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ABSTRACT

The Delano ^ - 5 diagram, defined as a cartesian plot of 
the marginal ray height (ordinate) and the chief ray height 
(abscissa) at every surface of an optical system, provides a 
powerful tool for the analysis and design of optical systems, as 
well as for the teaching of geometrical-optics principles. The 
origin of the y - y  diagram is based on the constancy of the 
Lagrange-Helmholtz invariant throughout an optical system, and on 
the refraction law.

In the present work, by using the tools of analytic 
geometry, all the first-order (gaussian) properties of an 
optical system (magnification, cardinal points, powers and focal 
lengths, separations and radii of curvature, stops and pupils, 
vignetting, obscurations, etc.) are derived analytically. The use 
of vectors or complex numbers to represent the points in the 
diagram, not only permits more elegant derivations, but also 
facilitates enormously the interpretation of the diagram, and 
gives the reader a powerful tool for solving practical problems.

This formulation is used for a general analysis of the 
properties of a thick element in the y - y  diagram. An exact 
analytic solution to the problem of generalized bending and 
thickening of lenses is a direct result of this analysis.

xiii



xiv
The normalization of the diagram for the purposes of

comparative analyses of different systems is also investigated.
Finally, a computer program (YYRANCH) is described that 

implements these ideas into a practical tool allowing the user to 
analyze the first and third order properties of an optical system 
and to produce a workable third-order design that will maintain 
the first-order constraints imposed on such a system; the design 
variables are y a n d  the curvatures and thicknesses are given 
as a result. The graphical monitoring of the program allows the 
user to follow the design step by step, and to make the 
appropiate corrections when needed.



CHAPTER 1

INTRODUCTION

Existing optical design computer programs make use of 
surface curvatures, thicknesses, and refractive indices as design 
parameters. This choice seems natural because these are the 
actual physical parameters of the optical system. However, as 
design variables, curvatures and thicknesses suffer from several 
disadvantages; for example, it is difficult to maintain first- 
order constraints, and also in general the aberrations of the 
system behave in a strongly nonlinear fashion as functions of 
these variables.

An appropiate non-linear transformation to more suitable 
variables would lead to an improvement in the operation of an 
automatic design program. Fortunately, such a transformation is 
possible with the use of the y -Zj" diagram introduced by Delano 
(1 9 6 3)» in which the variables replacing curvatures and thick
nesses are the paraxial heights and of the marginal and chief 
rays, traced through the optical system.

The use of j and j or their equivalents (see Chapter
2 ), allows the first-order constraints to be easily maintained; 
and with respect to these variables, the aberrations behave more 
linearly, permitting a better control of the design program.

1



2
Delano introduced the jf-j diagram as a two-dimensional 

representation of the first order properties of an optical system 
in the December 1963 issue of Applied Optics dedicated to the 
topic of Optical Design. He was inspired by previous work by T. 
Smith (see references in Delano's article) on the theory of 
periscopes. The treatment given by Delano is extremely concise, 
and this may have contributed to the fact that it has not attract
ed the attention that it deserves in the optical community. Only 
a handful of papers describing its use have appeared in the 
literature.

Due to its graphical representation, the ^ - j" diagram is 
an excellent analysis tool. It is possible to "see" all the 
first-order characteristics of an optical system in a single 
graph as a set of dots connected by lines. Constraints and 
limitations imposed on the system are particularly obvious.

It is also possible to see at a glance what changes may 
be made on the points in order to improve the design without 
affecting other parts of the system. This makes possible the 
use of the diagram as a design tool. This dual role of analysis 
and design is the basic fact that makes the diagram so
attractive. This tool may well revolutionize the field of optical 
design in the near future.

This graphical representation has another virtue not less 
important than the above, and that is that one may actually learn 
the characteristics and properties of different optical systems by
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representing them in this two-dimensional plot. In other words 
the diagram is also an outstanding teaching tool* As such,
it has been used at the Optical Sciences Center since 1967 by 
Dr. Shack in the course on Geometrical Optics. Many students 
have been motivated by this tool to try their hand at designing 
simple optical systems at an early stage. Some of them have had 
some previous experience in optical design and they have found 
that it is usually much easier to arrive at a solution to first- 
order problems by using this tool rather than the conventional 
methods«

One may ask, then, why this tool which seems to be highly 
advantageous for optical design, at least in the early stages, 
has not after nearly ten years had the diffusion and acceptance 
that seemingly deserves. There is of course the natural inertia 
of the well-proven old methods used by optical designers, now 
very well assisted by computers, but I believe that the main 
reason this tool has not caught on is the fact that, except for 
Delano's original article, there has not been available in the 
literature a thorough presentation of the properties and 
possibilities of the diagram, and, as mentioned before, the
conciseness of Delano's presentation has caused many readers to 
simply set it aside for "when I have more time...."; one has to 
read it carefully several times to really appreciate the elegance 
and power of the approach.
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Just before starting on this dissertation I was given the 

opportunity of spending five weeks (July-August 1 9 6 8) at the 
Digigraphics Laboratory of Control Data Corporation in Burlington, 
Massachusetts. Due to the courtesy of CDC and a travel grant 
given by Perkin-Elmer Corporation, both of which I wish to 
aknowledge with thanks, I was able to write a preliminary program 
of analysis based on the paper by Delano, for the purpose of 
graphical display using a Digigraphics interactive terminal 
attached to a CDC 3300 computer. The results were quite success
ful as far as they went, but they were limited by the shortness 
of the time available and my relatively rudimentary understanding 
of the technique. Nevertheless, the experience was especially 
valuable in indicating the road to follow.

For example, when I was faced with the project of writing 
a computer program using j and jT variables, capable of being used 
in design as well as analysis of optical systems, it became clear 
that an analytic basis had to be developed. All the properties 
and characteristics of the y d i a g r a m ,  which are so beautifully 
seen in geometric terms had to be expressed in algebraic form 
before an effective program could be written. As one would 
expect, analytic geometry provides the basis for the algebraic 
expression of the properties of the diagram.

The present work is the result of this algebraization and 
its main purpose is to establish the analytic basis of the 
y -5" diagram,, spelling out in as much detail as possible all of 
its properties and, with this basis, to develop a computer



program which may be used not only for a detailed analysis but, 
to a limited extent, also for the design of optical systems. A 
short description of the contents follows.

Chapter 2 describes the qualitative properties of the 
-y diagram and its relation to its dual counterpart, the Jl-rL 

diagram.
Chapter 3 begins the algebraization process. All the 

points in the diagram may be treated as vectors, and this repre
sentation leads to a very elegant and powerful derivation of all 
the properties of the diagram. Likewise, the lines connecting 
these points may be considered as vectors. The same set of 
points and lines in the plane may be treated as complex numbers, 
an approach which offers distinct advantages from the computa
tional point of view. Finally, these two representations are 
compared with the matrix approach developed by Brouwer (1964) and 
discussed in many recent books on optics.

In Chapter 4 we seek the representation of all first- 
order properties of an optical system in the y-J diagram, in 
order to be able to recognize them later when analyzing or 
designing a system. Magnifications, conjugate planes, cardinal 
points, location of pupils and images, shifts of the stop or the 
image, and vignetting, are considered.

Chapter 5 deals with a normalization of the diagram that 
has been found particularly useful when comparing different 
systems of the same general type, but of quite different indi
vidual characteristics.
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Chapter 6 is a direct application of the algebraic 

method to the analytical study of the properties of a single 
physical element: the thick lens. This is important, not only
for the insight obtained, but because the thick lens is the 
fundamental component of all refractive systems, and its rela
tionship to its equivalent thin lens, a well known and very 
useful abstraction, is thoroughly developed. A byproduct of this 
analysis is the analytic solution of an old problem, the bending 
and/or thickening of a single element without affecting the 
first-order properties of the rest of the system of which it is a 
part. This is described in the form of a programmable algorithm 
in Chapter ?•

Finally Chapter 8 describes the program YYRANCH which 
permits the user to analyze and design an optical system in the 
first- and third-order approximations.

This work does not pretend to be exhaustive, but rather 
it is intended to supply the ground work necessary for more 
ambitious projects.

One of these projects, already begun, is the analytical 
study of the third-order aberrations of the system in terms of 
the properties of the 3 -5" diagram. Another investigation of 
some interest is the study of certain types of inhomogeneous 
media in the ij-jj diagram. In such media the ray paths are 
curvilinear rather than straight line segments in the j-y 
diagram. A third project is the development of a much more



sophisticated design program in which the system is accurately 
evaluated by real ray tracing in the conventional manner, but 
the controlling design variables are those of the j-y- diagram 
rather than thicknesses and curvatures. Such a program would be 
capable of the complete design of the system through the final 
optimization. An obvious advantage is the ease with which first- 
order constraints are maintained.

As it might be expected in a topic as young as this is, 
the bibliography available is quite limited. Following the 
article by Delano (19^3) , we may mention a rather uninformative 
report on the application of the technique by Pegis et al.
(1 9 6 7)» a short description of the properties of the diagram by 
Powell (1970), and a better and more complete one by Shack 
(1972).

Parts of the present work have been presented at meetings 
of the Optical Society of America, Lopez-Lopez (1970b; 1971b,-c; 
1972a,-c), and other parts have been published in the form of 
articles or notes: the normalization of the diagram (Lopez-Lopez
1970a), the vector representation (1971d), and the treatment of 
the thick lens (1972b).



CHAPTER 2

THE tf-j" AND Jl-Yl DIAGRAMS

We shall restrict ourselves at the outset to the paraxial 
or first-order approximation of Geometrical Optics. It is #ell 
known that under this approximation, the ray tracing equations 
for a rotationally symmetric optical system are only two and that 
they are linear. This means that only two paraxial rays, the 
marginal ray and the chief ray, need to be traced through the 
system to determine its first-order properties. Note the reci
procity between the roles of these two rays: the marginal ray
determines the position of the image and the size of the size of 
the aperture, whereas the chief ray defines the size of the image 
and the position of the aperture; this reciprocity is the core of 
the duality properties between the tj-y and diagrams. We
shall denote all quantities belonging to the chief ray by a bar 
above the quantity; see Appendix A for notation.

It has been shown by Delano that a single skew ray may be 
traced through the system in the following manner. Assume a 
coordinate system as in Fig. 1. The £ -axis coincides with the 
optical axis of the system; the origin may be arbitrarily chosen, 
somewhere along the optical axis. As the marginal and chief rays 
are meridional rays, we may trace the marginal ray in the 
plane and the chief ray in the plane without any loss of
generality. Then the skew ray referred to by Delano is such
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Fig. 1 Skew ray from object plane to pupil plane 
with the marginal and chief rays as orthogonal projections

Fig. 2 y - Z) diagram corresponding to Fig. 1



that its projections on the %-% and y-% planes are the chief 
and marginal rays, respectively. Delano then obtains the g-g 
..diagram as the projection of this, skew ray onto the %-« plane of 
Fig. 1,. resulting in the diagram of Fig. 2 ; it is assumed that 
one is viewing the system in the negative % -direction. We shall 
label the % -axis the 5 -axis, as it contains the heights of the 
chief ray.

Note that the.skew ray describing the system is uniquely 
defined. The great advantage of this approach is that the pro
jection of this single skew ray onto the y -5 diagram is 
sufficient to describe all the first-order properties of the 
system, provided that we specify the indices of refraction and 
the Lagrange invariant for the two rays. As noted by Delano, the 
optical system is represented in . this diagram ( } }  - & }  by a set of 
points and lines connecting these points; and the system is 
essentially described by the coordinates of these points; from 
these every other characteristic of the system may be derived.
As Delano shows, there are two possible choices for these coordi
nates: one is to specify the three actual coordinates of the
point ( y  > $  j  %), and the other is to restrict ourselves to the 
two coordinates ( a , 3 ) on the diagram, and specify separately the 
indices of refraction of the homogeneous spaces comprising the 
system. We shall adopt the latter alternative in this work.

As already noted in the Introduction our aim is to express 
all the geometrical features described:by Delano in analytic or



algebraic form, suitable for numerical computation and quantita
tively useful for actual design and analysis work. The main tool 
will be the use of two-dimensional vectors in the y-y diagram, 
but that will be deferred to the next chapter« In the rest of 
this chapter we shall discuss the qualitative features of the 
y - y  diagram, as well as its dual relationship to the yet to be 
defined diagram.

The Lagrange Invariant
The concept Of the single ray described above is so 

fruitful and elegant that we should proceed to give an analytic 
expression for it and derive the properties of the system from it. 
However, this three-dimensional.description is not necesary in 
this context, due to the fact that we are only interested in the 
projections of this skew ray in the three coordinate planes. 
However such three-dimensional description is necessary when we 
are dealing with an. inhomogeneous medium, in which case the skew 
ray is no longer a series of broken straight lines, but a twisted 
curve; this case is beyond the scope of this work, althought it 
is being investigated as a separate contribution.

Returning to our single skew ray, we may see that its ... 
projection onto the x - % plane of Fig, 1 is simply the ray-trace 
of the chief ray, which analytically will he given by the 
following two equations
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Win = yt , (2-2 )

where w* s. yi { v. { , is the "reduced” chief ray angle;

tfw = t i n / * i * i » is the reduced axial separation along the
y -axis between surfaces t and i+ i ;

Cfi = - m ) ,  is the power at surface £ , with ct- as the
curvature of the surface; see Appendix A 
for notation.

Similarly, the projection of the skew ray onto the j f -% 

plane is given by the ray-trace equations for the marginal ray:

5i>i = 2/1 +• Zi* ui'+t 9 (2-3)

ajiH = £Ji - yv , (2-4)

using the same nomenclature as above.
If we restrict ourselves to a single space of index of 

refraction m , we may easily show that the projection of the 
skew ray onto the plane is given by:

co i = )K = c M f t , (2-5)

which may be recognized as the Lagrange invariant for the chief 
and marginal rays. We know that this is a numerical constant 
that applies to the entire system, and therefore it acts as a 
scaling factor in Eq. (2-5)•  ̂ )K can be either positive or

1• Moreover we may remember that the flux of energy 
through the system is proportional to )K*.
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negative; we assume a positive Lagrange invariant throughout this 
work. We may define new reduced angles by dividing by >K t
J l  ~ o j / H i  • Then Eq. (2-5) takes the form

V - -fit 5",' = I, (2-6)

being the equation of a straight line in the y - t i diagram.
We should note at this point that Eq. (2-5) may be derived 

on purely analytic grounds without recourse to the geometric pic
ture given by Delano. Eq. (2-5) may be obtained by eliminating 
"5 i+i from Eqs. (2-1), (2-3) or by eliminating from Eqs.

(2-2), (2-4). Then proceeding to Eq. (2-6) we see that this is a 
straight line in a two-dimensional diagram with (g,^) as coordi
nates and ( -A ,-fl ) as parameters.

Both pictures, the geometric and the analytic complement 
each other beautifully. The geometric picture affords the 
insight that any figure provides (one picture is worth one 
thousand words, says the Chinese adage). The analytic approach 
affords the accuracy that the geometric picture may lack. From 
these considerations it is seen that the best vehicle for a 
treatment of the ij-tj diagram is analytic geometry.

The 3  -V Diagram 
If in the equation

3 - - A - J - 1 (2-7)

we fix the values of Jl and -/I , which for most applications
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implies a fixed value for the index of refraction >l , we obtain 
in the if-J diagram, a straight line with intercepts

as illustrated in Fig. 3» Three points are marked along this 
line: an image point # - &), a pupil point E ( j = o ) and an 
arbitrary point 2 - (  y > 3 ); the line itself is characterized by 
the index of refraction /h., and completely determined by the two

point on the tj -axis locates an image, and any point along the 
y-axis locates a pupil.

ing to the two paraxial rays, the marginal ray and the chief ray, 
related by the Lagrange invariant (2-5)« and imbedded in the 
space of index of refraction . The more conventional repre
sentation, the lay-out of the system, is given in Fig. 4, and it 
is the complete analog of Fig. 3 in the sense that both contain 
the same information. In the lay-out of the system we shall 
represent the marginal ray by a single line and the chief ray by 
a double line, as shown in Fig. 4.

the 3 diagram represents a whole space of index of refraction 
n , and points along this line represent planes perpendicular to 
the optical axis of the system, the coordinates of each point 
being the heights of the chief ray (g ) and marginal ray ( )

- I/J1 = Jjr,

-h I /  J l =. J E ,
(2-8)

intercepts, Eos. (2-8) or conversely by the values (-fl,-0-). Any

The graph in Fig. 3 contains all the information pertain

We may appreciate from these two graphs that a line in
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Fig. 3 Single line in the ^ - 3  diagram

"Pk̂i'Z ê̂ er'cnce

Fig. 4 Lay-out corresponding to diagram in Fig. 3
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passing through,this plane0 Note that the line continues indefi
nitely , meaning that the space it represents exists throughout.

As an optical system consists of several spaces super
imposed on each other, we now will consider the representatibn of 
this multitude of spaces in the diagram, each space being 
represented by a straight line, each characterized by an index of 
refraction vt.

Before we combine two spaces of different index of refrac
tion, let us look at the situation depicted in Fig. 5, of two 
reference points along the same line of index of refraction n . 
This case simply corresponds to a change in reference plane 
within the space of index of refraction h , or in other words, 
corresponds to a transfer from surface a-, to surface s*, opera
tion under which the values of the ray angles remain .unchanged 
and only the heights change.

It is clear that only the segment comprised between the 
two points a, and a-*, corresponds to the segment of space of 
index n in which the light is actually.travelling, but of course 
both the space and the line it is represented by extend indefi
nitely in both directions; we shall call such a segment a Mlight- 
segment", and by extension a "light-ray" will denote the line in 
which it is contained. We see that the light-segment corresponds 
to the "real" part of the skew ray, and the rest of the line 
corresponds to the "virtual" part of the sEew ray. In other 
words, when the light-segment crosses the y-axis, it locates 
the position and size of a real image of the object; when the
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Fig. 5 Transfer from plane to plane "a*.

£J
Fig. 6 Lay-out corresponding to diagram in Fig. 5
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virtual part of the ray crosses the axis, we obtain a virtual 
imag6< Similarity when the light-=segment crosses the t^-axis we 
locate a real image of the stop; otherwise we have a virtual 
image of the same« It is also clear that the light-ray cannot 
pass through the origin of the y- j" diagram, as this would imply 
that for that space, the image and the pupil coincide, which is 
impossible^ As an Illustration, in Fig. 5 the pupil is real and 
the image Is virtual if we assume that the llght-segment is 
a , I n  the next chapter we shall give a quantitative criteri
on to find real Images or pupils.

We now consider the case when we allow the two reference 
points to coincide but let there be two lines with different 
indices of refraction ( ^  h ’), passing through this common
point, as illustrated in Fig , 7» This situation obviously cor
responds to a refraction of the two rays at the common reference 
surface £ v where; the ray angles change but the heights do not.

This is also the simplest imaging system; it relates ... 
planes in one space to planes in another space in a one-to-one 
c o r r e s p o n d e n c e , if $?e assume that the light goes from the plane 
I  to the plane s- where it is refracted towards the plane 
then the first light-segment from I  to 2- , characterized by the 
index n » is the object ray and represents the physical object 
space of the same index; and the light-segment from a to X ’, 
with index ft* , is the image ray and represents the physical 
image space. We see from the figure that both images are real in 
this case, and the stop of the system is located in object space
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Fig. 7 Refraction at surface i

1  £' £ * ! •

Fig. 8 Lay-out corresponding to diagram in Fig. 7

C*:|
 N
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at E , coinciding with the pupil of the object line, identified 
with the entrance pupil of the system; the pupil of the image 
line, in this case virtual, is identified with the exit pupil of 
the system and is located at £*.

As depicted in Fig. 7* the point z- represents a refract
ing surface dividing the two spaces of indices n , , and
imaging an object of height into another of height . It

' also may represent a thin lens doing the same thing between 
object and image spaces if we assume that n =. n*, or even a 
mirror if we assume 'yV =. -rt • This ambiguity results from the 
fact that the y -j diagram deals only with "reduced” quantities, 
such as ='Hu., and z  =. £ / n  ; and in order to derive the real 
angles that the rays make with the optical axis or the axial 
separations between the surfaces, we must specify the indices of 
refraction associated with each space represented by a line in 
the diagram. This apparent drawback is indeed an asset because 
it gives the y - y  diagram a great flexibility to represent simple 
as well as very complicated systems by a set of points and lines 
connecting them.

In the refraction situation depicted in Fig. 7» Delano 
has shown that if we assume a positive value for the Lagrange 
invariant, a light-line at the point of refraction will turn 
clockwise, towards the origin, for a surface having a positive 
power; and counterclockwise, away from the origin, for a negative 
power surface (Fig. 9)• (We shall give a demonstration other than 
Delano’s in the next chapter.) Therefore, each refraction will
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Fig. 9 a) Positive power surface
b) Negative power surface
c) Plane surface

<*
•1
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be represented in the y-ij diagram by a bending of the light- 
segment at the point representing the surface or lens, except 
when such a surface is a plane one (zero power). There is no 
bending for the zero-power surface because there is no change in 
the value of the reduced angles at such a surface, although the 
actual ray angles do change. This is represented in the diagram 
by a change in the index attached to the light-ray (see Fig. 9 )• 

As any optical system consists of a finite number of 
surfaces and separating spaces of different indices of refraction, 
we may conclude from figures 5 and 7 that such an optical system 
will be represented in the y-y diagram by a set of points 
connected by light-segments. For example a thick-lens Taylor 
triplet would be represented as in Fig. 10, where points 3 1 4

Fig. 10 Diagram of a thick-lens triplet



represent the surfaces of the middle, negative element, and 
points 1, 2 and 5 1 6 represent the surfaces of the surrounding 
positive elements. The height of the object is represented in 
this case by 0 and that of the image by %. The object ray is 
the one connecting the points 0, 1, and the entrance pupil is 
represented by the point £ ; similarly, the image ray is that 
passing through the points 6,-T and the point £ ’ represents the 
exit pupil. We may also see from the diagram that the actual 
stop of the system, represented by -S' is located slightly before 
surface 3» The points joining the dotted lines passing through 
the surfaces of the thick lenses, represent the thin-lens 
equivalents of these thick lenses. As far as the first-order 
properties of the system are concerned those three thin lenses 
( A t B t C ) would do exactly as well as the group of surfaces 
(1 through 6).

Fig. 11. Diagram of a two-element system
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As another example, consider the diagram of Fig„ 1 1 . The 

first thing to notice is that the object line is parallel to the 
Zf -axis, and therefore, the intersection of this line and the 
axis occurs at infinity; in other words< the object of this 
system is located at infinity. Secondly, the first element of 
the system coincides with the stop and the entrance pupilo

Depending on the choice of the indices of refraction 
Hi, .ha » 'M3, this diagram will correspond to completely different 
lay-outs. Fig. 12 illustrates three different choices. In a) 
we have set -vt, =. 'w* = 'n3 =. I , thereby assuming that points 1 and 
2 represent a positive and a negative lens respectively; in 
other words, a telephoto system. In b) we have set -yi, = = .| ,
but v t & =. — I , and the resulting system consists of mirrors and 
is a cassegrain objective. In c) we choose 'Wl= i't3 =. f , via.> I , 
and the resulting system is a thick lens element immersed in air.

At first glance, without being already familiar with 
Gaussian Optics, one would hardly suspect that the three systems 
illustrated on Fig. 12 are equivalent 5 however , this equivalence 
is clearly shown by the y d i a g r a m  which gives the same repre
sentation to all of them, implying that as far as the first-order 
properties are concerned, the three systems are completely 
equivalent« The formulae derived from the diagram on Fig. 11 

will apply to each of the systems of Fig. 12, when the proper 
indices of refraction are inserted.
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Fig* 12 a) A telephoto thin-lens system
b) A Cassegrain objective
c) A thick lens
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The -fl-JT Diagram and Duality y
Returning to the expression for the Lagrange invariant in 

the form of Eq. (2-7), we may rewrite it as follows

-rt- 5 - + 1 = (2-9)

We recognize this as a "bilinear form" extensively 
studied in Projective Geometry, where they are expressed in terms 
of homogeneous coordinates (Gans, 1969, p. 280) as follows

X, u, -h xzuz + x3k3 = 0.

The X{ are called point coordinates because one set 
uniquely defines a point; similarly, the Ui are the line 
coordinates, and they uniquely define a line. Note that written 
in this form both set of coordinates are indistinguishable from 
each other. Non-homogeneous or cartesian coordinates are chosen 
as ratios; in our particular case:

*,/%3 =. y , s (2-10)

/u3 = j i , uz/u3 s - Jl (2-11)

From these general remarks we see that there are two 
possible cartesian representations of the bilinear form (2-9); 
one is to use ( 2), y ) from Eq. (2-10) as coordinates and (-#.,/! ) 
as parameters: this is the 3 -3 diagram introduced by Delano and
already discussed in the previous section. Another possibility
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consists of taking ( JT , -fl ) as coordinates and consider ( jT , # ) 
as coefficients: this is the J l - H .  diagram.

The two diagrams are "dual" to each other in the Projec
tive Geometry sense; in other words, a point in the y-y diagram 
is represented by its "dual", a line, in the J l - J l . diagram, and 
vice versa. This duality has been extensively studied in the 
literature (Coxeter, 1969♦ p. 248; Maxwell, 1 9 6 3, p. 11).

In the J l - J L diagram, an optical system is also repre
sented by a set of points and connecting lines, except that in 
this case, the points represent the spaces and the segments 
represent the refracting surfaces.

The dual relationship alluded above allows us to draw an 
-ft --/I diagram from a jj -y diagram in a straighforward manner. 
As noted above, each point in the y-y diagram is transformed 
into a line in the J l - J L  diagram, and each line in the y-y 
diagram goes into a point in the J l - J L  diagram. This type of 
transformation is known in Projective Geometry as a "correlation" 
(Gans, 1969* p. 2 8 0 ). Figure 13 illustrates the 11-Ji diagrams 
corresponding to some y-y diagrams previously described: a
single space of index 71 with a reference surface 2 ; the case of 
a transfer between two surfaces a,, 2-*; and the refraction at a 
surface & from a space of index n to one of index n\

One diagram may be geometrically constructed from the 
other by noting that the dotted lines of one diagram are parallel 
to the solid lines of the other. This is not an accident, but a 
consequence of the duality relation connecting the two diagrams.
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Fig. 13 a) Single space. 
b) Transfer from z, to c) Refraction at i
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Although the -Tl - J I diagram is less easily visualized 

than the y - y  diagram, it will prove nevertheless, extremely 
useful in several important instances when the analysis on the 
y - y  diagram proves to be very cumbersome and, by contrast, 
much more tractable in terms of -rt- and S l , For example, we 
shall see in a later chapter (Ch. 6) that certain properties of 
optical systems result, in the y - J j diagram, in a series of 
lines whose envelope is the curve of interest for the study of 
such properties. Curves in a plane are difficult to analyze 
when they are defined by their tangents alone. However, if we 
translate this figure to the diagram, each of the tangents
will go into a point and the curve will be easier to analyze as 
a series of points. Once we have completed the analysis of this 
curve in the J I - sl diagram, we can calculate in turn its 
tangents in this diagram which will transform into points on the 

y -5 diagram, giving us the desired curve in the usual point 
form.

In addition, as has already been pointed out by Pegis 
et al. (1967)» the variables -fL , -0- are better suited to the 
control of the aberrations of the system. ’ »

Another advantage of the duality relation between the two 
sets of variables ( j/*, y ) and (Jl,-C.) is that it permits us to 
treat lines as single entities, on the same footing as we treat 
the points. We shall see in the next chapter that in the same 
manner that we may represent a point by a single vector, we may 
also represent a line by a single vector and treat it in the same



way as any other vector. These vectors in turn may be considered 
as complex numbers; in the plane, which offers a great computa
tional advantage as both points and lines may be manipulated 
numerically as single entities by already available complex- 
number routines in most computers.



CHAPTER 3

VECTORIAL REPRESENTATION OF THE u-g DIAGRAM

In this chapter we shall develop the basic concepts and 
tools for an algebraic analysis of an optical system in the 
diagramo

The geometric usefulness of the diagram may be made quan
titative only by the application of the laws of analytic geometry 
to the two-dimensional projection of the single skew ray intro
duced by Delano (1963)° In the last chapter we described some of 
the most elementary properties of the diagram in a very qualita
tive manner; in this chapter we substantiate quantitatively those 
assertions and give a more complete list of the properties of the 
diagram.

Inasmuch as the y-g diagram is a set of points and lines 
describing uniquely and completely the first-order properties of 
any rotationally symmetric optical system, we must deal with 
pairs of numbers such as (y", y ) to represent the points, and 
(H,-n.) to represent the lines, and it will be convenient to 
find an expedient way of handling these ordered couples of 
numbers.

One such way is to think of these pairs of numbers as the 
cartesian components of appropiate veotors. Alternatively, they 
may be treated as the real and imaginary parts of corresponding 
complex numbers. The advantage of using vectors is the elegance

. .31; :• : :
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and simplicity of the formulae obtained and the.insight derived 
from their graphical representation. The main advantage of 
using complex numbers lies in the numerical aspect of the 
computations; complex numbers are handled by most computers as 
single entities, and most of the operations carried out with 
them are made "on line," which constitutes a substantial saving 
in computation time« As the same point (or line) in the diagram 
may be represented both by a vector and by a complex number, we 
shall use them interchangeably to derive the properties of an 
optical system from the diagram. Also, the transformations to 
which these points are subjected are inherently linear and 
therefore may be expressed by means of matrices» These matrices 
turn out to be the same as those used by O’Neill (1963)5 and 
Brouwer (1964). We shall only mention them; in this chapter to 
illustrate the unity and elegance of the 3 -3 diagram approach; 
we also include the formulae for going from the vector-complex., 
formulation to the matrix representation»

The formulae and concepts developed in this chapter will 
be used in subsequent chapterso In particular, in the next 
chapter they will be used to develop the representation of the 
most familiar concepts of Gaussian Optics in the y - y  diagram.

Vectors and Complex Numbers,
We now define the point vectors

2 s  (j, 3 ) (3=1)
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at each surface of the optical system, and the line vectors

= ( H50 cu) = (11%, r u.) (3-2 )

at each space of refractive index n. We also define the vector

W - (Ji, -a) - ^/>K (3-3)

obtained from iv- by dividing by the Lagrange invariant as a
scaling factor. In terms of the vectors 2 and V  , the
paraxial ray trace equations, (2-1) through (2-4) become

a * = + T i W {  , for transfer, (3-4)

Vi>, = k/t- - 2i , for refraction; (3-5)

where now we have used the scaled quantities (see Appendix A),

T  = IK'S = >K*/n,
(3-6)

S = y>/>K,

as they are, together with the vector V/, directly derivable from 
the diagram.

By taking appropiate cross-products of Eqs. (3-4, 5 ) to 
eliminate either Tf, or .$V, we obtain the vectorial equation 
for the Lagrange invariant

a x W  = k (3-7 )

Awhere It is the unit vector along the y-direction; see Fig. 1.
It may be easily verified, by carrying out the cross-product, 

that Eq. (3-7) goes directly into Eq. (2-7); in other words, this



equation represents a straight line in the 5 -s diagram, 
characterized by the vector W . Note also that equation (3-7) 
may be written, when introducing the surface subscripts, in any 
of the equivalent forms,

2|-_, x V,- =• I* x W,- = Zt x = 2,>, x Wi+, - fe,. (3-8 )

To corroborate the assertion that the heights y  at
each surface are sufficient to determine an optical system in the 
y diagram, we proceed now to express the vectors W 1 the 
separations T t and the powers 5  all in terms of the vectors -2 . 
However, to give the actual parameters for a real system, the 
angles (%-,%"), the axial separations £ , and the curvatures of
the surfaces c , we shall need to specify the values of the
indices of refraction attached to each space as well as the 
value of the Lagrange invariant for the whole system. The 
Lagrange invariant in turn may be expressed in terms of the three 
parameters of the system as a whole: focal length, aperture and
angular field of view. A different choice of the indices of 
refraction will give physically different systems as was illus
trated in the example of Fig. 11. A different value of the 
Lagrange invariant, on the other hand, only changes the scaling 
of the system.

To obtain the value of the reduced separations Tl , we 
multiply vectorially Eq. (3-4) by 2*1, and by using Eq. (3-8) we



We may see from this expression that the reduced separation is 
equal to the numerical value of the cross product of two consecu
tive a vectors, i.e., to the area enclosed by the parallelogram 
formed by the two vectors. In other words, the reduced separa
tion between two surfaces (scaled by the Lagrange invariant) is 
proportional to twice the area of the triangle formed by the two 
points representing the surfaces and the origin of the diagram. 
See Fig. 14.

Using Eq. (3-9) and the dot product, we may also write an 
expression for the angle formed by two 2 vectors,

•£an 1̂. =  71 /(£,•_,. "21). (3-1 0)

Similarly, we may determine the value of the powers by 
multiplying vectorially Eq. (3-5) by W* , and using Eq. (3-8).
We obtain

j f i  = k. • X VvV̂.,). (3—11)

Therefore, 5/ is represented in the _fL--Q. diagram by an 
area in analogous fashion to the representation of 7} in the 
ij-IJ diagram; compare Figs. 13 b-c. Also, the angle between two 
consecutive W vectors is given by

1-ah = & t‘ /  ( Wi • Wi+i). (3-12)

Remembering that the W vectors represent lines in the
JJ-S diagram, we may see from Eq. (3-11), written in the form
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Fig. 14 The equation of transfer: S.c = + Tt VV;-

Wi

Fig. 15 The equation of refraction: 
/ £ <  -  W i / ^ i - 2c
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I  =  kv * ,

that the power of a given surface is represented, in the y - j j  

diagram, by the change in direction of the two W vectors defin
ing the surface. When the power is positive, we see that the 
vector lv,>i lies clockwise to the Wc vector; when the power is 
negative we may write

— JFVk = Wi+t X WY t

and we see that in this case the V/t'+, vector must lie counter
clockwise to the vector in order to preserve the proper sign
for the unit vector k . Finally, when the power is zero there is 
no deflection, and the two W vectors are parallel to each other. 
This is the case of an afocal system or of a plane interface.

The statements in the last paragraph may be shown 
algebraically as follows: consider the case of a single refract
ing surface (see Fig. 1 6), with an object line vector 14/ changed 
into an image line vector W * by the refraction at surface 3p .

The slope of the image line is given by

-fl.* JZ - S r  *

Solving for _2T , we get:
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where k. and k p are the slopes of the object line and the vector 
2 P , respectively. But by using

— * /-0- — — >

we may express the power $  as

It’ - fc
jF —  ---------------- -— -• (3-13)

( kP — k) (fe — kp)

We see from this expression, as mentioned previously, 
that when i> — 0 , we must have k. • Considering that both k.

and k P are constant, let us differentiate Eq. (3-1 3) and solve 
for the change in slope dk* due to a change in the power d3? ; 
the result is

elk’ =  - j; (t* - * , ) * * * .

This expression tells us that for a positive change in
power, the slope of the image ray is less than the slope of the
object line; in other words, a clockwise rotation is involved in
going from an object ray to an image ray.

Equation (3-13) expresses another fact, a very important
restriction on the relative positions of the object and image
lines in the y - j j  diagram.

We see that if k!=-k.F t the power becomes JF = •*00
depending on the parallelism or antiparallelism of the image
line and the vector 2?; in other words, the whole range of
powers is covered by positioning the image line in the region 
to the right of the vector £P on Fig. 16; and the direction of
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Fig. 1 6 . Restriction on the 
relative positions of the object and image lines

the vector as well as the region to the left are not
allowable. We remember here briefly that no light-ray may pass 
through the origin of the i j - j j diagram, because this would imply 
that both 5" and y would be zero contrary to the assumption of 
the existence of the Lagrange invariant. However, Eq. (3-13) is 
still stronger, forbidding not only the passing of any light-ray 
through the origin, but also the location of the light-rays in 
certain regions that would imply a non-real value for the power. 
This restriction has to be kept in mind when drawing lines to 
create new-systems or modify existing ones. This restriction is 
also the basis for the statement made by Delano to the effect



that the projection of the skew ray on the t j -t j diagram winds 
about the origin in a clockwise direction, as the ray travels 
from surface to surface, for a positive choice of the Lagrange 
invariant.

To express now the V vectors in terms of the * vec
tors, we use the equation of transfer (3-4) together with Eq.
(3-9) to obtain,

- y - Si-f
■' ---- t /----- F V  (3-14)k.- ( £(-, x S, )

Similarly, using the equation of refraction (3-5) and Eq, 
(3-11) we obtain an expression for the vectors a. in terms of the 
vectors V ,

_ V/,4, - W >

z i ~  ---= — r—  * (3-15)x Wr,>,)

Note the formal similarity of these two expressions.
These two equations express analytically the principle of duality 
linking the and the Jl-IL diagrams, that was discussed in
the last chapter. In the j-g diagram the vectors S’ represent 
points, and clearly Eq. (3-14) is the vectorial equation of the 
straight line defined by two of these points. Therefore, the IV 
vectors indeed represent lines. Similarly, in the J1-JL diagram, 
the W  vectors are the points and Eq. (3-15) tells us that the 
a vectors are the lines defined by such points. Any statement 
in terms of points t and lines W  in the diagram is true
for points W and lines * in the JX -.Q - diagram.
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Because all vectors of interest in both the g - j j and 

jfl-A diagrams are plane vectors (the only exception being the 
constant unit vector It ) , we may think of these planes as 
complex planes and identify each of the points and lines as 
complex numbers. In other words, we may write the vectors 3 and 
W in any of the equivalent forms

w - (Jl,/!) -TL t 4- j =  SL + i -CL .
As most calculations involve the dot and cross products 

of combinations of these vectors, let us develop expressions for 
these. Assume we have two vectors A and 3 , defined in 
analogous form to those above. The dot and cross products are 
given by

A • 3  =• • Ax +- A«j 3«j (3-16)

A x S  = t Ax
^3

and the triple product used before, by

Ax
3x

— Am 3x — Ax 3i

(3-17)

(3-18)

Considering these same vectors as complex numbers, let 
us develop the complex product A B , where a star on a vector 
means its complex conjugate. We have

(3-19)
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Comparing this expression with Eqs. (3-16) and (3-18), we

see that

X-5 = M a b -J,
1 • A X 3 = Zm ( Ai") .

(3-20)

(3-2 1)

This result is of great numerical importance because a 
single complex product gives us the two vector products of 
interest: the dot product and the magnitude of the cross product
(whose direction is always given by the unit vector k ) .

Determinant Notation 
The above comparison, Eq. (3-21) is also of algebraic 

importance because it allows us to devise a simple compact nota
tion for the magnitude of the cross product. Consider

k • (A x 3 ) = J»i( AS*) = ~
A A
5  3* (3-22)

We introduce the following notation:

Ml s7iA A* A, Aye Tm A A
3 3* 3x Xm3 A

(3-23)

We may then write Eq. (3-21) as 

fc.^Ax S) = | A,5| (3-24)

This is just a plain 2 by 2 determinant, but written in 
the form of Eq. (3-23) it will simplify enormously the algebraic 
manipulations necessary to get powers and separations when using 
the j-J diagram. Among the properties of this determinant we 
summarize the most important for our purpose:
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it is real
I A, A | = =  I A, 0| ^  0
I A,3 I =  -1"̂ ; A |
|<*. A,3| = 1 A,3|
|A 4-C, 51 =  |A,i| +• lc,3| 
I A -t a.3 , 3 | — | A , 3 |

(3-25)

In the case of our vector h this notation takes the
form

_L =d id" Sd
2 i V 5k 5k s  hd»3kl (3-26)

Note that the last term in Eq. (3-26) is a shorthand 
notation of the preceding determinant in which the second column 
of the determinant has the barred quantities corresponding to the 
elements of the first column'. The same holds true for determi
nants involving the W vector or the product between a 2 and a 
V vector, as is illustrated in the following important products 
that we have defined previously:

Lagrange invariant:

l-U* x W) = \±,W\ = W*) -  | , (3-27)
Separation:

Ti = t • (a.-, xa.) = I a,-,, t, | = | (£■.,*?). (3-2 8 )
Power:

i ,  -  x i7,-,,) = I W-i I = I-A.,,!! 4,1= J"m (h'.-iP,*). (3-29)



We shall have opportunity to use this notation extensive 
ly in subsequent paragraphs.

We note that, if we take the complex product /4*3 instead 
of A3*, we get only a change of sign of the cross product, as 
these two products are complex conjugates of each other.

If at any time we wish to convert our vector equations 
into complex notation, we have only to make the substitutions 
implied by Eqs. (3-20) and (3-21). We prefer to use the vector 
notation for the algebraic calculations and the complex notation 
for the numerical calculations.

Matrix Representation 
Considering the vectorial equations of refraction and 

transfer, Eqs. (3-4), (3-5)t we see that they are linear in the 
vectors & and w, and therefore they may be written in matrix 
form

These matrices are esentially those introduced by Brower 
(1964) and others, except for a slight difference in notation. 
The previous equations suggest that the general transformation 
between a point % and a line VV in object space and the cor
responding z ’ and V* in image space may be written in the form
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= a,, ^ 4- a,e IV

V* = <*.*, 5" + ala ̂

By considering these vectors as complex numbers and 
taking their complex conjugates we may write the corresponding 
expressions

1 ’* = a„ 4- a,*. W *

V ' *  =z +■ ckZi W*

These four equations allow us to solve for the four 
unknown coefficients . The result isa„ = |?’,iv|

‘i ’!;1 (3-3 0)
o. J, •=. I W IV I

= 1 ^ I

where we have used the notation for determinants defined in the 
previous section, and the fact that (^, W I = I . Note that the 
value of °<2\ is proportional to the power defined by the two 
vectors. We shall see in the next section that the other ele
ments also have a simple interpretation in terms of the system as 
a whole.

Of course the particular matrices for refraction and 
transfer are special cases of the general matrix A whose
elements are given by Eqs. (3-30); the matrix for transfer is
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obtained when W'’= IV. » and the matrix for refraction results 
when we set 2.* = s .

These matrices may be used interchangeably with the vec
tor or complex number formulation when it is more convenient. It 
is encouraging to see how they arise here as a natural conse
quence of the linear relations inherent in the y S  diagram.

If we wish to know the matrix of a system for which the 
diagram is known, we introduce the vectors of the first and 

last surfaces 2 \ , ?|e. along with the object and image line 
vectors W, , W ’̂ = W*.*, , to obtain for the elements of the
matrix R ,

°-n - I , VV, |

&(«. - I ii, *\±\

= 1 |
where 5  is the total power of the system..



CHAPTER 4

REPRESENTATION OF 
. FIRST-ORDER. CONCEPTS IN THE DIAGRAM

In this Chapter we shall deal with the first-order 
properties of an optical system represented by a given set of 
points and lines in the y-S diagram. However, in order to 
carry out this type of analysis with the basic analytic tools 
described in the previous chapter, we must know in advance how 
familiar concepts of Gaussian Optics, such as magnifications, 
focal lengths, cardinal points, etco are represented in the 
diagramo As the diagram is nothing more than the graphical rep 
resentation of the basic equations of first-order optics, we 
anticipate that every concept and property defined in that 
discipline will have some sort of graphical counterpart in the 
diagram; once we become familiar with these geometric counter
parts of the first-order optical concepts we shall be able to 
recognize them in a given diagram, and convert a given set of 
points into a set of construetable surfaces with definite curva 
tures and separations that will accomplish a predetermined 

function*
We shall see how the diagram can give us directly the 

relative positions of the different cardinal planes, the 
positions and sizes of the pupils, the powers and curvatures of 
the surfaces comprising the system, their separations, their
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minimum sizes, etc. We shall.also investigate in this chapter 
the effects on the points and the lines of the diagram, of a 
change in the position of the stop of the system, or of a change 
in the position of the object or the image; as well as the 
scaling effect.on separations and curvatures, introduced by a 
change in the value of the Lagrange invariant.

We would like to make the comment at this point that, 
strictly speaking, Gaussian Optics does not consider the limita
tions on the bundle of rays going through the system, imposed by 
the finite apertures of diaphragms or the physical limits of the
re frac ting surfaces, but only considers the imaging properties.of 
the system between conjugate planes in two determined spaces; in 
other words it applies the geometric laws of a collinear transfor
mation, or "homography" to the planes tangent to the refracting 
surfaces at the points of intersection with the optical axis„ The 
y-jj diagram takes into account the effects of apertures right 
from the beginning, being incorporated in the definition of the 
marginal and chief rays.

■ We shall now proceed with the most important concepts of
first-order optics.

The Magnification and the Conjugate Line 
As defined in Gaussian optics, the transverse magnifica

tion (or simply the magnification), is the ratio of the heights of

1o Two points along the optical axis, and the perpendic
ular planes they define, are said to be conjugate when they obey 
a coll in ear transformation (Born and Wolf, 1970, p. 151.) •
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a particular ray in two conjugate planes, one in object and the 
other in image space»

Accordingly, we define the magnification » by the 
vector equation

r  = «t $ (4-1)

and we say that the two points, * on line W, and on line
W* are conjugate to each other and related through the magnifi
cation w r . Obviously, the two points are collinear with the 
origin of coordinates of the tj-ij diagram, and therefore the 
magnification /mT, is represented in the diagram by a line 
passing through the two points and through the origin. We call 
such a line the "conjugate" line of magnification 'wr . This is 
illustrated in Fig. 1?.

F

Fig. 17• Definition of conjugate points ^ , 2’



We pointed out earlier that any line on the diagram rep
resenting a possible light path could not go through the origin. 
We see now that the lines going through the origin have a 
significance of their own, they identify conjugate planes for a 
given set of object and image rays, and they cut these object and 
image rays in proportion to the magnification associated with 
them.

We note that the magnification we have just defined 
refers to two specific spaces only. Therefore, when we refer to 
the magnification of the system, we are implicitly referring to
the relation between the first and last spaces of the system
(object and image space, respectively), represented in the 
diagram by the vectors w, and — k̂.-n • When we wish to
talk about the magnification between any two other spaces, we 
shall explicitly say so.

For the moment then, we assume that the point % is 
located on the line W  (object line), and the point 2/ is on 
the line W* (image line), and that these two lines are the only 
ones that constitute the system under consideration (see Fig. 1?)- 
In this case the vectors 2:, 2.’ satisfy Eq. (3-7) 1

S ' x W  =. z'x V/' = k.

By appropiate cross products of Eq. (4-1) we have
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These expressions allow us to derive a relationship 
between the slope of a conjugate line and the magnification it 
represents. As the conjugate line goes through the origin, the 
only parameter needed to trace it is its slope, which is the same
as that of the vectors 2 , in Eq. (4-1). In other words, the
slope of the conjugate line joining the points and is
given by

kc = Jf/J = S’/S' (4-4)
By using the determinant notation introduced in the last chapter, 
Eqs. (3-23)i (3-24), we may write the expressions for the magnifi
cation, Eqs. (4-2), (4-3)1 in the form

w T = 12 % W \ -  y ’ -fl - , (4-5)

l/wr = ll, = 3 ^  -  J  A ’- (4-6)

Solving for in the two equations and using Eq. (4-1) we
obtain

kt — _/I
>l-r- = (4-7)

kc JL' - JT.'
or solving for kc ,

kc =  A  (4-8)
<yvtr -fL* —  -fL

The axes of the diagram, being lines through the origin, 
are themselves conjugate lines; the y-axis is the image (or 
object) axis, and its associated magnification, the "image magni
fication" will be given by Eq. (4-7) when k«. = 0 ,

TM o =  -fL j JX * •
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similarly, the tf-axis is the pupil axis and the "pupil magnifi
cation” may be obtained from Eq. (4-7) by taking kc— ,

W E = S L j lL * .

From Eq. (4-8) we see that when = 0 ,

k c = JX/ SL =  fe., 

which is the slope of line V/. Similarly, when ynr  — oo ,

which is the slope of the line W ’. We see then, that every 
value of the magnification, from zero to «o , is represented 
uniquely by a conjugate line in the diagram.

we may write the slope of the conjugate line of given magnifica
tion wit in terms of the image and pupil magnifications as 
follows

this expression has been found useful in some applications, 
specifically in dealing with image or pupil shifts.

We note in passing that Eq. (4-10) is the equation of a 
rectangular hyperbola in an w-r vs. plot.

In Fig. 18a we have illustrated some of the magnifica
tions associated with the same choice of image and pupil

By noting that
fe. (4-9)

(4-10)
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r =

Fig. 18 a) Distribution of magnifications. 
b) Conjugate line and associated conjugate points



magnifications as in Fig. 17. Figure 18b illustrates how a 
conjugate line defines the images of a given point in different 
spaces, each associated with one magnification.

From Eqs. (4-5), (4-6) we may derive the relationships 
between two points conjugate to each other. By substituting 
these values into Eq. (4-1) we obtain,

? = x.(?- x w) = l i ^ r  ’ ( , , - 1 1 )

or alternatively,

_  a &
=    --------- - -------- . (4-12)

k.QSxw'’; |5,w'|
These two expressions give the conjugate point of a 

given point as imaged into a given line.

The Cardinal Points
With the aid of these last two equations we may find the 

representation of the cardinal points.
The front focal point is conjugate with the point at

infinity in image space. In other words, we must have %'= 
in Eq. (4-12) i this implies that x w,, = d , i.e., S*f is
parallel to

£f = a ’ W \

To determine the constant of proportionality a1, we take
the cross product of W with SF , and using Eq. (3-11), we
obtain
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Similarly the rear focal point *.’F is the conjugate of 

the point at infinity in object space. In order to have % = oo 
in Eq. (4-11), we must have 2*. x W  = 0 , i.e., 2  ̂ must be
parallel to Vl/,

^  * w .

Taking the appropiate cross-product, we have

= W /  5. (4-14)

We see from these expressions that the focal point 
vectors are parallel to the object and image line vectors. On 
the other hand each vector lies in its corresponding line;

x W = x V* = k- ,

and this provides us with the geometrical construction described 
by Delano; to locate the focal points of a system we draw a 
parallel line to the object and image lines through the origin; 
where these conjugate lines cross the object and image lines, 
they define the front and rear focal points respectively; see 
Fig. 17.

We may now use the two vectors 2F and 2  ̂ as the basis 
for any other vector in object or image space. A vector on the 
object line may be thus expressed as

5 - a ?F -t- b % p = — a t y ’/ g  +■ b W /  £ .

Again, the constants of proportionality a, b may be 
calculated by appropiate cross-products, and by taking into 
account Eqs. (4-2), (4-3); the result is
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2 = 2p ■+• ( 1 /^r) y (4-15)

and the conjugate of this vector in image space is given by

1*1 r %  =  1*1 r +  ■? p . ( 4— 16)

We see then that, with the aid of the magnification, any vector 
or its conjugate may be expressed as a linear combination of the 
vectors ip , 2 p .

The principal points are defined by >nr =- I ,

S, = a- = I F + 5J, = ' (4-17)

but this is the same point as the intersection of the lines 
V, W %  as may be seen by comparing the last member of Eq. (4-17) 
with Eq. (3-15)• In other words, both principal points are rep
resented by the point representing the surface of refraction but 
Sp is located on the object line and 3 p is located on the 
image line; see Fig.

The other set of cardinal points, the nodal points , 
3,/ , is defined by inr = 7L = n / n * the ratio of the indices of 
refraction in object and image spaces. Thus

3^ = ?F +- 0 7  n ) V F

= (n /n ?) 3 F +* ^ F

We shall also find use for the set of points defined by 
/v*r =. - | , which are called by some authors (e.g., Chretien, 1958, 
p. 5 8) the "antiprincipal" points
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These points become important when we wish to express the proper
ties of the system independently of the choice of the positions 
of the stop or of the object. Fig. 19 shows the location of all 
these points for a single surface with R. = 0.75* ; the rest of 
the points and lines in this figure will be described shortly.

Fig. 19. Cardinal points and associated lines

When two lines are parallel to each other, say I V olW 

we see from Eq. (3-11) that the power is zero and therefore, the 
focal points as well as the rest of the cardinal points no longer
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have any meaning. The conjugate lines however, still exist and 
define conjugate planes, by cutting the parallel lines at the 
same angle. Therefore, the magnification remains finite, and by 
using Eq. (4-2) we may see that

this corresponds to an afocal system, and we see that in this 
case, the magnification remains constant throughout the diagram.

tions are represented by areas, and that these may be calculated 
more easily with the determinant notation introduced in the last 
chapter, we proceed now to calculate the distances between the 
principal planes and the conjugate planes defined by a given 
magnification ynT ? these planes are represented by and the
conjugate points 2,3/ given by Eqs. (4-17) and (4-15), (4-16), 
respectively. We have then, as a function of the magnifications, 
in object space:

easily verified by direct substitution of Eqs. (4-13), (4-14) 
into Eq• (4—17).

rtnr - | /ot = const;

Conjugate Planes 
Remembering that in the diagram, reduced separa-

(4-18)

where we have used the expressions,

(4-19)
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Similarly, in image space the separation of point

from the principal point is given by

- |2p,ii = ' (4-20)

We may apply these expressions to calculate the relative 
distances between the cardinal points.

From Eqs. (4-15), (4-16), and (4-8), we see that the 
conjugate line for Wr = ± oo passes through the front focal 
point , and the conjugate line for = 0 goes through the 
rear focal point B’f . Therefore, the front focal length y  may 
be obtained from Eq. (4-18) as

T ( *>) = >Kj/n = -I/S' = -Ml (f ; 

and the rear focal length J - 9 y from Eq. (4-20) as

o) = M j */*9 -  I/5" - )K / p ;

in other words,

f  = - * / ? ,

f  = +*'/f -
In a similar manner, the distances from the principal points to 
the nodal points ( = %. = h /h ’ ) will be given by

JKJy/n - r(R.) = )K (*«
= T ’( k ) =

or, in other words,



The separations of the antiprincipal points, are likewise 
obtained when we set > it - -/ in Eqs. (4-18), (4-20); the result 
is

A  = ai

A = y
Any other relation between conjugate planes, such as 

Newton's formula or the thin lens formula, for example, may be
easily derived with the aid of the above or similar expressions.
In Newton's expression, the conjugate planes are meassured from 
the focal planes, thus in this case:

)K */* = | = I / ,
>W * 7 'H1 - | = - Thr/S" •

and multiplying these two expressions, we get Newton's formula:

= .,/m- =it)i> ‘hh*

Another useful problem we may solve with these concepts 
is the following. In the situation depicted in Fig. 20 we wish 
to find an expression for a point 5 determined by the conjugate 
line of magnification >it and any other line W . The resulting 
expression will be used in a later chapter.

We see from the figure that

2 = <x = oLTnr 2 , (4-21 )

where << is a proportionality factor to be determined. Remem
bering Eq. (4-16) we may write
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Fig. 20. Intersection of 
a conjugate line and an arbitrary line

Taking the cross product with the line W ,

-w — d. i*1t ( ̂ 4 X W) d ( U/) X J »a X W =------------------- +  —-----  - t
5

and evaluating the cross products we get for the proportionality 

factor

oC =  ---------------------- i (4-22)
I w/? w| ^ imt |

on the other hand,



Substituting Eqs. (4-22), (4-23) into Eq. (4-21) we finally get

W, - *nT K ______
I5,W | - »r | Pz, WI (4-24)

Angle of Incidence at a Surface 
In the most general case, the situation depicted in Fig.

19 represents a single refracting surface when m . As
remarked earlier, different systems will result according to the 
choice of the indices of refraction. When - Yi/ , Fig. 19 rep
resents a thin lens, for example. Even in the most general case 
we can think of Fig. 19 as representing a whole system of many 
elements, but restricting our attention only to the first and last 
spaces, the object and image space, respectively. In this case 
then, we may think of the whole system as an "equivalent" surface 
or thin lens.

In the general case of a surface we wish now to find the 
representation of the reduced angle of incidence, which by Snell's 
law we know is an invariant upon refraction; its value, for both 
the marginal and chief rays, will be needed to evaluate the third 
order aberration coefficients in a subsequent chapter. From the 
equation of refraction (3-5)» and remembering the definition of 
the power 5 ,  we may write,



where C is the curvature of the surface in question. From here
we see that the quantity

I = ty’ + cn* z/M = W + cn"?/>K,

is an invariant on refraction and represents the reduced angle of 
incidence appropiately scaled by the Lagrange invariant I

y v i / H i ) (4-25)

By introducing 7%. =. the ratio of the refractive
indices, also called the "refractance," and using again the defi
nition of (Appendix A) and the equation of refraction (3-5), 
we may express the refraction invariant as

1  =  -x w ’ ~ . (4-26)
R.-I

This vector, being a linear combination of W vectors, 
will be represented by a line in the diagram and by a point
in the XL --CL diagram.

The cross products of this line vector with the focal 
vectors are

x X - — k- / ( R.- (j
x X = fc. ̂-/(.R.- I)

which appropiately combined give

(K- H p  +- ?>) X X  =  5 ^ X x  = 0.

On the other hand
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In other words, the line representing X  passes through the 
point of refraction and is parallel to the conjugate line
defining the nodal points of the surface. See Fig. 1 9.

We see that, if the line X is parallel to the g -axis, 
the pupils coincide with the nodal points, and because the 
component of X vanishes, the chief ray does not get refracted.
The power for such a surface is given by

which leads to a radius of curvature 7 =. -y/w. . This surface 
has its center of curvature located at the stop.

The contribution of this type of surface to the coeffi
cients of coma, astigmatism, distortion, and transverse chromatic 
aberration is zero.

When X  is parallel to the j"-axis, the nodal points 
coincide with the object and image, both located at the center of 
curvature of the surface of refraction; the marginal ray does not 
get deviated in this case, and the power of such a surface is 
given by

which gives a radius of curvature Y =. - 3 / ti. .
And for this type of surface, the contributions to the 

coefficients of spherical aberration, coma, and longitudinal 
chromatic aberration, vanish.
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Aplanatic Points of a Surface 

Another quantity necessary for the computation of third 
order aberration coefficients is the vector whose components are 
given by

A f ^ )  = i t l  -  iL  *  ,V n. / ox’ -n 'n* n1

A = Ji: _ JL _ .^ ' H ’ H '>7’ x 71 *•
Accordingly, we define the line vector

2y =  J\Ll - (4-27)71* Tl*" 'h

which we call the "aplanatic line," and which is represented by
a line in the y diagram and by a point in the X L -J L diagram.

By taking the cross product of this line with the focal 
vectors we get

I p x A  = - X . / n ' - ,

I ’F x A = % 7L/x‘.

By combining these two expressions we see that

(/V tF 4- Ep) x A - 0.
In other words, the vector A  is represented by a line parallel 
to the conjugate line of magnification ')mT = 7V •

The two conjugate points 2^ , , defined by the
conjugate line of magnification 7nT =. JC" and the object and 
image lines, respectively, are the aplanatic points of the sur
face • Their values are given by
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5f -+- (1 /*.*)
V  Ep + S f

(4-28)

The aplanatic points are separated from the principal
points by

where Y , is the radius of curvature of the surface.
The aplanatic line crosses the object and image lines at 

the points

which are not conjugate to each other. The separation of these 
points from the aplanatic points are given by

The position of this line and points is illustrated in Fig. 1 9.
When A  is parallel to the y-axis, the object and 

image coincide with the aplanatic points; in such a case the 
surface is called "aplanatic," and it is free of spherical 
aberration, coma and astigmatism. The power of such a surface is 
given by

I I = 
I5"*’, K \  =  +
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f - -  / U J _

which gives a radius of curvature

(H-'R.) tc (f+R.) u*

Location of Real Pupils and Heal Images
We shall give now an analytical criterion to decide if a

given line when crossing either of the two coordinate axes 
produces a real or a virtual image or pupil. We know that every 
time a segment of a W line comprised between two successive S- 
points (what we have previously defined as a light-segment), 
crosses the Tj -axist the chief ray is crossing the optical axis; 
in other words, we have a physical stop or a real image of it 
located between the two surfaces represented by the % vectors. 
When it is the extension of the light-segment that crosses the 
y  -axis we have a "virtual" stop or pupil, a conjugate to the 
actual physical aperture.

know that the marginal ray is crossing the optical axis and we 
have a real image, in the sense that we can actually put a screen 
there. If on the other hand, it is the extension of the light- 
segment that crosses the ij-axis, we have a virtual image, which 
is conjugate to the real image.

Similarly, if the light-segment crosses the y-axis we
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Geometrically, we can see by inspection of the diagram 

where these crossings occur, and the problem of determining the 
location of stops or real images is trivial. Numerically, how
ever, this problem is not trivial: When we try to do this in a
computer program without recourse to the graph, for example, it 
is not obvious what sort of decision we must make, based on the 
values of the coordinates of the points, to say with precision 
that we have stops between surfaces 2 and 3t and between 4 and 
(see Fig. 21); or that we have a real image between surfaces 3 
and 4 as well as at 0 and 0*.

Fig. 21. Location of real pupils and images

For cases such as this it is convenient to express the 
vectors & in some parametric form that will show unmistakably



that such a point lies within a light-segment or outside. The 
following representation (Zwikker, 1950, p. 33), has been found 
useful. Consider the line defined by the vectors a,-/ , at" ; 
then any other vector along that line may be represented as a 
function of a parameter st- by the equation

When S i -  0 , then 2 = , and when = <o , then a = at- . We
see then that only non-negative values of S* represent points
located within the light-segment defined by 2f_, and 2* . This 
is a very useful parametric representation for our purposes, 
since only the values of 2 within the light-segment have a 
physical meaning in the 5 diagram.

Applying this formula to the location of the stops of the 
system, we see that we have a stop or a real image of it every 
time y = 0 ; this leads to the following criterion to test 
whether a stop exists between surfaces 2t-, and 2* :

and the size of such an aperture is given by

+ S i f t
i/ —  -■ •

The distances of this stop from surfaces and 2 t- are

2("_( 4- Si 2t‘ (4-29)
I -f—

(4-30)
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respectively. We may use this test for each of the spaces in 
turn to find the location and size of the stop and its real
images (pupils), if any; if the test fails we have a virtual
pupil. Of course, if either j j .  = 0 or jf,- = 0 , the test is
unnecessary as the answer is obvious.

Similarly, the same parametric form, Eq. (4-29), may be 
used to test whether a real or a virtual image is formed between 
two given surfaces. In this case, as y — 0 for an image, a 
real image will be located between surfaces a[-_, and if

>  0 (4-32)

and its size will be given by

u = v5f-t +  sc y c  (4-33)
* l +-Si

The reduced distances of this image from surfaces i2t_, and 2t- 
will be given by

7V-i, —  I yr| = fji-i ti-r ,

t t . i - i <jr, & | = - J'" Jx,

respectively. If the test fails, we have a virtual image instead.

Shifts of the Stop or the Object 
Delano in his paper shows that a shift of the stop of the 

system or a change of the position of the object, reflects itself 
as a shear of all the points and lines of the diagram with



respect to one of the coordinate a x e s . W e  derive the same result 
in this section in a different manner which will yield us the 
transformation to be applied to the vectors in the diagram to 
accomplish a given shift« We base our derivation bn the idea 
that a shift means essentially a change in the magnification 
either of the pupils or of the conjugates. We recognize that 
these shifts must be made in sttch a manner that the Lagrange in
variant is conserved in value.

By looking back at Fig. 18, we see that the stop of that
system is located on the line W and'therefore it coincides with

, ' ' .
the entrance pupil. Th.e magnification between the pupils is 
given by i»ie/ which corresponds to the slope of the -axis« It
is clear that if we change the position of the stop we are in
effect choosing another magnification for the pupils without 
otherwise altering the diagram. But if we choose another value 
of w E , this is the same as changing the slope of the y-axis 
without altering the role of the y-axis. For example, if we 
choose as the new value of the pupil magnification Wg = 1 .0 8 6 ,. 
say„ instead of the value adopted in Fig. 18, the new y'-axis,
i.e., the conjugate line with the new magnification We , will be 
inclined 75 with respect to the y -axis instead of being perpen
dicular to it. The y-axis itself has not changed at all, as the v 
magnification associated with it is independent of this change. 
However, as may be appreciated in the Fig. 22, the new diagram 
is identical to that in Fig. 18 except that now it is referred to 
an oblique set of axes instead of the original orthogonal one.



Fig. 22 Choice of a new pupil magnification

Fig. 23 Choice of a new object magnification
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In order to reorthogonalize the axes we have to "shear" the 
whole set of points and lines, in this case to the left, which 
means that we are going to change by this operation, only the 
values, the marginal heights remaining the same as before. This 
makes sense, because after all, we are only changing the heights 
of the chief ray that must now cross the optical axis at the 
position of the new stop.

An entirely similar situation occurs if we decide to
change the position of the image (or object); this implies a
different choice for the object magnification, and therefore the 
choice of a new conjugate line- for the 5" -axis. Again the new 
system would be referred to an oblique set of axes, as pictured 
in Fig, 23» which represents a change from the original diagram 
in Fig. l8 . To reorthogonalize the set of axes we shear the 
whole diagram downwards, which only affects the y  heights as 
the chief ray heights remain the same; we have only changed the 
origin of the marginal ray, and the chief ray continues to define 
the position of the stop that has been left unchanged by this 
operationo

In either case, the size of the stop or of the image will
change accordingly, in order to preserve the numerical value of
the lagrange invariant as we shall see shortlyo
   In order to derive the algebraic expressions for the
shifts, note that the most general transformation between a 
point 2 on the light—ray W and a point 2 on the .line W , 
may be written as follows: from the equality,



and by adding to both sides the product IVx a ’ , we may write

V  x A  S =  ia' x A W  ; (4-34)

or in determinant form,

| W, A S  I = ) ? ’ , AW'j.  (4 -35)

This is the most general transformation from a plane in one space 
to another plane in a different space. The cases of refraction 
and transfer may be recognized as special cases: when A S  =. 0 ,
we have a refraction, i.e., a change of value of the vector W ;
when A W  = 0 , we have a transfer.

However, this equation is also satisfied when A 2- and 
A W  are both real or both pure imaginary vectors, as may be 
easily verified by inserting A s  * =  A ^  and A W  * =  A W  , 
into Eq. (4-35)•

Now, when A % and A W  are real, this means that A s  is
parallel to the j"-axis ( Ay =  0 ), and A W  is parallel to the
-0. -axis ( Afl — 0 ) , in their respective diagrams; this obviously 
corresponds to a shift of the stop, according to our previous 
remarks at the beginning of this section. When this is the case, 

Eq. (4-35) reduces to
-TL A5~ =  A-O-

or in other words:
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The value of the constant may be determined directly from Fig.

Fig. 24. Stop shift

k, — ■=. y / a  ̂

where kf is the slope of the new 17 -axis. Thus, Eq. (4-36)
reads

A s. = = i/ l’ .a -n.
This transformation may be written in matrix form:

75
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24,
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s  £  2  ; (4-37)

and similarly for the W vectors,

W ’ =  £  W (4-38)

Note that — I , i.e., the matrix is unimodular, and
accordingly^, the values of the cross-products between vectors ^  

and/or W  do not change under this transformation; in other 
words, the separations 7~ and the powers $  remain invariant 
under stop shift. The dot products, however, do change and 
therefore the angles between the lines will change.

As seen from the form of the matrix & the only parame
ter necessary to carry out the stop-shift transformation is the 
slope k, of the new ^-axis; this may be specified in a variety 
of ways, we may want to pass the new t/-axis through some given
point or we may want it parallel to a certain line, or we may
wish to have a specific new value of the pupil magnification in 
which case we obtain from Eq. (4-8). Or we may wish to place
the stop before surface "ay in which case we must use as new
y -axis the conjugate line passing throught the point defined by

/
2j =  - 77 Wj ,

1. It may easily be proven that if two vectors oC , b obey 
the transformation a* =. FI a , k'=. A &T , where A is the transforma
tion matrix, then a.’x b ‘ = )AH5l x b*) , where |A| is the determinant 
of matrix FI . (See Goldstein 1953, P« 130.)



77
where Ts =. \ 2 -̂ ( , is the distance between the desired stop and
the surface ^  . Similarly, if the stop is to be located at a 
distance 7$ after the surface , the corresponding equation for 
5s is

We wish to emphasize that although the matrix *$> is of 
the same type as the matrices for refraction and transfer, its 
role is quite different: while a refraction or a transfer matrix
only involve two vectors at a time, the matrix must be applied 
to all and W vectors of the diagram when carrying out a stop- 
shift. In other words, it is a transformation for the whole plane.

It is instructive to see how a given line with a refer
ence point on it is changed by a stop-shift transformation. We 
notice first of all that the change Ay is proportional to the
y -height of the reference point in question; therefore, the
points along the y -axis, for which ^ = 0 , do not change at all.
Secondly, if we denote by k^, k’tv the slopes of the line
before and after shifting, it is easy to show that

l/ £ w  =  ’A w  - Vk*

where k* is again the slope of the new y -axis. Thirdly, the 
height of the new pupil will be given by

3 £ = (kV/ ku/) 3e .
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Fig. 25 Effect of a stop shift on a single line 
(Primes represent values after the shift).
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As the line V ’, after transformation, must pass through the new 
point 2 ’ and through the same image point as before the shift, we
may see that, after reorthogonalizing the axes, the net effect on
the line is to tilt it using its intersection with the y-axis as
a pivot• This is illustrated in Fig. 25•

In a completely similar manner, when AS" and AW in 
Eq. (4-34) are pure imaginary, means that they are parallel to 
the ordinate axis (As =• A-H- = A ) in their respective diagrams; 
this then, corresponds to an object shift and in this case Eq. 
(4-35) reduces to

_a Atj = j'Afi.

S = J

Fig. 26. Conjugate shift



which may be written as

J -A
Again, the value of the constant may be easily determined from 
Fig. 26,

k’ = ,
a

where k stands for the slope of the new 3 -axis. This transfor
mation may also be expressed in matrix form,

(4-39)

and

ty’ = \V ; 1 = I. (4-40)

The same remarks expressed about the matrix £  apply to matrix 
, and the same choices exist for the value of k- as was the 

case for k* . The separations 7" and the powers £  remain invari
ant under this transformation also, and the matrix A* must be 
applied to all the 2 and W vectors of the diagram to effect 
an object shift.

Regarding the transformation of a line due to an object 
shift, we note that the change ÂJj is proportional to the 
J" -height of the reference point on the line, and therefore, the 
points along the y-axis ( y  — 0 ) do not change. In this case, 
the slope of the line after the shift is given by
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i
i
i
l
i

Fig. 2? Effect of a conjugate shift on a 
single line. (Primes represent values after the shift)

c*,
1
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“ * _where k, is the slope of the new ^-axis. The object shift

defines a new value for the object height, in order to preserve
the numerical value of the Lagrange invariant, which is given by

d o  = (kw/ kV)

We may conclude, as in the case of the stop shift, that 
the net effect of an object shift on a line after reorthogonal- 
ization of the axes is to tilt it using as a pivot its intersec
tion with the y  -axis, as illustrated in Fig. 2 7 .

Both figures 25 and 2?, suggest a geometrical construc
tion to find the position of the new point s' after either shift. 
Taking for example Fig. 25 * we draw first the new «/-axis and a 
parallel to it though the point 2 ; this line crosses the y -axis 
at point A , and determines the new value y *; we now trace a
parallel line to the original y -axis through A , and where this
line crosses a corresponding parallel line to the fixed y -axis, 
through the original point 2 , defines the new point S-*. A sim
ilar construction on Fig. 2? yields the new point 2 * after an
object shift.

We may of course carry out the two shifts at the same 
time, by application of the two transformations in succession,

5 ’ = JxS S 

W* =  X? V

but note that the two operations are not commutative, as 
obviously



This is also clear from the fact that once one of the shifts is 
made, all the points are different (sheared from their original

the next shift will be determined by these new points rather than 
by the original ones.

However, it would be interesting to know under what 
circumstances the product £ £  is indeed commutative. To that

two shifts simultaneously, we must be careful of the order 
followed because, depending on this order, two entirely different 
systems will be obtained after two two shifts.

Vignetting
As mentioned by Delano in his paper, the ^ -Zj" diagram 

seems to be ideally suited to portray the effects of constraints

positions) and any conjugate line to be chosen as new axis for

effect we may compute the quantity £ £  — $ $  , and see under
What conditions it vanishes. We get

We see from this expression that in order for £  and aS*
to be commutative, we must have This is fulfilled
by three cases: (a) fe. — 0 , k/# 0 , i.e., stop shift alone;
(b) k , arbitrary, k’ — 60 , i.e., conjugate shift alone; and (c) 
k,' = 0 , k.’ =■ oo i i.e., no shifts at all.

In other words, for non-trivial cases, the product of ^  
and xS* is always noncommutative. Therefore, when carrying out
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on the system in a very clear manner. The vignetting, or limita
tion of the bundle of rays going through the system, imposed by 
any other aperture than the stop is a good example. Vignetting 
diminishes the amount of energy eventually reaching the image 
plane, and most of the time is caused by the lenses having a 
smaller diameter than required to pass all the rays coming from 
the object and limited in a prescribed manner by the stop of the 
system.

To avoid vignetting, every surface contained in the 
system must have a minimum radius given by

(4-41)

0

A

A* 2’ _J[ v

3

y - v - .

0*?TC«.l AXf't

e

Fig. 28. Derivation of the 
minimum clear aperture of a surface



This may be seen clearly from Fig. 28, where we have restricted 
ourselves to the case of the bundle of rays coming from an object 
0  and striking the first surface. Obviously the two triangles
A OPt 3 and A are similar and O’A* = , leading to a
minimum value of as the sum of and g at the surface; as
this holds true for negative values o f  i f  , y  (as in the figure), 
as well as for positive ones, we must use the absolute values as 
indicated by Eq. (4-41).

The representation of this equation in the g - J f diagram, 
as may be seen in Fig. 29$ consists of a 45° straight line in 
each of the four quadrants; in general, the value of p will be 
different for each quadrant (as shown) and will be given by the 
particular set of ( Jf , g  ) chosen to define it.

Taking in general the case of the first quadrant, we see
that a line passing throught the point 2 , and with slope 
&.£=-— / , represents the minimum radius that the corresponding
surface must have in order to avoid vignetting. This, what we 
may call "construction" radius, determining the clear aperture 
of the surface, should not be confused with the radius of curva
ture of the same surface. If a system of several surfaces (or 
lenses) must be mounted inside a tube of a given diameter -2) , as 
is the case of a relay system, then the £> values in all quad
rants must be the same and the graph showing this constraint is 
a quadrangle as illustrated in Fig. 30. This means that any 
point (representing a possible surface) located outside the 
quadrangle will produce vignetting, as its minimum radius 0
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Fig. 29 Geometrical representation of 
the relation p = |5 | + (j| in each quadrant

Fig. 30 Example of a relay system
enclosed in a tube of diameter $  -  zp
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for the clear aperture exceeds the value given by the tube. For 
example in Fig. ^0, surface No. 4 will introduce vignetting as

which indicate that some vignetting is allowable, to the extent 
that both marginal and chief rays barely get through, is depicted 
in Fig. 30 by dotted lines.

of the beam of light that passes through the optical system from 
an object point off the axis, may be contructed directly with 
data from the ^ diagram. The vignetting diagram is shown on
Fig. 32, but to arrive at it geometrically, we draw first an 
auxiliary diagram shown on Fig. 31• This auxiliary diagram is 
the actual lay-out of the system in either object or image space; 
we have chosen object space for Fig. 31• We first continue the 
object light-segment and locate on the object line the images of 
all other points in the diagram by appropiate conjugate lines; in 
Fig. 31 we have located B , the image of the stop and 3' the
image of point 3. Analytically, the coordinates of the image of
any point 2 on the line V, (object line) are given by Eq. (4-12)
which takes the form

The more relaxed conditions
f lal ? lal, 

f 3- |3| >  Ul,
(4-42)

The actual vignetting diagram, in other words, the shape

fe. •(? x W, )
(4-43)
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Fig. 31 a) Two-element system, b) Auxiliary 
diagram for the construction of vignetting diagram
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We now begin to trace our auxiliary diagram by noting that 

the actual separations of the planes along the optical axis, are 
proportional to the separations of the points along the W, line 
in the diagram; we may actually draw them equal without
loss of generality. We now trace in the auxiliary diagram (Fig. 
31-b) the marginal and chief rays, in the usual manner. The 
chief ray crosses the planes A and £’ at Jai 3% ♦ respectively; 
and the marginal ray crosses the same planes at .

We now project the points A and 3' into the entrance 
pupil, using as projection center the point Jo ; this produces 
the points CA , C% which represent the locations of the images 
of the centers of surfaces A ,3 in the entrance pupil plane. If 
we take CE = 0 , CA and Cg are the actual displacements of 
these centers. We now mark off on the planes A, 33* the actual 
clear apertures of the surfaces A , which we shall denote by 
CAa , • Note that we must use the size of these apertures in
object space, in other words, they will be given, in terms of the 
physical size by an expression similar to Eq. (4-43); for example:

CAa = ■;—  • (4-44)

We then project the points ( CAA , c4%' ) onto the entrance 
pupil plane, using as center of projection the point 0 ; this 
produces the points X A , , which are the actual radii of the
surfaces projected on the entrance pupil plane.

We may now draw the vignetting diagram as shown in Fig.
32. We first choose a center C£ and draw a circle with radius



Fig, 32 Vignetting diagram



R E = yE ; we then mark the centers C* , C3 as obtained on Fig, 
31-b and with these centers draw circles of radii R.* , %_3 , respec
tively. The resulting clear part of the original circle of radius 
%E is the unobstructed part of the entrance pupil through which 
light is entering into the system.

From the geometry of Fig. 31-b we may deduce expressions 
for the location of the center and the radius of the circle of 
any surface as projected on the entrance pupil plane. Using the 
point A as an example, and by using the triangles (A, F,c*) and 

^ ( 0, A, Jo) • we may see that

By using the triangles 4  (0> CAa , A) and A (o, E, Ryt) , we may see

If we have done it with point 25’ we would have used primed 
quantities to emphasize that we are dealing with images of the 
surfaces in object space, but using Eqs. (4-43), (4-44) we see 
that

where
7a — | | - — J a

rE = Ue, ae \ = - d A t)E-

that



Fig. 33 a) Case of the object at 
infinity. b) Corresponding auxiliary diagram
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because the factor | 2g , V, | is common to both. Therefore, we 
may use the original heights and clear apertures of the system to 
obtain C*, X* in order to trace the vignetting diagram.

Summarizing, from the y - diagram we derive the radius 
of the pupil,

— |Je| = | * / -0- 11 i

and for each surface ay , we locate the center above (or below) 
c e i by

c d =  -  ( i d / i f d )  ; 

and the radius of the circle by

*d =
CAj
Hi

Hb

where CAj is the actual radius of the surface 2y .
In the special case of the object located at infinity, 

the auxiliary diagram is simpler, as shown in Fig. 33*

Conclusion
We conclude this chapter by pointing out that to derive 

the properties of an optical system represented in the diagram by 
a set of points, it is convenient to set up the reduction in some 
tabular form that will facilitate the numerical computations and 
at the same time will be easy to check. Such a scheme is de
scribed by Shack (1972). It replaces the conventional ray- 
tracing tables described for example by Hopkins and Hanau (1 9 6 2).



CHAPTER 5 

NORMALIZATION OF THE y - y  DIAGRAM.

In many practical applications of this diagram it is 
convenient to work with normalized quantities of some sort« A 
normalized diagram permits a .separation of specific properties 
from general ones. It is independent of the entrance pupil and 
image heights (which might be quite dissimilar, as in Cassegrain 
systems), producing a diagram that is easier to work with. It 
also facilitates the analytical treatment of the diagram. The 
results obtained by using a normalized diagram are applicable to 
a greater number of optical systems by simply changing the normal
ization factors. A normalized diagram also allows a fair 
comparison of several systems of widely different parameters.

This chapter presents a particular normalization that has 
been found very useful in practice. The normalization factors 
for separations, powers, and "reduced" angles are derived, and 
they are expressed in terms of such system parameters as focal 
length field angle, and f-number. In addition, the effects of 
refractions and transfers are investigated as well as of conju
gate and stop shifts on an already normalized system.

The Normalization Factors
We shall use as normalization quantities the entrance 

pupil height and the height of the image. See Fig. 34«
94 • ' - ' : .■■■/.
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Fig. 34. Definition of normalization variables

Specifically, we divide all marginal ray heights by the 
entrance pupil height 1 and divide all the chief ray heights 
by the image height y z .

As a result of this normalization, we shall see that the
reduced distances are divided by a quantity proportional to the 
focal length of the system, the reduced angles for the marginal 
ray by the numerical aperture, the reduced angle for the chief
ray by the field angle, and the powers of the components by the
power of the system. In other words, the normalization is 
complete•
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Using a circumflex ( A ) over a letter to denote its 

normalized value, we may write:

5 - & I ^ e ,

^ , - (5-1)S = d/dx,

and by definition

de = dz - I . (5-2 )

If we substitute the values (5-1) in the equations for
the quantities derivable from the y diagram, (Appendix A), we
get the ̂ normalization factors as follows:

For the reduced distances

T  =  Be . (5-3 )

For the reduced angles

-n-c = A,/fz, (5-4)
i — -fi-i J u£  . ( 5 — 5 )

And for the powers

z, = £ ■  /  ( n e y z ) .  (5-6 )

It may also be noted that the Lagrange invariant relation 
does not change in form:

j A  - ^ A  a |. (5-7)

Although in many instances it is quite possible to 
specify the values of the normalizing quantities (the entrance 
pupil height and the height of the image) and the Lagrange
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invariant, often it is more convenient to express the normaliza
tion factors in terms of certain system parameters commonly used 
to specify a given optical system. Such parameters are the power 
(or focal length) of the system, its ^-number, and the field 
angle. We shall use the following nomenclature:

5" = correction factor derivable from the
normalized diagram 

We proceed to establish the values of the normalizing 
factors in terms of these system parameters.

From the expression of the power at each surface, we may 
see that the total power of the system is given by

because ja, = | , =. - / , as may be seen from the value of
the Lagrange invariant, Eq. (5-7)i at the entrance pupil and at 
the image, respectively. We see also that this factor, which 
acts as a correction factor, and whose value may be derived 
directly from the normalized diagram, will be unity when the

/Nobject is located at infinity ( -O-, — 0 or when the system is

<j0 = power of the system
J 1 -  ^  i focal length
/V = ^-number or y-ratio of system

= 5. U, , field angle

J '

(5-8)

where

3? =  ( -h S L t S i j r  , (5-9)

telecentric in image space ( SLX — 0  ) .



Since £  is given by Eq. (5-8), the normalization fac
tor for powers is

!/ ( 3 e 3r) = (5-1 0)

that is, proportional to the power of the system; and the nor
malization factor for reduced distances is

Je/iTr = ^  A  = , (5-11)

that is, proportional to the focal length of the system.
From the value of the Lagrange invariant at the entrance 

pupil, we see that

*/3 e = -̂ -i — />K — 111 2. Hi } (5-12)

or the normalization factor for the chief ray angles is propor
tional to the field angle.

Similarly, from the value of the Lagrange invariant at 
the image, we have

*/fJi — — -0-x — — U x / t f i ,  (5-13)

which is the numerical aperture of the system ( co z = 'hx ).
This last normalization factor for the marginal ray angles may be
expressed in terms of the J- -number of the system.

Let us define the J- -number as
=  .

or equivalently
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From Eq. (5-10) we have, by using Eq. (5-1*0 »

V J x  =  ^ -----; (5- 15)5" 2 me/V

which is another expression for the numerical aperture, valid for 
finite conjugates. The minus sign in Eq. (5-13) is on account of 
the sign convention for angles adopted here, which is the same as 
in analytic geometry.

Besides these normalization factors, the ratio 
is useful in calculations of clear apertures and obstructions*
Its value is easily derived from the above expressions:

Fz/jfc = N & £ .  (5-16)

We may also express the Lagrange invariant as a function 
of the system parameters. By equating the values of from
Eqs. (5-1*0 and (5-12), we obtain

Hi - (5-17)

Effects of Shifts on the Normalization 
We may see by direct substitution of Eq. (5-1) in the 

equations of paraxial ray tracing, Eqs. (2-3), (2-4), that these 
expressions retain their form after the normalization. In other 
words,

S L iM = -fit - , for refraction,

5 i>t = yv -f Ai+i, for transfer.
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and similar expressions for the chief ray. Therefore we conclude 
that the normalization of the diagram is not affected by any 
number of transfers and refractions that may occur between object 
and image points#

However, the normalization will be upset if we make 
either a stop shift (pupil shift) or a conjugate shift (object or 
image shift). A stop shift will change the scale of the marginal 
ray heights, defining a new entrance pupil height, and a conju
gate shift will change the scale of the chief ray heights, 
defining a new image height.

A new normalization must be carried out with the new 
entrance pupil height or the new image height, according to 
which shift was made, in order to keep a normalized diagram. The 
normalizations factors will be changed accordingly.

Let us see first the effect of the stop or pupil shift.
We denote with a prime the new values after the stop shift.

The equations for a stop shift are given by

We recognize this equation as the intersection between 
the new y'-axis and the line W, . We see from here that, if

Jt’ = _?L - A/A,',
JL’ = A  . (5-18)

where k.1 is the slope of the new j'-axis. Accordingly, the new 
entrance pupil height is given by

k ’ (5-19)
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k.’ = oo i we have the trivial case of no stop shift. But if 
-Tli = 0 , that is, when the object is at infinity, although there 
is a shift of all points in the diagram, the line VtZ, does not 
change, and there is no change in the normalization.

The equations for the conjugate shift are
„ -2-
J* = s ,  .a’ = -a,
$ • = 3  A  - E - A ,  (5*20)

where k is the slope of the new j -axis. Then, the new height of
the image is

h  -  = -- J.-------- - ( 5 - 2 1 )
- a x k ' J L x + i

We recognize this equation as the intersection of the new 
j'-axis with the line Wx • We also see that, if k7 ■=• 0 , there 
will be no conjugate shift; but if -£lz —  0 , that is, if the 
system is telecentric in image space, then although there will be

Aa shift given by Eq. (5-10), the value of -fix will not change, 
and therefore the normalization is not affected.

As a result of these operations, either Eq. (5-19) or Eq.
(5-21) will be different from unity— or perhaps both will be, if
a stop shift and a conjugate shift are performed simultaneously. 
Therefore, we have to perform a new normalization using as normal
izing quantities the values in Eqs. (5-19) and (5-21).

If we carry out this second normalization in the same way
as was done before, Eqs. (5-1) through (5-6), we get new
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normalization factors that, expressed in terms of the original 
values, look like the following:

For reduced distances and powers: y E ) ( 3 z 3 z )
AFor reduced angles: I / Bx )

1 / (Je Me )

where , y z  are the original normalizing quantities and
A  —Je * b x  are given by Eqs. (5-19) and (5-21).

We may conclude by induction that, if several stop shifts 
are performed in succesion, the original entrance pupil has to be 
multiplied by corresponding factors to mantain a normalized 
diagram:

and similarly for the conjugate shifts:

where each of the new factors has an expression equivalent to 
Eq. (5-19) or (5-21)

Summary
Summarizing, we see that by dividing all marginal ray 

heights by the entrance pupil height, and all chief ray heights 
by the image height, the resulting normalization factors for the 
quantities derivable from the diagram can be expressed in terms 
of the system parameters (power (f) , or focal length j  -number
N  , and field angle f t  ); these factors become
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For reduced distances,

•6.7$,' = ysir =

which is seen to be proportional to the focal length 
of the system.

For chief ray reduced angles,

i - — n.2̂ /2.,

which is proportional to the field angle.
For marginal ray reduced angles,

L J i / U i i  = i / ( j £ = — u x - (jlj: / £ )  ( {/ z v ) ,

which is proportional to the numerical aperture of 
the system.

For the powers,

f i / f i  =  l / ( 3 E d x )  = 77-5",

which is proportional to the power of the system.
a  —The factor ^  = I +  JX, J l x is derivable from the normal

ized diagram and will be equal to unity when the object is at 
infinity or when the system is telecentric in image space.

These normalization factors are unaffected by any number 
of refractions and transfers but have to be changed when a stop 
shift or a conjugate shift is performed in the already normalized 
diagram. Any shift and subsequent renormalization has the net 
effect of changing the original entrance pupil height or the 
height of the image, as the case may be, by
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where the expressions for $ ’£ and are given by Eqs. (5-19)
and (5-21).



CHAPTER 6

TREATMENT OF A SINGLE LENS ELEMENT 
IN THE j-g DIAGRAM

The simplest single element in the tf-g diagram is a 
thin lens, or in a more general sense, a surface; by a thin lens 
we understand here a lens of strictly- zero axial thickness. How
ever, real optical systems do not consist of thin lenses, but of 
thick ones; or at best of what we shall call here '-narrow1’ lenses 
ioelenses with a thickness small compared to their focal length 
In this context then, the thick lens is the simplest lens element 
that we have to deal with; there is an exception to this though, 
as mirrors may be considered as thin lenses.

Therefore, we shall look in this chapter at some of the 
properties of thick lenses. This approach has the advantage that 
narrow lenses, thin lenses,•single surfaces, and mirrors may be 
considered as special cases of the thick lens, by the appropiate 
choice of thickness, shape factor and indices of refraction.

In the 5 -g diagram, a typical thick lens is represent
ed by three lines, representing in turn the three spaces that the 
two surfaces of the thick lens delimit; or conversely, by two 
points representing the surfaces, connecting the object and image 
points« See Fig. 355 the shaded area represents the reduced 
thickness of the lens.
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Fig. 35 A thick lens

It is clear that Fig. 35 does not uniquely represent a 
thick lens, for if we keep the object and image lines fixed we 
still have the freedom of choosing the position of the interme
diate line V . We shall show that if we move this line parallel 
to itself we shall have lenses of varying thicknesses but of 
constant ratio of the curvatures of the surfaces. This is illus
trated in the diagrams of the left-hand side of Fig. 3 6 • On the 
other hand, if we keep the thickness constant and vary the shape 
of the lens (bending) we get the series of diagrams shown on the 
right-hand side of Fig. 3 6 . Of course, the most general change 
will be a combination of these two changes. In all cases illus
trated on Fig. 3 6 , although they represent different thick lenses,
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all of them have the same first-order imaging properties as 
the lens of Fig. 35; as these properties depend only on the rela
tive positions of the object and image lines, which are the same 
in all cases.

From these considerations it is clear that it is possible 
to write down an expression for the vector tV as a function of 
the thickness and shape of the lens, and from it and the two other 
line vectors we may derive the properties of the lens. These 
expressions also allow the derivation of an algorithm to change at 
will the thickness or the shape of a given lens; thus, we shall 
solve the problem of bending a lens and thickening a previously 
thin lens, for example. Because of its practical importance we 
shall describe this algorithm in a separate chapter.

Fig. 37 Variation of the 
shape factor line for a fixed thickness
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A very interesting property of the thick lens arises from • 

this analysis as we shall see shortly; If we draw in the same 
diagram all the possible positions of the intermediate line for a 
.thick lens of fixed thickness, we get the graph shown in Fig. 37« 
We may see that all these intermediate lines, each representing 
one possible space for the interior of the thick lens, envelope 
a curve; however, it is not immediately obvious what kind of curve 
this is, and its determination is complicated by the fact that it 
is defined by lines and not by points. This is a case in which 
the dual of the diagram becomes useful, as in the _fl - -d
diagram each line will be transformed into a point and the set of 
points will define a curve which is much easier to analyze. When 
we have completed the analysis in the H--fL diagram, we may 
return to the g-5 diagram by computing the tangents of the 
point-curve in the H--A. diagram. These tangents will become . 
points in the y-y. diagram defining the desired curve.

: It turns out that the curve in the g-y diagram is an 
ellipse. . Each point of the ellipse represents a possible bending 
of the lens, and this ellipse is inscribed in the parallelogram 
defined by the focal vectors and its center is half way between 
the origin of coordinates and the vector representing the princi
pal points of the lens as a whole. Another interesting feature 
is that if we change the thickness of the lens we define a new 
ellipse, but this new ellipsO will also be inscribed in the same 
parallelogram and will have the same center. All this is true
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for a lens, with a positive power; if the power is negative, the 
resulting curve is one branch of a hyperbola, with the. same 
center as before.

In the case of the diagram, the dual curve of that
one in the y-Zf . diagram is always a hyperbola»

We shall now proceed to prove these statements analyt
ically.

The Thick Lens Equation .
We shall depart slightly from the notation adopted in the 

previous chapters, for reasons that will become apparent present
ly. As noted in Fig., 35» the object and image vectors will be 
denoted by V, arid K, respectively, and the object and image 
planes by a0, az, respectively; the intermediate vector k/ will 
represent the space within the thick lens itself, of index of 
refraction 'n . The surfaces of the thick lens will be represent
ed by s, and sa."

We restrict ourselves in this chapter to the case in 
which the lines , W* are constant, and therefore all the cardi
nal points will be fixed and the first-order properties of the 
lens as a whole are derived from them. This still leaves plenty 
of freedom, as the values of the surface vectors a, , will 
change when we vary both the thickness of the lens and the curva
tures of the surfaces.

One immediate consequence of the constancy of tvt and 
is that the power of the thick lens is constant,
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2 - k, • (W, x W,) = I | , (6-1)

according to Eq. (3-11). We now wish to express this power in 
terms of the power of each component surface 3T,, and the
reduced thickness of the lens 7". Using the definitions given in 
chapter 3, these quantities are given by

5", =  fe..(w, x 9 )  =  | V,, iv| , (6-2)

= t.(wx7»)= |vr, W.l, (6-3)

r  = 1. cr, x $.) = ir,,?.!. (6-4)

On the other hand, the surface vectors and the intermediate space 
vector b/ are given by

2, = (V, — W ) / S i ,  (6-5)

?! = (.V - Wj/ (6-6)

V  = ( 5; - a,) / T. (6-7)

Therefore, the set of lines W,, Wa , V  or the set of
points E., i| , 2-a., 2rx , uniquely determines the system.

By writing

W, *wx =  (ivi - V) X + V  X ,

and using the above equations we may write Eq. (6-1) as

- I T £ , ^



which is the well known ”thick-lens equation•" By substituting 
the values of the powers as given by Eqs. (6-2), (6-3), we may 
write this equation in vectorial form as

liT (vl xvv)-(yzx V) + V x (W*. - W,) - H-E = 0. (6-9)

By using now the cartesian components of the W vectors, 
e.g., W = (-A, -ft) , etc., we may develop the dot product in Eq.
(6-9) and obtain the quadratic equation in (_fL,-ft.),

Ai l*- -h +  c J L 1 + 2)-a +  E(--a) +  f  =  0, (6-10)

where
A — T , jfLz f 
3 = T (Ji, 4- il, -A,),

C — 7~ _fl, -rt-t >
(6-11)

D  — &  S L  =  J T L  ̂  —  J ~ L ,

E =. A  -0. = — -A i
F  —  —

This obviously represents a conic in the X i - H  diagram, 
the dual of the y-j) diagram.

We still have the problem of transforming this conic to 
the -jj" diagram, but we know from the theory of algebraic curves 
that it will transform also into a conic, as conics are of both
degree 2 and class 2. (The class of a curve being the number of
tangents that can be drawn from an external point to the curve). 
The operation of "correlation" which is the point-line transfor
mation between the y-jj" and diagrams exchanges the degree
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and the class of a curve; For example, a curve of degree 4 and 
class 3 in one diagram will transform into one of degree 3 and 
class 4 in the other (see Zwikker, 1950, p. 76). Therefore, a 
conic, being of degree 2 and class 2 , will remain a conic in 
going from one diagram to the other although the two conics will 
not necessarily be of the same type. Appendix B , gives the 
formulae to transform from the conic on one diagram to its dual 
in the other diagram.

Note that the equation of a line in either of the two 
diagrams is given by (Appendix B , Eq. B-19)

4- -f I = 0.

By comparing this expression with the Lagrange-Helmholtz invari
ant

vJ _ a - vy . ? L - f , = 0>

we see that if we identify ( J , ,y ) with the point coordinates 
( *•, S ), we must choose the line coordinates as (£,17) = (-A, - Jt); 
see Eqs. (2-10), (2-11). This explains the way we wrote the 
quadratic expression in Eq. (6-10).

Before we investigate the form of the point-conic in the 
tj-JJ diagram, let us describe the properties of the line-conic 
in the jCI-JX diagram. We shall use freely the expressions in 
Appendix B .

Using as coefficients the expressions in Eqs. (6-1 1), the 
minors of the determinant A of Appendix B, become
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&A = - [ + J l l + 2 H z (3 ^  - ,)]

B — -fl. | - f l , 4- —f t  %. - f t  ^ 4~ ( -ft-1 - f t  2. 4~ —f t  | XX. 1 ) ^ 2  -^3 — 1J

= - [ -^,2 f -fLz1- + 2 ̂ 1 ,21, (2 ,̂ - l)^

A* =  (-tt, + 1̂.) (6-12)

=  4—jp (_ -f t | y -  - f t  ^ )

—  1  < 0

where the quantity -Jo = TS" = ^^ * will be called the
thickness factor and will prove to be a better parameter to 
characterize the thickness of the lens than T  itself. The deter
minant is given by

A = 2> Ad + E A e +- 2 PAf = — -2̂ 0̂  ̂  (6-13)

where for convenience, we have introduced the quantity g = f — -jb .
We see immediately that Af is always less than zero. We 

are then dealing with a hyperbola that degenerates into its 
asymptotes when — f . From the invariant of the curve

~ A + c = 7~ ( J , (6— 14)
we see that the hyperbola will be equilateral when W, ± Vx.

The center of the hyperbola is given by the vector

Wc - (W, -f- W,1) /-jo (6-15)

The equations of the asymptotes may be more easily com
puted by considering them as the locus of the degenerate hyperbola



115
when A  = 0 (i.e., when -jo = | ); but — TIF may be expanded
by using Eq. (6-8) into

r e  =  rJF, +  =  /.

This equation is fulfilled when 75*, = 75"̂  = / , which become
the equations sought when they are written as

T £ t = r  lw,  w \ = T J i ,  jtl — T J Z ' X i = I,
  _  (6-16)7\2* = T  I ̂  v/t| = r ^ L S L ^  - r_a -fix. = /.

It may be seen from Eqs. (6-16) that the asymptotes are
respectively parallel to the object and image vectors W, , 
and therefore, are of fixed inclination. Because the excentricity 
of the curve depends on the angle between the asymptotes, we 
deduce that the eccentricity of the hyperbola is a constant inde
pendent of the thickness of the lens. In fact, if we denote by 
y  the angle between the W, and Wz vectors, whose value is given 
by

coir f = (tV, • Wa) / 5T, 

the value of the eccentricity is

e = ( C$C ( W  ’ ^  (6-17)
tsec ( j f / z )  , i j - >  > I •

Note that the two hyperbolas that have the eccentricities given 
by Eqs. (6-1?) are conjugate to each other, i.e., have a common 
set of asymptotes*

We could also express the values of the semi-major and 
semi-minor axes as well as the semi-focal distance in terms of
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this angle, which would permit us, with the rest of the parameters 
already calculated, to trace the curve on the -/l-Ji diagram. 
However, in our particular context it is preferable to proceed 
differently.

value of 7" , a point in the diagram for each value of IV, the 
space inside the thick lens. It proves more convenient to specify 
the two components of this vector as functions of a single param
eter that may vary between the values -<o and 4- 00 and that has 
some physical significance. We choose as such a parameter a 
"shape" factor that is related to the physical curvatures of the 
two surfaces composing the thick lens. We adopt the shape factor 
used by Hopkins (1950), but generalize it to the case in which 
all the media involved have different indices of refraction; thus 
we define as the shape factor the quantity

where the powers of the surfaces , -Z* are given by Eqs. (6-2) 
and (6-3) • It may easily be shown that, when n, =. vit , this 
factor reduces to that defined by Hopkins, namely

where c, , are the curvatures of the surfaces of the lens.

The Shape Factor 
The conic given by Eq. (6-10) defines, for a constant

(6-18)

c, + c*
C, —  c z
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We now seek the representation of this shape factor in 
the -fl-jL diagram. By using Eqs. (6-2) and (6-3), we may expand
the determinants to obtain the expression

l-tl, X & A .  +  x  n \  =  o ,  (6-1 9)

where we have abbreviated

& -Cl. —- -XL — XL | y ® ̂  • j 
51 -TL — -XL x +- -XL, t efc .

This may also be written as

(z/i •*- x a  a ) -H. = (zjt -h x &_a) jx

which is the equation of a line passing through the origin of the
X l - X L  diagram, and with slope

5: _A -h X kxi
fe.Y -

Z-K 4- x

  -f- /) —  -H-1 (x — l)
X L ^ t x - h i ) -  -a , (x - /j

Parametric Equation of the Conic 
in the -fl.-Jx. Diagram

Once the parameter has been selected, the theory of 
algebraic curves shows that the parametric equation of the 
hyperbola may be obtained by finding the intersection of the line 
-fL = kx with the hyperbola of Eq. (6-10) ; with the appro
priate substitution, this equation takes the form
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(Aky - $fe.x + c) .a1 + (3>kx - e) ji - f  = o.

whose solution, after long and tedious but otherwise straight
forward algebra, gives

component• We may write both solutions as a single vector 
equation

with a subscript to emphasize the fact that it is a function 
of the shape factor X •

The Functions f J and Or .

shape factor X and the thickness parameter -'jo; but although the 
shape factor occurs in both the brackets and the braces, the 
thickness parameter occurs only in the function within the 
brackets. In particular we see that in the limiting case of a 
thin lens or refracting surface, for which -jo= 0 , the value of 
this function may be obtained by applying the L*Hospital rule

where jp = , and with a similar form for the other

(6-20)
= L 1 1 ̂  (x -f-') -  X  ( x - O j  •

We shall from now on denote the intermediate space vector

We see from Eq. (6-20) that Wx is a function of both the

?c»h C1 ^  1 (6-21)5r-* o
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On the other hand, for -jo oo , we see that

(6-22)

The function

(6-2 3 )

is a cubic whose graph is given in Fig. 3 8. The solid line 
represents the points obtained by choosing the positive sign of 
the radical, and the dotted line represents the points obtained 
with the negative sign. It is obvious that only the upper posi
tive sign gives the correct limit for a thin lens, and therefore 
from now on we shall drop the negative sign in front of the 
radical in Eq. (6-23).

jr %> - j in order to make the radical a real quantity. This 
leads to certain restrictions on the values of -£> and X ; these 
are illustrated by plotting a s  a function of X $ which is a 
parabola, as shown in Fig. 39*

We also note from this equation that we must have

For the case > 0 , we see that the condition

leads to

-Jp < - X 3- y  lx/ < i.

and for the case $  < 0  , the same condition leads to
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Fig. 39 as a function of shape factor for different
thicknesses. a) For positive power, b) For negative power



1 2 1

-j°& ~x ,'_ l > v  lx l > '•

From Fig. 39 we see what these inequalities mean. Each 
parabola represents a possible value of ; -ja 0 is given by the 
axis of X , and as the value of -jo increases the vertex of the 
parabola moves along the axis of 5 ,  receding from the origin.

For 57 > 0 , we see that for a given all values of the
shape factor are permitted as long as the corresponding parabola 
does not cross the "forbidden” region below S  =  — f . If we 
increase the thickness factor -ja more and more, the permitted 
values of X are more and more restricted to the region around 
X — 4-1 and X — — I• This means that really thick lenses, 
thicker than the focal length of the lens for example, must have 
one surface of nearly zero curvature, and no biconvex lens of 
this thickness can exist•

For the case of a lens of negative power, the restriction 
applies to values of |Xf larger than 1, as may be appreciated 
from Fig. 39b.

Limitations of the Hyperbola in the SL-^L Diagram.
Returning to the parametric equation of the hyperbola, Eq. 

(6-20), we see that

wx = | w * ’ ^  x =  +l'
 ̂ x = -t,
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as in both cases E3 = '/z, , by Eq. (6-21). This is independent
of the value of the thickness parameter -jo. In other words, 
every hyperbola, each characterized by a value of , passes 
through the object and image vectors • In particular, for

= 0 i the hyperbola degenerates into the line , which 
passes through these two vectors.

important at this time. They may be obtained by considering the 
general equation of a line in the J l - J L diagram, which may be 
written as

by substituting the value of the vector , given by Eq. (4-17)i 
into the expression for the Lagrange invariant, Eq. (3-7)♦ which 
represents a straight line in both diagrams.

Then the line parallel to the above and passing through 
any other given vector K , say, has for equation,

where we have used the determinant notation.
In the case of the hyperbola, we want the equation of 

the chord parallel to the line, Eq. (6-24), which represents the 
thin lens, and passing through the point Wx ; therefore, using 
Eqs. (6-20) and (6-25)i we have

The equations of the chords parallel to this line are

W  x A W (6-24)

(6-25)

| W, AW| = lw<, AW| =  z JF [ ] , (6-26)
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and we used the fact that |T W, ] — 2,5 , as may be seen by
developing the determinant. Because the right-hand side of Eq. 
(6-26) is independent of the sign of X , the same chord passes 
through the point W_x , whose equation is

Therefore, the chords parallel to the thin-lens equivalent 
of the thick lens give the points with symmetric values of X« In 
particular,

for X =- 0 , [ ] = i chord is tangent to
hyperbola;

for X = ± <o , C3 = 0 , chord passes through origin of
coordinates.

So* we see that the hyperbola is limited on the left-hand 
side by the chord parallel to the thin-lens line and passing 
through the origin.

imposes a limitation on the right, defined by the ’’chord" passing 
through the point X W  = W, -f- W* . These limitations are 
illustrated in Fig. 40.

Moreover, the average values of Wx and W-x define a 
diameter for these chords

W_x = [] [SVV - X AWj =

= (x-f-i) - iv* (x - 03 • (6-27)

for X ■= £ I , [] = Vz , chord passes through V, f ;

On the other hand, when Jr =. - I , C 3 — • , and this

(6-28)
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Remembering that the shape line (the line representing 
the shape factor X ), Eq. (6-19), reduces to

IV, £V| - 0 ,  f o i  X = 0, (6-2 9 )

we may substitute the value of Vj. from Eq. (6-28 into Eq. (6-29) 
to obtain

IW, rv/| = 0.

In other words, the points V«i satisfy the shape line 
equation for X = 0 , and therefore the line given by Eq. (6-29)
is a diameter of the conic. Because all hyperbolas pass through 
V, , Va, all will have the same chords and therefore this same line 
is a diameter for all the family; and because all diameters pass 
through the center of the curve, all the centers of the family lie
along this line. Indeed, the coordinates of the center, Eq.
( 6 - 1 5 ) 1  satisfy the same equation.

It may be easily seen that the vectors V,, Va form a 
quadrilateral, one of its diagonals being this same diameter 
(which is the conjugate diameter to the thin-lens line), and the 
other the thin-lens line. The crossing of these diagonals is the 
point % (W, 4- Wa.)

The extreme values of W* when X = ± 60 may be obtained 
by rewriting Eq. (6-20) as
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which allows us to take the limit as X — «o

To obtain the limit of W.* , we simply exchange W, and V/a 
because of Eq. (6-27)i

This means that for 5  < 0 these points do not exist because in 
this case the branch of the hyperbola opening to the right is 
used; the center of the conic then lies to the left. In this 
case the extreme values of the vector Wx will be given by the
value of X that will make j? = -J in the bracket function; that 
is,

Because the chords parallel to the thin-lens line determine
both Wx and , it is obvious that, knowing the position of
the chord along the conjugate diameter to 2T, we should be able 
to get W-x from W* by a simple change of sign. For that 
purpose we define the vector along the chords as

W-co - - AW /

then
X'W'A.X

<  = vx - =  X LI A W  • (6-30)

then
Wx = WA 4- Ws

( 6 - 31 )W.x = W a - W t.
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This facilitates the computations, as the factors Cl and X [ 1 
may be tabulated once and for all for a set of values of -Jo and 
X and used for different sets of W,, . Also, the vector
lying along the conjugate diameter given by Eq. (6-29) may be 
used graphically to mark off this diameter with the different 
values of X ; then, chords parallel to the thin lens line through 
these points will cut the curve at the points W, and W* , as 
shown in Fig, 41.

Fig. 4l. The chords corresponding 
to different values of the shape factor
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Parametric Equation of the Conic 

in the # -a Diagram
The original line-conic in the XL--& diagram, Eq. (6-10),

with coefficients given by Eqs. (6-1 1), will be transformed into
the point-conic whose equation is given by

Aa J z + z A*S' 9 + AcJ1 + ^ + z A Ey + AP = 0, (6-32)

according to Appendix B , and its coefficients are given by Eqs. 
(6-12).

The invariants of this point-conic are given by

A =■ Az = I f * (6-33)

A f = ZFA - 5"*, (6-34)

X =  4- Ac = -Vg -(^vv)2. (6-35)

From Eq. (6-34), we see that the type of the curve will be

for )-fc| I , ellipse if f  > 0 ,
hyperbola if ^  < 0 ; 

for >  1 , hyperbola if <5" > 0 ,
ellipse if 5  < 0.

We shall restrict ourselves to the case in which |-̂>j <. I .
Note from Eq. (6-34) that this quantity will be different 

from zero only for nondegenerate conics, i.e.,only central conics 
transform from one diagram to another without degeneracy.

The center of the conic may be obtained at once, from Eq.
(B-5) as

8 0  = (3/2F, E/ z f ) ;



in vectorial form, using Eqs. (6-11), and Eq. (4-17)i we have

which is independent of the thickness or the type of the curve.
In other words, all the curves of the family have a common center 
of symmetry, which is related to the fact that all the original 
hyperbolas in the diagram had a common conjugate diameter
to the thin-lens line 3=p .

W,, V/t in the -C1--Q. diagram, it follows that all the point- 
conics will be tangent to the lines Wi, Wz in the y d i a g r a m .

point-conic. Because of the dual relationship between the two 
diagrams, the points of one diagram will transform into lines in 
the other and vice versa. Therefore, given a line conic, we know 
that tangents to such a curve will transform into the point conic.

may express it in homogeneous coordinates (see Gans, 19&9) as

= - ' u & w / g  = y*?. (6-3 6)

Moreover, as all the line-conics pass through the points

We now proceed to derive the parametric equation of the

So, if we start with the line conic, in the -A-jG- diagram, we

$ -2.C e

E 2. F

The tangent to the curve at the point has the

(S ») 5) /*A 3 $

equation



but it also obeys the linear relation
130

=  0.

In other words, the point coordinates are given by

(6-37)

In our case.

5, -  -0 -*

= I

J
(6-3 8)

Remembering Eq, (6-20), we obtain for the homogeneous coordinates 
after some algebra

x* — — r 3 (x ̂  -rt- +•
= — J, n (  x 2 -n- + ajl)
- —-2 S  ( | — []]

(6-39)

where Cl is the same bracket function given by Eq. (6-23).
Taking the ratios indicated in the right-hand set of Eqs. 

(6-3 8) and using vectorial notation, we get

> C 1  { X ZV -h Atfj -  A W
(6-40)(1 - n)

and for negative X we get the analogous vector

2VV +- AW ] - A W
2 - x  = (6-41)



We may then define the vector a* along a diameter as

*' -  >’* ( * *  -  ( ^ 7 r )

but

a.p = — AW J $  f

and putting

FUD = ,
I - C l

we obtain

We now define a vector along the chords 

*■ - ■

but by introducing the antiprincipal vector 

2:a ~ — 2p — — T W  /S'

and putting

/-Cl

we have
5. = aA

In analogy to the vector Vx we may write 
S'* = 2ji f
3 _ x  =

131

(6-42)

(6-43)

(6-44)

(6-45)

(6-46)

(6-4?)

(6-48)
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The Functions FKD, F W S , FZD, FZS

In analogy to Eqs. (6-43) and (6-46), we define

Fk/2> s CJ , (6-49)

s. X Cl. (6-50)

The four functions, FWl), Fit/, F % 2>, F?5 , are independent of
the vectors Vv,t Wz and are functions of -jo and X alone; they
can be tabulated once and for all and used for different systems. 
It is possible to simplify them. By writing

a =. i + >( x l - 1) - £  + >  xl (6-5 1 )

where ^ ^  . Then we have
FVk/J) = ,l/( I +
FWS — x/ (I -t /qT 3

//7T (6-5 2 )Faa> = l + f-/ i/Ŝ
Fas = -f

Note that FV1> and Fai> are even functions, whereas FWS and 
FIVD are odd functions of the shape factor X .

It is of interest to tabulate the limiting values of 
these functions for -js — 0 and

for -^c>=0, FU/D = ' A

FWS =  Zx. x (6-53)
F ao> = 2
F %S = a
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for FW& = ( / ( / + X)
FVS = x/( <-#- X) (6-54)
F ^ D  = F25 = I 

and also to tabulate special values for X :

for X = 0, FWD = t / (  I +  f %)

FWS  -  0

f z v  —  1 +- /a1 
Fas -  0

for X = / , FH^S = FVt/S =
F 21) — / 4- g = 5.-̂ o

Fas = t  

for X = 00, FWD — 0

Fyvs = '/1 / 7

F 2-D =• I 
F a s  -  i/^1

(6-55)

( 6 - 5 6 )

(6-57)

Parameters of the Point Conic
Eliminating the parameter X between the two components of 

the vector 2% given by Eq. (6-40), we may obtain the equation of
the point conic in the y-y diagram, which should reduce to the

J

form given by Eq. (6-32). However, by eliminating the parameter, 
we obtain expressions for the coefficients that are more conve- / 
nient than those given by Eqs. (6-12), as will be appreciated 
presently.



134
If we use as the center of coordinates the center of the 

conic , we may write Eq. (6-40) in the form

5, - (6-58)£-5 / Q.

or equivalently,

t, , (6-59)

We see that

(JLt +  i ;
V / r j  x /a: / a

therefore, we may choose some angle such that

/jp X / /57 — Ŝ’ki •S'
/ /Q? —

which, substituted into Eq. (6-59), permits us to write

_  / £  s .n £  _ '/? A-a
J -2.F

=  fiJJL stnj- +  SE cot iP-
J iJE ze

Solving for si’m cos ̂  , squaring, and adding them, we 
may eliminate them, resulting in

14,6-a.r +  = i
f  ?

which is the equation of the conic with the shape factor elimi
nated, By expanding the determinants, this may be put into the 
following form by comparing with Eq. (6-32):
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- a a j 1 - ^ = 'It g (6-6 0 )

where now
-Aa = -Cl)7' +- g. (A-a)1,
Ag - -p  m i  z s L 4- g A-H.- A-O., (6-6 1 )

— Ac. — -jo ~a) +- ^ (A-ft.) .

The invariants of the conic are already given by Eqs. 
(6-33)» (6-3*0 , (6-35)1 except for the latter which now we write 
with a change of sign for notational convenience:

_f = - A a - At = - p { T W ) ' ~  + f (AVV)1 (6-62)

By defining the quantity

^  = X* - V Af= (6-63)

we may write the eccentricity, the semimajor and semiminor axes, 
and the semifocal distance as

e* = iR. / (x + ft)
a* = (X 4- £ ) / i 5 ‘ (6-64)
b* =  ( f  -  € ) / ?  $ '

c* = % / l £ l

This conic is illustrated in Fig. 42 for i? > 0 , and in 
Fig. 43 for <£ <  0  . Note that, for positive powers, the ellipse 
is inscribed in the parallelogram formed by the focal vectors ap,

, and only the part above the line parallel to the antiprinci
pal vectors has physical significance; the lower part
corresponds to the values obtained by using the lower sign of the
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Fig. 42 The ellipse in the 
5 - 5  diagram. (Positive power)

Fig. 43 The hyperbola in the
t j d i a g r a m .  (Negative power)
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radical in the bracket function of Eq. (6-23). As the thickness 
parameter varies, the ellipse changes shape, but it is always 
confined to the inside of the parallelogram and is tangent to the 
lines W, and precisely for the values of 2 X for which
X “ -M and X ■= - 1 , respectively. When the value of -jo is 
close to zero, the ellipse approaches the vector , and as -£> 
approaches unity the ellipse tends to coincide with the vector 
Sp — 2 p . Figure 44 shows the ellipses for several values of -jo, 
and Fig. 45 is a plot of the eccentricity of the ellipse as a 
function of -jp for the choice of VV, and vectors of Fig. 42. 
Figure 42 also illustrates the use of the vectors and 2 S
given by Eqs. (6-44) and (6-47) to locate a point on the curve 
associated with the shape factor X ; the tangent to the curve at 
this point represents the intermediate space within the lens 
given by the vector W x, Eq. (6-20).

Similar comments apply to the curve in Fig. 43 for which 
-3F < 0 , except that now the values of the shape factor that are
allowed are limited to a maximum, set by the asymptotes to the 
hyperbola.

Powers and Surfaces of the Thick Lens 
We can now compute the powers of, and the vectors repre

senting, the two surfaces of the thick lens as a function of the
shape factor X and the thickness parameter -j3. Remembering that
the equation of the intermediate space vector is Eq. (6-20)

wx = [] { Wt(x + I) - w,(x - I)} ,
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Fig. 44 Different ellipses for different thicknesses

0.1 o. t

Fig. 45 Excentricity of the 
ellipse as a function of thickness



1 3 9

the powers at each surface are given by

= |w„Wx| = [Kx^tjs- = F K 2  , (6-6 5 )

^  = -C3(x-I)r =■ 3 ,  (6-66)

where we have defined the functions FV, and . Note that

FW, = F V D  +  FVfS = (6-6 7 )

FWZ -  F\r/2> -  FWs = -f 3 (X - /J (6-6 8 )

These may be tabulated once and for all for selected values of
and -j® and X .

The points representing the surfaces are given by (see Eq.
3-15)

_ V x - vv,—
, , (6-6 9 )= rF + {.̂ ( x-o +' 1 ?. 3 + (A2.)

1 n(x+o J

_ W* - Vx= (6-70)
= (TKX-h) -i? 5 +- =  (/=€,) 2f +1 ri(x-i)

where we have defined the functions F 2 , , . These may be
simplified to read

X -f- /fflT)/ 0  (6-71)

F& % = (x — / ( X — /j. (6-7 2 )
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Note that

FW, (— X) = f x)

FW*. (- X) = FM/, (+ X)
F5, (-X) = F2. (-h X)

(-x) = Fa, (4 x;
and therefore we need to calculate them only for positive values 
of X .

Stavroudis (1971) has shown that these functions, which 
are of the general form

cf,

have the general property that j:, is a sum of an even and an odd 
function, and j - i is the difference of the same even and odd 
functions. This is clear for FW{ , Fh^ , but it is not immedi
ately obvious for the others.

It is of interest to tabulate the limiting values of these
functions for -jp = 0 and -jo = I , as well as for some special
values of X :

for -£> ■= 0 , FW, = / z  ( X ~h l)

FWt - -'A(x-hi) (6-73)
F2, = Fs± = | 

for f  - 1 , FW, = a.
FW& = (/-x)/( n- x) (6-74)
F2, = 2.x/ (X + /)

= 0
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(6-75)

(6-7 6 )

(6-77)

for X =  0 , FW, -  FWt = l / ( l - h S $ )

F3, = = i/g’

for X - I , = I
= 0 

F3, - /
= g

for X — oo % FW, =z I / />*
«  -  I /

F2, = I F 
F 2-*. — I —  /-jo

Cardinal Points of the Thick Lens 
Any two conjugate points with an associated magnification 

/m.r are separated from the surfaces by
|5„5| = II,, hf| + =

(6-7 8 )
-  (  V ^ T  —  F 2 l) / ^  

in object space, and by
li.,5’1 = wt | 2,,3f| +1?. ,5’fI =

\o-79)
= ( « ,  -  ^ t )  / s .

in image space• With these expressions we may calculate the 
positions of the cardinal points with respect to the surfaces of 
the lens.

The front focal point has associated with it a magnifica
tion /v*T-= 00 ; therefore, the front focal distance is given by
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F F D  — (/=2f)

The rear focal point has an associated magnification 
'Mr = 0 ; therefore, the back focal distance is given by

5 F D  =  (fa.)

The principal points are given by setting /Yn-r =■ I into 
Sqs. (6-7 8 ) and (6-79)

I ̂ i,2 p| =  ( 1 - /=2')/5  

|a.,a"p| = (Fat- zj/S

But these expressions may be simplified to read as follows

{ ! -  F 3 . , ) / £  = - n(X-/J-j=/5 = (F*,) r 
(F3t- Zj/S' = — C3(x F/J -̂ ,/5 = - (FUt) T

Therefore, the actual distances become

= { Fwz ) "S (6-8 0 )
J-’r / ' * ' *  = - ( F K ) ?

where % = i / ' n  is the reduced thickness of the thick lens.
The more conventional formulas for these distances (see 

Born and Wolf, 1970) may be obtained by using Eqs. (6-2) and (6-3 ) 
instead of Eqs. (6-78) and (6-79), to yield

IS., %>| = r.2\/.e
(6-8 1 )

|i"2, =  - T & J £

which in turn may be reduced to Eqs. (6-8 0) by using the 
expressions for the powers given by Eqs. (6-6 5) and (6-6 6). The
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advantage of using Eqs. (6-80) is that the functions FW^

contain explicitly the dependence on -jo and X .
Also of interest at this stage is the expression for the 

separation of the principal points, which is not given directly by 
the diagram because both principal points, in object and in image 
space, are represented by the same vector zp. However, by using 
the distances given by Eqs. (6-8 0) we see that

PPJ =  Z - Jr -h Jp

and by reducing this distance by 71 , the index of refraction in 
the interior of the lens, and multiplying by the Lagrange invar
iant, we may write

ti, 5", + nl £ x '= w  Tpytr = T  [ | - (6-8 2 )

where we have used the expressions in Eqs. (6-81). By using the 
expressions for the powers, Eqs. (6-6 5)» (6-6 6) and the functions 
FW3> and FWS given by Eqs. (6-49), (6-50), we may finally write

PP'=£[<n -- F W 3> ( v t + nz) +- FWS (>>, (6-8 3 )

If we restrict ourselves for a moment to the case for 
which ■= >1̂  (the thick lens in air) , we see that

? ? > = £ ( £ -  z[l) (6-84)

This equation tells us that the separation between the principal
planes will vanish not only for a thin lens ("5 = 0  ) but also for
a thickness such that [1 = -n /z . It is possible to show that
this is the case of a concentric thick lens.



The separations of the nodal points may also be obtained 
from Eqs. (6-78) and (6-79) by substituting the value v n T z=. y\K/ n * .

Optical Center of the Thick Lens 
The optical center of the lens is defined as the point 

within the thick lens that is conjugate to the nodal points. See 
Fig. 46. Therefore its location will be given by Eq. (4-24) with 
thT = 7L = 7i, /n* .

If - I , i.e. 7), = vi a t Zy == Zp and Eq. (6-8 5) reduces to

The distances of the optical center from the surfaces are
given by

(6-8 5 )

^p/C ] = ( /-f )/gl ) 2p

where the {  ̂ factor is the same as in Eq. (6-8 5 )• When %  = | 
these distances reduce to
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Fig. 46. Optical center of a thick lens

We see from these expressions that when X = 0 , the optical center 
lies within the lens; when X = ± I » it is located at the curved 
surface of the lens; and if the lens is a meniscus, the optical 
center is located outside the lens.

We may also note that the ratio of these distances is 
equal to the ratio of the curvatures of the lens.
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Conclusion

The expressions just derived for a thick lens are com
pletely general with respect to the shape and thickness of the 
lens. We have restricted ourselves to lenses whose thickness 
parameter | <  | . This is valid, as practically all of the 
thick lenses actually used in optical systems belong to this 
group. On the other hand, little is known about the properties 
of very thick lenses for which j-̂>( > | ; this corresponds to
axial thicknesses greater than the effective focal length of the 
lens itself, and they will become the subject of a future investi
gation.

Several approximations to the expressions developed in 
this paper are worth noting.

First, we have the "text-book” thin lens, for which
■=. 0 . In this case "2 , and s, coincide with 2 P and the line

representing pivots on 2:P as a function of the shape factor
X ; all expressions simplify enormously but are of limited appli
cation because no actual thin lenses may be fabricated. More 
interesting is the case where | | (which I call "narrow"
lenses), as these may be realized in practice and, in fact, a 
great number of elements in optical systems are indeed of this
type. In this case the basic approximation is that of the
bracket function, Sq. (6-23) for small values of -jo ; by expanding 
the radical in Eq. (6-23) we obtain for the bracket function

n  =  y«.- ' / « * = & [i - i)l; (6-86)
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being a simpler function of -̂o and X , each expression. involving 

: this bracket function, will be simpler.
Another useful approximation of the formulas developed 

here is that of a mirror5 in this case we may also take -£> = O as 
for a thin lens, but we must have tia =• — . This also may be
considered as a special case of a single refracting surface,

H, 7*= M — 0 *

These expressions can also be used in the case of a 
system of two thin lenses; in this case -jb would represent the 
separation parameter, the product of the actual separation and 
the power of the combination, and the two thin lenses would take . 
the place of the two refracting surfaces of the thick lens. We 
still have the freedom of choosing all the three indices it,, It, 
equal to or different from each other, i.e., the two, thin lenses 
in air or separating different media.



CHAPTER 7

GENERALIZED BENDING AND THICKENING OF LENSES

The general treatment of a single thick lens' in the
diagram described in the previous chapter, allows, the derivation 
of expressions for the bending and thickening of lenses. These 
expressions are completely general and in closed form, without 
recourse to approximations or iterative procedures, and therefore 
may be applied either analytically, for the study of properties 
of thick elements, or in graphical form by means of the diagram,
to the analysis and design of optical systems;: they may also be
incorporated into a computer program.

By bending, we mean the well known procedure used in 
optical design of changing the curvatures of the surfaces compos
ing the element , without changing its power and the first-border 
properties of the rest of the system* It is generalized to allow 
for different indices of refraction befdre, inside, and after the 
lens, and in the sense that we permit a more liberal change in the 
curvatures than the usual small increments in their values* Sev
eral attempts have been made at a procedure for "generalized 
bending!* (notably Sutton (1 9 6 3), but see also Hopkins (1950? p. 
111), and Darnauer (1971)), but in our opinion, they are not 
general enough.

148
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By thickening, we mean any change in the thickness of the 

lens, including the thickening of a previously thin lens. This 
has also been attempted before, by Berek (1930, p. 8 6), Herzberger 
(1944), Hopkins (1950, p. 114), Hopkins and Rao (1970); but all of 
them at one stage or another recourse to approximations or itera
tions .

As may be appreciated from the previous chapter, the bend
ing of the thick lens is completely determined by the shape factor 
X defined by Eq. (6-1 8), and the thickening of the lens is 
controlled by the thickness factor -p = . These two parame
ters are completely independent of each other, but they are 
intimately related in describing the properties of the thick lens. 
Therefore, the formulas to be described as an algorithm may be 
used to vary and X independently or simultaneously, in one or 
several elements of an optical system, to adjust the values of the 
third order aberrations, or to replace a system of ideal thin 
lenses by a more realistic one of thick lenses, for example.

Bending a Thick Lens
Let us assume for the moment that we fix the value of the 

thickness factor -p , and only change the value of the shape factor 
X. In other words, we are making a pure bending.

As may be appreciated from the right-hand side of Fig. 3 6 , 
bending a lens defines a new vector W x for the space within the 
lens, given by Eq. (6-2 0 ). In turn, the line vector Vx defines 
with the object and image vectors W, % Wx the new points a,, %%
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given by Eqs. (6-6 9 )» (6-70). In Fig. 4?, we have plotted in a 
single graph the lines VVX and the points resulting from
different values of the bending factor X , for a fixed set of 
object and image vectors W,, . It may be seen from the figure
that this small sample already shows how the set of lines 
produced in this manner envelope a curve, which the analysis of 
the previous chapter shows to be an ellipse. If we change contin
uously the shape factor from X — 00 to X =  -I- 00 we obtain the 
upper part of the ellipse shown in Fig. 42 defined as the envelope 
of all its tangents. Note also that each line determines a 
different set of surface vectors 2t , 2 ,.

Fig. 47. Same thickness, 
different shape factors
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If we •'■were to change the thickness parameter -£> at the 

Same time we change the value of X » we would ..define a tangent 
line. V/% to a different ellipse» , This is in essence what the 
algorithm proposed by Sutton (1963) does, as he forces the bending 
(and incidentally, the thickening) in such a manner as to leave 
the first surface vector a, unchanged. Unfortunately, by doing 
this, he loses the generality of the method, as there is no con
trol over the resulting thickness. This is also the source of the 
singularity that He has to overcome by a special case. One may 
remedy the situation by doing a "backward" bending, as defined by 
Darnauer (1971); however, that complicates the process.

The method here proposed is more general as it permits a 
better control of the two parameters, the shape factor X and the 
thickness factor -Jo, as the roles of the two are clearly estab
lished. .

Before we describe the algorithm let us examine the 
effect of changing only the thickness parameter -ff> for a fixed 
choice of the shape factor.

Thickening a Lens
By looking at the left-hand side diagrams in Fig. 3 6, we 

may see that by changing the thickness parameter , and keeping 
fixed the shape factor X, we in effect are sliding the line 
parallel to itself. This may be appreciated more clearly in Fig. 
48, in which we have plotted in the same graph, the vector Wx
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for different values of -fa , for the same choice of object and 
image vectors W,, Vz as in Fig. 4y.

Fig. 48. Same shape factor, 
different thicknesses

It is clear from Eq. (6-20) that by this operation we are 
only changing the value of the function LJ given by Eq. (6-23) 
and as the slope of the line W x is determined by the factor in 
braces in Eq. (6-20), it is clear that the line will remain 
parallel to itself.

The limiting case of -fc-0 is worth noting; in this case 
[ ] = '/z. and W x represents the space within a thin lens. Also 

■=. -=i , i.e., the two surfaces coincide with the principal
points. This illustrates the fact that we may also use this
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algorithm to thicken a previously thin lens as well as to change 
the thickness of an already thick lens» This problem has been 
attacked before but without the generality and completeness given, 
by the present algorithm. Hopkins and Rao (1970) as mentioned 
before, use an.iterative procedure of successive approximationso 
Berek (1930) gives a cumbersome method and suggests that an iter
ation will be necessary when the thickness to be introduced is 
not sufficiently small. Herzberger (1944) solved this problem 
quite successfully restricting himself to a fixed value of the 
shape factor; his formulae may be obtained from the ones presented 
here by using the ratio of curvatures c\ j c a_ instead of X, by 
taking it as a constant, and by assuming that the lens is in air,
Ti, =  Wa. = I » However, instead of leaving his formulae in the 
general form (at the time of applying them to compute the Petzval 
sum, for example), he made an approximation too soon, which 
vitiated his results, as was already pointed out by Rayces (1955)« 
Nevertheless, his general method and expressions may be considered 
as special cases of those derived in the previous chapter.

The Algorithm
It is clear from the previous paragraphs that the two 

operations of bending and thickening are independent of each 
Other and may be applied one at a time or both simultaneously to 
a given system. The generality of this algorithm is based on the 
fact that each operation is accomplished by a distinct parameter 
independently of the other.
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Fig. 49. Definition of 
variables for thickening or bending

In order to use efficiently the following algorithm we 
must express first the system under consideration in terms of the 
^ variables. The system we want to modify is represented in
Fig. 49. The two surfaces of the original lens are and 3%; the 
object and image lines are W, and with corresponding indices 
It, and 7*%; the surface previous to will be designated by 2 *. 
and that following by 2 .̂ The space within the lens will be 
given by Wx with index ti ,

We assume that the object and image lines W,, W 2 are 
fixed, and therefore the power of the lens 5, and the focal 
points , % p remain fixed throughout any change considered by
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this algorithm; this assures the continuity with, and the invari
ance of the first-order properties of the rest of the system. In 
particular, the distances between the surfaces a*, and aF here 
designated by , and between 2 F and ( T~fb ), will not
change• Therefore, for any change of or X that defines a new 
set of 2,, az only the back and front focal distances from these 
surfaces will be required.

Given then the above points a, , a*, 3u, we calculate 
first the object and image lines,

w ' =  %  =  < 7 ' 1 )

Vl =  = ' (7"2) 
which in turn give the power of the lens

5 = | W,, W,l . (7-3)

Next, we calculate the intermediate vector and the
thickness of the lens,

Wx “  =  i t x f ' (7"4>
If the original lens is thin 7" = 0 , and Eq. (7-4) will

be undefined. However, as in that case C 3 - '/a- , the intermediate
vector will be given by

w x = Kt { w,(x + i) - w; (x - i)} , (7-5)

where we must know or assume a shape factor for the thin lens•
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Next, we calculate the powers at each surface,

= | V,, Wx\ (7-6 )

= I Wx, W*| (7-7)

and the shape factor, if it is not already known,
a» - arX = — ------  (7-8 )
-5",

It is also convenient to calculate the focal vectors

? F - ~ K / 5  , (7-9)

2 p = + W,/-$ , (7-1 0)

and the separations of these points from the previous and fol
lowing surfaces 2 ,̂ 2fe,

TAf - (7-11)

^FB = 38l = cohst- (7-12)

which will remain constant during bending or thickening.
Note that some of these quantities may already be known by 

previous analysis and some of the above steps might be eliminated.
We are now ready to proceed with the changes. At this 

point we introduce a new value of T , or X i or both.
We define the thickness parameter

=  fsE (7-13)

and the quantity

&  = I -h - p i * 1 - i )  (7-14)



to get the bracket function

“  =  “ +/<? <7-15)

We may now define the functions

FW, =  C U X  + 0 (7-16)

= — L3 (X - 0 (7-1 7)
Fs, = (X + / S I )  / (x + 0 (7-iS)

F a ,  =  (.x - /aj/ (X - 0 (7-19)

which allows to write the new values for the powers

5T, = 5, (7-2 0 )

= (fK) ■$, (7-2 1 )

in terms of the power of the lens given by Eq. (7-3)• From these 
we get the new curvatures

C, = » (7-22)tl - 71,

c, = ~ y. . (7-23)m - n t

The value of the new intermediate vector V* will be given
by

Wx =  (F W‘)  K  i (7-24)

and the new surfaces will be:
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The new front and back focal distances will be given by

FF 2> = ( F e , )  j , (7-27)

2 F2> = [ F i j j \  (7-2 8 )

as may be seen from the equations following Eq. (6-79)• There
fore, the separations from the previous and following surfaces 

2 b will be

7, =  I a<, a, | = + ( . F 3 , ) / s  (7-29)

Tj, — I 2,, 2bI = Fpg 7 i.FSt)/M (7_20)

where the constant distances t are given by Eqs. (7-11),
(7-12).

By introducing the indices of refraction and the Lagrange 
invariant, the actual separations f m a y  be obtained.

Finally, the new separation of the principal points will 
be given by

7;p = d L  T £  -  7i, (Ftv,) - . (7-31)

This completes the algorithm. Note, that by keeping
T  = con sf , and varying X we get bending and a graph will look 
as in Fig. 4? with several such changes. For thickening we set 
X =. covxsr and vary 7"; several such changes are shown in Fig. 48.

It should be noted that the new values obtained after a change of
-jo or X do not depend at all on the old values of -jo and X .
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Minimum Thickness for a Narrow Lens

When thickening a previously thin lens, the question 
arises as to what should be the minimum thickness attached to it.

<p > 0

A

s«

Fig. 50. Minimum thickness, 
a) For a positive lens. b) For a negative lens

As seen in Fig. 50, if the lens is positive this minimum thickness 
includes the sagittae of the two surfaces plus some construction 
thickness for the rim, that we shall call • If the lens is 
negative the construction thickness A, will be sufficient.

Therefore the minimum thickness f will be given by

fc = s, — -4- , for a positive lens,

i  =  t c , for a negative lens



An expression may be developed for this thickness in 
terms of the parameters of the lens. Noting that the sagittae 
may be written as

If the lens is sufficiently narrow, T «  I then Cl % I 
And if we consider the case of the lens in air, •= r \ z = I ,
then

T  &  ̂ f T o, (7-34)
*»(£* - 0

which is independent of the shape factor.
We may use this value for thickening a previously positive 

thin lens to produce a sufficiently narrow but otherwise realistic 
thick lens. If the thin lens is negative, we neglect the first 
term on the right-hand side of Eq. (7-34).

(7-32)

where is the minimum clear aperture of the lens to avoid
vignetting, we may write,

(7-33)



CHAPTER 8

THE PROGRAM YYRANCH

The computer program YYRANCH (y -y Representation ANd. 
Computational Handling), written entirely in FORTRAN for the CDC 
6400 Computer is basically a program for the numerical analysis 
of given optical systems, although it'has several design features 
that allow the modification of the given system towards a desired 
designo

It is entirely based on the formulae developed in the 
previous chapter of this work, and should be considered as a 
numerical application of the i|-_y method to the analysis and 
design of optical systems«

The program is a multipurpose program being capable of 
performing a series of tasks sequentially and controllable 
entirely by data cards. For this purpose the. program is composed 
of an ensemble of subroutines, each of which performs a specific 
task. All the subroutines have been grouped in 12 subprograms as 
listed in Table I, to facilitate the flow of the program and the 
internal transfer of information among the different subroutines; 
for example, most of the transferring from one part of 'the program 
to another is done, through labelled COMMON, to avoid the calling 
lists associated with the subroutines.

I6l
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TABLE I
LIST OF THE SUBPROGRAMS CONTAINED IN THE PROGRAM YYRANCH

ONE TWO

INVARNT BENDING
TO READ Z CARDNAL
TO GET Z TO LIST Z
TO GET W NEW ZHE
TO SHIFT NEW RN
NORMAL FOR BX
THIN FOR SP
TH AND CV TO SAVE
PARAX NEW DECK
THICKEN RESTORE

DIAGRAM . FIRST

DIAGRAM CENTER
RECOVER CNTROID
NEW ZOOM FOR ZOOM 
ENLARGE SCALES

TO PRINT 
' REJECT

THREE FOUR

SEIDEL FROM 12
MERIT FROM PP
WAVE CF TO VARY
CHANGE Z 
CHANGE W 
CHANGE N . .
CHANGES
VIGNETT

SECOND THIRD

TITLES AXIS X
TO CLEAR AXIS Y
FRAME XY FOR XMOD
FRAME Y FOR YMOD
PLOT XY TO LASTX
FOR LINE TO LASTY
FOR AXES LABELS. X

LABELS Y 
X POINTS 
Y POINTS

TASK1 TASK2

Z FROM X SEIDEL G
Z FROM Y SEIDEL 1
Z FROM KC ' SEIDEL 2
S SHIFT . SEIDEL 3
C SHIFT SEIDEL k
Z ABS SEIDEL 5
Z ORD SEIDEL L .

SEIDEL T 
DERIVAT

FOURTH FIFTH

TO IMBED DECIMAL
PACKING DIGITS
MASKING
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The program TZEANCH proper, acts -as a driver and control .

for all the rest of the subroutines and can call upon any part of
any subprogram with very few restrictions. In turn, a given
subroutine can call any other in another subprogram without
going back to the main program<,

The upper part of Table I contains all the operations
pertaining to the handling of the y - y  diagram variables. The.
lower part of the table lists the subprograms necessary for the
production of the t j - i j or diagrams as cartesian graphs
plotted in the printer. Therefore, they are not absolutely 
essential to the analysis of optical systems, if one does not 
desire the graphs, or if there are other means of plotting those 
graphso These latter routines, although written in FORTRAN, 
depend heavily on the internal structure of the GDC 6400 computer.

All the tasks performed by the YYRANCH program are 
controllable through data cards which are all of the same formats 
two alphanumeric fields and five numerical fields, which are 
read under the format 2A8, 5^12.6; the last 4 columns may be 
used for identification. Thus, the two labels should be punched 
starting in columns 1 and 9 respectively, and the five variables 
should be punched starting in columns 17, 29, 4l, 53, 6 5 , respec
tively. The identification may be started in column 77°
.. . In the following examples of input cards the first two.
labels will be typed as they should appear in the data cards, 
and the numerical variables will be listed as a sequence, 
separated by commas. When a variable may be absent, this will
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be indicated by a long dash« Sometimes the names in the labels 
are optional, in the sense that as far as the program is con
cerned they may be absent, although its presence is a good 
guidance for the user. This will be indicated by an asterisk 
after those names.

Among the many tasks that the program YYRANCH performs we 
may mention the derivation of first-order properties of a given 

o r  I L - S L diagram; the normalization of the diagram; its 
graphical representation; a shift of the object or of the stop; 
the derivation of a diagram from a given set of curvatures and 
spacings; the.derivation of the Seidel coefficients for each 
surface and all of the surfaces together; and the bending and 
thickening of lenses.

We now proceed to describe the input cards to achieve, 
these tasks.

The very first card of a given input deck must be of the
form

NEW DECK" (8-1)

this initializes several counters and sets the value of )K to 
unity. The very last card of the deck must be

END DECK*; (8-2)

to properly stop the program.
Several systems may be processed in a single run. Each 

one must begin with a, card of the form (8-1), to properly
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initialize the counters. However, only one END card must be 
present, the very last one, as this card stops the program.

Immediately following a NEW card, the program, expects to 
find a card of the form

TITLE ' Some appropiate title beginning (R oV
after column 17

The contents of this TITLE card will be used as a label
for all listings and graphs pertaining to the particular system
that it precedes. If this card is left out the title label will
be left blank, -

When asking for graphs of the diagram there is an option
for a card of similar format

MESSAGE _____ Some appropiate message beginning (8 4)
after column 17

which is used to put a required label at the bottom of the graphs 
to distinguish them from one another.

Options for Input 
The input to the YYRANCH. program may take three forms:

We may input the set of points a representing the optical system 
in the diagram, or the set of line vectors W representing
the same system in the diagram, or the set of surface curva
tures, and separations, from which the y-y diagram may be 
constructed by the ray trace of marginal and chief rays. At the 
same time we read the values of.the different indices of refrac
tion involved.
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To read a set of points a we start by reading a card 
of the form

OBJECT POINT* J 0 , 0., ____ ,  ,  . (8-5)
We next read as many cards as points are in the diagram, 

representing either surfaces or thin lenses. If the point read 
is to represent a surface, the data card takes the form

SURFACE* j* J ^  ,  . (8-6 )

Instead, if the point represents a thin lens, the input card 
should be

LENS j* 5j-, %  , nj , Z j , Xj . (8-7)

In these cards, ( Jj, ) are the coordinates of point j, vj, ,
are the index of refraction and dispersion constant of the space 
before point j, or for the thin lens, (see Appendix A for
nomenclature), and Xj is the shape factor of lens j.

After all points representing surfaces or thin lenses are 
read the set is closed with a card of the form

IMAGE POINT* , 0. ,  i  i ____ • (8-8 )

This card signals the end of the input set and the 
program then proceeds to calculate the lines W connecting the 
points and the derived quantities T  and 5 ,  according to Eqs* 
(3-9)» (3—14), (3-11) •

If instead of points & we wish to read the lines W we 
begin with a different object card:

OBJECT LINE Ji, , n, , na, , v , , ____ . (8-9)



Then the intermediate lines are read as 

RAY* j* A/, 'nd »_*!f f ____ • (8-10)

and finally we close with an image card that has the same function 
as the one in (8-8 ),

IMAGE LINE* A n  n x , *** , ____ . (8-11)

From here, the program proceeds to calculate the vectors S and 
the quantities 7" and -sF .

When we wish to read the input in the conventional manner 
by giving the curvatures and separations of the surfaces compos
ing the system, we begin by reading an object card of the form

OBJECT HEIGHT j0 , u M U, , m,, v, . (8-12)

Where Ui, u, , are the chief and marginal ray angles in the first 
space, expressed in radians. This card is valid for an object at 
a finite distance. If the object is located at infinity, this 
object card takes the form

OBJECT HEIGHT yE , u,, 0., v, . (8-13)

Here, je is the height of the marginal ray at the entrance pupil.
After reading either of the two object cards we proceed 

with alternating thickness and curvature cards of the form
TH* ____ ,  ,_____, ____ ,  . (8-1*0

for the separation , and
CV*   cj , 'Hj+i, Vj+, , ____ ♦  . (8-15)

for the curvature cj, and the index for the next spacing. The 
set ends with an image card of the form
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IMAGE HEIGHT* (8-16)

with this card the program proceeds to trace a marginal and 
chief rays through the system and from them get all the values of 
2, W, 7* and .

To complete the specification of the system we must input 
the value of the Lagrange invariant used to reduce the set of 
points or lines in the j-J diagram to the physical set of curva
tures and spacings or vice versa.

As mentioned before, at the beginning of the program )K 
is set equal to unity. Another given value of W can be intro
duced with the card

CHANGE ZHE >K , 0. ,  ,  ,  . (8-1?)
1 . list

The second variable allows the printing of a new z  and t  lists, 
(see below).

Another way of introducing a value of the Lagrange 
invariant is by specifying the focal length of the system j \  

the j: -ratio /V, and the field angle , as follows
INVARNT ____ N ,y', it,, _____ ,  . (8-18)

The invariant is computed from
>K = n, w.y'/a/V.

However, the card (8-18 ) does much more than just introducing a 
new value of >f{. After the value of Hi has been computed, the 
whole set of points and lines $ and W are normalized, according
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to the rule given in Chapter 5* and then rescaled with the new
value of )K using the expressions developed in the sane Chapter 5 .
Obviously this operation cannot be carried out before the points
and the lines are defined, and therefore an INVARNT card must
follow the OBJECT through IMAGE cards.

On the other hand, if the input is given in terms of
thicknesses and separations it will be necessary to introduce a
Lagrange invariant before we read the input set in order to get
realistic values for the variables % and W of the y - y  diagram.
This is most conveniently done by introducing the value of
through a card of the type (8-1 7)•

If any of the points in the y - y  diagram represents a
thin lens this should be indicated by the card

THIN LENS* y  , 0. old data
1 . new data, £ j , , Xj. (8-1 9)

which follows the OBJECT through IMAGE cards. In this card if 
the second numerical variable is absent or zero means that we 
take the data for the thin lens (rtj, J/p Xj ) from the card (8-7 ); 
otherwise, they are given in this card (8-1 9)•

When all the points defined in the input set are thin 
lenses then it is sufficient to use the card

THIN ALL* (8-20)

These cards (8-19), (8-10) have the effect of defining 
two coincident points which represent the two surfaces of the
thin lens of strictly zero thickness. The line vector
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representing the space within the lens is computed with the help
of the shape factor X by means of Eq. (7-5)»

One word about default conditions. In the great majority
of cases, when a numerical variable is left blank, it is read by
the program as zero (actually, negative zero). One notable 
exception is the cards containing indices of refraction; when 
these are left blank, they are set equal to unity by the program 
and the corresponding dispersion factor is set as V = 9 0 . In the 
same way, when we define points to be thin lenses, by means of 
cards (8-7 ) • or (8-1 9), the neighboring indices of refraction are 
set equal to. unity. If different indices are desired surrounding 
a thin lens, these may be introduced with a card of the form.

CHANGE INDEX j , 7%, , 0. , ____. ,o
1 . list ,

The fourth variable allows printing of a new £ list, (see below).
Once the input to the program is specified by means of 

the above cards, we may proceed to analyze the contents of the 
diagram or to modify it by certain operations. Before we 
describe these modifications let us look into the options of. 
output and the analysis features of the program.

Options for Output 
The output may take the form of listing of. several types 

or the form of graphs of the j-j or Sl-JL diagrams. Several of 
the listings are the result of other operations cairried out on 
part or the whole of the diagram, but a direct command may produce
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the listing, of the variables in the diagram by means of the
w ;

LIST 1c T  list, ________   ,_____ _____ _____ , _  (8-2 2 )
2 . -s list 
3 ° t  list

The T list, refers to the listing of the quantities y ,
T, _n., H , and s  , which are directly derivable from the set of 
points 2 . The % list consist- of the reduced quantities 'S, w , w ,
and , which are derived from the T list by inserting the value
of the Lagrange invariant JR. - Finally, the t  list is a listing .
of the quantities ■£ , zT , U , j l ’ , c , V , obtained from the "Z list by
inserting the appropiate indices of refractiono

If the numerical variable is left blank, it is interpret
ed by the program as unity and therefore, a T list is implied, •

. To obtain the graphical output we use the card
.DIAGRAM YYBAH 0, 0, 0, 0, 0,

OMEGA 1 o graph 1 , scales 1 , T  list 1 , rejected 1 , message
. ■ .■ I: : ii:t ( 8 - 2 3 )

According to (8-23) if the second name is YYBAE we obtain 
-a. y-J diagram and if it is OMEGA we get an 11 -̂0. diagram. If 
the first variable is different from zero, the graph will be 
printed, otherwise it will be calculated and saved,either. for 
- subsequent .-.modification or for future printing. The second varia
ble controls the printing of the scale used for the graph. The 
third variable serves to produce the listings described, before 
for card (8-22); if it is blank, no lists will be produced. The
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fourth variable controls the printing of the points that fall 
outside the frame defining the graph. Finally, the fifth variable 
permits the printing of a message read immediately after card 
(8-23) under the format (8-4).

The graph previously calculated or printed has a fixed 
scale of one unit per inch, and is centered at the origin of 
coordinates. Sometimes, this is not convenient and a modification 

either before or after printing is possible with a card of the 
form

ZOOK TO CNTEOID Scale %, Scale J , 0. , *c , .
NEW-.GTE . 1. graph -,vOLD CIH (8-2W
RECOVER ' .

When, the second name is CNTROID, the graph will be trans
lated, with new scaling (scale % , scale j/ ) if necessary, to the ,
centroid of the points in the diagram. If it is desired to have
the scaling unchanged, we must put scale % = scale ^ = 1 . The
printing of the graph is controlled with the third variable.

When the second name is NEW CTR, a new center is defined 
by variables 4- and 5» with or without scaling and printing.

When the second name is OLD CTR, the center of the 
previous graph, is used, and only the scaling is. changed.

Finally, when the second name is RECOVER, the original 
graph is recovered.

Two more cards may be used when controlling the output.
The following card

PRINT DECK*
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allows the printing of the set of points and indices of refrac
tion in the same format as would be used as input for a following
run0 This listing is different from a T list in the sense that
the values appear with six figures after the decimal point.

Sometimes, when a printing option is called for, the . 
output would be printed immediately below the last printed 
resultso If it is desired to print these results in a different 
page, the following card may be used just before using the option 
in questions.

SKIP PAGE"

This will allow the printer to start any subsequent output in a 
new page.

Analysis Features
Aside from the above options of output which may be used 

as analysis tools, the YYRANCH program provides for a number of 
operations and listings that permits the detailed study of an 
optical system represented in the y— diagram. The most impor
tant of these are the computation and listing of the first- and 
third-order properties of the optical system. But before 
describing these we shall mention two options that are useful in 
practiceo

When we consider that the optical system.consists of lens 
elements either thin or thick, sometimes it is important before 
proceeding, to calculate the shape, and thickness factors of the 
lens, given by Eqs„ ( 7 - 8 )  and (7-13) respectively» This is



, 174
accomplished by the two following cards, one for each element 
considered

SHAPE j ,____, ___  ,   , (8-25)
SP ________   d' , _____ » . (8-2 6 )

Note that the inclusion of these two cards will not produce any 
printed output. Its inclusion is mandatory when the quantities 
X or y? are necessary for further computations,, and the powers or 
the separations have been changed by previous calculations.

The first order properties of a system may be computed by 
a card of the form,

FIRST ORDER* CU ,   ,   , _____ , ___ . (8-2?)
1.7" list
2 . x, list 
3 - t  list

After, reading this card the program will proceed to make the 
listings indicated by the first variable, according to the rules 
given above for card (8-2 2); if this variable is blank or zero 
these lists will be omitted.

Proceeding, the program will calculate all the first 
order parameters of the system taking the first line as object 
ray and the last one as image ray. The formulae developed in 
Chapter 4 are used to calculate all the cardinal points, the 
object and pupil magnifications, the refraction invariant, etc., 
as well as the location of all points from the first and last 
surfaces of the system. The distances are also displayed in the
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three formats of 7" list , "S list, and ^ list» Finally the loca
tion of the stop of the system is printed at the bottom of the 
page.

It is also possible to calculate the cardinal points and 
other first order parameters for a pair of given line vectors 
taken as object and image rays; this may be accomplished with a. 
card of the form

CABDML POINTS’* j , fe ,   , ___ ■ (8-28)

This card will calculate the cardinal points corresponding to the 
"system" formed by the rays Wj , . .

If it becomes necessary to construct a vignetting 
diagram of the system, the program will calculate and print the 
necessary quantities to produce a drawing as in Fig. 32 by 
reading a card Of the form

VIGNETT  ___   j , Cy4j, ____________ :____. . . (8-29)

for each surface of the system. The second variable gives the 
prescribed clear aperture of the system; if it is absent the 
program will set it at its minimum value as given by Eq. (4-41).

The third-order coefficients of the system will be.calcu
lated by means of a card of the form

THIRD ORDER1* .   k  , _______ , ____________(8-30)

this card will signal the program to calculate the Seidel coef
ficient &b(see below) for all surfaces. If k.~0, all Seidel 
coefficients will be computed for all surfaces and printed; how
ever if k. -  0 , the result will not be printed.
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The Seidel coefficients are computed from the following 
expressions, which are essentially those given by Hopkins (1950, 
pp. 87-88), properly scaled by the Lagrange invariant, and in 
terms of the quantities intrinsic to the diagram. The coeffi
cient for distortion is differently expressed to avoid a 
singularity.

Using the variables defined in Chapter 4, we have for 
each surface:

Spherical aberration, S, =  5^ = *j A I *

Coma, — ij A 1 1

Astigmatism, S3 H ẑzr = J AX*
z

Petzval, =  Sw = P = —

Distortion, S s  = =  y  A I  -  g  Z  "P

Longitudinal color, S* = = j-Z" ( cTn’/n’ - <Pn/n)

Transverse color, S'y = Cr  = y  -Z (c/n’/'n’ — </n/n)

Summing over all surfaces we obtain the wave aberration 
coefficients as follows, (Hopkins, 1950, p. 50)

V/ote = - '/? >K3 I S'z

3 II - '/* Hi3 Z

Van — -'/* >K3 I Sm

- !4 )H: Sjz

II£ -'A Mf•r Sz
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</(*„,„) = -</*)KZCt
/(v,„) = - %  >H I cr

These aberration coefficients may be combined in some 
’’figure of merit" to give an idea of the performance of the 
system. We chose as a figure of merit the following "mean 
squared spot size" referred to the image centroid in the gaussian 
image plane:

+ %2 ( Wz,; ̂ 1)* + Vi ( Wdlfo)8, +

+ ((Win + w„,)p + W3|| p3] + Vs (w,3, p) j »

where ^ is the fractional size of the aperture, and where we 
have taken W,,, = ^(Wm) and Wot6) , using the C and
F lines as extremes and the <4 line as reference. This quantity 
is computed by the program for the values 0 = 0 , 0 .5 i 0 .7 , 1 .0 .

After calculating these quantities the program prints the 
Seidel coefficients for each surface, their sums, the wave aber
ration coefficients and the merit function.

Design Features 
We include as design features all the operations and

changes in the diagram that will lead to a desired configuration.
These include bending and thickening of lenses, and shifts of the

j(Woio + Vj WeV0) + (Wj,of + Wzia) fl*-) +



178
stop or the object. Each type of change may be accomplished with 
a different card or set of cards. We describe them in this sec
tion.

Many times it is convenient to work with a normalized 
diagram in the manner described in Chapter A normalization of
the diagram is accomplished with the following card

NORMAL _____  (8-31)

Arbitrary changes in the variables may be made with the 
following cards; however they are of limited value in the present 
use of the program, because after the data cards have been read 
in the machine, the user has no control whatsoever over that run. 
Nevertheless some times it is desirable to include those changes 
in the same run to see how the diagram is evolving.

We already mentioned the cards used to change the 
Lagrange invariant, card (8-1?), or a given index of refraction 
(8-21).

If we wish to change a point we use the cards
CHANGE POINT 1 .i ds ddi %  i .
CHANGE POINT 2 ., d ' k-1 5,-' . (8-3 2)
CHANGE POINT 3., d 1 k.i •
CHANGE POINT 4., d 1 ki 62 i •

When the first variable is unity, the new value of will be 
given by variables 3 and 4. When the first variable is 2, the 2d- 
is moved along the line Wk until it has a value given by 
variable 4. Similarly, when variable 1 is 3, 3] moves along line
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Wk until it has a value of jy given by variable 4. Finally, when 
the first variable is 4, Ty moves along a distance A*.

A change in a line vector W may be made with a card of
the form

CHANGE LINE 1., j  , ,_____. (8-33)

Of more important applicability is the bending or
thickening of l e n s e s . The bending of a lens according to the

rules given in Chapter 7» may be obtained with the card
BENDING LENS* j ,  7y+,, X/ , 0. old T, 0. , v

1 . new r, 1 . print ;

where Xy is the new bending factor for lens j. A lens is
considered to be composed of surfaces ay and . If the fourth
variable is blank, the bending will be done without changing the 
thickness of the lens. If however a thickening as well as a 
bending is desired, this variable (4) will be different from zero 
and the new thickness in the form 7"=)K^/w , must be punched as 
variable 2. The fifth variable controls the printing of the 
results.

For thickening, we use a card of similar format
THICKEN LENS* j , 7y+,, Xy , 0. old shape, 0. (8-35)

1 . new shape, 1 . print

The new thickness is 7y+, and the possible new shape is given by

Xj.
We may use either of these two cards also to thicken or 

bend a previous thin lens, by giving the new thickness or bending
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required. However if we wish to give the thin lens the minimum 
thickness required, as explained at the end of Chapter 7, we use 
the card

THICKEN MINIMUM j , £  , ____, ____ , 0. (8-36)
1 . print

Where t 0 is the physical rim thickness. See the last section of 
Chapter 7•

The shifts of the object or the stop may be accomplished
by many different options, each more convenient than the others
in different applications. The cards are of the following format
either for the object or the stop shift:

SHIFT OBJECT 1., k.' , ____, ____ ,_____. ,o
STOP V ^

The second name controls the type of shift, and the 
first variable the option. For card (8-37)» the slope of the new 
axis is given, and the formulae of Chapter 4 are used to calcu
late the new values of y or y variables.

SHIFT OBJECT 2., & ,  Jjj  ,  , ____. (8-38)
STOP

This card says that the new axis passes through the point

( & )
SHIFT OBJECT 3• i i _____i * (8—3Q)

STOP 4.

In this card if the first variable is 3» the new axis is 
parallel to ( , -Clj ) ; if it is 4, the new axis is perpendicular
to ( -flj , -Cls ) .
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SHIFT OBJECT 5., ,
STOP 6 . (8-40)

7.
This card determines that, according to the first 

variable, the new axis passes through the point Z j (5 )i or is 
parallel (6 ) or perpendicular (?) to the line .

SHIFT STOP 8 ., j/ , , ____ ,  . (8-41)

This card can only be used for a stop shift and says that 
the stop should be located at the distance from the point £J .

SHIFT OBJECT 9. , ,  ,  ,  . (R , .
STOP

This card expresses the fact that the new axis is the conjugate
line whose magnification is or w e•

SHIFT OBJECT , 10., Y , _____,  ,  . ,«
STOP Z

Finally, this card says that the new axis should be the 
conjugate line whose magnification ratio is either Y o r  Z  given 
respectively by

y  s  -fi-' _ I +
-fl ̂ — -A i i — *1*

^  —  -il-a. 4- -fl- l   I -h W e

These factors are very convenient in expressing certain 
properties of optical systems. See Hopkins (1950, p. 120).

Note that these SHIFT cards do not produce any printed or 
graphical output. If the results of these operations need to be
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checked the appropiate cards should be used to display the in
formation.

One last word of caution: any variable punched in the
five, numerical fields should be always punched as a floating 
point number, i.e», with a decimal point, or located within its 
own field as to satisfy the implied format El2 .6 . This is 
particularly important for those numbers that appear as sub
scripts or integers in the cards described above»



APPENDIX A

NOMENCLATURE 

' . General -
Quantities pertaining to a ray refer to the marginal ray 

if written without a bar and to the chief ray if written with a 
bar, '

Quantities without a prime refer to the space before the 
refracting surface under consideration, and primed quantities re
fer to the space after the surface.

Subscripts
The first physical surface is denoted, by the subscript 1 . 

An intermediate surface is labeled as the j ^  surface with the 
subscript j , or if necesary as the surface with the subscript

. to  The last surface is denoted by the subscript
The object plane or surface is denoted by # and the image 

plane or surface by O’ o r  %,
The surface or plane of the physical stop is denoted by a 

subscript , '
The surface or plane of the entrance pupil is denoted by 

a subscript E , that of the exit pupil by a subscript £•«

Quantities Belonging to a Surface 
y, radius of curvature
c = l/v, curvature

183
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y 9 y , height of the marginal and chief rays
CA = |5| + |3|, clear aperture
7L = n /n’ refractance

Quantities Defined in the Spaces Between the Surfaces
u., angle between ray and optical axis

z, ij angle of incidence; note that
i = 2 = tZ + cy

i\ i* angle of refraction
n t rt’, indices of refraction before and

after the surface
axial distances before and after the surface 

Bote that -u’j = , n'j = , #’• = * .

Reduced Quantities
tu S. tl IL , CO =  Yl Z

Z. = */n

y s — >1) c > power

Lagrange Invariant 

W  = ^  y - 3 ̂

Quantities Derivable from the Diagram
= cu/>K , -7L h  w/)K

r *  )K 5



APPENDIX B

DUAL TRANSFORMATIONS OF CONICS

Before we derive the transformations of conics from point 
to line coordinates and vice versa, we shall quote the formulae 
necessary to analyze a conic when we are given its general form

AX 1 f +• C f  + l>x i- By + F =■ 0. (B-1)

These formulae are derived in books on analytic geometry 
(e.g., Spain, 1957; Garnier, 1946); and we shall restrict our
selves to summarize them indicating a logical sequence for their 
use. They are based on the existence of certain quantities which 
remain invariant when we apply the transformations of rotation 
and translation to the general Eq. (B-1).

Starting from the general equation of a second degree 
curve in the cartesian plane, Eq. (B-1), we form the following 
determinant with its coefficients:

ZA 3 3)
3  2 C E
0) E 2P

(B-2)

which is called the ’’General Discriminant." From this determi
nant we now define the following minors 

A a = 4CF - E\
A 3 s a>E —  1 BF, (B-3)

Ac = 44P - ,
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As = 3E - 2 C2),
Ae = 33) - 2 AE,
A f = -VAC — 3*.
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(B-3)

We also define the two quantities
I  =  A + C (B-4)
A^c — A a + A e .

The quantities A , A p , JT, and the sign of A Ac, are
invariant under the transformations of rotation and translation, 
and therefore may be used to classify the different types of 
conics available. Table II gives such a classification (p. 194; 
or see Korn and Korn, 1968, p. 42). The curves for which A F 0, 
are also called "central conics" and in this case, the most
common for our application. It is more convenient to carry out
first a translation of the origin to the center of the curve and
then a rotation of the axes about this center.

When the translation to this point has been carried out 
the equation of the curve takes the form

The rotation of the curve through an angle |<p| <  ̂ /z can be 
used to eliminate the coefficient B in Eq. (B-6). This is 
accomplished by solving the "characteristic equation,"

The center of the curve is given by

(B-5)

(B-6 )

X  — - Z " 4- /y Ap = 0. (B-7)
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The roots of this equation permit us to write Eq.

(B-6) in the following form

X, X ’’* + X.j"' + = o. (B-8)

Note that these roots may be written also as

= 'A(l±R.), (B-9)

where R l =  - A F. (B-10)

The choice of the roots is arbitrary, and we shall adopt 
the following notation: For the ellipse, X , 6 X* and for the
hyperbola, X, >0, X,. < 0.

The equation of the major axis, that is, the new %-axis 
after translation and rotation, is

= —  --- - (x ~ ■*»)., CB-11)-2.( X, — C)
and the equation of the minor axis is given by

3 - 3 '  - X *) -

The angle of inclination of the major axis may also be 
expressed as

 1____ =  A - C-t*- , (B-1 2)
-3

where 71 is given by Eq. (B-10).
The eccentricity of the conic is given by

e =  / /  - X./x* CB-13)
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Then, we have for the ellipse,

the semi-major axis: a.1 — - A / (5 X, &f) ,
the semi-minor axis: t>1 = a.* ( I - el), (B-14)
the semi-focal distance: c = a. e.
And for the hyperbola,

a-*= - A/(5X, A f),
b*1 - a1 (el - I ), (B-1 5)
c =  ae.

The asymptotes of the hyperbola are given by 

^ A X  4- (3 ±  / - A f ) j  =  2.A X* +  (3 -H l / ^ )  , (B-16)

or alternatively,

(3 ± x + zcj = (3 ±vc&?)-X. + act/.. (B-17)

For the case of a parabola ( “ °)» we have to proceed
in a different way, as there is not a center defined in this case 
(in fact, it is located at infinity). We must first rotate the 
axis and then carry out a translation of origins, usually to the 
vertex of the parabola, the new x-axis being the axis of symmetry 
of the curve.

We shall not quote the formulae for the parabolic case, 
as they are not of interest for the present investigation, and 
the interested reader may find them in the books quoted above. 
However, we shall quote the only case that may find application 
in our work, namely when Ap = 0 and also A = #.
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In this case, as may be appreciated from the Table B-1 ,
the parabola has degenerated in a pair of straight lines, whose
equations are

v'A’* ± /c\j + =  i t v E J p Z L ,  (B-18)

where the negative sign of /cT is to be chosen when 3  <. 0 .
We shall now proceed to see how these conics transform

from point coordinates to line coordinates and vice versa. For 
that purpose we shall make use of the concept of homogeneous 
coordinates; see Gans (1969), and Chapter 2 of this work. The 
point coordinates will be denoted by ( ,  &) and the line coordi
nates by ( 1 , ̂  •

The equation of a straight line will be given by

X'l + -f- = 0, (B-19)

which may be written in the matrix form

C* 3 a)
■*?
v v

-  0 .

(B-20)

The equation of the point conic, as defined in Eq. (B-1), 
in homogeneous coordinates is given by

A x 1 4- 4- c 4- 4- 4- /= = 0. (B-2 1)

Note that we may recover the cartesian form of Eq. (B-1) 
from this expression by setting & = I.
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Equation (B-21) may also be written in matrix form as:

(* 9 a )
3  2C E )| j/

V d  e W  Ve (B-22)

The equation of the tangent to this conic at the point 
( *(, , *') i is given by

1% 9 *)/s\ =• (x 9 a) Isa 3 »\/*'\ = 0;
(B-23)

comparing both sides of this expression we see that

! t \

■*!

V/

aA 3 3>\

V
s a c  e 
3> E Z F

(%'\ 
9
V7

and solving for the point of tangency,

(B-24)

/x,\ /zA 3 3V79, ac
EVJ V E

( X, 
by

is on the 1

(i ’i '*) f y-A 
a,

—  0.

(3-25)

(B-26)
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Substituting Eq. (B-25) into Eq. (B-26) we have there
fore

("5 V '$) /-ZA 3 3 \ -l/?\ =
3 E j I 1) ) (B-27)
» E ZFJ v

which is the equation of the conic in terms of its tangents, or 
in other words, is the equation of the line conic. This is the 
equation of the conic in the dual space.

The inverse of the matrix of the coefficients of the 
conic, defined by Eq. (3-24), may be expressed in terms of its 
minors defined in Eq. (B-3)• Let us call the original matrix M; 
then

(B-28)

where & is given by Eq. (B-2) and is the determinant of the 
matrix M . Let us call M the matrix whose elements are the 
minors of and whose form is given in Eq. (B-28). Its determi
nant will be denoted by &=|Ml and its corresponding minors will
be & A , , etc. We may rewrite Eq. (3-28) as follows

M "1 =  M / A  (B-29)

We wish to find now the determinant of the inverse,

|m"'| - | fi/A| =  |M|/A3 = A /A3. (B-3 0)

For this purpose we remember that
M  M *1 = M M / A  = the unit matrix, (B-31)

Zh 3 3>\~



and

therefore

Also, note that

(m-1) 1 = M  = A- M ' -
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(B-32)

(B-33)

f&A A b a A 3 4
A b Ac A e | = 3 Er (B-34)
VS# A e S FJ V E z f)

therefore,

= ■2-A A

= 3 • A
S c <u

Aj> D. A
S £ — E • A

A f __ 2F • A

(B-3 5)

As a check we may calculate from these expressions the
value of the determinant A  :

A — Aj> * A® 4- A e • +■ Ap*Ap =
- A (B-3 6)

which agrees with the value obtained in Eq. (B-33)•
Using Eq. (B-28) and Eq. (B-2?), we see that the equation 

of the conic in the dual space ( ^ , , % )  is given by
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(1 I "5) ^3 ^  \ l*\ = O;

Ac (B-37)
v&» A e A f / vs)

or written in expanded form for cartesian coordinates ( ^ = 0 , we 
have

A a 4- +■ A c y1 + 2 Ad ̂  + z A£ £ + A P = 0. (3-38)

This is the dual transform of the conic given by Eq, (B-1), 
which is also a conic as expected (see Basset, 1901, p. 30, and 
Zwikker, 1950, p. 76).

We finish this appendix by noting that the coordinates 
(* * 3 and ( ^ ,^ ,? ) are interchangeable, due to Eq. (B-19)•
Thus, the conic

A ̂  +* 3 | + 2) ̂  -f- £ y + F = o, (B-39)

is transformed into the conic

& AXa +- 2 Ag + Ac + 2 Ap * + 2 Ag y + & P =■ 0. (B-40)
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TABLE II
CLASSIFICATION OF CONICS 

IN TERMS OF A , A Ft I t AND A Ac

1 . > o » elliptic curve:
a) J A  < 0 ; real ellipse, (-T* = circumference) .
b) / A = 0 ; a point, punctual ellipse.
c) I A  >  0 ; no geometric locus, imaginary ellipse.

2 . Af= ^ 0 , hyperbolic curve:
a) A 0 ; real hyperbola, (_T= 0, equilateral hyperbola).
b) A  = 0 ; two intersecting straight lines, the asymptotes

3. A f  =  0 't parabolic curve:

a) A  ̂  0 ; real parabola

b) A =  0 ; degenerate parabola:

i) A a c  0  i two parallel straight lines.

ii) A a c =- 0 ; a single straight line, coincident 
parallels.

iii) A a c >  0 ; no geometric locus, imaginary par
allels .
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