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Abstract

Third generation LIDAR full-waveform (FW) based systems collect 1D FW signals
of the echoes generated by laser pulses of wide bandwidth reflected at the intercepted
objects to construct depth profiles along each pulse path. By emitting a series of pulses
towards a scene using a predefined scanning pattern, a 3D image containing spatial-
depth information can be constructed. Unfortunately, acquisition of a high number of
wide bandwidth pulses is necessary to achieve high depth and spatial resolutions of the
scene. This implies the collection of massive amounts of data which generate problems
for the storage, processing and transmission of the FW signal set. In this research, we
explore the recovery of individual continuous-time FW signals at sub-Nyquist rates.
The key step to achieve this is to exploit the sparsity in FW signals. Doing this allows
one to sub-sample and recover FW signals at rates much lower than that implied by
Shannon’s theorem. Here, we describe the theoretical framework supporting recovery
and present the reader with examples using real LIDAR data.
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1 Introduction

Light detection and ranging (LIDAR) is a primary tool that provides excellent capabilities
for acquiring 3D images of a scene. The most popular systems to date operate under the
time-of-flight (TOF) principle of the laser pulse to determine object depth. Among these
kind, third generation pulsed LIDAR systems collecting full-waveform (FW) signals consist-
ing of the pulse echoes have gained popularity in the last few years. Their popularity has
increased because of the improved object depth estimation and scene structure characteri-
zation capabilities [11] (e.g, inclination, smoothness, vegetation, urban area).

In general, these systems project an energy pulse from a single laser source into a scene
and measure the echoes generating from the pulse interaction with the objects encountered.
Each of these echoes is sensed with a single photodetector or avalanche photodiode and
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sampled using an A/D converter. Measurements of such signals provide depth information
of the objects intercepted by the pulse along a specified direction. An illustration of this
process for a single transmitted pulse is best described with aid of Figure 1.

Figure 1: A pulse encounters two objects at distinct depths which create pulse echoes received
at the photodetector. The shape and time of flight (TOF) of these echoes depend on the
object characteristics and on the distance from the emitter to the encountered object.

By emitting a series of pulses and directing them with a mechanical scanning unit into dis-
tinct locations through the entire scene of interest and measuring the corresponding echoes,
connected FW signals of 3D scenes can be readily obtained. This set of FW signals can be
used to construct 3D images of the scene after the appropriate processing. Unfortunately, a
high density of pulse emissions and the corresponding acquisitions is required to achieve ac-
ceptable spatial resolutions of the scene. For example, a typical scene is scanned by emitting
hundreds of millions of pulses and collecting the corresponding FW signals [14]. Moreover,
each LIDAR pulse is of short duration and of wide bandwidth which implies sampling at
high rates (e.g., sampling at a few Gigahertz (GHz)) if sampled under the Shannon/Nyquist
principle [15], [13]. Sampling such FW signal sets of a scene is thus an extremely expensive
task because of the massive amounts of data collected.

Fortunately, the set of FW signals collected at Nyquist rates contains many redundan-
cies. From one point, the multiple pulse echoes occupy only a very small portion of the
measurement time interval of the individual FW signals (we refer to echoes with this feature
as echoes of short-time duration). This in turn, implies that the set of FW signals is highly
sparse and that the system is sampling at unnecessarily high rates. We can, thus, take
advantage of this structure to devise sub-sampling procedures that sample more efficiently.

In [8], [9] the authors developed a TOF based pulsed laser system that can sample a scene
very efficiently using a spatial light modulator. Such approach follows the same principle
as the single-pixel camera developed in [6] for 2D images. The strategy produces good
quality depth images using just a few samples compared to what traditional Nyquist theorem
dictates. However, the sampling process stores only the TOF of the pulse (i.e., a single TOF
number per pulse emission) and not the FW signal. Different to these approaches, we are
interested on devising sub-Nyquist sampling strategies that can recover the FW signal set
for subsequent scene analysis. In [4], the authors model FW signals as signals with finite rate
of innovations. This allows to sub-sample individual FW signals at the rate of innovation; a
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number which describes the number of parameters representing the FW signal. The authors
found that under this strategy the size of the collected FW signal set can be significantly
reduced and still achieve high quality reconstructions. Here, we devise sub-Nyquist strategies
for individual FW signals by sampling using overlapping random windows instead.

2 LIDAR Dataset Characteristics

2.1 Individual FW signal characteristics

To begin, we introduce the term echo which is referred to in here as the pulse reflection caused
by a single object regardless of its characteristics. In general, a FW signal might consist
of multiple short-duration echoes generated by the presence of multiple objects encountered
during the time of flight (TOF) of the pulse. The shape of each of the echoes varies according
to the particular characteristics of the objects encountered (e.g., object depth, inclination,
roughness, reflectivity) [10], [12], [11] and [16] and on the characteristics of the emitted pulse.
For LIDAR, the emitted pulse is typically of short duration and in the range of a couple of
nanoseconds (ns).

The spectrum of the FW signal is of wide bandwidth as described by the uncertainty
principle [7] because the echoes are well localized temporally. Because the emitted pulse is
of a few nanoseconds of duration then its spectrum is bandlimited to a few Gigahertz (GHz).
It is also expected that the FW signal spectrum is similar to the spectrum of the emitted
pulse. An illustration showing an example of the emitted pulse and the FW signal generated
by the corresponding echoes is shown in Figure 2.

Figure 2: A full-waveform signal consisting of three echoes of distinct shape.

Here, we refer to the continuous-time FW signal as the signal x(t) for t ∈ [0, T ] and with
T finite. The interval [0, T ] contains all the salient information pertaining to the encountered
objects in the TOF of the pulse. In particular, t = 0 corresponds in general to the time
at which the laser pulse was emitted. The number T is selected according to the system
characteristics; its capabilities to resolve far-field objects and the intended application. We
assume no knowledge on the shape and TOF of the echo. The echoes in the FW signal might
be overlapping with each other if two or more of the intercepted objects are relatively close
as shown in Figure 2. Here, the term relatively close is measured with respect to the pulse
duration. The sections of the FW signal corresponding to the pulse echoes are defined to in
here as Γe ⊆ [0, T ] and its cardinality by Se = |Γe|. Note that in the absence of noise Se is
equivalent to Se = S = | supp(x(t))| (i.e., the support of the FW signal). In addition, Se is
much smaller than T (i.e., Se � T ) in general. We also refer to Γc

e as the subset in [0, T ]
complement to Γe. Thus, the set Γc

e describes the indices in the FW signal which do not
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correspond to echoes. We can further explore the components that make up Se. If disjoint
echoes, Se is made up of the number of echoes Ne and on the duration di for i ∈ (1, Ne) of
each of these echoes, in other words, Se =

∑Ne

i=1 di. Unfortunately, Ne and di are generally
unknown prior to FW signal acquisition.

2.2 FW signal set

By scanning, we collect a set of FW signals which contains the spatial and temporal (i.e.,
depth) information of the 3D scene of interest. Here we refer to scanning, as the process
of emitting pulses towards the scene locations following a pattern and measuring the cor-
responding FW signals. The set of FW signals is arranged as a 2D matrix where each row
corresponds to a FW signal and columns index a specific time. The order in which FW
signals is arranged in the 2D matrix depends on the order specified by the scanning pattern
(i.e., the order in which pulses are emitted). The FW signal set typically contains many
zeros because the multiple echoes are of short duration (i.e., sparse).

2.3 On real data

The LIDAR dataset obtained from NAVAIR China Lake, CA was collected using the VISSTA
ELT LADAR system. The shot rate of this system is 20 Khz (i..e, pulse emission rate).
Each time a pulse of 1.5 ns of duration at full width half maximum is transmitted, the echo
return waveforms are captured at a sampling rate of 2 Ghz and quantized using an 8-bit
A/D converter. The dataset used in this research was collected by imaging a pickup truck
through a chain link fence both positioned perpendicular to the pulse transmission path. To
illustrate this more clearly, Figure 3 shows the 3D point cloud resulting from processing
the waveforms collected by the system. The raw FW signal set contains a total number of
31,626 pulse emissions and corresponding measurements, representing, a total of 126 × 251
pulses along the vertical and horizontal directions, respectively.

Figure 3: An example of the LIDAR point cloud

A representative example of a measured FW signal is shown in Figure 4a. Note that
in general, the occupation of the echoes is much smaller than the signal length. In fact,
most samples are noise and only a small portion of them contain the echo components. In
addition, we include in Figure 4b a small section of the FW signal set. Each row represents
a distinct FW signal and the columns represents a time index. The white entries represent
noise and the darker regions indicate the time indices at which echoes are present. Note that
in general, the FW signal set is very sparse.
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(a) Full-waveform signal (b) A section of the set of FW signals

Figure 4: Examples of the FW LIDAR data.

3 Sub-sampling of individual FW signals

3.1 Sub-sampling Approach

As described in section 2.1, echoes in individual FW signals occupy a small portion of T .
As such, we devise a sampling approach which can take advantage of such structure. The
approach we follow is similar in nature to the short-time Fourier transform in which Fourier
transforms are obtained from sections of the signal dictated by overlapping windows. Here
however, the elements of the overlapping window are of random nature and of fixed length Tb
and shift Ts. In general, sub-samples of the signal sections are collected by the appropriate
multiplication of the overlapping window with the signal x(t) followed by integration and
sampling. The general implementation consists of the bank of samplers illustrated in Figure
5. The overlapping windows denoted by Φ(j)(t) for j ∈ (1, q) where q represents the number

x(t)Φ(1)(t)

x(t) → ⊗ −→
∫ t1+Tb

t1

x(t)Φ(1)(t)dt → S/H → y1[1]

↑
Φ(1)(t)

x(t)Φ(2)(t)

x(t) → ⊗ −→
∫ t2+Tb

t2

x(t)Φ(2)(t)dt → S/H → y2[1]

↑
Φ(2)(t)

...
...

...

x(t)Φ(q)(t)

x(t) → ⊗ −→
∫ tq+Tb

tq

x(t)Φ(q)(t)dt → S/H → yq[dMq e]

↑
Φ(q)(t)

Figure 5: Parallel implementation of random demodulators

of channels in the system, changes its value at rate fN = 1/TN . In other words,

Φj(t) = Φj,n, for t ∈ (j − 1)Ts · Bn (1)
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for n = 1, ..., N , N = T/TN , set Bn = [(n− 1)TN , n · TN) and Φj,n is a sub-Gaussian random
variable (r.v.). An alternative representation in terms of the rect function is given by

Φ̃m(t) = Φj(t) · rect(
t

Tb
− (i− 1)Tb − (j − 1)Ts) (2)

where m = q(i− 1) + j for m ∈ [1,M ], i ∈ [1, dM/qe], j ∈ [1, q]. We can rewrite (2) as

Φ̃m(t) = Φ̃m,n for t ∈ Bn
=

{
Φm,n for t ∈ Am ∩ Bn

0 otherwise

(3)

for m = 1, ..,M , n = 1, ..., N , set Am = [(m− 1)Ts, (m− 1)Ts +Tb) and where Φm,n denotes

a sub-Gaussian r.v. Note that although the random waveforms Φ̃m(t) are continuous, these,
can be represented by a finite number of variables when the waveforms are considered over
a finite extent N · TN . This representation allows us to model the system by

y[m] =
N∑

n=1

Φ̃m,nx[n] or y = Φ̃x where x[n] =

∫ nTN

(n−1)TN

x(t)dt. (4)

Here, Φ̃ ∈ RM×N denotes the measurement matrix with banded random matrix (BRM)
structure and x ∈ RN is a vector containing signal averages over intervals of length TN .

3.2 FW signal recovery

The system model in (4) is an underdetermined system of equations because in general Φ̃
is rectangular with M � N . Fortunately, the theory of compressive sensing [3] asserts that

the signal x can be recovered exactly from the measurements y if Φ̃ obeys the restricted
isometry property (RIP) [2]. The optimization program to recover x is given by

min ‖x̃‖1 subject to ‖Φ̃x̃− y‖2 ≤ ε (5)

where ε ≥ 0 is a small constant and the operator ‖‖p denotes the lp norm. In [] the authors

determined that the number of measurements required such that Φ̃ satisfies the RIP with
probability at least 1− 2 exp(−c0b2vδ2/β) for c0 > 0 is given by

M ≥ dC[log(N/S) + 1] +N/bs − Λ(C1, bs, N, S)e − 1. (6)

For S = Se, bs = Ts/TN ∈ Z, bh = Tb/TN ∈ Z, bv = bh/bs ∈ Z, . Here, the constant
C > 0 with C1 = 2C is small and dependent on an error term δ ∈ (0, 1), on the sub-
Gaussian norm K2 of its entries, and on c0, S stands for the sparsity or support of the
signal. Furthermore, β = (−2S2 − (6bvbs + 3bs + 1)S + b2s − 1)/(6bsS) and Λ(C1, bs, N, S) =
(−3C1bs log(eN/S)[4S2 − (3C1bs log(eN/S) + 2(3bs + 1))S + 2(b2s − 1)])(1/2)/(6bs

√
S).
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3.3 Implementation

The implementation of the system is performed by replacing the ADC in Figure 1 by the
system consisting of the bank of random samplers shown in Figure 5 sampling at sub-
Nyquist rates. To sample FW signals we use the approach described in section 3.1 and
the model in (4). The rate fN is a very important factor in the design of the sampling
approach and should be chosen carefully. Note in (4) that the faster the rate, the higher
the resolution of the reconstruction that can be achieved and vice versa. In the case when
a reconstruction of the type of quality given by the Nyquist/Shannon sampling theorem
is desired, the rate fN , has to be conditioned to be equal or higher the Nyquist rate fNyq

(i.e., fN ≥ fNyq where fNyq ≥ 2fmax and where fmax is the highest frequency present in the
spectrum of x(t)). Selecting such a rate gives the capability to achieve a reconstruction as
the one given by the Shannon/Nyquist theorem but with fewer measurements under sparsity
assumptions. Therefore, the desirable resolution depends on the application: whether a
single TOF measurement is sufficient or a FW signal for subsequent analysis is desired.

One of the parameters determining the number of measurements required depends as
described in (6) on S = Se. However, in section 2.1 it was mentioned that the number of
echoes Ne and their duration di is generally unknown. Therefore, we require some sort of
estimation on the parameter Se to sample the signal very efficiently. In [5] the authors defined
the term complexity of the signal as a parameter representing the number of innovations of
the signal. Such number, can be used as an indicator of the sparsity of the signal and
updated on the fly as the set of sampled FW signals are collected by the process of scanning.
In general, this is possible because Se does not vary largely with FW signal index as shown
in Figure 4b. Unfortunately, this information is not available initially. However, the initial
values of Se can be chosen with knowledge of the emitted pulse duration and on the maximum
number of echoes typically present in FW signals. For example [12] determined empirically
that the maximum number of echoes present in FW signals is in general seven (i.e., Ne = 7)
and that more than four echoes occur quite rarely. It is also mentioned here that the first
two echoes contain about 90% of the emitted pulse energy.

4 Experimentation and Results

To perform the experimentation, we use the collected dataset described in section 2.3. Sim-
ulation of the sub-sampling approach and recovery described in section 3 is performed in
Matlab. The recovery of FW signals using the optimization in (5) is made by using the code
developed in [1]. To illustrate the possibilities of our approach, we use several real LIDAR
FW signals as input to the system depicted in Figure 5. The rate at which these signals
were originally sampled is 2 GHz. This rate is selected based on the characteristics of the
emitted pulse of 1.5 ns duration and the corresponding Nyquist rate.

In the first set of experiments, the selected rates fN of the overlapping windows Φj(t)
are fN ∈ {1/4fNyq, 1/3fNyq, 1/2fNyq, fNyq}. At each of these selected rates, recovery is
performed using a specific number of samples. The overlapping windows are simulated via
the observation matrix Φ̃ with a BRM structure. The non-zero entries in the BRM are
randomly generated in Matlab according to a Normal distribution. The duration of the
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Table 1: FW signal recovery with parameter fN
fN M N bh CR (%)

Resolution 1 1/4fNyq 1054 1665 790 36.7
Resolution 2 1/3fNyq 1239 2220 896 44.2
Resolution 3 1/2fNyq 1608 3327 1035 51.7
Resolution 4 fNyq 2718 6657 1500 59.2

overlapping windows is fixed to bh = {790, 896, 1035, 1500} · 1/2e9 seconds for the rates
fN ∈ {1/4fNyq, 1/3fNyq, 1/2fNyq, fNyq}, respectively. At each of these cases the shift is fixed
to bs = 3 · 1/2e9 which corresponds to a bv = 500 · 1/2e9 throughout all cases. Figures 6.1a,
2a show the random sub-samples, Figures 6.1b, 2b compare the original FW signal with the
reconstructed signal and Figures 6.1c,2c is a zoomed version at the pulse echoes.

(1a) Measurements (1b) Original and reconctruction (1c) Zoomed echoes

(2a) Measurements (2b) Original and reconctruction (2c) Zoomed echoes

Figure 6: Effect of the resolution parameter fN . Figures 6.1a-c and 6.2a-c represent the
measurements and FW signals obtained at rates 1/3fNyq, fNyq, respectively.

Note that the the perceptual quality of the reconstructed signal is very close to that of the
original signal using fewer samples as compared to the Nyquist/Shannon sampling theorem.
To further asses the performance of our approach we measure the compression efficiency by
means of the compression ratio (CR) given by CR = (1− M

N
) · 100% where M and N denote

the number of compressive samples and the number of Nyquist samples, respectively. Table
1 summarizes the results of for the distinct fN cases in this experiment.

In addition to the experiment above, we also test our approach in reconstructing the FW
signal as a function of the number of measurements M at a fixed rate fN . In particular,
we chose the rate fN = fNyq and reconstruct at distinct number of measurements M . The
cardinality Se of the echoes in the FW signal shown in Figure 6.1b is approximately about 29
samples which corresponds to 14.5 ns. In general the noise level in FW signals is large in the
set Γc

e. With such noise, precise recovery would require a larger number of measurements
M . To illustrate on how large noise increases the requirements on M , we compare, the
performance of our sampling approach in the noisy and noiseless FW signal. In the noiseless
scenario, we remove noise by modeling the FW signa as linear splines as done in [4]. The
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Table 2: FW signal recovery with varying M
M bh bv bs RMSE Noisy RMSE Noiseless CR (%)

500 350 25 14 0.1791 0.1031 92.5
1000 1344 168 8 0.1352 1.38e-5 85.0
1500 845 169 5 0.1189 6.97e-6 77.5
2000 1344 336 4 0.1121 6.96e-6 70.0
2500 843 281 3 0.0980 8.89e-6 62.4

noisy and noiseless recovery results are shown in Figure 7.1 and 7.2, respectively. In the
noisy setting the parameters bh = 845, bv = 169, bs = 5,M = 1500 where used, whereas,
bh = 1344, bv = 168, bs = 8,M = 1000 where used in the noiseless case. The performance
of the algorithm is measured by using the root mean squared error (RMSE). However, for
convenience and relevance the RMSE is measured only in the indices present in the set Γe.
In table 2, a summary of a variety of reconstructions with distinct test parameters is shown.
For these tests, the FW signal shown in Figure 6.1b originally sampled with N = 6657
samples and with an overlapping window rate of fN = fNyq is used.

(2a) Measurements (2b) Original and reconctruction (2c) Zoomed echoes

(4a) Measurements (4b) Original and reconctruction (4c) Zoomed echoes

Figure 7: Effect of M on FW signal recovery. Figures 7.1a-c, 7.2a-c, correspond to the noisy
and noiseless setting with M = 1000 and M = 1500, respectively.

Note that the approach recovers the FW signal components corresponding to the echoes
accurately. In contrast, the parts pertaining to the noise in the signal are unprecise because
those sections are not sparse. Because these parts are irrelevant to the analyst and the noise
peaks are kept to a minimum which prevents them from considered as a false echo then;
we can say that the recovery is acceptable. However, careful selection of M is required to
achieve acceptable recovery at a given noise level. Alternatively, we could also include a
continuous-time noise reduction filter prior to signal digitization.

One other issue our approach presents is that the computational complexity is signif-
icantly high. We can expect improvements upon this issue by devising or using faster l1
minimization algorithms. However, we leave that for future work and focus here on showing
that FW signal recovery is possible using our proposed approach.
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5 Conclusion

In the work presented here, we propose a framework to collect individual FW signals at
sub-Nyquist rates. The essential key step to achieve recovery consists on exploiting the
structure in multiple echoes which are of short duration. The sampling strategy consists on
subdividing the FW signal using overlapping windows with random amplitudes. We model
this process by banded random matrices (BRM) and recover using l1 minimization under a
restricted isometry property (RIP) condition. The experiments show that FW signals can
be sampled and recovered very efficiently using our proposed method.
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