error bound than the pre-
vious run. When two consecutive runs were found to be identical to six
significant digits, the latter of the two was taken as the final solu-
tion. The maxima of the variablésAwere noted in each case and scaled
to a value of 100. These scaled values were stored on a permanent file
and comprised the benchmark or reference values for error computation.
Each experiment was run for various values of h, various partitions,
and characteristic parameters and the same variables were scaled by the
same scale factors. The differences between the values obtained in
these runs and those obtained in the benchmark thus consfitutes the
percent error in those variables. For éach expefiment, the peak per-
cent errors were compiled in the form of tables (Appendix C). Similar
tables were prepared for the combined linear-nonlinear tests not using
averaging by 0. A. Palusinski. The method used in these tests has been.
"labelled CRKZHI.C'(PaTUSTnski, 1977b) standing for Combined Runge-
Kutta method based on the Improved Euler Method and shall be referred
to as such from here on. A short description of this method appears
in Appendix D. The general nonlinear experiments were run using the

original program from which the averaged nonlinear programs were
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derived to produce tables have all been placed in Appendix C and a com-
parison between the averaged'methods and the methods that do not use

averaging is made in Chapter 6.



CHAPTER 6
"RESULTS AND CONCLUSIONS

The comparison of the four algorithms employing averaging to
similar algorithms that do not use averagfngris presented here fo]]owed.
by conclusions that were drawn from the results. The comparison was
‘performed by examining mean peak fractional errors, the variables with
the worst peak errors, and execution times for all experiments except
the harmonic oscillator.

For each method and experiment, the mean peak érror is defined
to be the average of all peak fractional errors obtained for a particu-
Tar step size, and the variable with the worst peak error (Chébyshev
measure) for the lardgest measure step size in that experiment is
defined to the the worst-case peak error. The‘eXecution time or run
time is the time taken by the Central Processihg-Unit,to solve the ini-
tial vaTue problem in question qsihg a pafticu]ar method and step size.

| The "cost" of simulation (Palusinski, 1978, p. 38) for a partic-
ular step size ié defined as

COST = WORST CASE ERROR + RUN TIME (6.1)
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ReSu1tS'of'Cpmbined Experiments

The plot of mean.peak efrors versus step size obtained for the
penduTum problem is shown in Figure 7. The ImproVed Euler, Modified
Eulwe, and CRK2HI.C (without‘averag%ng) methods were emp?oyed. It is
" seen that averaging raises mean peak .error by as much as three times in
the Improved Euler case (h = 0.03) and‘over ten times in the Modified
Euler case (ﬁ = 0.09). However, the graph displayed in Figure 8 shows
thaf the &orst—case peak error (corresponding to variable TAUT) is
improved by as much as 50% (at h = 0.09) using the Improved Euler
method, but is sti117worse by'as much as 2.5 times (at h = 0.09) for
the Modified Euler algorithm. ‘The'execution_fimes for the three algo-
rithms are seen in Figure 9. It is observed that the Improved Euler
method shows a speed improvement of up to three times as fast and the
Modified Euler method up to twice as fast as CRK2HI.C. In addition,
these execution timés range from 0.01 to 0.7 seconds compared to a
Benchmark execution time of 0.787 ;econdsa

The costs of thesé method§ are shown in Figure 10. As seen,
the cost of the Improved Euler method s about a third 1ess>than that of
CRRZHI.C, But the Modified Euler shows costs three times higher.

The plot of the mean peak errors for the mine shaft experiment
is seen tn Figure 11. Here, the combined algorithm with averaging is
noted to have up to a 50% reduction in mean peak error for small values
of f, but for Targer h, displays up to twice as much error (H = 0.12).

It is also noted that the mean peak error curve is smoother for the
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averaged method. Thé worst-case peak errors (notedrfor the variable
V) are plotted in Figure 12. Agaﬁn,'ﬁo real improvement is noted, but
as béfore,_the averaged case results in a smoother curve which appears
to be an average of the oscillatory worst-case error curve obtained for
CRK2HI.C. The corresponding execution times, ranging from 0.13 to
0.32 seconds, for the two methods are'displayed'iniEiguré 13, The
averaged method results a speed improvément'of approximately 25%. The
mine-shaft benchmark took 33.15 seconds to run. The costs of these two
methods is shown in Figure 14. As seen, the cost of the averaged
method is about 80% that of the method without averaging. | |

The speed improvement of the combined méthods over the CRKZHI.C
method may be justified by noting-that.the latter method is a more com-
plicated version of the Improved Euler without averaging in that extra

half-step computations are employed.

Results of General Nonlinear Expériments

The mean peak errors for partition A of the electronic oscilla-
tor are plotted in Figufe 15. The Best‘mean'errors correspond to the
algorithm not using averaging followed by those of the shifted averaging
algorithm, which are apprcxima#e]y 10 times worse, and those ef the non-
~ linear algorithm with shifted averagfng,Awhiéh are about 100 times worse.
These resu]ts‘may be attributed to the fact that the coupling variable
that is averaged is itself an average of the oscillatory variables in
the fast system. Therefore, any further éveraging,cannot hélp. The
execution times, ranging from 5.88 to 25.66 seconds, are seen in

Figure 16.
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As seen,lsimplekaveraging slows execufion slightly, but shifted
averagihg keduces speed by as much as twice. The oscillator benchmark
required 55.698 seconds to executé;
The mean peak ervrors for bartitibn B are plotted in Figure 17.

Here the coupling variable that is averaged is very fast and averaging
improves these errors for the larger step sizes (up to 50% reduction in
error for the shifted averaging case and 35% reduction for simple
averaging).. The plot of worst-case peak errors (corresponding fo X2)
for the same partition as seen in‘Figure 18 shows improvements of
comparable magnitudes for the larger step sizes when averaging is used.
The execution times for partition B are very é]ose to thpse obtained
fdr partition A so that Figure 16 may be considered as an esfimate of
speed performance fdr partition B. The costs for these methods for‘the
simulation of partition B are displayed in Figure 19. Simple averaging -
raises the cost by approximately 10% for smaller values of h, but lowers
the cost by almost 20% at h=0.2. Shifted averaging costs from 10% to
150% higher than the method without averaging.

| The mean peak errors for partition 1 df the autopi]ot‘modé] were
1dent1§a] for the nonlinear algorithms with simple averaging and without
averaging. Thé shifted averaging mean errors were significant]y larger.
In order to obtain a meaningful comparison, only those variables, namely
@, X, and Y, which were noted to differ in the two identical cases, but
whose magnitudes were so small that the differences were not affecting
the original mean errors, were considered in a recomputed‘mean peak

errors. .This plot of the recomputed mean errors for the simple averaged
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and the averaged case is shown in Figure 20. Here, differences.are
on1y slight, but the plot of worst-case errors, displayed in F1gure 21
show that the averag1ng method resu]ts in up to a 50% improvement.
.Execut1on t1mes rang1ng from 2.91 to 70.25 seconds for-partition 1 afe
plotted in Figure 22; Again the simple averaged method is only s]ighﬁ]y
slower than the method without averaging, but the shifted éveraging |
méthod is slightly 3 times slower than both. The benchmark ran in 71.74
| seconds. The costs for these ﬁethods for the simulation of partition 1,
seen in Figure 23, again indicate slightly higher costs for the simple
averaging method with costs for the shifted averaging case ranging over
twice that of the non averaged case. Simple averaging improves the
meanrpeak errors and worst case errors (again corresponding fo X2)
s]ightly as seén in Figufes 24 and 25, but shifted éveraging is still
worse by as much as a factor of 2. The_execution times for the second
partition are also very close to those of partition 1, and so the run
times of Figure 22 may serve as an indicator for the performance of

partition 2.

Conclusions
The results obtained from this study have shown ﬁhat two of the
averaging methods considered are useful in the simulation of parti-
tioned systems. As for the other methods, it was observed that existing
methods fhat do not use averaging, in general, yield improved errors and
Tower execution times. This is especially trué of the Modified Euler

method where percent errors were as much as ten times larger than the
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method not using averaging. It is obvious then that this method would
be an - unlikely choice in a simuIatioh,; ' '

The Improved Euler method, on the other'hahd,‘showed s1ight
1mpr6vement in worst-case errors and costs in the pendulum example.
This, however, was accompanied by increased avearage peak erfors, No |
real improvement was achieved in the errors of the mine-shaft experi-
ment, but cost was lowered significantly when the Improved Euler method
was used. These results thereforé indicate that this averaging method
is §ertain1y worth considering as an alternate technique to simulate a
Tinear-nonlinear system.

The high cost of and in most cases larger errors obtained from
the shifted averaging method used with general nonlinear systems hardﬁy
Justifies its use. The nonlinear method without averaging is seen to
prodﬁce significantly Tower errors and execution times for both parti-
tions of the autopilot and°partition A of the oscillator. The improved
errors seen from partition B of the oscillator were at the eXpense of
much higher cost. |

The error performance~of’the simple averaged method is difficult
to define. In some experiments, slight improvements were nofed, but in~
others, drastic reductions in accuracy were observed.  The inconsistency'
of performance indicates that further research. should be performed to
understand why improvements are observed in some cases and not others.

Further experiments usfng all four methods may also provide
insight into when and what type of averaging. The fact that some error
improvements were noted show that averaging may prove to be a valuable

tool in the simylation of partitioned systems.



APPENDIX A
~ PROGRAM LISTINGS

This section contains program listings of all algorithms and
the two examples that show the use of the two types of simulation

methods.
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SDBBCUIINES LINKW AND INICCN ARE NEEDED BY THE COMBINED
ALGORITHMS FCR INITIALIZATION ETC.

SUBROUTINE LINKW (WAV1,HAV2,6MAV3,HAV4,6BAVS5,
HAV6,WAV7,WAVS ,WAV9 , HAV1O0)

THIS SUBROUTINE LINKS OUTPUT VARIABLES AND AVERAGES
FROM THE FAST LINEAR SYSTEM TO TEE NONLINEAR SYSTEM.

COMMON/LINK/W(10) ,UAV(10) ,LINKNC
COMMCN/LINS/LINORD,LININE,LINOUT,A(10,10),B (10,10)
COMMON/LINS/C (10,10) ,D (10, 10) ,F (10, 10) ,U (10) ,X (10)

LINKNO IS THE NUMBER OF AVERAGES TO EE LINKED
AND HAS TO BE DEFINED IN DEFLIN.

Go T0O (1,2,3,4,5,6,7,8,9,10),LINKNO
HAV10=WAV (10)
BAVO9 =WAV (9)

WAVS8= WAV (8)

HAV7 =BAV (7)

HAV6= WAV (6)
HAV5=UA V (5)

HAV4= WAV (4)
HAV3=UAV (3)

HAV2= WAV (2)

HAV 1=HAV (1)

RETURN

END

SUBROUTINE INICON

INICCN INITIALIZES MATRICES A,E,C,D, AND F
AND VECTORS X,U, AND H

LOGICAL EXIT,RLDONE
COMMCN/LINK/W(10) ,WAV (10) ,LINKNO
COMMON/SYSVAR/D1,DTMAX,DTMIN,EMAX,EMIN, SY (35)
COMMCN/LINS/LINORD,LININP,LINOUT,A (10,10) ,E (10, 10)
COMMON/LINS/C (10, 10),D (10, 10) ,F (10, 10) ,U (10) ,X (10)
DIMENSION BNO (10) ,BN1 (10)

CLEAR ALL MATRICES AND VECTORS

CALL MXCLR1 (A,10,10)
CALL MXCLR1 (B, 10,10)
CALL MXCLR1 (C,10,10)
CALL MXCLR1(D,10,10)
CALL MXCLR1 (F,10,10)
CALL VECCLR (X, 10)
CALL VECCLR (U, 10)
CALL VECCLR (W, 10)
CALL VECCLR (WAV, 10)

INITIALIZE MATRICES AND THE VECTCR X
CALL DEFLIN
INITIALIZE THE U VECTOR

CALL GFUNC
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INITIALIZE THE W AND WAV VECTCBS

CALL
CALL
CALL
CALL

MXCOL (C,X,BNO,LINODT,LINCBC)
?1XCOL(D,U, BN1,LINOUT,LININP)
VECADD (ENO,BN1,W,LINCOI)
VECADD (ENO,BN1,WAV,LINOUT)

RETURN

END
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SUBROUTINE INTRGX

COMBINED ALGORITHM BASED ON IMPROVED EULER METHOD

LOGICAL EXIT,RLDONE,MPRT
COMMCN/LINK/W(10) ,WAV (10) ,LINKNO
COMMON/TVAR/T11,MPRT

COMMCN/SYSVAR/EXIT,RLDONE,ICUT,IFI1E, IRUNNO, T, TMAX, TNEXT

COMMCN/SY SVAR/DT,DTMAX,DTMIN, EMAX,EMIN, SY (35)

COMMCN/STATE1/NORDR1,Y (200) ,GN (200)

COMMCN/LINS/LINORD,LININP,LINOUT,A(10,10),B (10,10)

COMMCN/LINS/C(10,10),D (10,10),F (10,10),U (10),X (10)

REAL MO (10,10),M1 (10,10),M2(10,10)

DIMENSION GNSAV (200) ,BNO (10) ,BN1 (10) , XAV (10) ,USAV (10)
DIMENSION WSAV (10) ,YSAV (10)

DIMENSION TRANPA (10, 10) ,BETPO (10, 10) ,EETP 1 (10,10)

DIMENSION USUM(10) ,AVNO(10,10),AVN1(10,10),AVN2(10,10)
DIMENSION VO (10, 10) ,VI (10,10) ,D2 (10,10) ,BN2( 10)

IF (T.GT. 0.0) GO TO 30

IF (DT.GT.DTMAX) DT=DTMAX

DT02=DT/2.0

ORITE (IOUT,20)

FORMAT (//IX,35HIMPR EULER WITH CORRECTED AVERAGING)

1.

PRECOMPUTATTION

COMPUTATION OF D/2 AND H*F

CALL
CALL

SCALR1(D,0.5,D2,LINCUT,LININF)
SCALR1 (F,DT,FH,LINOED, LINOUT)

COMPUTATION OF TRANPA,MO,M1,6M2

CALL

MXCAL (A, TRANPA,MO,M1,M2 ,LINOED,DT,14,MPRT)

COMPUTATION OF VO AND VI

CALL
CALL

MXEQL (M1,VO,LINORD,LINORD)
SCALR1 (M2,0.5,VI,LINOED,LINOED)

COMPUTATION OF COEFF. MATRICES FOR AVERAGING

VIZ.

CALI
CALL
CALL
CALL
CALI

COMPUTATION OF COEFF.

VIZ.

CALL
CALL
CALL
CALL
CALL
CALL

(AVO+1I) , (VO-V1) B,V1E

MATMUL (A,VO,AVN1l,LINOED,LINOED, LINORD)
ADDID (AVN1,AVNO,LINORD)

MXSUE (VO,V1,AVN2,LINORD,LINORD)

MATMUL (AVN2,B,AVN1l,IINC5D,LINOEC,LININP)
MATMUL (VI,B,AVN2,LINORD,LINORD,LININP)

(AMO+I) , (MO-M1) B,M1E

MATMUL (A,MO,BETP1,LINORD, IINCRD,LINORD)
ADDID (EETP1,BETPO, LINORD)

MXSUB (MO,M1,BETP2,1INOBD, IINCRD)

MATMUL (EETP2 ,E,EETP1,LINORD,LINORD, LININP)
MATMUL (M1,B,BETP2,LINOED,IINCRD,LININP)
INICCN

,BETP2 (10,10)

,FH(10,10)

MATRICES FOR LINEAR DISCRETE VALUES
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2. RUN TIMECOMPUTATTION
4. COMPUTATION OF Y (N+1) AND U(N+1)
RLDCNB = .FALSE.

DO 35 J=1,NORDR1
YSAV (J)=Y (J)

Y (J)=Y (J) +DT*GN(J)
GNSAV (J) =GN (J)
CONTINUE

DO 40 J=1,LININP
USAV (J) =U (J)
CONTINUE

T=T +DT

CALL DIFEQ1

DO 50 J=1,NORDR1
Y (J) =YSAV (J) +DT02* (GNSAV (J) +GN (J) )
CONTINUE

CALL GFUNC

COMPUTATION OF XAV (N+1l)

DO 60 J=1,LINOUT

HSAV (J) =WAV (J)

CONTINUE

CALL MXCOL (AVNO,X ,BNO,LINCRC,LINCBD)
CALL MXCOL (AVN1lyUSAV,BN1,LINOED,LININP)
CALL VECADD (BNO,BN1,BN2,LINCBD)

CALL MXCOL (AVN2,U,BN1,LINORC,LININP)
CALL VECADD (BN1,BN2,XAV,LINCBD)

COMPUTATION CF WAV(N+1)

CALL MXCOL (C,XAV,BNO,LINCUT,LINCED)
CALL VECADD (USAV,U,USUM,LININP) [
CALL MXCOL (D2,USUM,BN1,LINCU1l,LININP)
CALL VECADD (BNO,BN 1,WAV,LINOUT)

ADDITION OF CORRECTION FACTOR TO Y (N+1)

DO 70 J=1,NOBDR1

BN2 (J) =Y (J)

CONTINUE

CALL VECSUB (HAV,WSAV,BNO, LINOUT)
CALL MXCOL (FH,BNO,BM1,LINOED,LINCUT)
CALL VECAED (EN2,BN1,Y,LINOED)

CALL GFUNC

COMPUTATION CF X(N+1)

CALL MXCOL (BETPO,X,BNO,LINCED,LINCRD)
CALL MXCOL (BETPI,USAV,BN 1,LINCED,LININP)
CALL VECADD (BNO,BN 1,BN2,LINCEC)

CALL MXCOL(EETP2,U,EN1, LINOEE,LININP)
CALL VECADD (BN?,BN1,X,LINCRC)

COMPUTATION CF W

CALL MXCOL (C,X,BNO,LINCUT,LINCED)
CALL KXCCL(D,U,BN1,LINOUT,LININP)
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CALL YECADD (BNO,BN1,W,LINOU1)
ELDCN E=.TRUE.

CALL DIFEQ1

RETURN

END



.inn

nonnoo

non

non

nnooo

SUBROUTINE INTRGX
COMBINED ALGORITHM BASED CN MOEIFIED EULER

LOGICAL EXIT/RLDONE,MPRT

COMMC N/LINK/W(10) ,HAV (10) ,LINKNO

COMMON/TVAR/111,MPRT
COMMCN/SYSVAR/EXIT,RLDONE,IOUT,IFILE,IRUNNO,T, TMAX, TNEXT
COMMCN/SYSVAR/DT#DTMAX/DTMIK,EMAX,EMIN, SY (35)
COMMCN/STATE 1/NORDR 1, Y (200) ,GN (200)
COMMON/LINS/LIHOED,LININP,LINOUT,A (10,10) ,5(10,10)
COMMON/LINS/C (10, 10) ,D (10,10) ,F (10,10) ,U (10) ,X (10)
REAL MO (10, 10) ,M1 (10, 10) ,M2 (10, 10) ,M3 (10,10)
DIMENSION GNSAV (200) ,3NO (10) ,EN1(10),XAV (10) ,USAV (10)
DIMENSION V2 (10,10) ,AVN3 (10,10) ,AVN4 (10,10) ,USAY2 (10)
DIMENSION BETP3 (10,10) ,EETP4 (10,10)

DIMENSION NSAV (10) ,YSAV (10) ,BN3 (10)

DIMENSION TBANPA (10,10), BETPO (10,10) ,BETP1 (10,10) ,BETP2 (10, 10)

DIMENSION USUM (10) ,AVNO (10,10) ,AVN1 (10,10) ,AVN2 (10,10)
DIMENSION VO (10, 10) ,vl1 (10,10) ,D6 (10,10) rBN2 (10) ,FH (10, 10)
IF (T.GT.0.0) GO TO 30

IF (DT.GT.DTMAX) DT=DTMAX

DT02=DT/2. 0

WRITE (IOUT#20)

FORMAT (//IX,35HMOD EULER WITH CORRECTED AVERAGING)

PRECOMPUTATTION

COMPUTATION OF D/6 AND H*F

CALL SCALR1 (D,1./6.,D6,LINOUT,LININF)
CALL SCALR1 (F,DT,FH,LINCRD,LINOU1)

COMPUTATION OF TBANPA,MO,M1,M2,M3
CALL MXCAL3 (A,TRANPA,MO,M1,M2,M3,1INORD,DT,14,MPRT)
COMPUTATION OF VO ,VI AND V2

CALL MXEQL (M1,VO,LINORD,LINORE)
CALL SCALR1 (M2,0.5,VI,LINCRD,1INCED)
CALL SCALR1 (M3, 1./3.,V2,LINCRD,LINORL)

COMPUTATION OF COEFF. MATRICES FOR AVERAGING
VIZ. (AVO+I) , (V0-3VV2V2) B,
4 (V1-v2) B, (2v2-V 1) B

CALL MATMUL(A,V0,AVNl,LINOBB,LINOED,LIHORD)
CALL ADDID (AVN1l,AVNO,LINCRD)

CALL SCALR1(V1,-3.0,AVN1l,LINOFD,LINOFC)

CALL SCALP.1 (V2,2.0,AVN4,LINCRD,LINOFD)

CALL MATADD (VO,AVN1,AVN1,LINCRD,LINOFD)

CALL MATADD (AVN1l,AVN4,AVN4,LINCRD,LINOFD)
CALL MATMUL (AVN4,E,AVN1,LINOBD,LINORD,LININP)
CALL MXSUB(VI,V2,AVN4,LINCRD,LINCFD)

CALL SCALR1 (AVN4,4.0,AVN4,LINCRD,LINORD)

CALL MATMUL (AVN4,B,AVN2,LINCRD,LINOFD,LININP)
CALL SCALEl (V2,2.0,AVN4, LINORD,LINORD)

CALL MXSUB (AVN4,VI,AVN4,LINCFD,LINOFD)
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CONTINUE

CALL
CALL
CALL
CALL
CALL
CALL

MXCOL (C,XAV ,dNO,LINCUT, LINGBE)
SCALBT (USAV2,4.0,BN1,LININF,LININP)
VECADD (USAV,BN1,BN2,LININE)

VECADD (BN2,U,USUH,LININP)

MXCOL (D6 ,USUM,BN1,LINCUT,IININE)
VECADD (ENO,BN1,WAV,LINOUT)

ADDITION OF CORRECTION FACTOR TO Y (N+1)

DO 70 J=1,NORDR1
BN2 (J) =Y (J)
CONTINUE

CALL
CALL
CALL
CALL

VECSUB (WAV,WSAV,BNO,LINCUT)
MXCOL (FH,ENO,BN1,LINORE, LINOUT)
VECADD (BN2,BN1,Y,LINCFD)

GFUNC

COMPUTATION OF X(N+1)

CALL
CALL
CALL
CALL
CALL
CALL
CALL

MXCOL (BETPO, X,BNO, LINORB, LINORD)
dXCOL (BETP1,USAV,BN1,LINCRE, LININP)
VECADD (ENO,BN1,BN2,LINORD)

MXCOL (BETP2,USAV2,3NO,LINCRD,LINORD)
VECADD (ENO,EN2,BN2, LINORD)

MXCOL (BETP3,U,BNO,LINORD, LININE)
VECADD (ENO,BN2,X, LINORE)

COMPUTATION OF W

CALL
CALL
CALL

MXCOL (C,X,BNO,LINOUT,LINORD)
MXCOL (D,U,BN1,LINOUT,LININE)
VECADD (ENO,BUI,W,LINOUT)

RLDCNE=.TRUE.
CALL DIFEQV
RETURN

END



SUBROUTINE INTRGX

NONLINEAR ALGORITHM WITH AVERAGING

0ofcoQO

LOGICAL EXIT,RLDONE
COMMCN/SYSVAR/EXIT,RLDCNE,ICUT,IFILE, IRUNNO,T, TMAX ,6 DUMM
COMMON/SYSVAR/DI,DTMAX,ETMIN,EMAX,EMIN, SY (35)
COMMON/STATE 1/NORDR 1,Y (200) ,GN (200)
COKMON/STAIE2/NORDR2,Y2 (200) ,GN2 (200)
COMMON/AVER/YAV (200)

DIMENSION GIEM (200) ,YTEM (200)

REAL K1 (200) ,K2 (200) ,K3 (300)

IF (T.GT. 0. 0) GO TO 30

c
c *%%**% REMINDER : DTMAX-LE.TMAX/ (NPOINT-1)
C
IF (DT.GT.DTMAX) DT=DTMAX
DTA=DT
DT2=DT/2.0
c
c DTMAX = DT2 SET IF DTMAX.GT,D12 IN ORDER TO AVOID
C HANG UP ON DTMAX IN RKM - SEE COMMENTS IM RKM SUER.
c
IF (DTMAX.G1.DT2) DTMAX = DT2
WRITE (IOUI,1l) DTMAX
11 FORMAT (14H NEW DTMAX =,E12.5/)
D13=DT/3.0
DT4=DT/4.0
DT6=DT/6.0
WRITE (IOUT, 1)
1 FORMAT (/52H PARTITIONED INTEGRATION- R K - 4 FOR SLOW
30 RLDCNE=.FALSE.
c FAST SYSTEM INTEGRATION ( NH<= 1 <=(N+1/2)H ) USING RKM
TEMP=T
TNEXT-T+DT2
C
C DT4 SET INSTEAD DT AT T=0.0 TO START STEP CONTROL
C IN RKM SUBROUTINE
c
IF (T.EQ.0.0) DT=DT4
Cc
Cx*kxx ZERO AVERAGES FOR HALF STEP INTERVAL
c
DO 35 11=1,NCRDR1
35 YAV (II)=0.0
40 T1=T
CALL RKM (TEMP,TNEXT)
DLT=T-T 1
c COMPUTE AVERAGES
DO 45 11=1,NORDRI1
45 YAV (II) =YAV (II) *DLT*Y (II)
IF (TNEXT.GT.I) GO TO 40
DO 46 11=1,NORDR1
46 YAV (II)=YAV(II)/DT2
C IN GENERAL NEXT STEP WOULD BE COMPUTATION CF U(N+1/2)
c 2. SLOW SYSTEM INTEGRATION - SECOND ORDER IMPROVED EULER

C 2.1. COMPUTATION OF K1,K2,K3
DO 100 1=1,NORDR2
K1 (I) =GN2 (I)



100

110

120

130

oo

50

55

56

CY)O

200

210

XTEM (I) =Y2 (I)

Y2 (I) =¥2(I) *DT2*K1l (I)
CALI DIFEQ2

DO 110 I=1,NOBDR2

K2 (I) =GN2 (I)

Y2 (I) =YTEM (I) +DT2 +K2 (I)
CALI DIFEQ2

DO 120 1=1,NORDB2

K3 (I) =GN2 (I)

.2. COMPUTATION OF Y(N+1/2) AND EVALUATION OF SLOB SYSTEM EQU,

DO 130 1=1,NCBDE2
Y2 (I) =YTEM (I) +DT4* (K1 (I) +K2 (I) )
CALL DIIEQ2

3. FAST SYSTEM IINTEGRATICN

TEMP=T
TNEXT=T+DT2

*khkk*x

ZERO AVERAGES FOR FULL STEP INTERVAL

DO 47 II=1,NORDRI1
YAV (II) =0.0

T1=T

CALL RKM (TEMP/TNEXT)
DLT=T-T1

COMPUTE AVERAGES FOR FULL STEP
DO 55 11= 1/NCRDR 1
YAV (II) =YAV (II) +DLT*Y (II)
IF (TNEXT.GT.T) GO TO 50
DO 56 11=1,NORDR1
YAV (II) =YAV (II) /DT2
CALL DIFEQ2
IN GENERAL NEXT STEP WOULD EE COMPUTATION OF U(N+1)

4. COMPUTATION OF K4 AND X (N+1)
DC 200 1=1,NCRDR2
Y2 (I) =YTEM (I) +DTA*K3 (I)
CALL DIFEQ2
DO 210 1=1,NORDR2
Y2 (I) =YTEM (I) <DT6* (Kl (I) +GN2 (I)) +CT3* (K2 (I) +K3 (I) )

NEXT STEP PREPARATION
RLDONE=.TRUE.
CALL DIFEQ2
RETURN
END
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SUBROUTINE INTRGX
NONLINEAR ALGORITHM WITH SHIITED AVERAGING

LOGICAL EXIT,RLDONE

COEf1CN/SYSVAR/EXIT,RLDCNE, TOUT, IFILE, IBUNNO, T, TMAX,DUMM

COMMON/S YSVAP. /DT, DIMAX, DTMIN, EMAX, EMIN,SY (35)

COMMON/STATE 1/NORDR 1,Y (200) ,GN (200)

COMMON/STATE2/NORDR2,Y2 (200) ,GN2 (200)
COMMON/AVER/YAV (200)

DIMENSION GTEM (200),YTEM (200) ,YSAV (200) ,YSAV2 (200)
DIMENSION AV (200) ,YAVSV (200)

REAL K1 (200) ,K2 (200) ,K3 (300)

IF (T.GT. 0. 0) GO TO 30

c
c ****%x* REMINDER : DTMAX.LE.TMAX/ (NPOINT-1)
c
IF (DT. GT. DTMAX) DT=DTMAX
DIA=DT
DT2=DT/2.0
c
c DTMAX = DT2 SET IF DTMAX.Gl.DT2 IN ORDER TO AVOID
c HANG UP ON DTMAX IN RKM - SEE COMMENTS IM EKM SUBR.
c
IF (DTMAX.GT.DT2) DTMAX = CT2
WRITE (IOUT,11) DTMAX
11 FORMAT (14H NEW DTMAX =,E12.5/)
DT3=DT/3.0
DT4=DT/4.0
DT6=DT/6.0
WRITE (IOUT, 1)
1 FORMAT (/52H PARTITIONED INTEGRATION- R K - 4 FOR SLOW SYSTEM)
30 RLDONE=.FALSE.
c FAST SYSTEM INTEGRATION ( NH<= T <=(N+1/2)H ) USING RKM
TEMP=T
TNEXT=T+DT4
c
c DT4 SET INSTEAD DT AT T=0.0 TO START STEP CONTROL
c IN RKM SUBROUTINE
c
IF (T.EQ.0.0) DT=DT4/2.
c
CHxx FIRST QUARTER STEP
c
40 CALL RKM (TEMP,TNEXT)
IF (TNEXT. GT. T) GO TO 40
TEMP=T
TNEXT=T+DT4
c
cH Kk SECOND QUARTER STEP - START AVERAGING
c
DO 41 11=1,NORDR1
41 AV (II)=0.0
42 T 1=T
CALL RKM (TEMP,TNEXT)
DLT=T-T1
c
C*** COMPUTE AVERAGE
c

DO 43 11=1,NORDR1
43 AV (II) =AV (II) +DLT*Y (II)



IF (TNEXT.GT.T) GO TO 42
DO 44 11=1,NORDR1
YSAV (II) =Y (II)

44 YAV (II) =Y (II)
C IN GENERAL NEXT STEP tiCULD BE COMPUTATION CF U (N+1/2)
c 2. SLOW SYSTEM INTEGRATION - SECOND ORDER IMPROVED EULER

C 2.1. COMPUTATION OF K1,K2,K3

DO 100 1=1,NCRDR2

Kl (I) =GN2 (I)

YTEM (I) =Y2 (I)

100 Y2 (I) =Y2 (I) ¢DT2*K1 (I)

CALL DIFEQ2

DO 110 1=1,NORDR2

K2 (I) =GN2 (I)

C 2.2. COMPUTATION OF APPROX. Y (N+1/2)

DO 130 1=1,NORDR2

130 Y2 (I) =YTEM (I) +DI4* (K1 (I) +K2(I))
CALL DIFEQ2
TEMP=T
TNEXT=T+DT4
c
CH** THIRD QUARTER STEP - COMPLETE AVERAGE
c
46 T1=T
CALL RKM (TEME, TNEXT)
DLT=T-T 1
DO 49 11=1,NCRDR1
AV (II) =AV (II) +DLT+Y (II)
49 YAV (II) =YAVSV (II)
IF (TNEXT.GT.T) GO TO 46
T=TEMP
DO 47 11=1,NCRDR1
47 Y(II) =YSAV (II)
DO 48 11=1,NCRDR2
48 Y2 (II) =YTEM (II)

CALL DIFEQ2
DO 501 II=1,NCRDE1
501 YAV (II) =AV (II)/DT2
DO 150 1=1,NORDR2
K1 (I) =GN2 (I)
YTEM (I) =Y2 (I)

CH*x RECOMPUTE Kl AND K2, FIND K3

150 Y2 (I)=Y2(I)+DT2*K1 (I)
CALL DIFEQ2
DO 160 1=1, NCRDR2
K2 (I) =GN2 (I)

160 Y2 (I) =YTEM (I)+DT2*K2 (I)
CALL DIFEQ2
DO 170 1=1,NORDR2

170 K3 (I) =GN2 (I)

Cc 2.2. COMPUTATION OF Y(N+1/2) AND EVALUATION OF SLOW SYSTEM EQU.
DO 180 1=1,NORDR2

180 Y2 (I) =YTEM (I) +DT4* (K1 (I) +K2 (I))
CALL DIFEQ2



c 3. FAST SYSTEM IINTEGRATICN
c
c
C*** DO THIRD QUARTER AGAIN
c
TEMP=T
TNEXT=T+DT4
50 CALI RKM(TEMP,TNEXT)
IF (TNEXT.GT.T)GO TO 50
c
Cr** FOURTH QUARTER - START AVERAGING
c
TEMP=T
TNEXT=T+DT4
DO 51 11=1/NORDR1
51 AV (II) =0. 0
52 I1=T
CALL RKM (TEMP, TNEXT)
DLT=T-T1
DO 53 11=1,NORDR1
53 A? (II) =AV (II)+DLT*Y (II)

IF (TNEXT.GT-T) GO TO 52
DO 54 11=1,NORDR2
54 YSAV2 (II) =Y2 (II)
DO 55 11=1,NORDR1
YSAV (II) =Y (II)

55 YAV (II) =Y (II)
CALL DIFEQ2
c IN GENERAL NEXT STEP WOULD EE COMPUTATION OF U(N+1)
c
c 4. COMPUTATION OF K4 AND APPROX. Y(N+1)
DO 200 1=1,NORDR2
200 Y2 (I) =YTEK (I) +DTA*K3 (I)

CALL DIFEQ2
DO 210 1=1,NORDR2
210 Y2 (I) =YTEM (I) +DT6* (K1 (I) +GN2(I) ) +DT3* (K2 (I) +K3 (I) )
CALL DIFEQ2

c
CHrx* FIFTH QUARTER - COMPLETE AVERAGING
c
TEMP=T
TNEXT=T+DT4
56 T1=T
CALL RKM (TEME, TNEXT)
DLT=T-T 1
DO 59 11=1,NORDR1
AY(11l) =AV (II) +DLT*Y (II)
59 YAV (II) =AV (II)/DT/2
IF (TNEXT.GT.T)GO TO 56
T=TEMP
DO 57 II=1,NCRDR1
57 Y(II) =YSAV (II)
DO 58 11=1,NORDR2
58 Y2 (II) =YSAV2 (II)
CALL DIFEQ2
c
CH** RECOMPUTE K4 AND FIND FINAL Y (N+1)
DO 250 1=1,NCRDR2
250 Y2 (I) =YTEM (I) +DTA +K3 (I)

CALL DIFEQ2
DO 260 1=1,NORDR2
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260 Y2 (I) =YTEM (I) +DT6* (K1 (I) +GN2 (I)) +C13* (K2 (I) +K3 (I) )
a
[=] N3XT STEP PREPARATION
DO 270 11=1,NCRDR1
270 YAVSV (II) =YAV (II)

RLDONE=.TRUE.
CALL DIEEQ1

CALL D1FEQ2

RETURN

END
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SUBROUTINE RKM (TErtf, TNEXT)
PROGRAM.. INTRGX SUBROUTINE

RUNGE-KUTTA-MERSON RULE MODIFIED FOR PARTITIONED INTEGRATION
(COMMMENTS MARKED WITH **** )
UNIVERSITY OF ARIZONA , MAY 1977
OLGIERD A. PALUSINSKI
TECHNICAL UNIVERSITY OF SILESIA
<44-100 GLIWICE, POLAND

TYPE OF PROGRAM.. RUNGE-KUTTA-MERSON VARIABLE STEP INTEGRATION
RULE FCR INTEGRATING ORDINARY DIFFERENTIAL
EQUATIONS.

VERSION AND DATE.. 4.0 MAY 1976

AUTHOR.. JOHN V. WAIT

ELECTRICAL ENGINEERING DEPARTMENT
UNIVERSITY OF ARIZONA
TUCSON, ARIZONA 85721

MODIFICATIONS OF ERROR CONTROL LOGIC INCLUDED
( COMMENTS MARKED WITH %%%%%% )

LANGUAGE.. ANSI STANDARD FORTRAN IV
ABSTRACT. .

SEE -APPLIED NUMERICAL METHODS- EY CARNAHAN, LUTHER, AND WILKES
JOHN WILEY AND SONS, INC, 1969, NEW YCRK, LONDON, SYDNEY, TORONTO
(A GENERAL DISCUSSION IS GIVEN OF RUNGE-KUTTA RULES AND SPECIFIC
DISCUSSIONS ARE GIVEN FOR THE RUNGE-KUTTA SECOND, THIRD, AND
FOURTH ORDER SYSTEMS. HOWEVER, THE RUNGE-KUTTA-MERSON METHOD
IS NOT DISCUSSED IN PARTICULAR.)

IFSY (1) .GE. 1.0, USE ABSOLUTE TEST CN..Y(IFIX (SY (1)))
IF SY(1) .LT. 1.0, USE RELATIVE ERROR CN .. ALL Y
IN SY (2) IS KEPT THE MAXIMUM DEADLOCKED ERROR

IFSY (6) .GT. 0.0, OUTPUT CHANGES TO DT

(e Xe Xz Koo No s NN ool oo N ool ol ool ool o Moo NN ool e o Mol N« Ne e Mol e N e I el e B e N e N

C$ THIS IS THE SINGLE PRECISION VERSION OF RULED 1.

c
C SUBROUTINE CONVRT WILL CONVERT THE PRECISION OF THIS SUBROUTINE
C SEE SUBROUTINE CONVRT OR SUBROUTINE RULE11l FCR AN EXPLANATION
C OF THE ORDERING AND FLAGGING CONVENTIONS USED IN THIS
C CONVERTABLE SUBROUTINE
c
C
C
LOGICAL A,B,FO,X,LIST
c (2
cD DOUBLE PRECISION RK1 (200) ,RK3 (200) ,RK4 (200) ,RK5 (200)
cD DOUBLE PRECISION YOLD (200),DPY (200) ,DPT, TIME
o1

REAL RK 1 (200) ,RK3 (200) ,EK4 (200) ,EK5 (200) ,YOLD (200)
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LOGICAL EXII,ELDONE
COMMON /SYSVAR/ EXIT,RLDONE,IOUT,IFILE,IRUNNO,I,TMAX,DUMM
COMMON /SYSVAR/ DT,DTMAX,DTMIN,EMAX,EMIN, SY (35)
COMMON /STATE 1/ NORDR1, Y (200) ,GN (200)

C d ok kk kkkkkkkkkkk WATCH ouT khkkhkhkkkhkhkkhkhkkkhkkhkhkkkhkkkkkk
COMMON/STAT£2/ NORDR2,Y2(200),GN2 (200)
COMMC N/E XTR/YEXTR (200) ,W (10)

C %% XX X R R K K K K X K K K K K K K X K K K K K K K K K K K K K K K K K K K K K K K K X K K K K K K K K X

(o3
C INITIALIZE

A=. TRUE.

IF (T.GT.0.) GO TO 5
c (3
cD DO 1 1=1,NORDRI1
cp1 DPY (I) =Y (I)
cD DPT=0.DO
c) o
c/5

IF (IFIX (SY (1) ) . IE. NORDR1) GO TO 3

WRITE (IOUT, 2)
2 FORMAT (USH WARNING - SY(1) TOO LARGE FOB EQUATIONS GIVEN.

2 17HSY (1) SET TO ZERO)

SY (1) =0.
3 SY (2) =E MAX

LIST=SY (6).NE.O

WRITE (IOUT, 4)
4 FORMAT (52H RUNGE-KUTTA-MEFSCN INTEGRATION RULE FOR FAST SYSTEM)
c
C MESSAGE FOR PARTITIONED INTEGRATION ONLY ***x*kkkkxkkkkkx
c

WRITE (IOUT,444) IRUNNO
444 FORMAT (33H LINEAR EXTRAPOLATION , RUN NO. ,13/)
c
Q Fok ok Kk Kk ok Kk K ok Kk K Kk K K Kk kK Kk Kk Kk Kk Kk K Kk K K Kk K k K K Kk Kk K Kk Kk K Kk K Kk k K Kk Kk Kk ok *k Kk k K Kk k KX Kk Kk *k *
c

ISY1=S8Y (1)
5 FO=T.LT.TNEXT.AND.INEXT.LI.T+ET

DTEM=DT

IF(FO) DT=TNEXT-T
c (2
cDb DT3=DBLE (DT)/3.DO
cD TIME=DET
c) 2

DT3=DT/3.

TIME=T
c/6

C FIND K1

C DIFEQl WAS CALLED BEFORE ENTRY
RLDCNE=.FALSE.
DO 7 1=1,NORDRI1

C (4

cD RK1 (I) =DBLE (GN (I) ) *DT3
cD YOLD (I) =DPY (I)

cD DPY (I) =DPY (I) +RK1l (I)
CcD Y (I) =SNGL (DPY (I) )

C) 3

RK1 (I) =GN (I) *DT3
YCLD (I) =Y (I)
Y (I) =Y (I) +RK1 (I)
c/9



7 CONTINUE
c<2

cD DPT=TI2JE+DT3
cD T=SNGL (DPT)
c) 1

T=TIME+DT3
c/5
C FIND K2

C *kkkkkkkkkkkkkkkkx HATCH OUT ****kkkkkkkkk*xx*x** L INEAR EXTRAPOLATION

DELTA=T-TEMP
DO 991 I=1,NORDR2
991 YEXTR(I)=Y2(I)+GN2(I)*DELTA
C rvwmamrmrn e s a Rk n h ey
CALL DIFEQ1
DO 8 1=1,NORDR1

c (2
cD DPY (I) =YOLD (I) +. 5D0* (RK1 (I) +DELE (GN (I) ) *DT3)
cb Y (I) =SNGL (DPY (I) )
c) 1
Y (I) =YOLD (I) +0. 5% (RK1 (I) +GN (I)*DTi)
c/5
8 CONTINUE

C FIND K3
CALL DIFEQ1l
DO 9 1=1, NORDRI1

c(3
cD RK3 (I)=4.5D0*DT3*DBLE (GN (I))
cD DPY (I) =YOLD (I) +.375D0+RK1 (I) +.25C0*RK3 (I)
cD Y (I)=SNGL (DPY (I) )
c) 2

RK3 (I) =4. 5*DT3*GN (I)

Y (I)=YOLD(I) +0.375%RK1 (I)+0.25%RK3 (I)
c/7
9 CONTINUE
c (2
cD DPT=TIME+.5D0*EBLE (DT)
cD T=SNGL (DPT)
c) 1

T=TIME+.5*DI

c/5

(o] FIND K4

C **kkkkkkk*** HATCH OUT **kkkkkkxk***k****** LINEAR EXTRAPOLATION
DELTA=T-TEtlP
DO 992 I=1,NCRDR2

992 YEXTR (I) =Y2 (I) *GN2 (I) *DELTA

C * A H A KK R KA KK A K A KK KK KKK KK KK KK K KK K KKK KK K K X
CALL DIFEQ1
DO 10 I=1,NORDRI1

c (3
cé RK4 (I)=4.DO*DT3*DBLE (GN(I))
cD DPY (I) =YOLD (I) +1. 5D0* (RK 1(I)+RK4 (I) ) -RK3 (I)
cD Y (I) =SNGL (DPY (I) )
c)2
RK4 (I) =4 .*DT3*GN (I)
Y (I) = YOLD (I) +1.5* (RK1 (I) +RK4 (I) ) -RK3 (I)
c/17
10 CONTINUE
c (2
cD DPT=TIME+DBLE (DT)

cbD T=SNGL (DPT)

* % %k
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C) i
T=TIME+DT
c/5
c FIND K5 AND NEXT POINT
c *************HATCH OUT d ok k ok ok ok okkokokkkkkkkk LINEAR EXTRAPOLATION * %
DBLTA=T-TEMP
DO 993 1=1,NORDR2
993 YEXTR (I) =Y2 (I) +GN2 (I) *DELTA
C khkhkhkhkhkhkkhkhkhkhkhkhkhkhkdkhkhkkhkdhkdkdhkdhkdhkdkdhkdhkkhkdhkdkdhkkhkdhkdkhkihkkkk
CALL DIFEQ1
DO 11 1=1,NORDR1

c (3
cD RK5 (I) =DBLE (GN (I)) *DT3
cD DPY (I) =YCLD (I) +. 5D0* (RK1 (I) +RK4 (I) +RK5 (I) )
cD Y(I) =SNGL (DPY (I) )
c) 2
RK5 (I) =GN (I) *DT3
Y (I) =YOLD (I) +. 5* (RK1 (I) +RK4 (I) +RK5 (I) )
c/17
11 CONTINUE
c
C  %%%% MODIFICATION OF LOGIC ; BYPASS "C" PUT IN COL.1 IN NEXT ST.
c THIS MEANS ERROR IS CHECKED ALWAYS (REGARDLESS OF ”FO")
c
c IF (FO) GO TO 20
c
c
c
C FIND ERROR
c
IF (ISY1.GT.0) GO TO 13
c
C SY (1)=0, DC RELATIVE ERROR CHECK
c
ERROR=0.
DO 12 1=1,NORDR1
c (2
cDb RK6= (RK 1 (I) -RK3 (I) +RK4 (I) ) *.2DO0-RK5 (I) *. 1DO
cDb WEIGHT=ABS (Y (I) ) +ABS (SNGL (YOLD (I) ) -Y (I) ) +1.
C) 2
RK6= (RK1 (I) —-RK3 (I) +RK4 (I) ) *.2-BK5 (I) *. 1
WEIGHT=ABS (Y (I) ) +ABS (YOLD (I) -Y (I) ) +1.
c/é6
ERRCR =AMA X1 (ERROR,ABS (RK6) /HEIGHT)
12 CONTINUE
GO TO 14
c
C SY(1).GT.O0, DO ABSOLUTE TEST CN Y (IFIX(SY (1))
c
c (2
CD13 ERROR=SNGL (DAES ( (RK1 (ISYl) -RK3 (ISY1)+RK4 (ISY1l)) *.2DO
cD 2 -RK5 (ISY1)/.1DO0) )
c) 1
13 ERROR=ABS ( (RK1 (ISY 1) -RK3 (ISY1l) +RK4 (ISY 1) ) *. 2-RK5 (ISY1l) *.1)
c/5
c
C TEST ERROR
c
14 B= (ERROR. GE. EMIN) .CR. (DT.GE. DTMAX) .CR. (.NOT.A)

A= (ERROR. LE. EMAX) .CR. (DT.LE. DIMIN)



X= (ERFCR. LE.SY (2) ) .OR.. (DT. GT. DTMIN)
¢
C IF X=.FALSE., DEADLOCK AND ERROR IS GREATER THAN BEFORE
c
IF (X) GO TO 151
WRITE (IOUT,15) ERROR,I,DT
15 FORMAT (20H DEADLOCK - ERROR =,1PE14.7,5H T =,
2 E14.7,6H DT =,E14. 7)
SY (2)=ERRCR

GO TO 19
c
C IF A=.FALSE., HALVE DT
c
C %%% MODIFICATION OF LOGIC : #222 EOT INSTEAD OF #18 IN NEXT ST.
c THIS MEANS THAT BEFORE "E" THE VALUE OF "FO" IS CHECKED
c
151 IF (3) GO TO 222
C 3333 *333233333323523233353539%2323323233%9%2%335%3%%5%%%23%%%3%%%%%
C
c (@
CD DPT=TIME
cD T=SNGL (DPT)
c) 1
T=TIME
c/5

DT= AMAX 1 (DT/2. ,DTMIN)
IF (LIST) WRITE (IOUT, 16) DT, T

16 FORMAT (10H NEW DT =,1PE14.7,5H T =,E14.7)
DO 17 1=1,NCRDR1

c(3
cD DPY (I) =YOLD (I)
cD Y (I) =SNGL (DPY (I) )
cD 17 CONTINUE
c) 1
17 Y (I) =YOLD (I)
c/6

C **************HATCH ouT khkhkkhkhkkhkhkhkkkhkhkkkkx LINEAR EXTRAPOLATION * %
DELTA=T-TEMP
DO 994 I=1,NORDR2
994 YEXTR (I)=Y2(I)+GN2(I)*DELTA

C * * KK R R K K K K K K K K X K K K K K K K K K K K K K K K X K K K K K K K X K K *

CALL DIFEQ1l

GO TO 5
c
C %%% MODIFICATION OF LOGIC : NEW STATEMENT TO CHECK VALUE OF "FO"
c IN ORDER TO PREVENT DOUBLING WHEN "FC"=.TRUE.
c
222 IF (FO) GO TO 20
c

IF B=.FALSE., DOUBLE DT
8 IF (B) GO TO 19
*kkkk*x*x *xREMINDER : * % % % %% DT2 PUT IN PLACE OF DTMAX WHEN

DTMAX.GT.DT2 IN ORDER TO PREVENT
HANG "P nv £'TMAX ;

fnoQoL00E0Q



C THAT BEAMS DTMAX = CT2 FOE EKK ERROE CONTROL

c IF DTKAX.GT.DT2 ; SEE "INTEGX" FOE T=0.
c
OT= AMIN 1 (DT*2. ,DTMAX)
c
G onwmmnmm mn g nnnmn kA ek k ke Ak ok ke kA k ok ke ke ek
C

IF (LIST) WRITE(IOUT,1l6) DT,I
19 RLDONE=.TRUE.
C **kkkkkkkkkkkkk* WATCH COT **x**kk*kkk**kx*x****x LINEAR EXTRAPOLATION **
DELTA=T-TEMP
DO 995 1=1,NORDR2
995 YEXTR (I) =Y2 (I) +GN2 (I) *DELTA
C * R R KKK R KKK KA KA KR KKK KK KR KKK KKK KK KKK KA KK KK KK A K
CALL DIFEQ1l
RETURN

FO=.TRUE., RESTORE DT

DT=DTEM
$%%%%%% MODIF. OF LOGIC: "C" PUT IN COL.1 IN NEXT TWO ST.

A=.TRUE.

B=. TRUE.

anoan00n
o

RLDONE=.TRUE.
C * ok kkkkkkkkkkk WATCH OUT * ok kk ok kkkkkkkkkk LINEAR EXTRAPOLATION * % %
DELTA=T-TEMP
DO 996 1=1,NORDR2
996 YEXTR (I)=Y2 (I)+GN2 (I)*DELTA

CALL DIFEQ1

RETURN

END



SUBROU

TINE MXCAI3 (A,PHIOFT ,HO , Mt M2 ,H3, 1D, DT, NDIG,PT)

Cc MXCA1l3 FINDS MO,M1,M2,M3 OF A MATRIX A
C

CH*x* ADD DIMENSION OF M3 AND M33

Cc

REAL MO (10, 10) , M1 (10, 10) , M2 (10, 10) , M3 (10, 10) , MOO (10,10)

$M 11 (10,10) , M22(10,10) , M33 (10 ,10)

DIMENS
INTEGE
LOGICA
DATA
$15,15,
AIJMAX
DC 05
DO 05

, MFHI (10,10)
ION A (10,10) , PHIOFT (10,10)
R SIGDIG (14)
L PT
(sIGDIG (I) ,1=1, 14)/4, 6,7, 8, 9, 10, 11, 12, 13, 14,
16,17/
= 10.0%* (-NDIG)
1=1, 1D
J=1,1ID

TEMP = ABS (& (I,J) )
05 IF (TEMP.GT.AIJMAX) AIJMAX = TEMP

KOUNT
DTMAX
TFPAME

10 IF(TFR
TFRAME
KOUNT
GO TO

12 IF (.NO
PRINT

C*x** WHER

= 1
= 1.0 / AIJMAX
= DT / 2.0
AME.LE.DIMAX) GO TO 12
= TFRAME / 2.0
= KOUNT + 1
10
T. PT) GO TO 14
100, DT, AIJMAX, DTMAX,TFRAME, KCUNT

E M2 OR M22 CHANGED TO M3 AND M33

14 CALL MXCLR1 (M3,ID,ID)
CALL ADDID (M3,M3,1ID)

NTERM
DO 15
FACTOR
TFEYFA

= SIGDIG (NDIG)
1=1,NTERM

= NTERM - 1 + 5
C = TFRAME / FACTOR

CALL MATMUL (A,M3,M33,ID,ID,ID)

CALL S
15 CALL A
COEFF1

CALEl (M33,TFEYFAC,M33,IE,ID)
DDID (M33,M3,1ID)
= TFRAME / 12.0

CALL SCALE 1 (M3,CCEIF1,M33,ID,ID)

C
C
Cx** THIS SE
Cc
C
20 COEFF2
CALL
CALL
CALL

CTION OF CODE ADDED TO FIND M2 FECM M3

= TFRAME / 3.0

MATMUL (A,M33,M22,ID,ID)
ADDID (M22,M22,1ID)

SCALE 1 (M22 ,COEFF2,M22,1D,ID)

COEFF3=TFRAME/2.0
CALL MATMUL (A,M22,Mil,ID,ID,IE)
CALL ADDID (M1 1,Mil,ID)
CALL SCALE 1 (Ml 1,COEFF3,M11,ID,ID)
CALL MATMUL (A,M1 1,MOO,ID,ID,ID)
CALL ADDID (MOO,MOO,ID)

CALL s

CALH1 (MOO, TFRAME,MOO,ID,ID)

CALL MATMUL (A,K00,MPHI,ID,ID,ID)
r 1T.L ADDID. (MPHI,MPHI, ID)

’
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18

IF (KOUNT.EQ.O0) GO TO 30
KOONT = KCUNT - 1
TFEAHE = 2.0 * TFRAME

CALL MATMUL (MPHI,M33,M3,ID,ID,ID)

DO 25 1=1,1ID
DO 25 J=1,ID

CHANGED EXPEESSIOJN TO FIND M3

25 M3<I,J) = 0.125 * (M3(I,J)

30

C*x*x%x

$

¢ 3.0 * Mil (I,J)

CALL MXEQL (M3,M33,ID,ID)
GO TO 20
CALL MXEQL (MPHI,PHIOFT, ID,
CALL MXEQL (MOO,MO,ID,ID)
CALL MXEQL (Mil,M1l,ID,ID)
CALL MXEQL (M22,M2,ID,ID)

CALL MXEQL (M33,M3,ID,ID)
IF (.NOT. PT) GO TO 99
PRINT 200
CALL MATPT (A,ID,ID,0)
PRINT 210
CALL MATPT (PHIOFT,ID,ID, 0)
PRINT 220
CALL MATPT (MO,ID,ID,0)
PRINT 230
CALL MATPT (Ml ,bID, ID, 0)
PRINT 240
CALL MATPT (M2, ID, ID, 0)

ADDED TO PRINT M3

PRINT 250
CALL MATPT (M3,ID,ID, 0)

99 RETURN
100 FORMAT (1H1,///,10X,9HDT

200
210
220
230
240

CHxx*

250

$9 HAIJMAX = ,E20..13,//, 10X,
$//,10X,9HTFRAME = ,E20.13,

FORMAT (/////,14X,8HMATRIX
FORMAT (/////,14X,8HPHI OF
FORMAT (/////,14X,9HMATRIX
FORMAT (/////,14X,9KMATRIX
FORMAT (/////,14X,9HMATRIX

ADDED

FORMAT (/////,14X, 9HMATRIX
END

¢ H33(I,J) ¢ 3.0%*M22(I,J)
> MOO (I,J))

1ID)

= ,E20.13,//,10X,
9HCTMAX = ,£20.13,
5X ,8HBYTNC = ,13)
A,/,14%X,8 (1H*))
T,/,14X,8 (1H*))
MO,/,14X,9 (1H*))
M1,/, 14X,9 (1H*))
M2,/,14X,9 (1H*))

M2,/,14X,9 (1K*))
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EXAMPLE TC SHCH USE OF COMBINE: Alti.

SERVO-CONTROLLED PENDULUM

LINK LINEAR VARIABLES TO Dl BLOCK

PROCED HAV1,BAV2,tiAV3, HAV4#HAVS5,
HAV6,WAV7,MAVS ,WAVY ,WAV10=DUMMY

CALL LINKW (HAV1,UAV2,HAV3 ,UAV4 ,HAV5 ,
WAV6,WAV7,HAVS8 #WAVI9, WAV 10)

ENDPRO

NONLINEAR EQUATIONS

TET1.=TET2
TET2.=-0.3*TET2+SIN(TET1) +HAV1

SUBROUTINE GFUNC

GFUNC DEFINES THE FUNCTION G
FOR THE SERVO PENDULUM WHERE
U=G (Y, T)

COMMCN/STATE1/NORDR 1, Y (200) ,GN (200)
COMMON/LINS/LINORD,LININP,LINCUl,A(10,10) ,B (10,10)
COMMCN/LINS/C (10,10),D (10,10),F (10,10),U (10),X (10)
U(l) =Y (1)
U (2) =Y (2)
RETURN
END
SUBROUTINE DEFLIN

DEFLIN DEFINES THE MATRICES A,B,C,D, AND F,
THE INITIAL CONDITIONS CN X,
AND THE SIZES OF THE MATRICESANC VECTORS

COMMC N/LINS/LINORD,LININE,LINOUT,A(10,10) ,B (10,10)
CCMMON/LINS/C (10,10) ,D (10, 10) ,F (10,10) ,U (10) ,X (10)

DEFINE A,E,C,D, AND F MATRICES FOR PENDULUM
INITIAL CONDITIONS FOR X ARE ZERO

OMEG 1=10.0
OMEG2=1000.0

DER=0. 11

AA=10.0

A(1,2) =1.0

A (2,1)=-CMEG1*OMEG2

A (2,2) =- (CMEG 1+OMEG2)
B (2,1)=-AA*0MEG1*CMEG2
B (2,2)=-AA*DER*OMEG1*OMEG2
c(1, )=1.0

C(2,2) =1.0

F (2,1) =1.0

DEFINE SIZES:

LINCRD - LENGTH OF X VECTOR
LININP - LENGTH CF H VECTOR
LINOUT - LENGTH CF U VECTOR

LINKNO - NO. OF AVERAGES
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END

END

END

LINCRD=2
LININP=2
LINOOT=2
LINKNO=1
RETURN
END

INSERT LINKti, INICON, AND INTBGX HERE

TtiAX=1.8,DT=0.015,NPOINT=121,TET1=0.5

L TET1,TET2
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EXAMPLE TO SHOW USE OF GENERAL NONLINEAR ALG.

ELECTRONIC OSCILLATOR - PARTITION B

FAST SYSTEM EQUATIONS
CALL LINKti TO OBTAIN SLOW VARIABLES

PROCEO W1,W2,W3#W<4,W5,N6,W7,W8,W9, H10=CUMMY

CALL LINKW (W1,U2,U3,W4,W5,W6,W7,W8,119#W10)

ENDPRO

Yl.=y2

Y2.=-64.0%Y1 +7.5% (C+Wl-Y1**2)+*y2

X1.=1. 0/R1*2. 0*Y1*Y2-1.0/(R1*C1l) *X1+1l. 0/ (R1*C1) *W2

SLOW SYSTEM EQUATIONS
CALL LINKY TO OBTAIN FAST SYSTEM AVERAGES
PROCED WAV=DUMMY

CALL LINKY (WAV)
ENDPRO

X2.=1./(R2*C1l) *X1-(1./(R2*C1l)+1./(R2*C2)) *X2+1./(R1*Cl) *WAV

X3.=1./(R3*C2) *X2-
X4.=1./(R4*C3) *X3-
X5.=1./(R5%C4) *X4-
X6.=1./ (R6*C5) *X5-
V.=1.0/C6* X6

(1./(R3*C2) +1./ (R3*C3))*X3+1./ (R3*C3) *xX4
(1./(R4*C3) +1./(R4*C4)) *X4+1./ (R4*C4) *X5
(1./(R5%C4) +1./ (R5*C5)) *X5+1./ (R5*C5) *X6
(1./(R6*C5) +1./ (R6*C6)) *X6

E=FK3* (AD-FK1*0.75*SQRT (ABS(V) ))
S.=0.02* (AES(E))**1.2*SIGN (1. 0,E)-0.02*S

SUBROUTINE LINKW (W1,W2,W3,U4,H5,W6,W7 ,W8,W9 ,W10)
COMMON/STATE2/NORDR2,Y2 (200) ,GN2 (200)

COMMON/SYS VAR/EXIT

,RLDONE, IOUT,IFHE, IRUNNO~ ~ M AX, TNEXT

COMMON/SYSVAR/DT,DTMAX ,DTMIN,EMAX,EMIN,SY (35)

COMMO N/LIN K/LINKOR

COMMON/EXTR/YEXTR (200) ,Ww (10)
*%* WATCH OUT ***xkkkkkkkkxx

LINKOR=2

Aok K K K K K K K K K K K K KX K K K K K K K K ok Kk *

Go To(1,2,3,4,5,6,7,8,9,10),LINKOR

W1l0=0.0
wW9=0.
U8=0.
W7=0.
W6=0.
W5=0.
W4 =0.
W3=0.
W2=YEXTP. (1)
Wl=YEXIR (7)
RETURN
END
SUBROUTINE LINKY (WAV)
COMMON/AVER/YAV (200)
NAV =YAV (3)
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CALL MAT MUL (AVN4,£,AVN3,LINORD,LINOSD,LINIMP)

COMPUTATION OF CCEFF. MATRICES FCE LINEAR DISCRETE VALUES
VIZ. (AMO+I) , (MO-3MV2M2) B,
4 (M1-M2) B, (2M2-M1)

[e el olNeNe]

wooOooanonA

35

40

45

50

Q

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

MATMUL (A,MO,BE1P1,LINORD,LINORC,LINORD)
ADDID (BETP1,BETPO, LINORD)

SCALR1 (M1,-3.0,BETFI,LINORD,LINCRD)

SCALR1 (M2,2.0,BETP4,LINORD,LINOFD)

MATADD (MO,BETP1,BETP1,LINORD,LINORD)
MATADD (BETP1,BETP4 ,EETP4, LINORD, LINORD)
MATMUL (BETP4,B,BETFI,LINOED,LINCRD,LININP)
MXSU3 (M1,M2 ,EETP4,LINORD,LINORD)

SCALR1 (BETP4,4.0,BETP4,LINCRD,LINORD)
MATMUL (BETP4,B,EETP2, LINORD, LINORD,LININP)
SCALR 1 (M2, 2 .0 ,BETF4 ,LINORD ,UNO ID)

MXSUB (BETP4,M1,BETF4,LINORD, LINORD)

MATMUL (BETP4,B,BETP3,LINCRD,LINORD,LININP)
INICCN

2. RUN TIME COMPUTATTION

COMPUTATION OF Y(N+1) AND U(N +1)

RLDCNE

= .FALSE.

DO 35 J=1,NORDRI1
YSAV (J)=Y (J)

Y (J)=Y(J) +D1C2*GN(J)
CONTINUE

DO 40 J=1,LININP
USAV (J)=U (J)
CONTINUE

T=T+DTO02

CALL

GFUNC

DO 45 J=1,LININP
USA V2 (J) =U(J)
CONTINUE

CALL

DIFEQ1

DO 50 J=1,NOEDR1

Y(J) =YSAV (J) +DT*GN (J)
CONTINUE

T=T+DTO02

CALL

GFUNC

COMPUTATION OF XAV (N+1)

CALL MXCOL (AVNO,X,BNO,LINORD,LINORD)
CALL MXCOL (AVN1l,USAV,3N1,LINCRD,LININP)
CALL VECADD (BNO,EN1,BN2,LINORD)

CALL MXCOL (AVN2,USAV2,BNO,LINORD,11NINF)
CALL VECADD (ENO,EN2,BN2,LINORD)

CALL MXCOL (AVN3,U,BNO,LI NORE,LININP)
CALL VECADD (ENO,BN2,XAV,LINORD)

COMPUTATION OF WAV (N+1)

DO 60 J=1,LINOUT
USAV (J) =WAV (J)



$0

INC

END

END

BETURN
END

INSERT RKM AND INTRGX HERE

DT=1.0,TMAX=100.0,NPOINT=51,Y1=0.1,R1=8.0,R2=8.0,R3=8.0
R4=8.0, Cl=6.25,C2=4.25,C3=1.25,C4=1.25,DTMIN=1.0E-6
DTMAX=0.3,R5=8.0,B6=8.0,C5=1.25,C6=1.25
C=2.0,FK1=1.<41,FK3=5. 0,AD=7.2,EMAX=1.I-5,EMIN=1. E-7

L Y1,X1,X2,X3,X5,v,s
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APPENDIX B
SUBROUTINE MXCAL3 .~

Subroutine MXCAL3 was derived from subroutine MXCAL (Ferguson,
~ 1972) in order to compute matrix M3. The changes made to MXCAL-are
denoted by comment cards in the Tistingkof MXCAL3 found as part of com-
"bined algorithm based on the Modified Euler Method in Appendix A.

- These changes are summarized here. First, the maérix M3 had to be
declared as a parameter passed to the subroutine and dimensioned along
with its corresponding work space matrix M33. The next several changes
required only a parameter change from M2 to M3 or M22 to M33 in the "A
computation of M3(T) (Palusinski and Wait 1978, pp. 34-46). Following

" this, statements had to be added to find M2 from M3 as shown here.

M, = (h/3)(AMg + I) | (c-1)

Finally Ma (h)>had to be calculated from M, (T) and printed and this
required a change from the original formulation of M2 (h).

After the changes were made, MXCAL3 was tested by comparing its
matrices MO’ M], and M2 with those computed by MXCAL for a fixed
matrix A.  The two subfoutines were found to produce the same results

for the three matrices thus verifying the subroutine MXCAL3.
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APPENDIX C
TABLES OF PEAK ERRORS

The peak errors found for the experiments described in Chapter

5 are presented in this sectidn in the form of tables.
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Harmonic oscillator errors. Improved Euler Method

Table C-1.

DT W2 | W3 o
0.01  5.068-2 5.75E-2
0.02  2.02B=1 2.30E~1
0.06  8.08E-1  9.15E-1
0.08 3. 25E+0 3.63E+0
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Table C-2. Pendulum errors.

Improved Euler without averaging

DT

0.01

0,02
0.03
0. 05

0.06
0.09
0-10

CPU TIME  TETT

0.103

~0.064

0.053
0,037
0,040 -

0.036

' 0.035

1. 60E=2

7.828=2

1,92E=1

5.73E-1

8. U41E-1
1.96E40

2. 40E+0

TET2

9.6 1E-3

5.29E-2

T.41E-1

4.29E-1

6.38E~1

1. 49E¢+Q

1.83E+0

. TAUT

2, £2E-2

1,25E=1

3.03E~1
8.91E~1

1,31E40
3.02E+0
3.80E+0

TAUG2

7.778-3

3.,21E~2

7. 48E=2

2,23E-1

' 3.30E-1
8.67E=1

3.46E+0
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Table C-3. Pendulum errors. Improved Euler Method

DT CPU TINE  TET1  TET2 TAUT TAU2

0.01 0.077  5.878~2 3.358-2  1.365-2 §.72E=2
0.02 0.045  5.87E<2  3.39E-2  6.06E-2  1.72E-2
0.03 0.030  2.33E=1  1.66E~1 2.39E-1 7.58E-2
0.05 0.020  5.19E-1 3.85B-1 5.33B-1  1.77E~1
0.06 0.020 '1 1.43E40  1.10E¢0  1.45840  4.99E=1
0.09 0,015  2.04E+0  1.60E+0  2.08E+0 70155;1 
0.10 1 0.013 3.60E+0  4.59E+0 - 1.92E+0

4.57E+0

26



Modified Euler Methodll

Table C-4. Pendulum errors.

DT CPU TIME = TET1 rET2 7301 TAU2
0.01 ‘00097 ». 8.65E-2 « 6.44E-2  1.058-1 2.685-2
0.02 0,050  3.46E-1  2.77E-1 §o19E-1  1.09E-1

0.03 _ 0,038 7.788-1  6.358-1 9.41E-1 ' 2.47E-1
0.05 0,023 2.16E+0  1.78800  2.59E¢0  6.865-1
0.06 0.022  3.12E40 2.588¢0 3.74E40 1. 13840
0,09 0.018  7.10B40  5.90E40 B.47E¢0  5.06E¢1 |
0.10 0,017  2.2upe3

8.83E+0

7.28E+0

2. 24E+ 1

€6



TabTe C-5. Mine-shaft errors. Im‘prove Euler without averaging

DT
002
0.03

0,04
0.05
0.06
0-.09

0. 10

0-12

CPU TINE
0.321

0,251

0.230

0.218.

0,200
0185

0.191

0-179

| oM
7.37E-3
'3.35B-2

3.46E-2

4. 23E-3
' 2.67E-2
'fﬁa733n2‘.
‘9;393«2 
2. 4bE-2

'Y

1. 36E=3

3-47E-3
6.27E-3

8. 54E~3

10 25E~2
2.75E2
3.82E=2

4, 88E=2

V2

.7w66E%313 .
3°Q85«2_"
3.59E-2
4.07E-3

2,832

 1.69E-2
L 1.01E-1
2.358-2

. 6. U45E-3

€.77E=3
1. 28E=2
2.83E~2

3.90E-2 -
5.018-2

C W1

4o 09E=1

im39EQQ

'_2659E”3
2. 58E=3

3. 92E-3

8-028-3
1.478-2
1. 38E=2

w2

7.508-4
1,038~y
3.56E-3
hgeqzéa'j

: 6-80E-3

1o 48E-2
2@12E=2

2.61E-2
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Table C-6. Mine-shaft errors. Improved Euler Method

T

0.02 -
0.03
0-04

0.05
0-06
0-09

0-10

0-12 .

CPU TIME

0.249
0.198..

0.171
' 0.162
0.150

0.136

0. 132
0. 127

1. 04E=2

oH

1.478-2

9. 31E-3

1.58E-2 ..
-1 92E=2

3. 49E=-2

4 11E-2
5. 60E-2

¥i

3-0 9 1 E""3

1. 34E-3
7.70E=3

1o 26E=2

 3.27E-2
4.11E=2
6. 16E=2

. V2

C1.49E=2

9.53E-3
1. 07E=2

10665”2

2,04E=2

3.75E-2

Go42F=2 -
6 0SE~2

v
1. 08E~2
3.89E-3

- 1« 31E-3
7.98E-3

1-29E=2

© 3.36E=2

4.22E-2

6@32E°2

g1

©2.378-3

3. 57E=3

9. 06E=3

1®52E=2

2.35E-2

7o 14E=2
' 4.05E=1

‘W2' 

4.20E-3
1.6 7E=3
- 5.35E=3

9.80E=3
126 1E=2

4, 15E=2

5.22B-2
7.75E-2

S6



Table C-7. Oscillator (partition A} errors. Nonlinear method without averaging

DT
0-005
0-01
0025
005
0-10
0-20

CPU TIHME
10. 15
9.220
7. 140

62290
6160
5@830

1, 10E=2

1:5 093“’2
1.07E=2
1-00E=2

 3.08E=2

X1

4.89E-3
© 3.05E-3

2- 12E=3

' 9@ 34E"'3
 2.19E-2

X2
1« 73E=3

10 49E°3

1.55E-3

1o 19E°3
2 29E=3

2.70E-2

X3

1. 02E=3

1. 04E=3
1.08E=3

ae 130 E“’Q

1< 60E=3
2.51E=3

X5 .

. 8. THE-4
8968E°Q

 9.08E-4

10 03E-3
1. 15E=3

Vi

8:5653“4

6 BUE~U

7- 11E=4

6-64E=4
65234
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Table C-8. Oscillator (partition A) errors. Nonlinear method with averaging -

DT

0.005
0.01% .

- 0-025
0-.05
0- 10

0.20

CPQ TINE

10,78
9.730
7.500
6.620
6-210

6110

11

1.51E=1

2.83E-1

6-23E=1
1. 16E+0
2,23E+0
4.51E+0

11
2. 49E~1
4.66E-1
10 02E+0
1.91E+0

3.62E+0

7. 20E+0

Cx2.

2-58E=2

4o 91E=2 «

8.TUE=-2

10995“1

3.68E=1
6. BUE-T

X3

7.94E~3
1. 58E-2

3.91E=2

7.78E=2
1055E=1
2.19E=1

X5

8s 46E~3

2,63E~2'

5. U49E=2

'10 09E="i

2. 17E=1

2. 18E=2

V1

3-22E-3

 5.30E~3

5.04E-2
1.04E=1

2'0 08E° 1

16



Table C-9. Oscillator (partition A) errors. ‘NonTinear method with shifted averaging

DT
0.005
0.01
0.025
0.05
0. 10
0. 20

CPU TIME
 25.66
1457
10,82

70.01

9.030

8.760

Y1

3. 22E-2

§.53E<2

8. 60E-2

1. 19E-1
 1.72E-1

2.89E~-1

X1

4, 61E-2

1. 35E-1

1. 85E-1
20 70E°‘R~ -

4. 59E-1

X2

 9,22E-3

~ 1«59E=2

Zc 16E“2

2.63E-2

3. 11E=-2

X3

9.51E~-3

1= 53E=2

‘- 20 223-2 )
'3.62E-2
 6036E-2

X5

 8.40E-3
9.628-3
1.53E-2 -
2;23542,
3.60E-2

6. 16E=2

A
ﬂoO7E°"2
1.65E-2

2-8E~=2

4.00E~2

6.3BE~2

Aﬂ;09E°i

36



Table C-10. Oscillator (paktition B) errors. Nonlinear method without averaging

- DT

0.005

0-01

0.025 -

0.05
0-10
0220

CPU TIHE
9.340
8,260 -
6350
5.430
5.290
5.180 -

Y1

15 10E-2

1.97E~2

 1.46E-1
'j6406E~2

9.298-2.
9.01E-1

X1

71- 13E~3

3. 24E-2

2.21E-1

1 17E-1

2.09E-1

1. 36E¢0

X2
1. 08E~2

ZQQSE‘ﬂ

9. TUE~-1

2.62E+0

v

4. 86E=2

X3

 4.27E-3

2.03E-2

1.26E-1

1. 71E-1

6-63E-1

1. 31E<0

x5
2@87E93

ga SQE"Z

1.22B-1
'_un52341 -

80'52E° 1

o

RE

2.38E-3

1.31E-2

1.34E-1

9.71E-2

2'>o 65E"’1

309QE"1
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Table C-11. Oscillator (partition B) errors. Nonlinear method with averaging

DT
0,005
0.01
0.025
0.05
010

0-20 -

CPU TINE
10.63

- 8,890
62320
5,760
5.270
5. 020

ERAN

1065E=1

20 QOEQ%

1 U6E=1

3. 39E-1
6o 54E=1
1. 12E+0

X1

2a 513“’1 )

3.63E-1

2~021E¢’1 .

5. 13E-1
1.00E+0

" 1.82E+0

X2

1o 50E=1 .

‘2;15Efi'v

3.86E-1
1.06E+0
1. 07E+0

- X3

12 26E~ 1

1o 46E=1

1.26E=1.

o 2-@ 16261 »:

SaéQEeﬁ

 &.18E=1

15

' 1.25E=1"
© 1.52E=1
9. 5552

2. 17E-1

4. 25E=1
4. 79E=1

Vi

1o42E=1
"n;é7£§1f
123451 |
2.795-1
4o 17E-1
66581

00L



Table C-12. Oscillator (partition B) errors. Nonlinear meth@dlwith shifted averaging

DT

0-005

0.01
0-025

0005 .

0-10
0-20

CPU TIMNE

23.65
13.41
9650

'8.910

7.900
7.530

Yy

1. 54E=2

2a “33“’1

1. L4E-1
 7.80E=2
3.70E-1

X
2. 11E-2
1.98E~1
3.87E-1
1.89E~1

1.80E-1

To20E=1

X2

5.78E=2 .

7. B84E=1

2.00E-1
5. U2E-1

7.95E=-1

1-48E+0

X3

5,29E=2

1o SUE-1

1o 42E-1

3.66E=1

3.66E-1
9.20E~1

X5

5, 14E-2
1.43E=1

2.68E=1
1o T4E=1

5. 20E=1

vl

4,76E-2

1.53E~-1
" 1.80E~1

20363=i

1.04E=1

2-40E=1

Lot



Table C-13. Autopilot (partition 1) errors. Nonlinear method without averaging

DT

2:5E-5

4.0E-5 - -

" 5.0E=5

1'.:1‘03‘:@ .

ZQOEcg

2.5E=4

RUN TIME

27,49

13.93

- 7,020

3.640.
2.910

17,09

PH

ZQOSEQSV

3. 158~6

 3.29E-6
) 1o19E°5

4. 10E-4

X -

-6+ 30E~=6

6. 28E~6

6o 32E-6 .

1. 16E~4

4o U3E=4

4
1081E°6
1.90E=6

2@125“6

7@5“E°6
7o 05E=5

2684

X1

 3.33E-3

3-29E-3

3.33E-3
3.32E-3

3921E°3

3.07E=3

X2
2.03E=1
1< 80E=1

2@033“?

1o S4E=1

1. 70E=~1

X3

qangéa
_3=§25e3
qgéuzesl
4.22E=3
4.00E-3
3.458-3

zolL



Table C-14. Autopilot (partition 1) errors. Nonlinear method with averaging

DT

. 4.0E-5

5.0E-5
1.0E=-4
200E¢5

2.5E-5

RUN TIHE
28.29
17.72
14.36
7.190
3.700

13,100

PH

1-26E=6
 1.70E=-6

4.11E~6

s 2UE-5
1001E"u

9.97E~5

X

6. 26E-6

6-20E-6

6.19E-6

1o 14E~5

9. 58E-5

2. 04E-4

Y

1-81E-6

2-.96E~6

3@5ﬂ2°6

ﬂ@SSEQS
1a49E°4

4. O4E-4

X1

3.33E-3
3.29E-3

3. 33E-3

3.32E-3

' 3.19E-3

2.99E-3

X2

2.03E-1

1. 80E-1
2. 03E-1

2.03E=-1
o QUE=1 -

1o 70E-1

i &

4.20E-3
 3.72E-3
4. 24E-3

4.22E-3

4;003=3

3.65E~3 -

g0l



Table C-15. Autopilot (partition 1) errors. Nonlinear method with shifted averaging

DT

2. 3E=5
4,0E-5
50 0E=5
1.0E<4
2.0E-4

2@5E°5

_RUN TIHE.
70.25
43,07

© 34.38
17.58

82690

7. 120

PH

 8.87E~4

10“2E°3

1.77E-3
70163°3.

90213“3‘

X
8 62E-4
1. 38E=3

1-72E-3

3-47E-3
. 6096E°3

8-99E=3

.Y
5:56E°4

8m8§E°4
_10113%3
‘_2m22£;3'
| 4.42E-3

5.47E=3

X1

3. 42E-3

'3@43E°3

3.51E-3
3:69E°3

4.05E-3

4 28E=3

X2

2903E°1

2. 03E-1
2. 03E-1
2.028-1
1é913a15'

‘ ‘3

4.24E-3

3.73E=3

4. 25E=3 .

4.26E3
4-28E-3
4. 06E-3

70l



" Table C-16. Autopilot (partition 2) errors. Nonlinear method without averaging

DT
2.58-5
4. 0E=5
5. 0E-5
1o 0E=4
2. 0E=4

ZQ 5B°L‘5

RUN TIHME

26.97

16.87

13.82

6.990

3.610

2-960 -

PH

2.01E=6

2.45E-6
1.9U4E=6

1.82E~6

1-51E=-6

' 3.61E=6

6-17E=6

X

6- 36E=6

6~ 36E-6

6. 36E=6
6-36E-6
6-31E<6

4

1.88E-6
1.88E-6
1. 88E=6
1.88E-6
1.73E-6
© 2.62E-6

X1
3.33E-3
3. 31E-3
3936E¥3

3-42E-3

3.87E-3

X2

 2.04E=-1

- 1. 81E-1

2.05E-1
2. 10E~1
2. 21E=1
2. 13E-1

X3
4.25E-3

3.76E-3

4.30E-3

4.4 TE=3

4. 9UE=3
- 4.01E=3

S0l



Table C-17. Autopilot (partition 2) errors. Nonlinear method with averaging

v

DT
420E=5

5 o 0E= 5

2@ OE°L5
2-0 535’5

RUN TIHE

27.39
17. 05
13.84
6910
34570

3,100

PH

1~c 65E‘°5

4o 14E-5
: 6'5 25E°5

5o ZSE""L&

" 1.86E-3.

X

6. 36E-5
3.45E=5

© 20 T4E-U

2.57E-3

4
1 15E-5

- 3.09E-5

4,72E-5

1-.88E=4 -

3.23E-4

1.87E-3

X1
3.33E-3
3.31E-3
3.35E-3

3.41E=3

3.665-3
5,098-3

X2

2-0 0’-5E="i

1« 81E=1

2.05E~1
 2.07E-1
2. 04E~-1

1 G0E=1

X3

4.25E-3

3.76E-3
4.30E-3
4.48E=3 |
-u°933a37

4o 14E=3

901



Table C-18. Autopilot (partition 2) errors. Nonlinear method with shifted averaging

DT

2. 5SE=5

4.0E~5
5.0E-5
1.0E-4
2.0E-4

=) 5E°5

RUN TIME
68..62

- 42.87
34,42
17. 44
8740

7,090

" PH

2.79E~5
4.19E-5
5.22E=5
9.01E-5
1. 34E~4

1. 45E-4

X
2o U6E-5
3-82E-5
4.80E-5
8.94E-5
1 52E-4

2-00E=4

Y
1. 53E-5
2.38E=5
2.98E=5
5.55E=5

9.60E=5

1o 10E=4

X1
3.71E=3
3-91E-3
4. 11E-3
5.27E-3

9.49E-3

1= 15E-2

X2

) 240 15E°?

2. 26E-1

2.51E=1

3. 19E=1

X3

' 4.26E-3

3-76E-3

QOZQEé3;
4.4 0E-3
4.75E-3
4.77E=3

/ot



APPENDIX D
COMBINED ALGORITHM WITHOUT AVERAGING

The combined algorithm without averaging (labelled CRK2HI.C)
that was compared with the comhined algorithms with averaging is
described in Palusinski, 1977b, pp. 21-23. This algorithm performs

the half step calculations

k'l = f (.yns tns Wn) ‘ _ - (D"])
Uni1/2 = 9 Unaryee Ynarj2) | (D-3)

The nonlinear full step solution is then predicted as

P ey o | _
Y1 T Yp Nk | (D-4)
P - p - A i
Unp1 = 9 ey toe) (D-5)
_ The'1{near system based on the pre.dicted'uﬁH value is given by
p_ An o
Xopy = € Xt (MO BM] + QMZ)Bun
+ 4(M,-M,)B + (2m,-M,)BuP (D-6)
172 Uns1/2 2 177" "n+]
P - ¢yP p -
WeeT an+1 + Dun+] (D-7)
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The nonlinear full step solution is obtained from

= : Py : )

ky = f (y thk;, tays Woepd - (D-8)
Ypa] = ¥y + (0/2)Tkg+ky) | (D-9)
Upsr = 9 Wpprs B (D-10)

Finally, the nonlinear correction is computed

_ _Ah |

Kpap = €y + (M =31 42M,)Bu #4(M; M)
*2AmpMy) Bupyy (D-11)
Wt = CXpap F DUy o (D-12)

As seen, this algorithm is more complicated than the Improved Euler

algorithm since half step solutions are required.
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