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ABSTRACT

The University of Arizona’s Aerial Robotics Club (ARC) sponsored two senior design teams
to compete in the 2011 AUVSI Student Unmanned Aerial Systems (SUAS) competition.
These teams successfully designed and built a UAV platform in-house that was capable of
autonomous flight, capturing aerial imagery, and filtering for target recognition but required
excessive computational hardware and software bugs that limited the systems capability.
A new multi-discipline team of undergrads was recruited to completely redesign and opti-
mize the system in an attempt to reach true autonomous real-time target recognition with
reasonable COTS hardware.
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1. INTRODUCTION

The Seafarer’s chapter of AUVSI defines a simulated military rescue scenario that teams
were assigned to performed. The full brief of the rules and scenario can be found at http:

//www.auvsi-seafarer.org/. In short the basic requirements are

• Autonomous flight including take-off and landing

• Autonomous target recognition

– Alphanumeric character and color

– Target shape and color

– GPS location and orientation

Figure 1. LAARK AVATAR System Component List
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2. AIRFRAME BACKGROUND

A very specific platform was necessarily designed and manipulated for implementation of
an onboard reconnaissance kit. The Aerial Vehicle for Autonomous Target Acquisition and
Recognition, further to be recognized as the AVATAR, was meticulously designed and con-
structed for aerial performance with respect to the onboard vision recognition system. In
order to provide the most effective operational floor for reconnaissance, the AVATAR air-
frame is aerodynamically oriented for high stability in numerous flight regimes. Inherent
flight stability is achieved through the use of specific features such as an inverted v-tail, a
dihedral wing, and a dual prop design rather than a single prop design.

To increase the stability and performance of the aircraft beyond a mechanical standpoint,
the Piccolo II autopilot was incorporated making this an entirely unmanned aerial system.
Establishing the autopilot control allowed for a much larger operational range, by changing
the limiting factor from human sight to radio frequency range, and provided computer assis-
tance for performance and stability. The autopilot system allowed for tuning of the control
surfaces to reduce oscillations during flight, and introduced greater stability by perform-
ing in time calculations of wind speed and direction and adjusting its controls accordingly.
These both contributed to a much steadier flight providing a best case scenario for image
acquisition. Besides increased stability, the autopilot maintained steady flight speeds and
altitudes adjusting for aerodynamic inconsistencies in the air. These constraints were refined
through trigonometric calculation and field testing giving an operational flight altitude of
250 ft AGL and an air speed of 32.5 kts. These characteristics are idealized for the imagery
being acquired. At such conditions the AVATAR can operate autonomously for nearly 35
minutes and can fly steadily in crosswinds of up to 18 kts. This has been tested proven in
real flight missions, thus the AVATAR is an ideal aerial solution providing a stable, efficient
platform for aerial reconnaissance.
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3. TRIVIAL AIR-GROUND TRANSPORT LAYER WITH ZEROMQ

3.1. INTRODUCTION TO ZEROMQ

The ZeroMQ[1] (”Zero-Em-Queue”) network transport layer grew out of Wall Street efforts
to create a low-latency message queue framework which simplified traditional BSD socket
programming. Instead of creating a complex, all-encompassing, or simplistic and narrow
API, ZeroMQ provides the concept of transport ”patterns.” By logically extending existing
socket naming conventions (send(2), recv(2)), the ZeroMQ API is easy for unfamiliar
programmers to pick-up and quickly begin thinking in terms of high-level network topology
and communication patterns.

The request-reply pattern, Figure 2.a, represents the most simple and obvious network com-
munication pattern. Sockets operating in the REQ-REP context perform their operations in
lockstep. Typically in a loop, the server and client communicate by sending messages back-
and-forth via send and receive API calls. If a client or server attempts to send or receive
before the other side has acknowledged, deadlock occurs and an exception is thrown on the
offending side.

Fan-out concurrency models are useful in worker-consumer patterns. ZeroMQ provides the
PUSH-PULL communication pattern to provide this network topology. An arbitrary number
of workers (PUSH) may spin-up on demand and push their completed work to a centralized
consumer (PULL.) As shown below, code to demonstrate the worker-consumer pattern is
short and readable. Secondly, the code differences between server and client is minimal and
largely abstracted behind the conceptual model:

context = zmq.Context() context = zmq.Context()

socket = context.socket(zmq.PUSH) socket = context.socket(zmq.PULL)

socket.connect(’tcp://127.0.0.1:5555’) socket.bind(’tcp://*:5555’)

while True: while True:

# Do expensive function.. # Receive completed work...

message = do_expensive_op() message = socket.recv()

# Send results to consumer. # Alert user of completed work

socket.send(message) print ’completed’, i

Traditionally, a BSD socket approach would require complicated polling and possibly
locking when operating in an N:1 context. ZeroMQ goes further by allowing more complex
M:N worker-consumer strategies with no code changes; simply run more PULL services.

3.2. AIR-GROUND MESSAGING

The LAARK subsystem uses three distinct ZeroMQ socket patterns: REQ-REP for imagery
synchronization; PUSH-PULL for data transfer to the ground station(s); and a variation

4



Figure 2. (a) lockstep REQ-REP and (b) PUSH-PULL concurrency with fan-out.

of publish-subscribe called PUB-PULL for telemetry streaming. Isolating components with
particular communication patterns also simplified the conceptual model of how the entire
system fit together. Knowing that a particular component communicated as request-reply
inferred knowledge of how to add or manipulate the surrounding code. Using the high-level
language of network architecture provided by ZeroMQ allowed the LAARK team to quickly
and remove code on the fly without having to reason locking semantics of private resources.

4. AUTOMATIC TARGET RECOGNITION WITH OPENCV

4.1. INTRODUCTION TO AUTOMATIC TARGET RECOGNITION

Automatic Target Recognition, or ATR, can be described as a series of algorithms or devices
that actively detect objects from a collection of one or more sensors. ATR does not necessarily
constitute object detection in imagery, but instead is generalized to any sensor. It is often
the case that a multitude of sensors, such as GPS, acoustic, and imagery, will all be used in
conjunction to contribute to the success of an accurate target recognition algorithm.

This paper discusses the approaches of target recognition in imagery using the Viola-Jones
algorithm. Viola and Jones describe an algorithm for rapid object detection using a boosted
cascade of simple features. This approach was built into OpenCV’s[2] objdetect module
and is most often attributed to the success of facial recognition. In addition, the existing
implementation was improved with extended Haar features from Lienhart and Maydt[3] [4].

4.2. TRAINING A SUCCESSFUL CLASSIFIER

Traditionally a classifier is constructed by describing features on a large collection of imagery
in a supervised learning setting. Labeled examples are described with corresponding feature
vectors. In any case it is not unusual to train against thousands of images to create a reliable
classifier, such as the case of facial recognition.

Unlike many supervised learning algorithms, Viola-Jones is a unsupervised object detection
algorithm, that is it deduces features from unlabeled training data. This means that quality
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of a classifier is dependent on the quality of the training data. The disadvantage to this
approach is that it is often susceptible to over-fitting. However, by providing training data
of natural and computed distortions of targets a complex model classifier can be created
with an optimum interference-estimation calibration.

The success of an ATR algorithm is based on ratio of positives, false-positives, and negatives
of detected targets. These metrics are found by testing a trained classifier on non-trained,
but validated data. This is often a laborious task, however it can be automated by generating
samples and automatically truthing the data.

Unlike facial recognition, aerial imagery is often very consistent in its background; in its
most basic form the imagery can be initially classified by its terrain, such as desert, forest,
rural, grass, and urban. This general feature is important to providing an initial filter on the
data to mitigate the interference of background noise. An example filter on a grassy field
could be computing the standard deviation of the corner neighbors in an image and applying
an adaptive threshold within a certain percentile of the standard deviation to remove most
background noise. In isolated regions, such as neighborhoods, plains, or forests enough
negative samples can be supplied to the classifier that the interference is negligible. This
type of classifier can be achieved by maintaining a detection-false -alarm rate of 1:2.

OpenCV provides a means of creating such a classifier with the opencv haartraining ap-
plication. This tool is strictly for computed a classifier based on the Viola-Jones/Lienhart-
Maydt algorithm. The parameters specified allow the user to specify the number of stages,
branches, hit-rate, and false-alarm rate.

4.3. CASE-USE CLASSIFIER FOR OBJECT DETECTION IN A GRASS
FIELD

To facilitate the target recognition of common shapes in a grassy field, a series of training
tools were constructed to automate the task of generating sample data. This sample data
included the automation of skewing, rotating, and applying perspective transforms to aid in
the prevention of over-fitting the data.

The output of these tools create a positive and negative sample list that can be used as input
to opencv createsamples application. OpenCV expects a specialized vector format which
is used in the processing of the opencv haartraining tool. An example of the input formats
are shown below. Each line in the positive.txt file describe an image where the objects
reside, the number of objects, followed by the position and dimensions of each object. The
negative.txt lists each image in which no object is found. The specialized vector format
can then be constructed:

opencv createsamples -info positive.txt -vec positive.dat -num 131 -width 20 -height

20

For this application the initial classifier was constructed with 150 positive samples and
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image-0001.jpeg 1 2650 330 47 33

image-0002.jpeg 1 2710 1580 40 37

image-0003.jpeg 3 2797 940 53 37 866 967 37 30 966 1394 27 23

image-0004.jpeg 2 736 276 40 37 480 1000 23 20

Figure 3. positive.txt

image-0005.jpeg

image-0006.jpeg

image-0007.jpeg

image-0008.jpeg

Figure 4. negative.txt

300 negative samples. OpenCV’s opencv haartraining was invoked with the following
parameters:

opencv haartraining -data haartraining -vec positive.dat -nstages 20 -nsplits

2 -minhitrate 0.999 -maxfalsealarm 0.5 -npos 150 -w 20 -h 20 -mem 512 -mode ALL

-bg negative.txt -nneg 300

These parameters construct a 20-stage cascade classifier with a minimum hit-rate of 0.999,
a false-alarm rate of 0.5, and a minimum target size of 20x20. This procedure is computa-
tionally expensive and may take upwards of days to compute the final stage in the classifier.

The end-result classifier can be tested against the opencv performance tool which runs
the generated classifier against a positive sample file. This provides a means of computing
metrics such as the hit, miss, and false-positives of the classifier. An example output is
shown below:

$ opencv_performance -data haar -info positive.txt

File Name Hits Misses False
image-0010.jpeg 1 0 6
image-0011.jpeg 1 0 8
image-0012.jpeg 1 2 0
image-0013.jpeg 1 0 2

Total 4 2 16

Number of stages: 15

Number of weak classifiers: 48

Total time: 9.000000
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4.4. FILTERING AND IDENTIFYING OBJECTS

It is often necessary to filter results from a classifier to determine characteristics of the targets.
In this section a method of filtering targets is detailed in a case-analysis as described in the
previous section.

Figure 5. Six stages of progressive chip analysis.

Object recognition can be characterized by the output from the object classifier. At this part
of the chip analysis pipeline, it was assumed that an image chip was available for processing.
This is represented by the leftmost image in Figure 5. Next, filtering on the background was
used to remove noise and provide a clear representation of the target. A simple mean and
standard deviation of chip corners filtered out pixels which fit within the constraint. Stages
three and four then performed a binarization technique to remove remaining interior colors
for object detection. Colors were binned by HSV which then allowed easy filling, masking
and extraction. The final stage, shown as the rightmost chip in Figure 5, was generated by
analysis on contours via decision trees and/or approximation.

5. CUDA–ACCELERATED TANGENTIAL AND RADIAL DISTORTION
CORRECTION

The wide-angle lens of the LAARK imagery system, coupled with non-orthogonal mounting
angles to provide 120◦ field-of-view, caused a great deal of tangential (”keystone”) and radial
(”barrel”) distortions in imagery. Correcting the aberrations requires applying the following
transformations[5]:
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where old pixel coordinates (xi, yi) are mapped to (x′i, y
′
i) through the respective transform

pair, p1 and p2 are tangential distortion coefficients, and k1, k2 and k3 are radial distortion
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CPU GPU
3GHz Core 2 Duo / GT 430 2078 ms 348 ms

3.4GHz i5 / GTX 590 1012 ms 112 ms

Table 1. CPU vs. GPU OpenCV remap performance on 3264 x 2448 dimension image.

coefficients. These parameters are assembled into a five-element vector. From here, OpenCV
allows us to then apply the remap function which can correct an image.

The process of applying the remapping projection to images of 3000 × 2000 pixels and
larger presented a problem for real-time UAV imagery. Each image remap would take longer
than the transmission time of a single image and thus caused a backlogging of work to be
completed on the ground side. As a cluster of computers was not a practical solution, the
OpenCV CUDATM-assisted API was investigated.

Figure 6. Left: distorted ”raw” imagery. Right: tangential-radially corrected image.

6. CONCLUSIONS

The use of ZeroMQ for networking allowed for a rapid development process and ease in
debugging. Often times, simply drawing out a flowchart for a desired or buggy operation
allowed other team members to quickly spot deficiencies and aid in general understanding by
assigning formal names to different socket patterns. Results from Haar-like features provided
us with an ability to truth and test against various backdrops, from grassy-green Maryland
to desert-dust Arizona, without making any changes to our underlying detection framework.
Coupled with OpenCV’s traditional performance, we were able to make low-latency, high-
throughput image analysis pipelines with minimal hardware. Migration of image processing
bottlenecks, namely re-projection, to the much faster GPU via OpenCV CUDA backends,
allowed us to further reduce our system hardware profile. These improvements led to the
successful deployment of the 2012 AUVSI AVATAR/LAARK system on a reduced hardware
profile while improving extensibility, readability, and performance.
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