THE APPLICATION OF THE

DELANO y-7 DIAGRAM TO OPTICAL DESIGN

by

Fernando José Ldépez-Ldpez

A Dissertation Submitted to the Faculty of the
COMITTEE ON OPTICAL SCIENCES

In Partial Fulfillment of the Requlrements
For. the Degree of

DOCTOR OF PHILOSOPHY
In the Graduate College

- THE UNIVERSITY OF ARIZONA

1973



THE UNIVERSITY OF ARIZONA

GRADUATE COLLEGE

I hereby recommend that this dissertation prepared under my

direction by _ Fernando José Ldpez-Ldépez

entitled The Application of the Delano y-y Diagram

to Optical Design

be accepted as fulfilling the dissertation requirement of the

degree of Doctor of Philosophy

forload V. Lk 25 Femiaza

Dissertation Director

Date

After inspection of the final copy of the dissertation, the
following members of the Final Examination Committee concur in

its approval and recommend its acceptance:+

‘.,g;%%%%zjé%2§%i2222222%;@gﬁgﬁg: ég%g?/422452é%@2%%§7 /@%Z%zga
A B 23 ol nny /ZZ3

| : . ZG Fﬁwwwﬁiﬁgjgf

16 Qel 73

ate

“This approval and acceptance is contingent on the candidate's
adequate performance and defense of this dissertation at the
final oral examination., The inclusion of this sheet bound into

the library copy of the dissertation is evidence of satisfactory
performance at the final examination.



STATEMENT BY AUTHOR .

This dissertation has been submitted in partial fulfill-

‘ment of requirements for an advanced. degree at The University of

Arizona and is deposited in the University Library to be made
available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable
without specidl permission, provided that accurate acknowledg-
ment of source is made.. Requests. for permission for extended
quotation from or reproduction of this manuscript in whole or in
part may be grantea by the copyrlght holder, '

R %



- (© COPYRIGHTED

BY

_ o v <
FERNANDO JOSE LOPEZ-LOPEZ

1973

iii -



Dedicado con todo cariino a

172

exp (o) n! e

o

I'(n)- sinc (772) j ;,——dx———

+ a*x?®

a Citlaltzintli

y a Huitzitzilin.

iv



ACKNOWLEDGMENTS _

i'wishltdiexpress‘my deep ana sincere gratitude to a1i thev

persbns ﬁho heipedbme thfough tﬁe yeers thet toek me forco%plete
- the work here_feportedo
| V»First of all to my'wife and daughters fdretheir petience
‘and‘COntinued'faith.and'edncern,for'my work, (Is your program
,'working, Fathef?), and to whom this‘disserfatiqn is'dedicatedo
| | To Dr,'Adeh B. Meinel and his wife;Marjerie,,long-time
.frlends and advisers, whose constant help made possible for me te
" come back to Graduate School to pursue the doctoral degree in '
e'0pt1cs.j_ |
“To Dr.. Roland V. Shack;sfof;hie censtaﬁt,enceuiegemeﬁt
._:and_guidanee in the'sgpervisionAof this.dissertatioﬁog His
crificisﬁe}-alweys fery-constfuctive,rwere a pbwerful‘inceetive y
'for,£his’worko. | |
| . To'Drc-Orestes N, Stavfoudis and Prof. Robert R. Shaﬁnon,-
:rfmembers'ef my cemittee, for many 1nva1uable dlscu551ons ef a |

' mathematlcal and practlcal nature that permltted to steer my work'

~in the rlght d:x.rect:x.on° |
| To the Office of Educatlon of the United States Govern-'
-ment9 for an NDEA . Fellowshlp, the Perkln Elmer- Corporatlon for the
.Perkln-Elmer Fellowshlp; end The Uqlvers;ty of-Arlzpna,‘for ther?e
‘a¢c¢mpénying G£Aduaté’Tuition'55h01a£§hip;,thafeéllowédome'ta’

' complete all my course work withoutufineﬁCial_worriesa



T§ Mro‘Hank Gethner of.thé Digigréphics Léboratory,
Conﬁrol Dafa Corporation; and Mfo.Fraﬁk‘Scotf of Perkin-Elmer
Corboratiéh, wh§~throﬁgh the ffee-use of their computing
“vfacilities and a travel grant, respectively, made possible the
éarly:trial_of this idea as a possible topic for a‘dissertaf.ion°

' To thefAir quce'Office of Scientific Research which.

Supforﬁéd part of this work undef Contiact No. 304695-67—0;0197;
~and under Project THEMIS><Contract No. F44620-69-C-OO24); 
o | To The University of Ariédna, State pf.Arizona, fof the
" time used at the CDC 6400‘C§mputeror

Finally,;to my typist, whose name_appears'on‘the
Dédication, énd withoﬁt whoSe help this wqfk Would have never

been written, not even in rough draft form.



" TABLE - OF . CONTENTS

Page
LIST OF ILLUSTRATION T Do
LIST OF TABLES . : o v v o v ooee e e s s iy

ABSTRACT : . . . ;‘.'. O R

1., INTRODUCTION . .- . o 6 e o o a6 o o o e e & & o o o o 1

2. THE y-§ AND - DIAGRAMS . « o . v o . o o o o o o . 8
The Lagrange Invariant . « « « o o o « « o o « o o o 11
The 315 Diagram .. . . . . o s o s 6. e o o o o o o 13
The .a-& Diagram and Duallty o e e e s e e s s o & o 26

" 3. VECTORIAL REPRESENTATION OF THE y-§ DIAGRAM . . . . . . 31

Vectors and Complex Numbers . . ;,« e e e e o o o o . 32
Determinant Notation . o « o o o o a o @ s o o o o o- Lo
Matrix Representation. . ¢ « « o o v o o o o o o o o Lk

¥, REPRESENTATION OF FIRST-ORDER CONCEPTS IN THE _
‘ YT DIAGRAM * o v v ¢« o o o & o o o o o o o o o o o o o @ L7

The Magnification and the Conjugate Line . . o o o o L8,
The Cardinal Points o o o o o o o o o o o o o o o o 54
“Conjugate Planes o « o o .o o o o o o o o o o o o o o 58
Angle of Incidence at a Surface .« o .. o o o o o o o 62
Aplanatic Points of a Surface . « o ¢ o o o o o o o - 65
Location of Real Pupils and Real ImageS« o o o o o o 67
Shifts of the Stop or the Object . ..« o o o oo o & 70
Vignetting o o o o o o o o o o o o o o oo o o o & o 83

conCluslon © o © o o o o o o © 6 o o o o 0o o o o o o0 93

5. NORMALIZATION OF THE y-j DIAGRAM . . . . e e e e e 9k

The Normallzatlon Factors . e e e e e ;‘wA.'. o 94
. Effects of Shifts on the Normallzatlon oo o o e o . 99
R ) Summary ° o o o ° ° ° ° ° ° ° o ° o o o‘ ° ° ° o o o 1 02 )

6. TREATMENT OF A SINGLE LENS ELEMENT IN THE y-3 DIAGRAM_g' 105

The Thick Lens Equation .« « 2 o o o o o o & o o« o o 110
- The Shape Factor ° _‘0 o o. o e o o o o o o o @ ©o. 9o o .o 116

vii



'~ TABLE OF CONTENTS--Continued

Parametric Equation of the Conic in the O0-A4
' The Functions €l and F . . . « o . o &
‘Limitations ‘of the Hyperbola in the n-n
Parametric Equation of the Conic in .the y-¥
The Functions FWD, FWS,; F2D, F2S . o« o -
Parameters of the Point-Conic . . . . .
Powers and Surfaces of the Thick Lens . . .
Cardinal Points of the Thick Lens . . . . .
Optical Center of the Thick Lens « « . o« « &
Conclu51on o 6 © o o & @ o o e o o o o o o o

GENERALIZED BENDING AND THICKENING OF LENSES . .

" Bending @ Thick'Lens . ¢ « « o o o o o o o &
Thickening a Lens . « « « ¢ o o o s o o o
The Algorithm . .+ . . o e s o s o o e @
Minimum Thickness for a Narrow Lens. . . . .

THE PROGRAM YYRANGH « & v o v oo e e oo e o

Options for Input‘;Q e e e e e e e e e
Options for Qutput . « ¢« « =« ¢ o o & o o o o
Analysis Features . ¢« ¢ ¢ o o0 o o o o o o

‘Design Features . « « o o ¢ o o o o o -5 o =

APPENDIX A: NOMENCLATURE . & - « = « & « o o

'APPENDIX B: DUAL TRANSFORMATIONS OF CONICS . .

LIST OF REFERENCES . « « « o & . Ce e e e e e

viiiooo

Page

Diagram . 117
e e e o o 118
Diagram . 121
Diagram ., 128
o e o o .o 132
e ot s o o 133
e o o o8 137
B K X

B
e s« o o 1h6

e o o o o 148
e e s . o 151
o s s » o 153
o oo o o 159 -
° o 'ol o- o 161
T 135
o o o o o ’170
° © ° ° Ao : 173 '
o o o o o A7

e o e o o 183

o o 70 GAAO 195



LIST OF ILLUSTRATIONS

Figure

LS

10.
11.

12.

13.

b,

15.
16.

17.
18.

Skew ray from object plane to pupil plane with
the marginal and chief rays as orthogonal
projections « . .+ ¢ ¢ ¢ ¢ i @ ¢ 6 4 e e s e s

Y-y diagram corresponding to Fig. 1 . . « « «

Single line in the y-y diagram . . . . . . . . .

Lay-out corresponding to diagram in Fig. 3 . . .

Transfer from plane 2, to plane 2, . . . « « + .

Lay-out corresponding to diagram in Fig. 5 . . .

Refraction at surface 2. . . . « « ¢ « ¢« o o « &

Lay-out corresponding to diagram in Fig. 7 . . .

a) Positive power surface. b) Negative power
surface. c¢) Plane surface . « « « « « « + o

Diagram of a thick-lens triplet . . . . . . . . .
Diagram of a two-element system . . . . . « . . .

a) A telephoto thin-lens system. ©b) A Cassegrain
objective. <c) A thick lens « « + « « « « « &

a) Single space. b) Transfer from 2, to 2,.
c¢) Refraction at 2. « « ¢ ¢ + v ¢ o« o o o o &

The Equation of transfer: 3} = 2+ T We o voe ..
The Equation of refraction: Vg,./.{; = _VZ'/.E.- - 3,’

Restriction on the relative positions of the
object and image lines . . . .« ¢« ¢ ¢ o o . .

Definition of conjugate points 2, 2° . . . . . .

a) Distribution of magnifications. b) Conjugate
line and associated conjugate points . . . .

ix

Page

15
15
17
17
19
19

21
22

23

25

28
36
36

39
k9

53



Figure

19.

20.

21,
22.
23.
24,

25.

26,

270

28.

29.

30.

31.

32.

33.

3“0

35.
36.

LIST OF ILLUSTRATIONS--Continued

Cardinal points and associated lines . . . . .

Intersection of a conjugate line and an
arbitrary line . . . . . ¢ . ¢ . o . . . .

Location of real pupils and images . . . . . .
Choice of a new puvpil magnification . . . . .
Choice of a new object magnification . . . . .
Stop shift . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o o

Effect of a stop shift on a single line.
(Primes represent values after the shift)

Conjugate shift . . . + + ¢« ¢ ¢ ¢ ¢ ¢ &+ ¢ o &

Effect of a conjugate shift on a single line.
(Primes represent values after the shift)

Derivation of the minimum clear aperture of
a surface . . . . ¢ ¢ v e 4 e 4 4 e e e

Geometrical representation of the relation
e = 13 + 1yl in each quadrant . . . . . .

Example of a relay system énclosed in a tube of

diameter D = 23 e o o o s s e s o s & o

a) Two-element system. ©b) Auxiliary diagram for

the construction of vignetting diagram . .
Vignetting diagram . . . « « ¢« ¢ « ¢ ¢ ¢ o o .

a) Case of the object at infinity.
b) Corresponding auxiliary diagram . . . .

Definition of normalization variables . . . .
A thick lens « o o o ¢ o ¢ o o o o o o o o o «

Different thick lenses. On the left, different
thicknesses, same shape factor. On the

right, same thickness, different shape factors

Page

57

61
68
72
72
75

78
79

81

84

86

86

88
90

92
95
106

107



Figure

37.

38.
39.

bo.

bq,

42.
3.

Ly,
45:

Le.
h7.
L8.
by,

50.

LIST OF ILLUSTRATIONS--Continued

Variation of the shape factor line for a

fixed thickness . « ¢« ¢ ¢ ¢ ¢« ¢ o ¢ o o o o @

Graph of the function []1= (—I;t\//+f)/1' . o

¥ as a function of shape factor for different

The

The

The

The

thicknesses. a) For positive power. b) For
negative power . ¢ .+ ¢ ¢ ¢ e 4+ ¢ e s o e o

hyperbola in the A-Aa diagram. a) For
positive power. b) For negative power . . .

chords corresponding to different values of
the shape factor . . . . . . . ¢ .« « « .

ellipse in the y-g diagram. (Positive power)

hyperbola in the y-y diagram.
(Negative POWEr) « « ¢ & o o o o o o o o o &

Different ellipses for different thicknesses. . .

Excentricity of the ellipse as a function of

thickness . . ¢« ¢« ¢ ¢ & o o o o o o o &

Optical center of a thick lens . . . « . ¢« « . &

Same thickness, different shape factors . . . . .

Same shape factor, different thicknesses . . . .

Definition of variables for thickening or

bending . .« ¢ « ¢ ¢ e 0 e e e 4 e e s e e e s

Minimum thickness. a) For a positive lens.

b) For a negative lens . . « « « « o« o « o &

xi

Page

108

120

120

124

127

136

136
138

138
145
150

152

154

159



LIST OF TABLES

Table Page

I. List of subprograms contained in the
program YYRANCH . . . . . . ¢ ¢« ¢ v ¢« o o ¢ o o @ 162

II. Classification of conics in terms of
A,AF,I.andAhc............... 19‘+

xii



ABSTRACT

The Delano y-y diagram, defined as a cartesian plot of
the marginal ray height (ordinate) and the chief ray height
(abscissa) at every surface of an optical system, provides a
powerful tool for the analysis and design of optical systems, as
well as for the teaching of geometrical-optics principles. The
origin of the y-y diagram is based on the constancy of the
Lagrange-Helmholtz invariant throughout an optical system, and on
the refraction law.

In the present work, by using the tools of analytic
geometry, all the first-order (gaussian) properties of an
optical system (magnification, cardinal points, powers and focal
lengths, separations and radii of curvature, stops and pupils,
vignetting, obscurations, etc.) are derived analytically. The use
of vectors or complex numbers to represent the points in the
diagram, not only permits more elegant derivations, but also
facilitates enormously the interpretation of the diagram, and
gives the reader a powerful tool for solving practical problems.

This formulation is used for a general analysis of the
properties of a thick element in the y-y diagram. An exact
analytic solution to the problem of generalized bending and

thickening of lenses is a direct result of this analysis.

xiii



xiv

The normalization of the 3-5 diagram for the purposes of
comparative analyses of different systems is also investigated.

Finally, a computer program (YYRANCH) is described that
implements these ideas into a practical tool allowing the user to
analyze the first and third order properties of an optical system
and to produce a workable third-order design that will maintain
the first-order constraints imposed on such a system; the design
variables are Y,y and the curvatures and thicknesses are given
as a result. The graphical monitoring of the program allows the
user to follow the design step by step, and to make the

appropiate corrections when needed.



CHAPTER 1
INTRODUCTION

Existing optical design computer programs make use of
surface curvatures, thicknesses, and refractive indices as design
parameters. This choice seems natural because these are the
actual physical parameters of the optical system. However, as
design variables, curvatures and thicknesses suffer from several
disadvantages; for example, it is difficult to maintain first-
order constraints, and also in general the aberrations of the
system behave in a strongly nonlinear fashion as functions of
these variables,

An appropiate non-linear transformation to more suitable
variables would lead to an improvement in the operation of an
automatic design program. Fortunately, such a transformation is
possible with the use of the 5-5 diagram introduced by Delano
(1963), in which the variables replacing curvatures and thick-
nesses are the paraxial heights and of the marginal and chief
rays, traced through the optical systen.

The use of y and § or their equivalents a,n (see Chapter
2), allows the first-order constraints to be easily maintained;
and with respect to these variables, the aberrations behave more

linearly, permitting a better control of the design program.



Delano introduced the y-jy diagram as a two-dimensional
representation of the first order properties of an optical system

in the December 1963 issue of Applied Optics dedicated to the

topic of Optical Design. He was inspired by previous work by T.
Smith (see references in Delano's article) on the theory of
periscopes. The treatment given by Delano is extremely concise,
and this may have contributed to the fact that it has not attract-
ed the attention that it deserves in the optical community. Only
a handful of papers describing its use have appeared in the
literature.

Due to its graphical representation, the Y- diagram is
an excellent analysis tool. It is possible to "see' all the
first-order characteristics of an optical system in a single
graph as a set of dots connected by lines. Constraints and
limitations imposed on the system are particularly obvious.

It is also possible to see at a glance what changes may
be made on the points in order to improve the design without
affecting other parts of the system. This makes possible the
use of the diagram as a design tool. This dual role of analysis
and design is the basic fact that makes the y-y diagram so
attractive. This tool may well revolutionize the field of optical
design in the near future.

This graphical representation has another virtue not less
important than the above, and that is that one may actually learn

the characteristics and properties of different optical systems by



representing them in this two-dimensional plot. In other words
the y-y diagram is also an outstanding teaching tool. As such,
it has been used at the Optical Sciences Center since 1967 by
Dr. Shack in the course on Geometrical Optics. Many students
have been motivated by this tool to try their hand at designing
simple optical systems at an early stage. Some of them have had
some previous experience in optical design and they have found
that it is usually much easier to arrive at a solution to first-~
order problems by using this tool rather than the conventional
methods.,

One may ask, then, why this tool which seems to be highly
advantageous for optical design, at least in the early stages,
has not after nearly ten years had the diffusion and acceptance
that seemingly deserves. There is of course the natural inertia
of the well-proven old methods used by optical designers, now
very well assisted by computers, but I believe that the main
reason this tool has not caught on is the fact that, except for
Delano's original article, there has not been available in the
literature a thorough presentation of the properties and
possibilities of the 4-3 diagram, and, as mentioned before, the
conciseness of Delano's presentation has caused many readers to
simply set it aside for "when I have more time...."; one has to
read it carefully several times to really appreciate the elegance

and power of the approach.
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Just before starting on this dissertation I was given the
opportunity of spending five weeks (July-August 1968) at the
Digigraphics Laboratory of Control Data Corporation in Burlington,
Massachusetts. Due to the courtesy of CDC and a travel grant
given by Perkin-Elmer Corporation, both of which I wish to
aknowledge with thanks, I was able to write a preliminary program
of analysis based on the paper by Delano, for the purpose of
graphical display using a Digigraphics interactive terminal
attached to a CDC 3300 computer. The results were quite success-
ful as far as they went, but they were limited by the shortness
of the time available and my relatively rudimentary understanding
of the technique. Nevertheless, the experience was especially
valuable in indicating the road to follow.

For example, when I was faced with the project of writing
a computer program using y and y variables, capable of being used
in design as well as analysis of optical systems, it became clear
that an analytic basis had to be developed. All the properties
and characteristics of the Y-y diagram, which are so beautifully
seen in geometric terms had to be expressed in algebraic form
before an effective program could be written. As one would
expect, analytic geometry provides the basis for the algebraic
expression of the properties of the diagram.

The present work is the result of this algebraization and
its main purpose is to establish the analytic basis of the
Y-8 diagram,, spelling out in as much detail as possible all of

its properties and, with this basis, to develop a computer



program which may be used not only for a detailed analysis but,
to a limited extent, also for the design of optical systems. A
short description of the contents follows.

Chapter 2 describes the qualitative properties of the
Y-y diagram and its relation to its dual counterpart, the sa-nu
diagram.

Chapter 3 begins the algebraization process. All the
points in the diagram may be treated as vectors, and this repre-
sentation leads to a very elegant and powerful derivation of all
the properties of the diagram. Likewise, the lines connecting
these points may be considered as vectors. The same set of
points and lines in the plane may be treated as complex numbers,
an approach which offers distinct advantages from the computa-
tional point of view. Finally, these two representations are
compared with the matrix approach developed by Brouwer (1964) and
discussed in many recent books on optics.

In Chapter 4 we seek the representation of all first-
order properties of an optical system in the y-jy diagram, in
order to be able to recognize them later when analyzing or
designing a system. Magnifications, conjugate planes, cardinal
points, location of pupils and images, shifts of the stop or the
image, and vignetting, are considered.

Chapter 5 deals with a normalization of the diagram that
has been found particularly useful when comparing different

systems of the same general type, but of quite different indi-

vidual characteristics.



Chapter 6 is a direct application of the algebraic
method to the analytical study of the properties of a single
physical element: the thick lens. This is important, not only
for the insight obtained, but because the thick lens is the
fundamental component of all refractive systems, and its rela-
tionship to its equivalent thin lens, a well known and very
useful abstraction, is thoroughly developed. A byproduct of this
analysis is the analytic solution of an old problem, the bending
and/or thickening of a single element without affecting the
first-order properties of the rest of the system of which it is a
part. This is described in the form of a programmable algorithm
in Chapter 7.

Finally Chapter 8 describes the program YYRANCH which
permits the user to analyze and design an optical system in the
first- and third-order approximations.

This work does not pretend to be exhaustive, but rather
it is intended to supply the ground work necessary for more
ambitious projects.

One of these projects, already begun, is the analytical
study of the third-order aberrations of the system in terms of
the properties of the Y-y diagram. Another investigation of
some interest is the study of certain types of inhomogeneous
media in the y¥-§ diagram. In such media the ray paths are
curvilinear rather than straight line segments in the y-9

diagram., A third project is the development of a much more



sophisticated design program in which the system is accurately
evaluated by real ray tracing in the conventional manner, but

the controlling design variables are those of the y-jy diagram
rather than thicknesses and curvatures. Such a program would be
capable of the complete design of the system through the final
optimization. An obvious advantage is the ease with which first-
order constraints are maintained.

As it might be expected in a topic as young as this is,
the bibliography available is quite limited. Following the
article by Delano (1963), we may mention a rather uninformative
report on the application of the technique by Pegis et al.
(1967), a short description of the properties of the diagram by
Powell (1970), and a better and more complete one by Shack
(1972).

Parts of the present work have been presented at meetings
of the Optical Society of America, Lopez-Lépez (1970b; 1971b,-c;
1972a,-c), and other parts have been published in the form of
articles or notes: the normalization of the diagram (Lépez-Lépez
1970a), the vector representation (1971d), and the treatment of

the thick lens (1972b).



CHAPTER 2
THE 3-5 AND .- DIAGRAMS

We shall restrict ourselves at the outset to the paraxial
or first-order approximation of Geometrical Optics. It is.gell
known that under this approximation, the ray tracing equations
for a rotationally symmetric optical system are only two and that
they are linear. This means that only two paraxial rays, the
marginal ray and the chief ray, need to be traced through the
system to determine its first-order properties. Note the reci-
procity between the roles of these two rays: the marginal ray

determines the position of the image and the size of the size of

the aperture, whereas the chief ray defines the size of the image

and the position of the aperture; this reciprocity is the core of

the duality properties between the 3-5 and Nn-An diagrams. We
shall denote all quantities belonging to the chief ray by a bar
above the quantity; see Appendix A for notation.

It has been shown by Delano that a single skew ray may be
traced through the system in the following manner. Assume a
coordinate system as in Fig. 1. The % -axis coincides with the
optical axis of the system; the origin may be arbitrarily chosen,
somewhere along the optical axis. As the marginal and chief rays
are meridional rays, we may trace the marginal ray in the y-3%

plane and the chief ray in the x-3 plane without any loss of

generality. Then the skew ray referred to by Delano is such
8



Ob,d‘ecl- ao?ule

Fig. 1 Skew ray from object plane to pupil plane
with the marginal and chief rays as orthogonal projections

d A

<

Fig. 2 y-§ diagram corresponding to Fig. 1



‘that itshprojections on the x-g ahd:ﬁ-g planes.are_the chief ”
Lahd.sarginalhrays, respectivelyti'Delano}then obtains the é-g
cdiagram as-the projection of this~skew ray onto.the é—y _plane.of
'Figs'1;fresultihg in the diagramrofeFigo.2; it;is assuhed:that

',1one is.viewinghthe syStem in-the;negative g-directiono. We shall-
-label the - x=ax1s the y-ax:.s9 as 1t contalns the helghts of the -

- chief ray;; |

Note that theiskew ray-descrihing the'System'is uniqﬁelf'

'rdefihed; The great advantage of thls approach is that the pro=

Jectlon of thls s1ngle skew ray onto the 3—5 dlagram is

:sufflclentrto~descr1be all'the'flrst—order propertleS'of the

system, prov1ded that we specify the lndlces of refractlon and

“the Lagrange invariant forrthe two rays, As noted by Delano, the

ioptical system is represehted in;this‘diagram (y-3) by'a:set Qf

pointsvand:lines connecting theSehpoints;-andtthe system isA

' Qessentially described by the coordinates of.these.points;*from- ‘

Afthese every other characterlstlc of the system may be derlved°

' r”As Delano shows‘J there are two p0551ble ch01ces for these coord1=

. nates: ~one 1s'to specify the three actual'cOQrdlnates of the

.{polnt ({9, ‘y,g)g and the other is to restrlct ourselves to the
;two coordlnates (3,5 ) on the diagram, and speclfy separately the
:}1ndices of refractlon of the homogeneous spaces compr181ng the 7
_ system, We shall adopt the 1atter alternatlve in this worko 

As already noted in the Introductlon our aim is to express

”j all the geometr;cal features deScrlberhyrDelano'1n:ana1yt1c;or 1



1M
algehralc form, suxtable for numerlcal computatloﬁ and- quantlta—ri
tlvely useful for actual déélgn and analy51s work° The main tool
‘will be the use of two-dlmen51onal vectors in the y-3j diééfam,ar
V.but that - w111 be deferred to the next chapteroA In thg fest of -
this chapter we shall dlscuss the qualltatlve features of the
y-3 dlagram9 as well as 1ts dual relatlonshlp to the yet to be'r

ideflned a-n dlagram°

The Lagrangé Invariant

The concept?df the_single fay described gbové is‘sq:
4fruitfﬁl and elegant*thét wé should proceed to give an analytic
;xpréssion for it and de;ive-the pf§perties of the syétem_from_it.
Howéver,'this threeedimensioﬁal.desgription is‘not néées;fy'in
thiSvcontext, due to- the fact"that we ére*only.interested in the
_prqjections of’fhiskskew ray'in-the fhree cooz_"dinate.planés°
However such fhreeoﬁimensionél‘deécri?fibniis nééesséry when wé
arerdealing with am‘inhamogeneouS‘mediumg“in_which cése_the-skew-r
ray ié;no‘lqﬁggr a.ééries'éf broken stréight iines9 but a twistéd
curve; this.cASé iéibeyond the scope of this Wofk9 althought it
is being investigated as a Separafe'contributioﬁo

| Returning to>oquéingié skew réygsﬁe mnay see_that itsr
projectidﬁ onto'ﬁhé:x-g élaﬁé of:Figs 1 is éiﬁﬁly-the ray;tfé¢é-’
of the chief ray,- whlch analytlcally will be glven by the- |

follow1ng two equatlons"

a

.237:'“ =»-3»; B W, : ' - (?—1)»'
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Wiy = Wi = e Y, . (2-2)

is the "reduced" chief ray angle;

]
=2
1]
"
o
&l
m
2
=1

Tin = tiu/Mw , is the reduced axial separation along the
Y ~axis between surfaces ¢ and #+/ ;
pc E.C{(ng,—nﬂ, is the power at surface ¢, with ¢; as the
curvature of the surface; see appendix A
for notation.
Similarly, the projection of the skew ray onto the Y-%

plane %s given by the ray-trace equations for the marginal ray:
Yo = Yo + Trp Win (2-3)
Wiy = Wi - @Y, (2-4)
using the same nomenclature as ahove.
If we restrict ourselves to a single spéce of index of

refraction mni, we may easily show that the projection of the

skew ray onto the y-j plane is given by:

de W = const, (2-5)

3
=
}
£
«
]

which may be recognized as the Lagrange invariant for the chief
and marginal rays. We know that this is a numerical coanstant
that applies to the entire system, and therefore it acts as a

scaling factor in Eq. (2-5).1 W can be either positive or

1. Moreover we may remember that the flux of energy
through the system is proportional to W2,
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negative; we assume a positive Lagrange invariant throughout this
work. We may define new reduced angles by dividing by YH ,

n = w/l . Then Eq. (2-5) takes the form

Ay ~ QiFe = |, (2-6)

being the equation of a straight line in the y-j diagram.

We should note at this point that Eq. (2-5) may be derived
on purely analytic grounds without recourse to the geometric pic-
ture given by Delano. Eq. (2-5) may be obtained by eliminating

Tin  from Egs. (2-1), (2-3) or by eliminating ¢, from Egs.
(2-2), (2-4). Then proceeding to Eq. (2-6) we see that this is a
straight line in a two-dimensional diagram with (5:5 ) as coordi-
nates and (L ,0N ) as parameters.

Both pictures, the geometric and the analytic complement
each other beautifully. The geometric picture affords the
insight that any figure provides (one picture is worth one
thousand words, says the Chinese adage). The analytic approach
affords the accuracy that the geometric picture may lack. From
these considerations it is seen that the best vehicle for a

treatment of the 3—5' diagram is analytic geometry.

The y-y Diagram

If in the equation

ny - Ny = | (2-7)

we fix the values of . and .o s which for most applications
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implies a fixed value for the index of refraction 7, we obtain
in the Y-y diagram, a straight line with intercepts

g* = —|/_ﬂ. =

Iz,
(2-8)
Ye,

3* = +1/8 =
as illustrated in Fig. 3. Three points are marked along this
line: an image point I( Yy =0), a pupil point E(F=0) and an
arbitrary point 2(3Y,Y ); the line itself is characterized by
the index of refraction M, and completely determined by the two
intercepts, Eqs. (2-8) or conversely by the values (f2,00)., Any
point on the Y -axis locates an image, and any point along the
Yy-axis locates a pupil.

The graph in Fig. 3 contains all the information pertain-
ing to the two paraxial rays, the marginal ray and the chief ray,
related by the Lagrange invariant (2-5), and imbedded in the
space of index of refraction M. The more conventional repre-
sentation, the lay-out of the system, is given in Fig. 4, and it
is the complete analog of Fig. 3 in the sense that both contain
the same information. In the lay-out of the system we shall
represent the marginal ray by a single line and the chief ray by
a double line, as shown in Fig. 4.

We may appreciate from these two graphs that a line in
the y-y diagram represents a whole space of index of refraction
M, and points along this line represent planes perpendicular to
the optical axis of the system, the coordinates of each point

being the heights of the chief ray (3 ) and marginal ray (%)



I
/4— R ’

Fig. 3 Single line in the y-Y diagram

I mage a::?ane -Pua;[l jo?ane Regerence
l |

03:?4‘:.1 axis

=g

~————-———-—-——

Fig. 4 Lay-out corresponding to diagram in Fig. 3

15
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passing,ﬁhroughvthis.planeo'vNotQ*théﬁ“fhezline continuéé.inaefi-g
) nitely,rmeaning that the space it'représenfs'exists throughé#t° 

As anuoptiCai'sjétem‘consists of sévefal’spacés.super-
imposed;on each ofhér,:We now will consider thelrepresentatiOn of
this mdititude'of~space$ in the diagram;‘each'space béing
represented bj a straight lige,'each cﬁaracterizgdbby an index of
refraction ™. | | . |

Before we combine tﬁo spaqes.of-different‘inde; of:réfrac_
tion, lef us- look at the situation depicted ih Fig° 5,{6f two |
refefence points along the same iine‘of\inaex ofvréfracéion'Tl;
This case simply'corresponds‘to a.changé,in.refereﬁce plane'i-
'wiﬁhin the space of index of refractién T, or in‘oth‘ex_'.worgs9
corresponds to a transfer from surfacevéu té surfaée :219 opera;
tion under,whiﬁh,fhe'values of the ray angles'remain.uhchanged
and only the heights change.

 It is clear that only the segment cﬁmprised«between fhe-
th.ppipts fa’and7 2,, corresponds. to the segment of>spé¢e of
index M in which the light is actuallyffravelling; but of'coursé
both the'spacé and the iine_it is represenfed by extena indefi-.
".ﬁifely in both directiohs;'we'shall call suéh‘a segment a "iight=v
segment", and by gxtension a,"light—rayﬂiwill dendte'the 1ine_in:
which it is contaiﬁedo We see,thatbthé lighf-segﬁent~corresponds
to the "real" part of the skew ray, ahd the rest of the‘linev
coﬁrespondS'to the:"firtual" part of theféiew-rayQ In other_
words, when the light-segmenf croSSes-the:'geaxis; it locates -

the position and size of a real image of therbject; When‘thev
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2

Fig. 5 Transfer from plane 2, to plane 2,

Fig. 6 Lay-out corresponding to diagram in Fig. 5
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virfuél part,of‘the-ray;cr055e5=£he-aiis,we qbtain a'§irtualz
image: Similarly, when the light-segment crosses the y-axis we
locate‘a,realiimége of'the-S£q§376therwise.we'haVe arvirtual
image of the same. It is élSoiélear that the 1ight;ray cannot
pass fhrbwgh the'origin of'fheiyﬁg diagram, as fhiS—woqld imply
that for that space, the image,andithe‘pupil~éoincid¢, whicﬁ;is
impossiblem VAs'an illusfration, in Fig. 5 the pu?il is reai énd
_ the image isrvirtual if'we.assume that the light-segment is
2,2, .. In the next_chagterVWe éhall give'a qﬁantitativércriteria
on to find real images or pﬁpils°

We now consider the case when we allow the two reference
points to‘coincide-but let fhere be two lines with different’
~indices cf-refractioh (;n;¢'ﬁ’), passing through this common

point, as i11ustrated ianié; 7; This situation obviously cor-
responds ‘to a refraétionrof the two rays at the .common reference
surface z 5, where;thé'réy.anélgs'change but,thelheights do not.
' :‘This is.also'the~sim§l§st_imaginglsystem; it feiates-u
:planes~in.one'space'to‘flanes in anothe?‘space in a dne-tb-dne'
correspondence. ZIf We_assumé fhat the light goés frdm'ﬁherplane
I to the fvlane 2 where it is refracted ‘towards. the plane -.I%
then the first'light=segment'frqm Z to 2, characterized by thé~
index n is.the»cbjébt-rayuandirepresénts the,physical object 1
Vs?ace of the.same'index; énd_the light-segment ffpm;53 to  $5;‘
‘with index ‘n;, is fhe1image-ray_and represents ihe physical '
image spagev JWe‘sée}from:thé.figure that-bbthﬁimages'are;reai iﬁ.'”

" this case, and the stop of the system is located in object épace:
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E

Fig. 7 Refraction at surface 2

Fig. 8 Lay-out corresponding to diagram in Fig. 7
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at £, coinciding with the pupil of the object line, identified
with the entrance pupil of the system; the pupil of the image
line, in this case virtual, is identified with the exit pupil of
the system and is located at E’.

As depicted in Fig. 7, the point # represents a refract-
ing surface dividing the two spaces of indices m, m*, and
imaging an object of height %, into another of height 5}?. It
also may represent a thin lens doing the same thing between
object and image spaces if we assume that = = m’, or even a
mirror if we assume mn’ = -m. This ambiguity results from the
fact that the y-~j diagram deals only with "reduced" quantities,
such as w=mnw, and 3= ?/n ; and in order to derive the real
angles that the rays make with the optical axis or the axial
separations between the surfaces, we must specify the indices of
refraction associated with each space represented by a line in
the diagram. This apparent drawback is indeed an asset because
it gives the y-y diagram a great flexibility to represent simple
as well as very complicated systems by a set of points and lines
connecting them.

In the refraction situation depicted in Fig. 7, Delano
has shown that if we assume a positive value for the Lagrange
invariant, a light-line at the point of refraction will turn
clockwise, towards the origin, for a surface having a positive
power; and cqunterclockwise, away from the origin, for a negative
power surface (Fig. 9). (We shall give a demonstration other than

Delano's in the next chapter.) Therefore, each refraction will
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Q:ﬂ

ﬂ’

(t|‘

Fig. 9 a) Positive power surface
b) Negative power surface
c) Plane surface

<¢|‘
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be represented in the y-jy diagram by a bending of the light-
segment at the point representing the surface or lens, except
when such a surface is a plane one (zero power). There is no
bending for the zero-power surface because there is no change in
the value of the reduced angles at such a surface, although the
actual ray angles do change. This is represented in the diagram
by a change in the index attached to the light-ray (see Fig. 9).

As any optical system consists of a finite number of
surfaces and separating spaces of different indices of refraction,
we may conclude from figures 5 and 7 that such an optical system
will be represented in the y-3 diagram by a set of points
connected by light-segments. For example a thick-lens Taylor

triplet would be represented as in Fig. 10, where points 3, 4

y 4

E’ 9

Fig. 10 Diagram of a thick-lens triplet
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represent the surfaces of the middle, negative element, and
points 1, 2 and 5, 6 represent the surfaces of the surrounding
positive elements. The height of the object is represented in
this case by 0 and that of the image by Z. The object ray is
the one connecting the points 0, 1, and the entrance pupil is
represented by the point £ ; similarly, the image ray is that
passing through the points 6,I and the point £’ represents the
exit pupil. We may also see from the diagram that the actual
stop of the system, represented by § is located slightly before
surface 3, The points joining the dotted lines passing through
the surfaces of the thick lenses, represent the thin-lens
equivalents of these thick lenses. As far as the first-order
properties of the system are concerned those three thin lenses
(A,B,C) would do exactly as well as the group of surfaces

(1 through 6).

E’ o~ 2

Fig. 11, Diagram of a two-element system



Ae another example, con51der the dlagrem of Fig. 11. The
flrst thlng to notice is that the obgect 1ine 1s parallel to the‘

.j'aax;s, and therefore,vthe_lnterseetlon of this line and the

axis>occurs at ihfiniti; in other wofds; the ohject of thie
ISYStem is_loeated'at infinity° Seeondly, thewfirst,elemenf-of'
‘tﬁe system.eoincides with the_stop,and the_entfance pupile.

o Depending on the choice of the indices of reffactien
”.4u9_n;3fn3,vthis diagram will correSPQnd'fo completely different
iayaouts° -Fig; 12 illuStrates three differenti-’choice’s° In a)
‘we have set m, = ¥¢ = ﬁ; =1, thereby assuming thetepoints 1 and
32 represent a p081t1ve and a negatlve lens respectlvely, in
'other words, a telephoto system. In b) we have set M = ny=.1
7-bnt Mgz =1 4 an@ the resulting system consists of mifrors.and
?is -a‘.ca-sse_grain.objecti\feo In c) we choose m,= Ng= 1 § N>y
-.and fhe reeulfing systeﬁ isra thiek51ens element,immersed—in air.
| At first glance, without. being already familiar with
V;Geuseien.0p£ics, one weuld hardly suspecf that the three systems.
inlluetrated'on:Eigo 12 ere.equivalenég howeveﬁjwthis.equivaiencev
;;ié»clearly showq by the 3—5‘ diagram whieh gives the same repfe—.
sentafioﬁ fo all of them, implying that ae far.as the first-order
epfopeffies ere cohcerned che thfee-systemé"areICOmplefely;,‘
-equivalentoi The . formulae derived from the. dlagram on Flgo 11’efe
v will apply to each of the systems of Flgo 12, when the proper

*1ndlces.of refraction are 1nserted,
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Fig. 12 "a)
b)
c)

A telephoto thin-lens system
A Cassegrain objective
A thick lens
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The - Diagram and Duality

/

Returning to the expression for the Lagrange invariant in

the form of Eq. (2-7), we may rewrite it as follows

ny - ay + t =o. (2-9)
We recognize this as a '"bilinear form" extensively
studied in Projective Geometry, where they are expressed in terms

of homogeneous coordinates (Gans, 1969, p. 280) as follows

X, U, + XU, + Xzu; = 0.

The «x; are called point coordinates because one set

uniquely defines a point; similarly, the w%: are the line

coordinates, and they uniquely define a line. Note that written

in this form both set of coordinates are indistinguishable from

each other. Non-homogeneous or cartesian coordinates are chosen

as ratios; in our particular case:

%, [ x4 X2/%y =y (2-10)

/1]
2
.

wfuy = 0, wafuy, = -1 (2-11)

’

From these general remarks we see that there are two
possible cartesian representations of the bilinear form (2-9);
one is to use (Y,Y ) from Eq. (2-10) as coordinates and (11,11 )

as parameters: this is the Y-§ diagram introduced by Delano and

already discussed in the previous section. Another possibility
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consists of taking (., £ ) as coordinates and consider (¥ ,Y )
as coefficients: this is the -1 diagram.

The two diagrams are "dual" to each other in the Projec=-
tive Geometry sense; in other words, a point in the y-j diagram
is represented by its "dual", a line, in the -1 diagram, and
vice versa. This duality has been extensively studied in the
literature (Coxeter, 1969, p. 248; Maxwell, 1963, p. 11).

In the - diagram, an optical system is also repre-~
sented by a set of points and connecting lines, except that in
this case, the points represent the spaces and the segments
represent the refracting surfaces.

The dual relationship alluded above allows us to draw an
n-n diagram from a Y -3 diagram in a straighforward manner.
As noted above, each point in the y-y diagram is transformed
into a line in the N -0 diagram, and each line in the y-g
diagram goes into a point in the -0 diagram. This type of
transformation is known in Projective Geometry as a "correlation"
(Gans, 1969, p. 280). Figure 13 illustrates the nNn-f. diagrams
corresponding to some -3 diagrams previously described: a
single space of index 7 with a reference surface 2; the case of
a transfer between two surfaces 2,, 2,; and the refraction at a
surface 2 from a space of index m to one of index m’.

One diagram may be geometrically constructed from the
other by noting that the dotted lines of one diagram are parallel
to the solid lines of the other. This is not an accident, but a

consequence of the duality relation connecting the two diagrams.
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bi)

o/

by

a)
c)

Single space.
Refraction at 2
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Although the n-a diagram is less easily visualized
than the yﬁi diagram, it will prove nevertheless, extremely
useful in several important instances when the analysis on the
Y-y diagram proves to be very cumbersome and, by contrast,
much more tractable in terms of L and 1. For example, we
shall see in a later chapter (Ch. 6) that certain properties of
optical systems result, in the y-g diagram, in a series of
lines whose envelope is the curve of interest for the study of
such properties. Curves in a plane are difficult to analyze
when they are defined by their tangents alone. However, if we
translate this figure to the a-n diagram, each of the tangents
will go into a point and the curve will be easier to analyze as
a geries of points. Once we have completed the analysis of this
curve in the N -N diagram, we can calculate in turn its
tangents in this diagram which will transform into points on the
3-5 diagram, giving us the desired curve in the usual point
form.

In addition, as has already been pointed out by Pegis
et al. (1967), the variables L, N are better suited to the
control of the aberrations of the system., ©ae

Another advantage of the duality relation between the two
sets of variables ( §,3 ) and (f££,N) is that it permits us to
treat lines as single entities, on the same footing as we treat
the points. We shall see in the next chapter that in the same
manner that we may represent a point by a single vector, we may

also represent a line by a single vectog and treat it in the same
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waj as ahy_otherbwectof; “Th€sé_§ecéors in'turn»may be‘¢onsidered
#s complex numberé*in.ihe plépeg'which"offers § éreat computé—-:
tiona1 advantage és both'poinfs-and Iinesrmay be méhipulated
fﬂuﬁeriéally és-sihé&e entitiéélby élreédy available'cdmpiex—

number routines in meost -computers. .



CHAPTER 3
VECTORIAL REPRESENTATION OF THE  4-3 DIAGRAM

In this ehapter we‘shall_aevelop the basic concepte_and:-
tools for ap_elgebreic analyeis of an- optical system'iﬁ_the:y-g
ai'ag;@o | | | o

. The geometric usefulness.of thevdlagram may be made qﬁan=i
:tltatlve only by the appllcatlon of the laws of analytlc geometry
to the two-dimensional projection:of the s1ngle skew ray 1ntro-‘
duced by Delano (1963). In the last chapter we described some of
the most elementary properties of_the:diagrém inra verquualitae~
tive!ﬁeﬁner;'in fhie chepter'we substantiate quantitafively tﬁose
assertidnsrand give a hore eomplete-list of -the propertieSjof thel
~diagrem° N |

| Inasmuch as the Y- y. dlagram is a set of p01nts and lines
descrlblng unlquely and completely the flrst-order propertles of
any rotationally symmetrlc'optlcal.syspemg we-must dea; with
'pAifs ef numbers such as (g;ﬂ ) to fepresehf the peints9 and
(A,0n) to fepresent the iinesﬁ and it will be convenient to
find anvexpedient'wayhof handling“thesevordered couples of
numbers. - | | |

» One. suchvway(ls to th#nk of these palrs of’ numbers as the
'carte51an cemponents of approp1ate>vectorso“ Alterna‘t:wely9 they '
. may be treated as the real and 1mag1nary parts of correspondmng

complex numbersu»,The»advantage ‘of using vectors is the elegance

3.
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{and slﬁpliclty'ef the'formulae obteined andAthe:insight'deri§edl
Vfrom their graphlcal representatlono_ The main advantaée ef
-ruSLng complex numbers lies in the numerlcal aspect of the
-computatiens: complex numbers are'handled by most coeputers as
single entities, and most of the'operetions carrled out with
bthem efe made "on line," which'constitutes a sugstantial eavihgﬁ_
in:coﬁputation tlmeo As the same point (er line) in the diagram
'mey beerepresented both by a vector and by'a complex number, we
shallluee fhem,interehangeably-to derive the properties of an
optlcal’syefemkffom theediagramor’Alse,-the'transfofmations to
which~theee points are subjected are inherently_linear and
therefore may be expressed by means ef'maﬁriceeo These metrices
“turn out to be the same as vthoee;u»sed by O'Neill .(,1963), and
BrouWer (1964), 'We shall only mentionrthem;in-this chapter_fo.
illustrate the unlty and elegance of the 3—3 dlagram approach;
A>Awe also include the formulae for going from the vector—complex
‘ formulation.to the matrix representationo-‘ |

_The formulae and concepts developed,in this ehapter will
ebe usedrinueubsequent chapters. lIn particulaf9 in ﬁhe next
ehepter thej will be used to develop the repreeentation of the

lmostefamilier coﬁcepts of Gaussian Optics in the y-j diagram. -

Vectors.and Complex .Numbers. .

" ‘We now define the point vectors

2

n

@9 G
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at each surface of the optical system, and the line vectors
(3-2)

(mic, nu)

S
m
s
&
]

at each space of refractive index m. We also define the vector

W= (&,0) = w/K (3-3)
obtained from wr by dividing by the Lagrange invariant as a
scaling factor. 1In terms of the vectors 2 and W, the
paraxial ray trace equations, (2-1) through (2-4) become
B 0= 2y, o+ To W » for transfer, (3-4)
(3-5)

sy for refraction;

Win = W; = 202

where now we have used the scaled quantities (see Appendix A),

T =Xz = Hét/n,
(3-6)

F o= ¢/K,

i?. directly derivable from

as they are, together with the vector

the diagram.
By taking appropiate cross-products of Eqs. (3-4, 5) to

eliminate either .7}, or £;, we obtain the vectorial equation

for the Lagrange invariant

-— -l A
2 x W = k (3-7)
where k is the unit vector along the ¥ -direction; see Fig. 1.

It may be easily verified, by carrying out the cross-product,

that Eq. (3-7) goes directly into Eq. (2-7); in other words, this
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equation represents a straight line in the y-§ diagram,
characterized by the vector W . Note also that equation (3-7)

may be written, when introducing the surface subscripts, in any

of the equivalent forms,

- -

S XW = TixWe = Bex Wiy = B X Wi = k. (3-8)

To corroborate the assertion that the heights 555 at
each surface are sufficient to determine an optical system in the
3-8 diagram, we proceed now to express the vectors Wﬂ the
separations 7, and the powers £ all in terms of the vectors z.
However, to give the actual parameters for a real system, the
angles (% ,% ), the axial separations ¢, and the curvatures of
the surfaces ¢, we shall need to specify the values of the
indices of refraction attached to each space as well as the
value of the Lagrange invariant for the whole system. The
Lagrange invariant in turn may be expressed in terms of the three
parameters of the system as a whole: focal length, aperture and
angular field of view. A different choice of the indices of
refraction will give physically different syétems as was illus~
trated in the example of Fig. 11. A different value of the
Lagrange invariant, on the other hand, only changes the scaling
of the system.

To obtain the value of the reduced separations 7¢, we
multiply vectorially Eq. (3-4) by 2¢, and by using Eq. (3-8) we

get:

T = ko (20 x ). (3-9)
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We may see from this expression that the reduced separation is
equal to the numerical value of the cross product of two consecu-
tive ® vectors, i.e., to the area enclosed by the parallelogram
formed by the two vectors. In other words, the reduced separa-
tion between two surfaces (scaled by the Lagrange invariant) is
proportional to twice the area of the triangle formed by the two
points representing the surfaces and the origin of the diagram.
See Fig. 14.

Using Eq. (3-9) and the dot product, we may also write an

expression for the angle formed by two 2 vectors,

‘Ea.n19;- = 7?/(54'-1‘;{)- (3-10)

Similarly, we may determine the value of the powers by
multiplying vectorially Eq. (3-5) by W; , and using Eq. (3-8).

We obtain

£ = E~(W1jxw"ﬂ). (3“11)

Therefore, #£; is represented in the n-A diagram by an

area in analogous fashion to the representation of 7; in the
Yy-3y diagram; compare Figs. 13 b-c. Also, the angle between two

consecutive W vectors is given by

Zan "L,- = :5‘/( Wi . M-Z'.H). (3-12)

—

Remembering that the W vectors represent lines in the

3—§ diagram, we may see from Eq. (3-11), written in the form
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¥
Fig. 14 The equation of transfer: 3 = Eb‘ + Tiwe
oy
e
Wi
Y

Fig. 15 The equation of refraction:

W&'#l/f\' = W"/§x‘ -3
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I,'z- = W,'X “7#4,
;hat the power of a given surface is represented, in the Y-y
diagram, by the change in direction of the two W vectors defin-
ing the surface. When the power is positive, we see that the
vector WE. lies clockwise to the Wa vector; when the power is

negative we may write
N - -
-F N k = W{H X Wy s

and we see that in this case the GZu. vector must lie counter-
clockwise to the Wg vector in order to preserve the proper sign
for the unit vector ﬁ.. Finally, when the power is zero there is
no deflection, and the two erectors are parallel to each other.
This is the case of an afocal system or of a plane interface.
The statements in the last paragraph may be shown

algebraically as follows: consider the case of a single refract-
ing surface (see Fig. 16), with an object line vector w changed

into an image line vector W’ by the refraction at surface 3}.

The slope of the image line is given by

’ ,_ N a-gr¥ -
k.:%w’y..a,_ g

b

—

Solving for # , we get:

$ = (il:) (_‘.‘::___L'_) 3
e k- kp
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where k and k, are the slopes of the object line and the vector

%¥p , respectively. But by using
Ye = '/ = J—r(kr" k):

we may express the power & as

k' - k
F = . (3-13)
J3 (kp —R) (R - k)

We see from this expression, as mentioned previously,
that when & = 0, we must have k’: k . Considering that both k
and kp are constant, let us differentiate Eq. (3-13) and solve
for the change in slope dk’ due to a change in the power d& ;
the result is

dk’ = - 3;(&.’ —kp) 4 E,

This expression tells us that for a positive change in
power, the slope of the image ray is less than the slope of the
object line; in other words, a clockwise rotation is involved in
going from an object ray to an image ray.

Equation (3-13) expresses another fact, a very important
restriction on the relative positions of the object and image
lines in the 3-3' diagram.
~ We see that if k'=kp, the power becomes & = % ®
depending on the parallelism or antiparallelism of the image

line and the vector Ep; in other words, the whole range of

powers is covered by positioning the image line in the region

to the right of the vector 2pon Fig. 16; and the direction of
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3/ ¢
= - k
= -~
= //
= -
= -
—_/ ’/
“~ - -
2, 5. 7
b4
Je
k’
Y

Fig. 16. Restriction on the

relative positions of the object and image lines
the vector 2, as well as the region to the left are not
allowable. We remember here briefly that no light-ray may pass
through the origin of the ‘y—g diagram, because this would imply
that both ¥ and y would be zero contrary to the assumption of
the existence of the Lagrange invariant. However, Eq. (3-13) is
still stronger, forbidding not only the passing of any light-ray
through the origin, but also the location of the light-rays in
certain regions that would imply a non-real value for the power.
This restriction has to be kept in mind when drawing lines to
create new-systems or modify existing ones. This restriction is

also the basis for the statement made by Delanoc to the effect
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that the projection of the skew ray on the 3_5 diagram winds
about the origin in a clockwise direction, as the ray travels
from surface to surface, for a positive choice of the Lagrange
invariant.

To express now the Q vectors in terms of the Z vec-

tors, we use the equation of transfer (3-4) together with Eq.

(3-9) to obtain,

Wy = ——— — - (3-14)

Similarly, using the equation of refraction (3-5) and Eq.

(3-11) we obtain an expression for the vectors 2 in terms of the
—

vectors W ,

W:'u - _“70'
2; = —————— . (3-15)
"h-'(u/i x Wl'n)

Note the formal similarity of these two expressions.
These two equations express analytically the principle of duality
linking the 3-—5 and the - diagrams, that was discussed in
the last chapter. In the y-y diagram the vectors ¥ represent
points, and clearly Eq. (3-14) is the vectorial equation of the
straight line defined by two of these points. Therefore, the W
vectors indeed represent lines. Similarly, in the N-n diagram,
the W vectors are the points and Eq. (3-15) tells us that the
% vectors are the lines defined by such points. Any statement

—t

in terms of points ¥ and lines W in the 3-5 diagram is true

-t

for points W and lines 2 in the -1-& diagram.
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Because all vectors of interest in both the y-y and
N-n diagrams are plane vectors (the only exception being the
constant unit vector i ), we may think of these planes as
complex planes and identify each of the points and lines as
complex numbers. In other words, we may write the vectors Z and

W in any of the equivalent forms

z = (5,5): 5?-}-33 = 54_1'5,

€}
1}
5
2
1
)
+
&
I
<Y
+
.b

As most calculations involve the dot and cross products
of combinations of these vectors, let us develop expressions for
these. Assume we have two vectors A and B y defined in

analogous form to those above. The dot and cross products are

given by
K’i = +AxBx + A335 (3-16)
Kxi = i A5 Ax R (3-17)
35 3!

and the triple product used before, by

) - i As Ax
k- AxB = = Asax - Ax:B5. (3-18)
33 3‘%
Considering these same vectors as complex numbers, let

us develop the complex product /AB*} where a star on a vector

means its complex conjugate. We have

AB" = (AxBx + AyBs) + i ( AyBx — Ax3By). (3-19)
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Comparing this expression with Eqs. (3-16) and (3-18), we
see that

-

A-

(v ]

= Re(ﬁ

&)

"), (3-20)

&
&y

t.Kx =Im(/.f "). (3-21)

This result is of great numerical importance because a
single complex product gives us the two vector products of
interest: the dot product and the magnitude of the cross product

(whose direction is always given by the unit vector k).

Determinant Notation

The above comparison, Eq. (3-21) is also of algebraic
importance because it allows us to devise a simple compact nota-

tion for the magnitude of the cross product. Consider

Re(Bx3) = Im(A3% = L |} & (3-22)
3|5 5
We introduce the following notation:
- A A* Ay A ImA A :
DT A I i I il (3-23)
t 3 B* By Bx ImB ImA
We may then write Eq. (3-21) as
A TS < "\
R (Ax3) = |A,B (3-24)

This is just a plain 2 by 2 determinant, but written in
the form of Eq. (3-23) it will simplify enormously the algebraic
manipulations necessary to get powers and separations when using
the 335 diagram. Among the properties of this determinant we

summarize the most important for our purpose:
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\z,i‘* = ‘K,il , it is real
%A1 = |53 =140l =0

lx,i‘ =“E)Kl

l&A Bl = &lAg_b'

In the case of our vector 2 this notation takes the

form

ny

= = ;3] Y5 94
124,20l = ;': N _— | = _ = [Y45 44} (3-26)
2, & I e
Note that the last term in Eq. (3-26) is a shorthand
notation of the preceding determinant in which the second column
of the determinant has the barred guantities corresponding to the
elements of the first column. The same holds true for determi-

—
nants involving the W vector or the product between a 2 and a

W vector, as is illustrated in the following important products
that we have defined previously:

Lagrange invariant:

(3-27)

)

(Ex W) =\, = lg, | = Im (3 W*)
Separation:

e

T = 'l‘g.(;‘;, XZ{) = li,’.. , E(( = Ij,;.,,g;\ = Im ({“-. 5‘*) (3-28)

Power:

F o= ke Wix W) = Wi Wel = 10,20 = Im (W W), (3-29)
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We shall have opportunity to use this notation extensive-

ly in subsequent paragraphs.

We note that, if we take the complex product ;*f instead
of Kf*, we get only a change of sign of.the cross product, as
these two products are complex conjugates of each other.

If at any time we wish to convert our vector equations
into complex notation, we have only to make the substitutions
implied by Eqs. (3-20) and (3-21). We prefer to use the vector

notation for the algebraic calculations and the complex notation

for the numerical calculations.

Matrix Representation

Considering the vectorial equations of refraction and

transfer, Eqs. (3-4), (3-5), we see that they are linear in the

-

vectors # and W, and therefore they may be written in matrix

R I ER
o= o (af , for transfer;
w T o | Wy

s for refraction.

form

——
) wh
+ *
i

1 —_—
B

-— [}
N—————
P
E} w
SN——

These matrices are esentially those introduced by Brower
(1964) and others, except for a slight difference in notation.
The previous equations suggest that the general transformation

between a point Z and a line W in object space and the cor-

responding 2’ and w? in image space may be written in the form
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;’ = 4.“5 + a.gW

-

w? = a,,S + QW

By considering these vectors as complex numbers and

taking their complex conjugates we may write the corresponding

expressions
- % - ey
2’ = ag2¥ + a“ll.W*
- % -~ -
V, = a‘l 2* .f— allw

These four equations allow us to solve for the four

unknown coefficients iy . The result is

a“ = ‘E’,wl
Qe = l;, g’l
(3-30)
a:. = lw,) wl
Qgzy = l‘i’ W’I

where we have used the notation for determinants defined in the
previous section, and the fact that li,wl = | . Note that the
value of @, is proportional to the power defined by the two
vectors. We shall see in the next section that the other ele-
ments also have a simple interpretation in terms of the system as
a whole.

Of course the particular matrices for refraction and
transfer are special cases of the general matrix A whose

elements are given by Eqs. (3-30); the matrix for transfer is
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obtained when W": W_. and the matrix for refraction results

when we set =2

These matrices may be used interchangeably with the vec-

tor or complex number formulation when it is more convenient. It

is encouraging to see how they arise here as a natural conse-

quence of the linear relations inherent in the- 3-5 diagram.

If we wish to know the matrix of a system for which the
3-5 diagram is known, we introduce the vectors of the first and
last surfaces 2,

, 2p along with the object and image line
vectors

W, , W’,_-—-W“l s+ to obtain for the elements of the
matrix A,

a, = I 2., W,l
a‘(t. - IEI, 5’;‘
ez = lwkn,wk\ = -2

O = l-il > Wlut\

where £ is the total power of the system..



:qmi:TER b
REPRESENTATION OF
FIRST-ORDER CONCEPTS IN THE- 3 g DIAGRAM

In thisEChapter we shall deallwith the first-order
-{«properties of an éptical system represented by a given set of
. points and;lines,in'the'g—g‘ diag;amo' However, in ordef to
carry out this type of analysis,with the basiéEanalytic'toois
‘described’in the previous.chapter; we must know invadvanée how
familiar concepts of‘gaussién Optics, such as magnifications,
focal lengths, cardinal points, etco are,repfesénted in the
"diagram. As the diagram is-ndthing more than the graphical fep;
resentation of the basic equations of first-order ¢pticé;7we
énticipate that_every'cohcept~and property defined'in that.‘
]discipline will have. some sbrt‘pf graphical counterpart'ih the .
idiagram; oncé we become familiar with these geometrié cﬁunter-
'Vparﬁs of'the firstoordér optica1~concépts we-shall be able to
Arecognize them in a giﬁen diégraxﬁ9 and.gonvert a given set of
points into a set of cénstruptabié'surféces ﬁith de_finite'c':urv>a-=
fures ana'separagions‘ﬁhaf-will'aécomplish g,prédetermihed;
‘fﬁnctiono‘ | | |

We~éhali“see’how the éiagram can give us diréétlyAfhé:_
relatlve p051t10ns of the dlfferent cardlnal planes, thg
Aposmtlons and sizes of the puplls9 the powers -and curvatures of

the surfaces gompr151ng the system, their separations, their

L7



miniﬁum‘sizes,”eteo We shalleelse'investigate in- this chapter :
éhe effects en the poistS‘end fhe lines of‘the diagram, of a |
change in.the positionLof the stop of the'system;—op'of'a shange:
in the position of the objeet‘or'the i@age;,gs well as the
scaling effeetpon-separatiops'endxCuffstures, introduced by a
cHange‘iﬁ the'value of the Lagrange inferiento |
We would like.te-make“the.comment at this point that,
strict;y speeking;‘GaQSSian thics does not consider therlimifa;
tions on theibundle of rays goiné through’the system, iﬁposed'by-
the flnlte apertures of dlaphragms or the phy81cal limits of the -
-refractlng surfaces, but only conslders the 1mag1ng propertles of
the system’between conjugate plane51 in two determined spacesj in_
other words 1t applles the geometric laws of a colllnear transfor--'
matlon,-or "homography" to the planes tangent to ‘the refractlng
'surfaces at the points of intersection: w1th the cptlcal ax:Lso The
3-5_ diagram takes into aceount the effects»of_apertures right
from thepbeginning,~being ineerperated;iﬁ fhe‘definitien'of the
rmarglnal and - chlef raysa
Af We shall now proceed w1th the most 1mportent concepts ofr |

firstaorder'optics?

The Magnification and the Conjugate Line
As defined in Gaussian optics, the transverse magnifica-

tion (or simply the magnification), is the ratio of the heights of

. Two p01nts along the optical ax:Ls9 and the perpendlc-
. ular planes they define, are said to be conjugate when they obey
~ a collinear transformatlon (Born and Wolf 1970, P. 151).



ko
a particular ray in two conjugate planes, one in object and the
other in image space. i

Accordingly, we define the magnification m;, by the

vector equation

2= mr2 (4=1)

and we say that the two points, 2 on line W, and =2’ on line
W' are conjugate to each other and related through the magnifi-
cation my. Obviously, the two points are collinear with the
origin of coordinates of the 315 diagram, and therefore the
magnification my, is represented in the diagram by a line
passing through the two points and through the origin. We call
such a line the '"conjugate'" line of magnification ms. This is

illustrated in Fig. 17.

ey

Fig. 17. Definition of conjugate points 2 , 2’



50

WNe pointed out earlier that any line on the diagram rep-
resenting a possible light path could not go through the origin.
We see now that the lines going through the origin have a
significance of their own, they identify conjugate planes for a
given set of object and image rays, and they cut these object and
image rays in proportion to the magnification associated with
them.,

We note that the magnification we have just defined
refers to two specific spaces only. Therefore, when we refer to
the magnification of the system, we are implicitly referring to
the relation between the first and last spaces of the system
(object and image space, respectively), represented in the
diagram by the vectors \T/. and W,,_’ = Wkﬂ . When we wish to
talk about the magnification between any two other spaces, we
shall explicitly say so.

For the moment then, we assume that the point Z is
located on the line W (object line), and the point 2’ is on
the line W’ (image line), and that these two lines are the only

ones that constitute the system under consideration (see Fig. 17).

In this case the vectors 3, FL satisfy Eq. (3-7),
- . -—, A
IXW = 22xW = k
By appropiate cross products of Eq. (4-1) we have
kwyp = 3 x W (4-2)

-
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These expressions allow us to derive a relationship
between the slope of a conjugate line and the magnification it
represents. As the conjugate line goes through the origin, the
only parameter needed to trace it is its slope, which is the same
as that of the vectors 2, 2° in Eq. (4-1). In other words, the
slope of the conjugate line joining the points 2 and 2° is
given by
ke = 4/7 = w/§’ (4-4)
By using the determinant notation introduced in the last chapter,

Eqs. (3-23), (3-24), we may write the expressions for the magnifi-

cation, Eqs. (4-2), (4-3), in the form
me = |T, W= yya - 5, (4-5)
\/mr = |3, W] = y & - g2’ (4-6)

Solving for m; in the two equations and using Eq. (4-1) we

obtain
ke I -
me = 5 (“-7)
h‘ -(—L’ - _a)
or solving for k.,
, —
he= 70 -8 (4-8)

mr 2 - n
The axes of the diagram, being lines through the origin,
are themselves conjugate lines; the y-axis is the image (or
object) axis, and its associated magnification, the "image magni-
fication" will be given by Eq. (4-7) when k. =0,

me = /07
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similarly, the Y ~axis is the pupil axis and the "pupil magnifi-

cation" may be obtained from Eq. (4-7) by taking k.= =,

meg = afn’,
From Eq. (4-8) we see that when m,.=o0 ,
k.= 0/ 0 =k,
which is the slope of line W Similarly, when m, = o0 ,
ko= /R = &

which is the slope of the line G7ﬁ We see then, that every
value of the magnification, from zero to <« , is represented
uniquely by a conjugate line in the diagram.

By noting that

My k.
- = 4.

we may write the slope of the conjugate line of given magnifica-

tion my in terms of the image and pupil magnifications as

follows
k. = [P = ™o V! = (e =™ )\ ™Me
) (""T - Mg . mr -~ mg/ Mo ks (4-10)

this expression has been found useful in some applications,
specifically in dealing with image or pupil shifts.

We note in passing that Eq. (4-10) is the equation of a
rectangular hyperbola in an wmy vs. k. plot.

In Fig. 18a we have illustrated some of the magnifica-

tions associated with the same choice of image and pupil
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b)

Fig. 18 a) Distribution of magnifications.
Conjugate line and associated conjugate points
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magnifications as in Fig. 17. Figure 18b illustrates how a
conjugate line defines the images of a given point in different
spaces, each associated with one magnification.
From Eqs. (4-5), (4-6) we may derive the relationships
between two points conjugate to each other. By substituting

these values into Eq. (4-1) we obtain,

-t .i, 2,
= —— = = , (4-11)
k_.(z’ X W) t&’)WI
or alternatively,
_ z s
i, = ~ — — - — . (4"12)
k-(ExW) |2, w?

These two expressions give the conjugate point of a

given point as imaged into a given line.

The Cardinal Points

With the aid of these last two equations we may find the
representation of the cardinal points.

The front focal point 2 is conjugate with the point at
infinity in image space. In other words, we must have 2’= <
in Eq. (4-12); this implies that 3. x W' =0 , i.e., 2 is

parallel to w’,

To determine the constant of proportionality a’, we take

the cross product of W with 2¢ , and using Eq. (3-11), we

obtain

5': = -‘W’/i- (""-13)
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Similarly the rear focal point 32} is the conjugate of
the point at infinity in object space. In order to have X = o
in Eq. (4-11), we must have 3% x W=20 ,i.e. E’F must be

—

parallel to W,

Taking the appropiate cross-product, we have
2 = W/ (4=14)

We see from these expressions that the focal point
vectors are parallel to the object and image line vectors. On

the other hand each vector lies in its corresponding line:
TexW = UexW = k,

and this provides us with the geometrical construction described
by Delano: to locate the focal points of a system we draw a
- parallel line to the object and image lines through the origin;
where these conjugate lines cross the object and image lines,
they define the front and rear focal points respectively; see
Fig. 17.

We may now use the two vectors i; and '3; as the basis
for any other vector in object or image space. A vector on the

object line may be thus expressed as
S = a2p + b3 = —aW/F + bW/E,
Again, the constants of: proportionality a, b may be

calculated by appropiate cross-products, and by taking into

account Egs. (4-2), (4-3); the result is
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2 = 2 + (/my) 24, (4-15)
and the conjugate of this vector in image space is given by

Y2 wmrZ o= w3 + 32 (4-16)

by

We see then that, with the aid of the magnification, any vector
or its conjugate may be expressed as a linear combination of the

vectors 2g, 2¢ .

The principal points are defined by wmy =1 ,
- - - = W' - W
2, = 2, = 2p + 2 = s ’ (4-17)

but this is the same point as the intersection of the lines
W, W’, as may be seen by comparing the last member of Eq. (4-17)
with Eq. (3-15). 1In other words, both principal points are rep-
resented by the point representing the surface of refraction but
2p is located on the object line and 5’? is located on the
image line; see Fig. 17.

The other set of cardinal points, the nodal points 3”,

2% , is defined by myr= R = n/n’ the ratio of the indices of

refraction in object and image spaces. Thus

2y = 2 + (MYn) 2%
Efy = (‘7‘/"’) 2 + 2F

We shall also find use for the set of points defined by
My = -}, which are called by some authors (e.g., Chrétien, 1958,

p. 58) the "antiprincipal" points
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These points become important when we wish to express the proper-

ties of the system independently of the choice of the positions

of the stop or of the object.

these points for a single surface with

Fig. 19 shows the location of all

R.=0.75 ; the rest of

the points and lines in this figure will be described shortly.

Y/

P
I2a
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I . ~
2w, 7
E’ 4
™ -~ rd
~ g \2_' / P P4
EX
2
E

2,
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- oA Y

2e A
W 4
Fa)
——
/ ¥
Fig. 19. Cardinal points and associated lines

When two lines are parallel to each other, say W'= oW

we see from Eq. (3-11) that the power is zero and therefore, the

focal points as well as the rest of the cardinal points no longer
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have any meaning. The conjugate lines however, still exist and
define conjugate planes, by cutting the parallel lines at the
same angle. Therefore, the magnification remains finite, and by

using Eq. (4-2) we may see that
my = l/d = const;
this corresponds to an afocal system, and we see that in this

case, the magnification remains constant throughout the diagram.

Conjugate Planes

Remembering that in the 313 diagram, reduced separa-
tions are represented by areas, and that these may be calculated
more easily with the determinant notation introduced in the last
chapter, we proceed now to calculate the distances between the
principal planes and the conjugate planes defined by a given
magnification ™. ; these planes are represented by 2, and the
conjugate points 2,2’ given by Eqs. (4-17) and (4-15), (4-16),
respectively. We have then, as a function of the magnifications,

in object space:

) = |5, 3] = 4220, e

where we have used the expressions,

| 25 26| = ~t/Z
s 2l ’ (4-19)
i EP’-‘E'F\ = +‘/§1

easily verified by direct substitution of Egs. (4-13), (4-14)

into Eq. (4=-17).
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Similarly, in image space the separation of point

from the principal point is given by

l~mr

T (me) = | 3,2 = =

(4-20)

We may apply these expressions to calculate the relative
distances between the cardinal points.

From Eqs. (4-15), (4-16), and (4-8), we see that the
conjugate line for m; =t o passes through the front focal
point 3;, and the conjugate line for mr= 0 goes through the
rear focal point 2% . Therefore, the front focal length f may

be obtained from Eq. (4-18) as
T(oo) = )‘K:f/n = -i1/& = —)f'(/?;
and the rear focal length f’, from Eq. (4-20) as

7’(o) = Wy'ln = /2 = Hle;

in other words,

§F = —nle,

§= e,
In a similar manner, the distances from the principal points to

the nodal points ( m+ = R = n/n’ ) will be given by

)'Kl,y/’l = T(&)
Wty /»

)K(n—n?f/nﬂ

T(R) = W (n-=n)f/mn;

I
L

or, in other words,

LAy = § + 57
Ly = § +¢&
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The separations of the antiprincipal points, are likewise
obtained when we set m; = -1 in Eqs. (4-18), (4-20); the result
is
e

2f
Ly = 24?

Any other relation between conjugate planes, such as
Newton's formula or the thin lens formula, for example, mav be
easily derived with the aid of the above or similar expressions.
In Newton's expression, the conjugate planes are meassured from

the focal planes, thus in this case:

Wrin = |22 = 1/mrE,

Kafw = | 36,2 = -mr/F

and multiplying these two expressions, we get Newton's formula:

S S P s A

nn’ nn?

Another useful problem we may solve with these concepts
is the following. In the situation depicted in Fig. 20 we wish
to find an expression for a point Z determined by the conjugate
line of magnification ™7 and any other line \;. The resulting
expression will be used in a later chapter.

We see from the figure that
i:mg’ = odmyr 2, (4_21)

where & 1is a proportionality factor to be determined. Remem-

bering Eq. (4-16) we may write

~

-, ‘,
2 = dmp B + A 2%,
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)

Fig. 20. Intersection of
a conjugate line and an arbitrary line

~)

Taking the cross product with the line W,

-0 My (;1)(;/‘) + d(u?,xw‘) %

EXW = L
X = =

and evaluating the cross products we get for the proportionality

factor

= —— —; (-22)

on the other hand,

61
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- - - m E: + W
22 = My 2% + 2’;: = LS ‘; L. (L‘-ZB)

Substituting Eqs. (4-22), (4-23) into Eq. (4-21) we finally get

W, - My Wa.

% = ~ - ~
\W, W] = mr (W, Wl (4-24)

Angle of Incidence at a Surface

In the most general case, the situation depicted in Fig.
19 represents a single refracting surface when m#n’ , As
remarked earlier, different systems will result according to the
choice of the indices of refraction. When m=n’, Fig. 19 rep-
resents a thin lens, for example. Even in the most general case
we can think of Fig. 19 as representing a whole system of many
elements, but restricting our attention only to the first and last
spaces, the object and image space, respectively. 1In this case
then, we may think of the whole system as an "equivalent" surface
or thin lens.

In the general case of a surface we wish now to find the
representation of the reduced angle of incidence, which by Snell's
law we know is an invariant upon refraction; its value, for both
the marginal and chief rays, will be needed to evaluate the third
order aberration coefficients in a subsequent chapter. From the
equation of refraction (3-5), and remembering the definition of
the power £, we may write,

W = W o+ mcE/M - wcE/NH,
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where C 1is the curvature of the surface in question. From here
we see that the quantity

T=W+cwI/H = W+ enS/n,

is an invariant on refraction and represents the reduced angle of

incidence appropiately scaled by the Lagrange invariant:
I = (ni/W,n/n) (4-25)

By introducing R=m{n’, the ratio of the refractive
indices, also called the '"'refractance," and using again the defi-
nition of £ (Appendix A) and the equation of refraction (3-5),

we may express the refraction invariant as

T= RW -w (4=26)
R -1

-

This vector, being a linear combination of W vectors,
will be represented by a line in the 3-5 diagram and by a point
in the . -0 diagram.

The cross products of this line vector with the focal

vectors are

~

— ke /(R-1)
RR/(R=1)

g X I

ads

N}
al}
[

E X
which appropiately combined give
(R =, +3)xZ = 2y xI =0.

On the other hand

(Be +232)xI = 3, xI = k.



——

In other words, the line representing I passes through the
point of refraction %, and i; parallel to the conjugate line
defining the nodal points of the surface. See Fig. 19.

We see that, if the line T is parallel to the Yy -axis,
the pupils coincide with the nodal points, and because the

component of I vanishes, the chief ray does not get refracted.

The power for such a surface is given by

- BF

which leads to a radius of curvature ¥ = —E/E. This surface

has its center of curvature located at the stop.

The contribution of this type of surface to the coeffi-
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cients of coma, astigmatism, distortion, and transverse chromatic

aberration is zero.

When 7 is parallel to the Y -axis, the nodal points

coincide with the object and image, both located at the center of

curvature of the surface of refraction; the marginal ray does not

get deviated in this case, and the power of such a surface is

given by

= (R_"_‘) w
¥ R J
which gives a radius of curvature = -y /u .
And for this type of surface, the contributions to the

coefficients of spherical aberration, coma, and longitudinal

chromatic aberration, vanish,
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Aplanatic Points of a Surface

Another quantity necessary for the computation of third

order aberration coefficients is the vector whose components are

given by
A(E)z_@_’_i—. w .«
n m? n m*? 71"’
ALy = o o @ @
n n’ m n? mt

= (4=-27)

which we call the "aplanatic line," and which is represented by
a line in the :5-5 diagram and by a point in the N -n diagram.

By taking the cross product of this line with the focal
vectors we get

e

2, X - %/n,

kR /m*.

>y >}
)

-y

2 x

By combining these two expressions we see that
(R-lgp'f'é;)xz = 0.
In other words, the vector A is represented by a line parallel
to the conjugate line of magnification m, = R,
The two conjugate points Za ,15& » defined by the
conjugate line of magnification wm; = R* and the object and

image lines, respectively, are the aplanatic points of the sur-

face. Their values are given by
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.'2.0. = 3; -+ (‘ /R,!) E,F
2;. = R,‘ Zg + 2

The aplanatic points are separated from the principal

points by

‘i;,;d|==%¥(l +“ll)y,
[, 82| = 21+ 2) s

where ¥ , is the radius of curvature of the surface.

The aplanatic line crosses the object and image lines at

the points
- W“Z - 22\ =
2y = —=——= 2 + (/R +n7)Z2
(LY IW,A\ F ( ) F
o= DWW (rrom) Ee o+ 3L
(&, w?]

which are not conjugate to each other. The separation of these

points from the aplanatic points are given by
|2a, 3| = - WKn'g/n,
‘ig_’, 5&‘ = + ){'('Yl"j’/”,.
The position of this line\and points is illustrated in Fig. 19.
When Z is parallel to the Yy -axis, the object and
image coincide with the aplanatic points; in such a case the
surface is called "aplanatic," and it is free of spherical

aberration, coma and astigmatism. The power of such a surface is

given by
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_ Rl w

which gives a radius of curvature

Y = —RyY = -9 .

(+R)w (+r) w

Location of Real Pupils and Real Images

We shall give now an analytical criterion to decide if a
given line when crossing either of the two coordinate axes
produces a real or a virtual image or pupil. We know that every
time a segment of a 'W line comprised between two successive EY
points (what we have previously defined as a light-segment),
crosses the Y -axis, the chief ray is crossing the optical axis;
in other words, we have a physical stop or a real image of it
located between the two surfaces represented by the ¥ vectors.
When it is the extension of the light-segment that crosses the
y -axis we have a "virtual'" stop or pupil, a conjugate to the
actual physical aperture.

Similarly, if the light-segment crosses the ¥Y-axis we
know that the marginal ray is crossing the optical axis and we
have a real image, in the sense that we can actually put a screen
there. If on the other hand, it is the extension of the light-
segment that crosses the y-axis, we have a virtual image, which

is conjugate to the real image.
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Geometrically, we can see by inspection of the diagram
where these crossings occur, and the problem of determining the
location of stops or real images is trivial. Numericaily, how-
ever, this problem is not trivial: When we try to do this in a
computer program without recourse to the graph, for example, it
is not obvious what sort of decision we must make, based on the
values of the coordinates of the points, to say with precision
that we have stops between surfaces 2 and 3, and between 4 and 5,
(see Fig. 21); or that we have a real image between surfaces 3

and 4 as well as at O and 0'.

3/

w2 )

Fig. 21. Location of real pupils and images

For cases such as this it is convenient to express the

vectors ¥ in some parametric form that will show unmistakably
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that such a point lies within a light-segment or outside. The
following representation (Zwikker, 1950, p. 33), has been found
useful. Consider the line defined by the vectors 3;_‘ y 2 H
then any other vector along that line may be represented as a
function of a parameter g; by the equation

2 = 2 ¥ EA (4-29)
! + s¢

When sS;=0, then 2 = 2,,, and when S;=«® , then 2 = 2; . We
see then that only non-negative values of §; represent points
located within the light-segment defined by 2. and 3. This
is a very useful parametric representaticn for our purposes,
since only the values of % within the light-segment have a
physical meaning in the Y-y diagram.

Applying this formula to the location of the stops of the
system, we see that we have a stop or a real image of it every
time Y= 0 ; this leads to the following criterion to test

whether a stop exists between surfaces 2~ and 2
si= ~3/8c 20 (4-30)
and the size of such an aperture is given by

y = ot T NE (4-31)

I + 8¢

The distances of this stop from surfaces 5}" and =, are

given by

Ti-n,s = ]fji-u!js\ = ‘3:3"-',
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TS,A’ = |HS, HL\ = Y gi,

respectively. We may use this test for each of the spaces in
turn to find the location and size of the stop and its real
images (pupils), if any; if the test fails we have a virtual
pupil. Of course, if either gb‘z 0 or ygy,=0, the test is
unnecessary as the answer is obvious.

Similarly, the same parametric form, Eq. (4-29), may be
used to test whether a real or a virtual image is formed between
two given surfaces. In this case, as y= 0 for an image, a

real image will be located between surfaces 2., and 2, if
Si= —Yu/9 2 0 (4-32)

and its size will be given by

-— JTI'-, +~ S EL' -
{ + 3¢
The reduced distances of this image from surfaces 5;, and 5}

will be given by

T‘.": r = |3“-'J Hzl = H‘LI 31' N

Trz,i = \Yz, 4| = -4 4z,

respectively. If the test fails, we have a virtual image instead.

Shifts of the Stop or the Object

Delano in his paper shows that a shift of the stop of the
system or a change of the position of the object, reflects itself

as a shear of all the points and lines of the diagram with
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respect to7one'of theicoordinete axesoi:We‘derivevthe same result
in tﬁis-sectien:in a~differeﬁtvmannervwhich'ﬁill yiéld'QS’fhe.
transformationtto be applied te'the vectors'in:the“diaéram te
accomplish a given shift. "We base our derivation'en the-idea'
thet a shift meansressentielly a.change in the magﬁifieation
elther of the puplls or of the conaugatesa We reeegnize that
these shifts must be made-in such a manner that the Lagrange in~-
_varlant is conserved in value. |

| By;loekiﬁg'back et Fig. 18,.we.see that thebstop df.that :
: system is located on the line iv end'therefore'it coincides with
the entrance pupil. The magnificatipn between-the-pupils is "’
given by 1ﬁe,'which corresponds to theISIOPe Of'the \y—éxiso It
is clear that if we ehange_the-position of thelstop we are in
effectrchOOSing:another mégnificatibn for?the pepils Qithout.
otherﬁise aiteringithe'diagramo' But if we choose another value
of wmg, thls is the same as changlng the slope of the Q=axis
elthout altering the role of the ‘5~ax1s° For example, 1f we
chobsejas the new:value of the'pupilrmagniflcat;on ,ms:= 10086;»
say, instead of the value adopted in Fig;i18,'the'new y'-axis,
"i;eo,tﬁe cenjugate iipe with the newvmagnificetion.‘mé,'ﬁiii;be

inclined 75° with respect to the.kgeaxis instead of being perpen-

dicular to it. .The |§-axis'itSe1f has'not'changedtetvali, as-the -

m&gnificatibn associated with it is?independent of,thisbhange° ’
However, as may be apprec1ated in the Flgo 22 the new- dlagram
is 1dent1cal to that in Fig. 18 excegt that now it is referred to:

an obllque set of axes 1nstead of the ormglnal orthogonal orie,



Fig. 22 Choice of a new pupil magnification

Y /

Fig. 23 Choice of a new object magnification

72
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In order to:reérthbgoﬁalizé.the axes Qé'have°fo'Vsheaf“ the.
whole.sethqf péints'and iines; iﬁ:this case to the left; whiéh -
means that we aﬁe going'to chénée.by tﬁis'opérafioﬁ, only.the'gﬂ
Valuesg the marginal heighfs femaining the same és'befofén :This
makes sense, beécause after all, we are-éniy changing thevheigﬁts
. of the chief ray that-must noﬁ cross tﬁé optical axis at ‘the
rposiiion‘of the new stop;, | . U

| An.entirely'similarisitﬁation oécurS'if we;decide to
change the position of the image,(or objéct);'this implies-a
different choice for the objéct magnification; and therefore the
choice'ofva hew conjugate line;fbr_tﬁe J-—axiso Again the new
system would bé‘reférred to an oblique set of axes, as 3ictufed'V'
inFig.,'Z..j9 which rgprésentﬁ-a éhange from the originalvdiagfam;‘
in figo 18. To reofthogoﬁéliée the setfof axes we sheér thg- |
~whole diagfam downwé;i'ds9 which'oply'affects the Y heights as
the chiefafay.heights remain the same; we havé only chaﬁgédfthe
origin-of the marginal ray; and the chief ray,continﬁes to'definé
‘the position of the stop fhat has.been ieft unchanggd‘by this |
operationo‘ 7 | | |

In eithér:case, thé Siie of the stop or of thg image'will  .

 chaﬁge acﬁordingiy;-in order to §réser§é the,ﬁumgricalvvalué of.
rfhe Lagrénge.iﬁvariént asrwé.shalliSééuéhortlio |
In order tb,deri#eﬂthé:aléebraic expressionsvfor_thev
shifts, note that thekmdst»geﬁgral tranéformatioﬁ between a- 
point % ‘on thé,lighf-rai E;vaﬁd a point é; on the line 'W;,

may be written as»follows: ‘f#bm the equality,
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- -

2xW = 22x W = k,

and by adding to both sides the product Wx 2 s We may write
WxAE = 'x AW ; (4-34)

or in determinant form,
lw,a%| = |3, AW]. (4-35)

This is the most general transformation from a plane in one space
to another plane in a different space. The cases of refraction
and transfer may be recognized as special cases: when A= = 0,
we have a refraction, i.e., a change of value of the vector QV;
when A_\‘7= 0 , we have a transfer.

However, this equation is also satisfied when AZ and
AW are both real or both pure imaginary vectors, as may be
easily verified by inserting A2 = AT and AW* = AW ,
into Eq. (4-35).

Now, when AT and AW are real, this means that A3 is
parallel to the §-axis ( Ay =0), and AW is parallel to the
O -axis ( AL =0), in their respective diagrams; this obviously
corresponds to a shift of the stop, according to our previous
remarks at the beginning of this section. When this is the case,

Eq. (4-35) reduces to

_Q_Ag = 3’ AL

or in other words:



AY = AR S = const.
y’ -n

75

(4-36)

The value of the constant may be determined directly from Fig. 24,

&
<y

Fig. 2h4. Stop shift

E = tad = y/A35

where k' is the slope of the new y-axis. Thus, Eq. (4-36)
reads

—_— —

Y eR

Ay AL i/k: o -

This transformation may be written in matrix form:
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-~ ‘y, I "/h” 3— -~
3 = = = S2; (4-37)
y’ 0 | Y

—

and similarly for the W vectors,
W= SW (4-38)

Note that lSl = | , i.e., the matrix 8 is unimodular, and
accordingly1. the values of the cross-products between vectors 2
and/or W do not change under this transformation; in other
words, the separations 7 and the powers £ remain invariant
under stop shift. The dot products, however, do change and
therefore the angles between the lines will change.

As seen from the form of the matrix S the only parame-
ter necessary to carry out the stop-shift transformation is the
slope K of the new Yy-axis; this may be specified in a variety
of ways, we may want to pass the new Yy -axis through some given
point or we may want it parallel to a certain line, or we may
wish to have a specific new value of the pupil magnification in
which case we obtain k from Eq. (4-8). Or we may wish to place

the stop before surface 2; in which case we must use as new

y -axis the conjugate line passing throught the point defined by
/
-53 = sd - TS- Wd

1. It may easily be proven that if two vectors E,E obey
the transformation a’=AS4 , 6'=Ab , where A is the transforma-
tion matrix, then '&’xF’:]Rl(Ex ) , where |A| is the determinant
of matrix A . (See Goldstein 1953, p. 130.)
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where 7 EJ‘},gsl. is the distance between the desired stop and
the surface 55 . Similarly, if the stop is to be located at a
distance 7s after the surface §f. the corresponding equation for
2; is

e, )

23 = EJ. + TJ- %'.“ -

Ve wish to emphasize that although the matrix S is of
the same type as the matrices for refraction and transfer, its
role is quite different: while a refraction or a transfer matrix
only involve two vectors at a time, the matrix S must be applied
to all 2 and _\A7 vectors of the diagram when carrying out a stop-
shift. In other words, it is a transformation for the whole plane.
It is instructive to see how a given line with a refer-
ence point on it is changed by a stop-shift transformation. We
notice first of all that the change Ay 1is proportional to the
Yy -height of the reference point in question; therefore, the
points along the Y -axis, for which Yy=0, do not change at all.
Secondly, if we denote by ky, kw the slopes of the line

before and after shifting, it is easy to show that
w = ke - 'K
where k is again the slope of the new Y-axis. Thirdly, the

height of the new pupil will be given by

32 = (Kv/k) ge.
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25 Effect of a stop shift on a single line

(Primes represent values after the shift).

Fig.
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As the line Wb. after transformation, must pass through the new
point 2’ and through the same image point as before the shift, we
may see that, after reorthogonalizing the axes, the net effect on
the line is to tilt it using its intersection with the 3% -axis as
a pivot. This is illustrated in Fig. 25.

In a completely similar manner, when AT and AW in
Eq. (4-34) are pure imaginary, means that they are parallel to
the ordinate axis ( AJ = AfL = 0 ) in their respective diagrams;

this then, corresponds to an object shift and in this case Eq.

(4-35) reduces to

N oy = 5o,

Y,9°/

Fig. 26. Conjugate shift
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which may be written as

Ay  AQ

= cons?,

a?

9 a
Again, the value of the constant may be easily determined from
Fig. 26,

E’ = Zan ¥ =

cqu

where k' stands for the slope of the new y-axis. This transfor-

mation may also be expressed in matrix form,

_ = i o g —
g =)< _ ( )ESE, (4-39)
y -8

and

W= Sw ; \Ei= . (4-40)

The same remarks expressed about the matrix S apply to matrix

,S‘ and the same choices exist for the value of k as was the
case for kK. The separations 7 and the powers £ remain invari-
ant under this transformation also, and the matrix Sr must be
applied to all the Z and [ vectors of the diagram to effect

an object shift.

Regarding the transformation of a line due to an object
shift, we note that the change AY is proportional to the
3'-height of the reference point on the line, and therefore, the
points along the Yy-axis (§=0) do not change. In this case,
the slope of the line after the shift is given by

it

= ky -k
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(m\

Fig. 27 Effect of a conjugate shift on a
single line. (Primes represent values after the shift)
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bt ]
where k is the slope of the new y-axis. The object shift
defines a new value for the object height, in order to preserve

the numerical value of the Lagrange invariant, which is given by
—_ ’ -—
Yo = (kw/kw) Yo -

We may conclude, as in the case of the stop shift, that
the net effect of an object shift on a line after reorthogonal-
ization of the axes is to tilt it using as a pivot its intersec-
tion with the Yy -axis, as illustrated in Fig. 27.

Both figures 25 and 27, suggest a geometrical construc-
tion to find the position of the new point ' after either shift.
Taking for example Fig. 25, we draw first the new yLaxis and a
parallel to it though the point 2 ; this line crosses the y -axis
at point A, and determines the new value J’; we now trace a
parallel line to the original Y -axis through A, and where this
line crosses a corresponding parallel line to the fixed \?-axis,
through the original point 3, defines the new point 2’. A siﬁ-
ilar construction on Fig. 27 yields the new point 2’ after an
object shift.

We may of course carry out the two shifts at the same

time, by application of the two transformations in succession,

T = 5S3
W o= SSW

but note that the two operations are not commutative, as

obviously
S8 # S8S.
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This is also clear from thé fact that once one of the shifts is
made, all the points are different (sheared from their original
positions) and any conjugate line to be chosen as new axis for
the next shift will be determined by these new points rather than
by the original ones.

However, it would be interesting to know under what
circumstances the product S8 is indeed commutative. To that
effect we may compute the quantity SS —E,S » and see under

what conditions it vanishes. We get

- /R 0
SS -8§ = .
0 ~¥/k

We see from this expression that in order for S and 3
to be commutative, we must have Z%/kf = 0., This is fulfilled
by three cases: (a) =0,k #0, i.e., stop shift alone;
(b) Eﬁ. arbitrary, k' = % , i.e., conjugate shift alone; and (c)
k'=0, R'= o0 , i.e., no shifts at all.

In other words, for non-trivial cases, the product of S
and EF is always noncommutative. Therefore, when carrying out
two shifts simultaneously, we must be careful of the order

followed because, depending on this order, two entirely different

systems will be obtained after two two shifts.

Vignetting

As mentioned by Delano in his paper, the ‘5—5' diagram

seems to be ideally suited to portray the effects of constraints
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on the system in a very clear manner. The vignetting, or limita-
tion of the bundle of rays going through the system, imposed by
any other aperture than the stop is a good example. Vignetting
diminishes the amount of energy eventually reaching the image
plane, and most of the time is caused by the lenses having a
smaller diameter thaﬁ required to pass all the rays coming from
the object and limited in a prescribed manner by the stop of the
system.

To avoid vignetting, every surface contained in the

system must have a minimum radius given by

Ci Z 135l + |4l (4-41)
Stop 2,
A
O\b-;l'u.l axie
0 I
X
V..
2 3
N
3 _y._.
]
Y Ny _

Fig. 28. Derivation of the
minimum clear aperture of a surface
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This may be seen clearly from Fig. 28, where we have restricted
ourselves to the case of the bundle of rays coming from an object
O and striking the first surface. Obviously the two triangles
J OAB and A0'A’B are similar and 0°4’= 4 , leading to a
minimum value of e as the sum of Y and ‘y at the surface; as
this holds true for negative values of Yy , y (as in the figure),
as well as for positive ones, we must use the absolute values as
indicated by Eq. (4-41).

The representation of this equation in the y-3 diagram,
as may be seen in Fig. 29, consists of a 450 straight line in
each of the four quadrants; in general, the value of‘e will be
different for each quadrant (as shown) and will be given by the
particular set of (Y ,Y ) chosen to define it.

Taking in general the case of the first quadrant, we see
that a line passing throught the point 5', and with slope
kf = ~| , represents the minimum radius that the corresponding
surface must have in order to avoid vignetting. This, what we
may call "construction" radius, determining the clear aperture
of the surface, should not be confused with the radius of curva-
ture of the same surface. If a system of several surfaces (or
lenses) must be mounted inside a tube of a given diameter D, as
is the case of a relay system, then the @ values in all quad-
rants must be the same and the graph showing this constraint is
a quadrangle as illustrated in Fig. 30. This means that any
point (representing a possible surface) located outside the

quadrangle will produce vignetting, as its minimum radius e
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Y /

(¢

Cx

Fig. 29 Geometrical representation of
the relation e = 15| + 1yl in each quadrant

Y
---f----

Fig. 30 Example of a relay system
enclosed in a tube of diameter $;=2e
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for the clear aperture exceeds the value given by the tube. For
example in Fig. 30, surface No. 4 will introduce vignetting as
Cs = l59| + |44] > p-

The more relaxed conditions

e > 13l = lyl, (h-b2)

e =z vl 2 |3l,
which indicate that some vignetting is allowable, to the extent
that both marginal and chief rays barely get through, is depicted
in Fig. 30 by dotted lines.

The actual vignetting diagram, in other words, the shape
of the beam of light that passes through the optical system from
an object point off the axis, may be contructed directly with
data from the y-Y diagram. The vignetting diagram is shown on
Fig. 32, but to arrive at it geometrically, we draw first an
auxiliary diagram shown on Fig. 31. This auxiliary diagram is
the actual lay-out of the system in either object or image'space;
we have chosen object space for Fig. 31. We first continue the
object light-segment and locate on the object line the images of
all other points in the diagram by appropiate conjugate lines; in
Fig. 31 we have located £, the image of the stop and 8’ the
image of point B . Analytically, the coordinates of the image of
any point % on the line W, (object line) are given by Eq. (4-=12)

which takes the form

3 =

= . (b-b3)

2 z
Ex-&) lf,w,(

Re(
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AN

Fig. 31 a) Two-element system. b) Auxiliary
diagram for the construction of vignetting diagram

0 E 3 Optical axis
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We now begin to trace our auxiliary diagram by noting that
the actual separations of the planes along the optical axis, are
proportional to the separations of the points along the W} line
in the 3—5’ diagram; we may actually draw them equal without
loss of generality. We now trace in the auxiliary diagram (Fig.
31-b) the marginal and chief rays, in the usual manner. The
chief ray crosses the planes A and B at §a, 4z , respectively;
and the marginal ray crosses the same planes at Yp, Yz .

We now project the points A and 3 into the entrance
pupil, using as projection center the point Y, ; this produces
the points Ch, Cg which represent the locations of the images
of the centers of surfaces A, B in the entrance pupil plane. If
we take Cg =0, C4 and Cz are the actual displacements of
these centers. We now mark off on the planes A, B’ the actual
clear apertures of the surfaces A, 8’, which we shall denote by
CA,p , CA{ . Note that we must use the size of these apertures in
object space, in other words, they will be given, in terms of the

physical size by an expression similar to Eq. (4-43); for example:

CAg = CAa . (b=44)

122, W,

We then project the points ( CAa,CA3 ) onto the entrance
pupil plane, using as center of projection the point 0 ; this
produces the points Ra, Rz , which are the actual radii of the
surfaces projected on the entrance pupil plane.

We may now draw the vignetting diagram as shown in Fig.

32. We first choose a center Cg and draw a circle with radius



Fig. 3
. 32 i
Vignetting dia
gram
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Reg = Yye 3 we then mark the centers Cp , Cj3 as obtained on Fig.
31-b and with these centers draw circles of radii Ra, Rz, respec-
tively. The resulting clear part of the original circle of radius
Re is the unobstructed part of the entrance pupil through which
light is entering into the system.

From the geometry of Fig. 31-b we may deduce expressions
for the location of the center and the radius of the circle of
any surface as projected on the entrance pupil plane. Using the
point A as an example, and by using the triangles A4(A,E,ca) and

4(0,A,5,) » we may see that

Co = (=3o/Ta) 72 = —(8a/4n) Ye,
where

TA = 'H%yﬁl = "5°5A;

Te = ‘35,3&\ = — Yy Ye-

By using the triangles 4(0,CA,,A) and A4(0,E,Ra) , we may see

that
CA,

lyn’kﬂs\-

ﬁ':

If we have done it with point B’ we would have used primed
quantities to emphasize that we are dealing with images of the
surfaces in object space, but using Eqs. (4-43), (4-L4) we see

that
CA3p
R = 9 =
3 ] \9el

CAs
[ 9l

lﬂsl,
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Fig. 33

€s
CAp ¢~ ~-~
> >— ‘Maﬂna[ ey
Ja Je
rd CA
/
’,
rd
e
E Oy?\'(al axds

a) Case of the object at
infinity. ©b) Corresponding auxiliary diagram
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because the factor \53, iZ\ is common to both. Therefore, we
may use the original heights and clear apertures of the system to
obtain Cs, Ry 1in order to trace the vignetting diagram.

Summarizing, from the 5-3' diagram we derive the radius
of the pupil,

Re = lﬁs‘ = \ l/jiJ R

and for each surface i; , We locate the center above (or below)

Ce , by
S = ~(33/94) ge s
and the radius of the circle by

CAJ
4

Ry = Ye | *

where CAj 1is the actual radius of the surface ;}.
In the special case of the object located at infinity,

the auxiliary diagram is simpler, as shown in Fig. 33.

Conclusion
We conclude this chapter by pointing out that to derive
the properties of an optical system represented in the diagram by
a set of points, it is convenient to set up the reduction in some
tabular form that will facilitate the numerical computations and
at the same time will be easy to check. Such a scheme is de-
scribed by Shack (1972). It replaces the conventional ray-

tracing tables described for example by Hopkins and Hanau (1962).



CHAPTER 5
NORMALIZATION OF THE “y-J DIAGRAM

;: In:many pfactical applications bf this diagrém it;is
,ébnvenient to work with normalized quantities'of some sorfw vA SR
normalized diagraﬁ_éermits a,sepafation of.speqific,ﬁroperties
from general ones. - It is independent of thg entrance puéil and
iﬁage;heights (which might be quite dissimilar,:és.in Cassegrain
4sy§£ems), producing é diagram that‘iS'easiér to work with. It
also facilitates the énalytical»treatmeht of the diagraﬁ; The
‘results obtained byfusing a normalized diagram aré applicéble;to-.
aréreafer number of optical sysﬁems by,simply changing the nérma;_
izéfion factors. 'A'normalized diagram aléo:alloWs aAfair | |
cbﬁpafison’of Sevéral sysfems of widely different paraﬁéfersa.'

| This‘qhapter presents é particular normalization that has”
_béenfoundbvery useful in pra§ti§e° rThe_normalization féctors
for éeparaﬁions,-powefs,,and "reduced"'anglés_afe dgrivéd, and
they éré éXp;esSed in’termé of such‘syStem ?aramétérs:és fdcéi'
'1§ng£ﬁ fieid éﬁgle,-andrf-numberq In addifion,;thefeffééts of*
. fefractiohsiand'transfers areﬁinvestigate& as wéll as ofAconju-'

Agate and stop shifts on an already normalized system.

The Normélizaﬁion,Factors,-,"
“',-We;shallﬁuSe'asrnorﬁalizgtion;quantiti§s tﬁe;eﬁtra#cer-
pupil height and the height of the image. See Fig. 34.

. v , _ , _ o , _ e v
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Fig. 34. Definition of normalization variables

Specifically, we divide all marginal ray heights by the

entrance pupil height Yg , and divide all the chief ray heights

by the image height Yr .

As a result of this normalization, we shall see that the

reduced distances are divided by a quantity proportional to the

focal length of the system, the reduced angles for the marginal

ray by the numerical aperture, the reduced angle for the chief

ray by the field angle, and the powers of the components by the

power of the system. In other words,

complete.,

the normalization is
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Using a circumflex (* ) over a letter to denote its

normalized value, we may write:

3 = H/HE,
S - (5-1)
4 = 3/¥z,
and by definition
e = Jz = I, (5-2)

If we substitute the values (5-1) in the equations for
the quantities derivable from the Y-J diagram, (Appendix A), we
get the normalization factors as follows:

For the reduced distances
Iy = 7. Y2 3r. (5-3)
For the reduced angles

Npo= Nif Tz, (5-4)

£ -—&1'/35 . (5-5)

And for the powers
£, = 2:[/(42352). (5-6)

It may also be noted that the Lagrange invariant relation

does not change in form:

A

Q= | (5-7)

ey

" 2
yLa-
Although in many instances it is quite possible to

specify the values of the normalizing quantities (the entrance

pupil height and the height of the image) and the Lagrange
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invariant, often it is more convenient to express the normaliza-

tion factors in terms of certain system parameters commonly used

to specify a given optical system. Such parameters are the power
(or focal length) of the system, its f-number, and the field

angle. We shall use the following nomenclature:

CF

power of the system

MI/P , focal length

“
"

= j-number or f-ratio of system

2%, , field angle

B> > X
n

= correction factor derivable from the
normalized diagram
We proceed to establish the values of the normalizing
factors in terms of these system parameters.
From the expression of the power at each surface, we may

see that the total power of the system is given by

F = £/ (Ye J2), (5-8)
where

£ o=+ 4,0, (5-9)
because j%lzl ’ iil = -] , as may be seen from the value of

the Lagrange invariant, Eq. (5-7), at the entrance pupil and at
the image, respectively. We see also that this factor, which
acts as a correction factor, and whose value may be derived
directly from the normalized diagram, will be unity when the
object is located at infinity (8L, =0 ), or when the system is

telecentric in image space ( . =0).
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Since £ is given by Eq. (5-8), the normalization fac-

tor for powers is
|/ (4 §z) = £/#, (5-10)

that is, proportional to the power of the system; and the nor-

malization factor for reduced distances is
Ye/dr = 2/ = HE p/nz, (5-11)
that is, proportional to the focal length of the system.

From the value of the Lagrange invariant at the entrance

pupil, we see that

Vye = B, = &, /K = mb/2K, (5-12)

or the normalization factor for the chief ray angles is propor-
tional to the field angle.
Similarly, from the value of the Lagrange invariant at

the image, we have
1/3; = -0 = —wz /N, (5-13)

which is the numerical aperture of the system (W, = nzuzr ),
This last normalization factor for the marginal ray angles may be
expressed in terms of the f-number of the system.

Let us define the Jf-number as

/VE j’ - Ny = Nr .
2Ye 2Y4e P 2ye W&’

or equivalently
nr

2N KE

(5-14)
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From Eq. (5-10) we have, by using Eq. (5-14),

G = ye = = "= . (5-15)
& 2HMEN

which is another expression for the numerical aperture, valid for
finite conjugates. The minus sign in Eq. (5-13) is on account of
the sign convention for angles adopted here, which is the same as
in analytic geometry.

Besides these normalization factors, the ratio y:/ye
is useful in calculations of clear apertures and obstructions.

Its value is easily derived from the above expressions:

Yz/9e = (m/nz) NI 2, (5-16)

We may also express the Lagrange invariant as a function
of the system parameters. By equating the values of from

Eqs. (5-14) and (5-12), we obtain

K= ndy/ow. (5-17)

Effects of Shifts on the Normalization

We may see by direct substitution of Eq. (5-1) in the
equations of paraxial ray tracing, Eqs. (2-3), (2-4), that these
expressions retain their form after the normalization. 1In other
words,

Ny, = o, - 5,‘55 , for refraction,

o)

v = Yo + Tin Lin, for transfer,
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and similar expressions for the chief ray. Therefore we conclude
that the normalization of the diagram is not affected by any
number of transfers and refractions that may occur between object
and image points.

However, the normalization will be upset if we make
either a stop shift (pupil shift) or a conjugate shift (object or
image shift). A stop shift will change the scale of the marginal
ray heights, defining a new entrance pupil height, and a conju-
gate shift will change the scale of the chief ray heights,
defining a new image height.

A new normalization must be carried out with the new
entrance pupil height or the new image height, according to
which shift was made, in order to keep a normalized diagram. The
normalizations factors will be changed accordingly.

Let us see first the effect of the stop or pupil shift.
We denote with a prime the new values after the stop shift.

The equations for a stop shift are given by
y,_"y——g/k’,) Il,=_f_L—.fL/k.”

. ., (5-18)
? - 3 0 =

>
o))

where k' is the slope of the new \yﬁaxis. Accordingly, the new

entrance pupil height is given by

)
S S (5-19)
n, k- 0

We recognize this equation as the intersection between

the new 3f-axis and the line W.. We see from here that, if
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k’= o© , we have the trivial case of no stop shift. But if

~

1, =0 , that is, when the object is at infinity, although there
is a shift of all points in the diagram, the line W, does not
change, and there is no change in the normalization.

The equations for the conjugate shift are

ﬁ, =j) _—Q-.’: i;
A R . N (5-20)
¥ =34 -ry, n'= n - kKN,

where k' is the slope of the new Y'-axis. Then, the new height of

the image is

5= = = — (5-21)

a, e, + 1

We recognize this equation as the intersection of the new
Y’-axis with the line W;. We also see that, if R =0 s there
will be no conjugate shift; but if i%z =0 , that is, if the
system is telecentric in image space, then although there will be
a shift given by Eq. (5-10), the value of _ﬁi will not change,
and therefore the normalization is not affected.

As a result of these operations, either Eq. (5-19) or Eq.
(5-21) will be different from unity —or perhaps both will be, if
a stop shift and a conjugate shift are performed simultaneously.
Therefore, we have to perform a new normalization using as normal-
izing quantities the values in Egs. (5-19) and (5-21).

If we carry out this second normalization in the same way

as was done before, Eqs. (5=1) through (5-6), we get new
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normalization factors that, expressed in terms of the original

values, look like the following:

For reduced distances and powers: (35 55)(91\§})

For reduced angles: 1/ (32 §£)

(/ (3¢ 3&)

where 5E,|§1 are the original normalizing quantities and
gg , ﬁi are given by Egqs. (5-19) and (5-21).

We may conclude by induction that, if several stop shifts
are performed in succesion, the original entrance pupil has to be
multiplied by corresponding factors to mantain a normalized

diagram:
Je —> YelYe Y2 427,

and similarly for the conjugate shifts:

e = :'n 'ﬁa
Jr —> §r 4; §7 9 -
where each of the new factors has an expression equivalent to

Eq. (5-19) or (5-21)

Summarx

Summarizing, we see that by dividing all marginal ray
heights by the entrance pupil height, and all chief ray heights
by the image height, the resulting normalization factors for the
quantities derivable from the diagram can be expressed in terms
of the system parameters (power ¢, or focal length\f’,\f-number

N, and field angle ¥ ); these factors become



103
For reduced distances,
Ti/ei = Ye3r = ES/ns,
which is seen to be proportional to the focal length

of the systen.

For chief ray reduced angles,

(&7"/(4_)" = ’/35 - 5, = ’n‘ﬂ/z,
which is proportional to the field angle.

For marginal ray reduced angles,

wi /O = V/§r = —wr = (-n_r/é)(’/z”),

which is proportional to the numerical aperture of
the system.

For the powers,
el pe = 1fued) = ¢/ 2,

which is proportional to the power of the system.

The factor .é = l-+.&,jiz is derivable from the normal-
ized diagram and will be equal to unity when the object is at
infinity or when the system is telecentric in image space.

These normalization factors are unaffected by any number
of refractions and transfers but have to be changed when a stop
shift or a conjugate shift is performed in the already normalized
diagram. Any shift and subsequent renormalization has the net

effect of changing the original entrance pupil height or the

height of the image, as the case may be, by
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Y —> Ye Y=,

?
I)

(€I

yr — 3z
where the expressions for g; and 3‘1’ are given by Egqs. (5-19)

and (5-21).



CHAPTER 6

TREATMENT OF A SINGLE LENSfELEMENT
IN THE y-5 DIAGRAM
The_simpleét'single element in the'g-@'-diagram'ié.a
.thin lens, or in a moré generalfsense; a surface;‘by.a,thin lens
we»underétand here a lens of strictly zero axiai thickﬁésso How-
ever, real oyticai systems do not consist of thin IEnsés, but  of
"thiék ones; or at”best of ﬁhat ﬁé shall call here’"narro&" lenses,
i.e. lenses with a thickness-small éomparéd to-their focal.length;
 In_this context then, the thickvlenS'is the simplest léné'élement 7
that wé‘have to deal with; there is an eiception to this though,
'as~mirrors,may be p@nsidered as thinllensés; |
Therefore, we shall loék»in fhis 6h§ptér at some of the
;ﬁroperties of thick lenses. Thisiapproach has_the édvaﬁtagerthét;
narrbw-lénses?.thinllenses,-single surfacesg aﬁd mirrors mayfbe
'éohsi&éféd’as-special ééses of fhe fhick iens, by the appropiate
.chdice of'thickﬁéss, shape factor and indices of refraction, |
~In the y-g diagrém, a typical thiék lens is represent- - -
. ed'by_thrée lines, representing in turn the thfeg spaces that~the:_
gfwoléurfaces of‘tﬁe thick lens deiimit; or converseiy, By two
. pointé represenfing the surfaces, cohnectingAthe objéct and imége *
':pqintso‘:SéefFige 35; the shaded'afeé-feéresénts the reduced
thiékheés bf-the lens, |

105 S
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o}
o

Fig. 35 A thick lens

It is clear that Fig. 35 does not uniquely represent a
thick lens, for if we keep the object and image lines fixed we
still have the freedom of choosing the position of the interme-
diate line Qﬂ. We shall show that if we move this line parallel
to itself we shall have lenses of varying thicknesses but of
constant ratio of the curvatures of the surfaces. This is illus-
trated in the diagrams of the left-hand side of Fig. 36. On the
other hand, if we keep the thickness constant and vary the shape
of the lens (bending) we get the series of diagrams shown on the
right-hand side of Fig. 36. Of course, the most general change
will be a combination of these two changes. In all cases illus-~

trated on Fig. 36, although they represent different thick lenses,
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Fig. 36 Different thick lenses.
different thicknesses, same shape factor.
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all of them have the same first-order imaging properties as

the lens of Fig. 35; as these properties depend only on the rela-
tive positions of the object and image lines, which are the same
in all cases.

From these considerations it is clear that it is possible
to write down an expression for the vector W as a function of
the thickness and shape of the lens, and from it and the two other
line vectors we may derive the properties of the lens. These
expressions also allow the derivation of an algorithm to change at
will the thickness or the shape of a given lens; thus, we shall
solve the problem of bending a lens and thickening a previously

thin lens, for example. Because of its practical importance we

shall describe this algorithm in a separate chapter.

C:ﬂ

Fig. 37 Variation of the
shape factor line for a fixed thickness



:1’09:- |
: A‘very‘interestingjptopertyiof:therthicktlens arises from |
this analysis;as:we Shall.See'shontlyi ‘If we draw .in the same
dlagram all the p0551ble p051tlons of the 1ntermed1ate llne for a
.thick lens of fixed thlckrress9 we get the~graph shown in Fige 37,
We may see that all these intermediate - llnes, each representlng
Aone p0551ble space for the 1nter10r of ‘the thlck lens, envelope
a curveé however, it is not 1mmed1atelj obvious what:klnd of curve
this 1s, and its determlnatlon is compllcated by the fact that it
is defined by llnes and not by po:Lnts° This 1s-a case‘lnbwhlch
the dual of the H -y dlagramvbecomes usefnlg as_in'the n-a
diagram each line'willvbe transforned'into.a'point and the set Af”*
points will define a cur#e wnlch ls much easier to analyze. When
we have completed the analys1s 1n-the ll Jl dlagram; we may
eturn to the 3-3 dlagram by computlng the tangents of ‘the
p01ntecurve'1n the JlsIL dlagramoi These tangents will become -
points in. the 3 3 dlagram deflnlng ‘the . de51red cur\te°
o It-turns out,that the curve in’ the Y- 3 _dlagram is an’
ellipse° Each p01ntrof the elllpse represents a p0551ble bendlng_
lof the lens9 and thls elllpse is 1nscr1bed in the parallelogram
ldeflned by ‘the focal vectors and 1ts center is half way between
the‘orlgln ¢£ coordznates and'the'vector representing the'prlnc1?f_
pal p01nts of the lens as a wholeo‘ Anothersinterestlng feature'
_.is that 1f we change the thlckness of the lens weideflne a nee
elllpse;_but thls new ell;pseiwlll»also_be ;nsCrlbed in the same

parallelogfam and will have the same center. ' A1l this_isltrue
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for a»lens,@ith a poSitive:poker; if the poﬁer is negafive,‘thé
resulfing-curve.is'one branch of_a hyperbola, with the.éaméu
centef as ﬁeforéo | | | |

In the casé of the Q-@ diagrém,'the dual cur?e'of that
one .in" the Y-y . diagram is'alWayé_a'hyperbolaor‘ |

We shall now proceed to prove these statements analytJ’

 ically.

The Thick Lens Equation .

We shall depart~slightly.ffom the notation adopted in the
pfevious chapters, for reasons that will become apparent present-
ly. As noted in Fig. 35 the‘objéct and image vectors will be

denoted by W, and W,, respectively, and the pbjéct,and_image

- ——

planes by 3,, =i, réspecti?ely; the intéfmediate vector W wili
rgpfesgnt,the’space Within_therthick'lens-itself, of index of
refraction # . .The surfaées of_thé thick lens wi1l7be fepreseﬁt;f:‘
ed by 2, and Z,. -
?j'We'resffict’ourselves'in ﬁhis’chéptér to the case in
which the lines'ingﬁa .are‘conétant,-and thereforé'all the cardif,'
nal points will be fixed and ?he fifst;order p:opérties of the
lens as a'ﬁholé'are_deriVed from.fhemo-bThis étill leaves plenty
of fréé’dom9 as the values of'the éﬁrfaée.vécfofsvi,,s; will
éhangé-ﬁhéﬁiwé vary both.fhe:thié#ness:of'the lens and the’cﬁrQa-~
tﬁres»pf thesurffages° ’ | E
::.One:immediatetc¢nsequéh§é»bf the'constaﬁci of ;Z”aﬁd-alﬁ';

is ‘that the ?oWér of the'thick lens is constant,
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<}

& = i—'(wl XWJ) = ';Vz': (6-1)

according to Eq. (3-11). We now wish to express this power in
terms of the power of each component surface £,, #£,, and the

reduced thickness of the lens 7. Using the definitions given in

chapter 3, these quantities are given by

g, = k(wxW)= |Ww,Ww, (6-2)
F, = ke(WxW) = |W, W], (6-3)
T = %G x2)= 5,5 (6-4)

On the other hand, the surface vectors and the intermediate space

vector W are given by

E, = (W, - W)/El) (6-5)
= (W - W)/E, (6-6)
W k3 (;,_ - Eu) / T. (6'7)

- el

Therefore, the set of lines ;Z, W,, W or the set of
points 3;, 2, 5;, 3;, uniquely determines the system.

By writing
W/,x'u?,=(ﬁ,—i7)xwz+ W xW,,

and using the above equations we may write Eq. (6-1) as

LE = E + L& - kTE S
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which is the well known "thick-~lens equation.’" By substituting
the values of the powers as given by Egqs. (6-2), (6-3), we may

write this equation in vectorial form as
IRT(EXW)-(WZXW)‘F Wx(g,_—w,) - k® = 0. (6-9)
By using now the cartesian components of the W vectors,

€eey W = (_f_!., .O.) s etc., we may develop the dot product in Eq.

(6-9) and obtair the quadratic eguation in (.1 1),

An* + Ba(-a) +cfi* +2n + E(-R) + F = 0, (6-10)
where
A= T7T4,4,,
8 = T(.ﬂ-,.—ﬁ.,_ + -al -ﬂ,),
C = Toa n,,
- — — (6-11)
D = A= 0, - Q,
E = A-{L = -[L,_ —_{l'
F = —&

This obviously represents a conic in the .a-n diagram,
the dual of the 3—5' diagram.

We still have the problem of transforming this conic to
the Y-Y§ diagram, but we know from the theory of algebraic curves
that it will transform also into a conic, as conics are of both
degree 2 and class 2. (The class of a curve being the number of
tangents that can be drawn from an external point to the curve).
The operation of "correlation'" which is the point-line transfor-

mation between the Y-y and .a-a diagrams exchanges the degree
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and the class of a curve: For example, a curve of degree 4 and
class 3 in one diagram will transform into one of degree 3 and
class 4 in the other (see Zwikker, 1950, p. 76). Therefore, a
conic, being of degree 2 and class 2, will remain a conic in
going from one diagram to the other although the two conics will
not necessarily be of the same type. Appendix B, gives the
formulae to transform from the conic on one diagram to its dual
in the other diagram.

Note that the equation of a line in either of the two

diagrams is given by (Appendix B, Eq. B-19)
X3 + 4ym + 1 = o

By comparing this expression with the Lagrange-Helmholtz invari-

ant

ga —-ya + 1 =0,

we see that if we identify (Y ,Y ) with the point coordinates
(%,Y ), we must choose the line coordinates as (?ﬂﬁ = (Q,-8);
see Eqs. (2-10), (2-11). This explains the way we wrote the
quadratic expression in Eq. (6-10).

Before we investigate the form of the point-conic in the
Yy-§ diagram, let us describe the properties of the line-conic
in the n-a diagram. We shall use freely the expressions in
Appendix B.

Using as coefficients the expressions in Eqs. (6-11), the

minors of the determinant A of Appendix B, become
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Ay = =[R2+ 27 + 22,0, (24 -1)]

Dy = 4,0, + A0, + (@A + 0, 0;) (24 - 1)

Ac = -8 + & +28,A, (24 - 1))

By = —p (0 +2,) (6-12)
Be = +4 (&) + Ay)

B = —%*< 0

where the quantity P = TE = [ X7 will be called the
thickness factor and will prove to be a better parameter to

characterize the thickness of the lens than 7 itself. The deter-
minant is given by
A = DAI, + EAE + QFAF = —2105 _%-’ (6'13)

where for convenience, we have introduced the quantity a= ( - p.
We see immediately that Ag is always less than zero. We
are then dealing with a hyperbola that degenerates into its

asymptotes when 4o = | . From the invariant of the curve
I= A+¢c = T(M-Z.w;), (6—1‘4)

we see that the hyperbola will be equilateral when -V:’. .LW,_.

The center of the hyperbola is given by the vector

we = (W + W) /4 (6-15)

The equations of the asymptotes may be more easily com-

puted by considering them as the locus of the degenerate hyperbola
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when A=0 (i.e., when = ); but 4o = T¥# may be expanded

by using Eq. (6-8) into
TE = TF + 78, — (T5)(T%) = I.

-_—

This equation is fulfilled when 7#, = 7T#, = | , which become

the equations sought when they are written as

TE, = Tiw,w|=Ta, & —Ta,a = I,
— _ ) (6-16)
TZ, = T|W,w| =TaA, ~TAR Q. = |.

It may be seen from Eqs. (6-16) that the asymptotes are
respectively parallel to the object and image vectors Wﬂ, R@,
and therefore, are of fixed inclination. Because the excentricity
of the curve depends on the angle between the asymptotes, we
deduce that the eccentricity of the hyperbola is a constant inde-~
pendent of the thickness of the lens. In fact, if we denote by
Y the angle between the 'ﬁ and ia'vectors, whose value is given

by

cot ¥ = (.\;\./‘,-W,) /E,
the value of the eccentricity is

. - {CSC (¥l2) > if p<l,
sec ($/2) > i >

Note that the two hyperbolas that have the eccentricities given

(6-17)

by Eqs. (6-17) are conjugate to each other, i.e., have a common
set of asymptotes.
We could also express the values of the semi-major and

semi-minor axes as well as the semi-focal distance in terms of
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this angle, which would permit us, with the rest of the parameters
already calculated, to trace the curve on the - diagram.
However, in our particular context it is preferable to proceed

differently.

The Shape Factor

The conic given by Eq. (6-10) defines, for a constant
value of 7 , a point in the diagram for each value of E?, the
space inside the thick lens. It proves more convenient to specify
the two components of this vector as functions of a single param-
eter that may vary between the values -®© and +e¢ and that has
some physical significance. We choose as such a parameter a
"shape'" factor that is related to the physical curvatures of the
two surfaces composing the thick lens. We adopt the shape factor
used by Hopkins (1950), but generalize it to the case in which

all the media involved have different indices of refraction; thus

we define as the shape factor the quantity
X= (%, - 8)/(%, + %), (6-18)

where the powers of the surfaces £, , £, are given by Eqs. (6-2)
and (6-3). It may easily be shown that, when m, = w,, this

factor reduces to that defined by Hopkins, namely

S + G

X =

C = €,

where C,, C, are the curvatures of the surfaces of the lens.
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We now seek the representation of this shape factor in
the n-Q diagram. By using Eqs. (6-2) and (6-3), we may expand
the determinants to obtain the expression
|lo, xaa + Ta) = o, (6-19)
where we have abbreviated

ba = @, —n»,, ek,

TN = 1, +0,, edc.

This may also be written as

(SA + XAn) & = (SR + x 408 o
which is the equation of a line passing through the origin of the
N -0 Qgiagram, and with slope

> + X Ao
kxz =

T+ X A

Q.(x+0) — a,(x-1)

i

‘Et(x+') - ﬁ,(x—l)

Parametric Equation of the Conic
in the -~ Diagram

Once the parameter has been selected, the theory of
algebraic curves shows that the parametric equation of the
hyperbola may be obtained by finding the intersection of the line
o= ky with the hyperbola of Eq. (6-10); with the appro-

priate substitution, this equation takes the form
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(Aky — By, + QA" + (Dky-E) A - F = o,

whose solution, after long and tedious but otherwise straight-

forward algebra, gives

= (222 F{sa +xar},

¥

where ¥ = fz(x‘—/) , and with a similar form for the other
component. We may write both solutions as a single vector

equation
Wy = [Z20+ 2 (W + xaW] =
& (6-20)
= [1{w(x+1) - Wx=03.
We shall from now on denote the intermediate space vector

Wy with a subscript to emphasize the fact that it is a function

of the shape factor X.

The Functions [] and ¥ .

We see from Eq. (6-20) that -V7x is a function of both the
shape factor X and the thickness parameter 4; but although the
shape factor occurs in both the brackets and the braces, the
thickness parameter occurs only in the function within the
brackets. In particular we see that in the limiting case of a
thin lens or refrac££ng surface, for which 4=0, the value of

this function may be obtained by applying the L'Hospital rule

Tm {1 = Um J -

—— (6-21)

L.
2
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On the other hand, for 4o —> © , we see that

ron =i (Fa/E &)= o (6-22)

The function

(1= =l , (6-23)

is a cubic whose graph is given in Fig. 38. The solid line
represents the points obtained by choosing the positive sign of
the radical, and the dotted line represents the points obtained
with the negative sign. It is obvious that only the upper posi-
tive sign gives the correct limit for a thin lens, and therefore
from now on we shall drop the negative sign in front of the
radical in Eq. (6-23).

We also note from this equation that we must have
F > -1 in order to make the radical a real quantity. This
leads to certain restrictions on the values of 4 and X ; these
are illustrated by plotting ¥ as a function of X, which is a
parabola, as shown in Fig. 39.

For the case &> 0 , we see that the condition
F=4$WX=1) =1

leads to

IN

L, g X<,

/- X*

4

and for the case £ <0 , the same condition leads to
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ls4
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'
+ + ——t + Aéf + -
2 - ) 2 3 %
....... *
—l. ’t-‘
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!

Fig. 38 Graph of the function [l = (-l\xVi+ &)/%.

¥

£>0

i b
v

$<0

Fig. 39 ¥ as a function of shape factor for different

thicknesses.

a) For positive power.

b) For negative power
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s {f bq > |,

From Fig. 39 we see what these inequalities mean. Each
parabola represents a possible value of 4; 4 =0 1is given by the
axis of X, and as the value of 4 increases the vertex of the
parabola moves along the axis of ¥, receding from the origin.

For £ >0 , we see that for a given ¥ all values of the
shape factor are permitted as long as the corresponding parabola
does not cross the "forbidden" region below ¥ = —1| ., If we
increase the thickness factor - more and more, the permitted
values of X are more and more restricted to the region around
X= 4+l and X = —-|. This means that really thick lenses,
thicker than the focal length of the lens for example, must have
one surface of nearly zero curvature, and no biconvex lens of
this thickness can exist.

For the case of a lens of negative power, the restriction
applies to values of le larger than 1, as may be appreciated

from Fig. 39b.

Limitations of the Hyperbocla in the Q-0 Diagram.

Returning to the parametric equation of the hyperbola, Eq.

(6-20), we see that

—

—VZ - W; , :on X = 4.')
W,

) fn’ x= -
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as in both cases [J =Y, , by Eq. (6-21). This is independent
of the value of the thickness parameter 4. In other words,
every hyperbola, each characterized by a value of 4, passes
through the object and image vectors WZ, W;. In particular, for
$ =0 the hyperbola degenerates into the line 3,, which
passes through these two vectors.

The equations of the chords parallel to this line are
important at this time. They may be obtained by considering the

general equation of a line in the n-R diagram, which may be

written as

by substituting the value of the vector 3}, given by Eq. (4-17),
into the expression for the Lagrange invariant, Eq. (3-7), which
represents a straight line in both diagrams.

Then the line parallel to the above and passing through

any other given vector W.,, say, has for equation,
lw, aw| = | w., awl, (6-25)

where we have used the determinant notation.

In the case of the hyperbola, we want the equation of
the chord parallel to the line, Eq. (6-24), which represents the
thin lens, and passing through the point V& 3 therefore, using

Eqs. (6-20) and (6-25), we have

\W,aw| = lwx, aW| = 251, (6-26)
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and we used the fact that I‘ZW, AW] = 2% s 85 may be seen by

developing the determinant. Because the right-hand side of Eq.
(6-26) is independent of the sign of X, the same chord passes
through the point Wlx ,» whose equation is
W = [1{sW - xaW] =
= []{W/,()H—l) - W.(x -1} (6-27)

Therefore, the chords parallel to the thin-lens enuivalent

of the thick lens give the points with symmetric values of X. 1In

particular,

for X = | y [1 = VY2 s chord passes through VZ,QA;

for X= 0 y L3 = (p—f@)/a, s chord is tangent to
hyperbola;

for X =% | [)= 0, chord passes through origin of

coordinates.

So, we see that the hyperbola is limited on the left-hand
side by the chord parallel to the thip-lens line and passing
through the origin.

On the other hand, when ¥ = -1 , [ 1=1 , and this
imposes a limitation on the right, defined by the '"chord" passing
through the point TW = -Vt’, + W,_ . These limitations are
illustrated in Fig. 40.

Moreover, the average values of ﬁ& and 'W_x define a

diameter for these chords

-t .

Wy = Ja(We + Wy) = [1EW (6-28)
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Remembering that the shape line (the line representing

the shape factor X ), Eq. (6-19), reduces to
W, ZWl=0,  jor X=0, (6-29)

we may substitute the value of Wi from Eq. (6-28 into Eq. (6-29)

to obtain
\Wo, TW]| = o

In other words, the points W& satisfy the shape line
equation for X=0 , and therefore the line given by Eq. (6-29)
is a diameter of the conic. Because all hyperbolas pass through
W.. ﬁa, all will have the same chords and therefore this same line
is a diameter for all the family; and because all diameters pass
through the center of the curve, all the centers of the family lie
along this line. Indeed, the coordinates of the center, Eq.
(6-15), satisfy the same equation.

It may be easily seen that the vectors ;Z, ;; form a
quadrilateral, one of its diagonals being this same diameter
(which is the conjugate diameter to the thin-lens line), and the
other the thin-lens line. The crossing of these diagonals is the
point e (W, + W2) .

The extreme values of Wx when X =% © may be obtained

by rewriting Eq. (6-20) as

W, = [-'/x x5 (= /x) { M. _ W }
x = 2
-&:
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which allows us to take the limit as X — oo ,

W= oV//p

+o

To obtain the limit of —VV_» s+ We simply exchange -\17, and W,

because of Eq. (6-27),
V.o = —OW/VF

This means that for £ <0 these points do not exist because in
this case the branch of the hyperbola opening to the right is
used; the center of the conic then lies to the left. 1In this
case the extreme values of the vector W; will be given by the

value of X that will make ¥ = —| in the bracket function; that

is,

Xox = £ (=9[4

then

WX'&% = {ZW + V—%//io A\?}

Because the chords parallel to the thin-lens line ip determine
both W; and GLX y it is obvious that, knowing the position of
the chord along the conjugate diameter to Z;, we should be able
to get W-x from V-V-x by a simple change of sign. For that

purpose we define the vector along the chords as

W‘ = Wy — W, = X[1 Aw 5 (6-30)
then
. Wx = Wi + W.c !

- -~ (6-31)
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This facilitates the computations, as the factors [1 and X[]
may be tabulated once and for all for a set of values of 4 and
X and used for different sets of Wﬂ W;. Also, the vector
lying along the conjugate diameter given by Eq. (6-29) may be
used graphically to mark off this diameter with the different
values of X; then, chords parallel to the thin lens line through

these points will cut the curve at the points W, and VW, , as

shown in Fig. 41.

a

b\

W‘-

Fig. 41. The chords corresponding
to different values of the shape factor
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Parametric Equation of the Conic
in the y- Diagram

The original line-conic in the Q-a diagram, Eq. (6-10),
with coefficients given by Eqs. (6-11), will be transformed into
the point-conic whose equation is given by

Dy32 +283TY + AF* + 28575 + 28y + A =0, (6-32)

according to Appendix B, and its coefficients are given by Egs.

(6-12).

The invariants of this point-conic are given by

Z = A = J/-aplg"fi, (6-33)
Be= 2F = 949 E (6-34)
I = ba+ba, = 49 Wew,) —(EW)" (6-35)

From Eq. (6-34), we see that the type of the curve will be

for |4 < | , ellipse if £ > 0,
hyperbola if #* < 0 ;

for 4| > | , hyperbola if & > o,
ellipse if g < 0.

We shall restrict ourselves to the case in which \10] < |.

Note from Eq. (6-34) that this quantity will be different
from zero only for nondegenerate conics, i.e., only central conics
transform from one diagram to another without degeneracy.

The center of the conic may be obtained at once, from Eq.
(B-5) as

(Xe,y) = (V/2F, E[2F); :
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in vectorial form, using Egqs. (6-11), and Eq. (4-17), we have
o= -Y2 AW/E = 13, (6-36)

which is independent of the thickness or the type of the curve.
In other words, all the curves of the family have a common center
of symmetry, which is related to the fact that all the original
hyperbolas in the - diagram had a common conjugate diameter
to the thin-lens line ip.

Moreover, as all the line-conics pass through the points
W,, W, in the .0-0 diagram, it follows that all the point-
conics will be tangent to the lines WL W, in the Y-y diagram.

We now proceed to derive the parametric equation of the
point-conic. Because of the dual relationship between the two
diagrams, the points of one diagram will transform into lines in
the other and vice versa. Therefore, given a line conic, we know
that tangents to such a curve will transform into the point conic.
So, if we start with the line conic, in the n-n diagram, we

may express it in homogeneous coordinates (see Gans, 1969) as

(2% 3) 2o B D\ [®\ = 0

3 2¢ E Y]
D E 2F 3
\ o
The tangent to the curve at the point (%,,%,,%,) has the

equation

(ng‘g) 2A B D T\ = 0,
B 2¢ E 7,
D E 2F 3,
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but it also obeys the linear relation

E %3 [(x\ =0
8‘
z)

In other words, the point coordinates are given by

% 24 3 D\/[F,
Y = B 2 EIM]. (6-37)
2! D E 2F 5,
In our case,
;‘ = _Qx ‘x.’/z’ = \9—
m, = - fx vl = Y (6-38)

5 = |

Remembering Eq. (6-20), we obtain for the homogeneous coordinates

after some algebra

x' = -4 [1(XTa + A1)
y = —4 [1(XZTa + Aa) (6-39)
22 = —25(["[])

where [ 1 is the same bracket function given by Eq. (6-23).
Taking the ratios indicated in the right-hand set of Egs.

(6-38) and using vectorial notation, we get

_ HCILX W + OW3 — AW

zx-—: 2
2& (1 - 1)

(6-40)

and for negative X we get the analogous vector

3. o pLA{-x3V + oW —4v (6-41)

2x(1- L)




131
;,L = yz(ix +3_x) = (

/—+E1> Q— AW)
1-C] 2F
but

We may then define the vector 2., along a diameter as

(6-42)
E} = ‘ZBW/E}
and putting
Fap = J-#xL[3 | (6-43)
1-C3
we obtain
2, = L(Fed) %, (6-bl4)
We now define a vector along the chords
R :T—X—ctal)g_:—) ’ (6-45)
but by introducing the antiprincipal vector
2= 2 - 2% = —SW/E
and putting
Fas = XLl (6-46)
(~L1}
we have
%= cklF) 3 (6-47)
In analogy to the vector W; we may write
i; = EA + 5:
Te= & - 3

(6-48)
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The Functions FWd, FWS, F2D, FZS$

In analogy to Egs. (6-43) and (6-46), we define

FwWD

€3, (6-49)
Fws

Ll

xC13. (6-50)

The four functions, FWD, FWS, F2D, F25 , are independent of
the vectors W, Wz and are functions of 4 and X alone; they

can be tabulated once and for all and used for different systems.

It is possible to simplify them. By writing

R= 1+ 4(x2=1) = g +$X

(6-51)
where g = [ -4 . Then we have
Fwd = .1/(1 + V&)
Fws = X/ (1+ V&)
fap =+ 3/ (6~52)
F2s = TX‘/E
Note that FW® and F2D are even functions, whereas FWS and
FWD are odd functions of the shape factor X.
It is of interest to tabulate the limiting values of
these functions for 4 =0 and $=1/:
for p=0, Fwd = Yo
Fws = /X (6-53)
Fap = 2

F2s = 0



and also t

for -#,:[7

FwD

FwWS

F2D

o tabulate special

for

for

for

Parameters of the Point Conic

X

FWD
F2D

F&s§

= 1 /(1+Xx)
= X/(l'f-X)

= F28 = |

values for X:

= 0

W
<>
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(6-54)

(6-55)

(6-56)

(6-57)

Eliminating the parameter X between the two components of

the vector

2y

the point conic in the y-3

form given by Eq. (6-32).

given by Eq. (6-40), we may obtain the equation of

diagram, which should reduce to the

However, by eliminating the parameter,

we obtain expressions for the coefficients that are more conve-

nient than those given by Eqs. (6-12), as will be appreciated

presently.
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If we use as the center of coordinates the center of the

conic 2., we may write Eq. (6-40) in the form

= -gAWiﬂfzw )
2y = 25/{, (6 58)
or equivalently,
- L) - L (52)
s = AW + w (L -
X 2 & VT 2z > ( V& (6-59)

We see that

(__fz_)‘ . (ﬂ)‘z 2reX
Ve & &

therefore, we may choose some angle such that
EX//E = sind
/E;/VQE = cos¥

which, substituted into Eq. (6-59), permits us to write

U = _/;'_Z_-E— st’n‘(,a - ‘/_‘% Aﬁ__. cos#
4 = 2E 2F

3 =, G:S‘Q s:‘nﬂ} + _‘/_ié_'[}_ coszg‘

2E 2LE

Solving for s(ntg) cosJ’, squaring, and adding them, we

may eliminate them, resulting in

ly, sal’ N 9, £’ _
L 2

which is the equation of the conic with the shape factor elimi-

!

nated. By expanding the determinants, this may be put into the

following form by comparing with Eq. (6=-32):
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—0,F* - 2033y - Byt = Py (6-60)

where now

By —P(S.Q)l + 3 (A-Q)z,

Ag = pI0Ta +gbon-pq, (6-61)
_Ac

- -—\2
.ao(z_n_y" + 2 (A.O.) .
The invariants of the conic are already given by Egs.

(6-33), (6-34), (6-35), except for the latter which now we write

with a change of sign for notational convenience:

~

I = -84 —0c = $(zW)" + g(ow) (6-62)
By defining the quantity

~

R*= I — 4 &¢ (6-63)
we may write the eccentricity, the semimajor and semiminor axes,
and the semifocal distance as

e* = 2R [(I +R)

@ = (£+R)/g8" (6-64)
b* = (£-RrR)/2&*

c?t = i’:/‘/!l

This conic is illustrated in Fig. 42 for £ > 0 , and in

Fig. 43 for £< 0 . Note that, for positive powers, the ellipse

is inscribed in the parallelogram formed by the focal vectors 2Zg,

3; y and only the part above the line parallel to the antiprinci-

pal vectors E}, Eg has physical significance; the lower part

corresponds to the values obtained by using the lower sign of the
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Fig. 42 The ellipse in the
3y-§ diagram. (Positive power)

y A

Fig. 43 The hyperbola in the
Yy-5 diagram. (Negative power)
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radical in the bracket function of Eq. (6-23). As the thickness
parameter varies, the ellipse changes shape, but it is always
confined to the inside of the parallelogram and is tangent to the
lines iz and ua precisely for the values of :§x for which
X=+| and X= -| , respectively. When the value of 4 is
close to zero, the ellipse approaches the vector '§p, and as 4
approaches unity the ellipse tends to coincide with the vector
i; - 5; . Figure 44 shows the ellipses for several values of X
and Fig. 45 is a plot of the eccentricity of the ellipse as a
function of -4 for the choice of Wﬂ and ﬂa vectors of Fig. 42.
Figure 42 also illustrates the use of the vectors 24 and Es
given by Egqs. (6-44) and (6-47) to locate a point on the curve
associated with the shape factor X ; the tangent to the curve at
this point represents the intermediate space within the lens
given by the vector Wy, Eq. (6-20).

Similar comments apply to the curve in Fig. 43 for which
£ < 0 , except that now the values of the shape factor that are

allowed are limited to a maximum, set by the asymptotes to the

hyperbola.

Powers and Surfaces of the Thick Lens

We can now compute the powers of, and the vectors repre-
senting, the two surfaces of the thick lens as a function of the
shape factor X and the thickness parameter 4¢. Remembering that

the equation of the intermediate space vector is Eq. (6-20)

We = [1{W.(x+1) - W(x-031,
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Y
Fig. 44 Different ellipses for different thicknesses
y
e

L0 4
9 4
0.2 ¢+

0.2 0.4 0.6 0.2 /.0 ?

Fig. 45 Excentricity of the
ellipse as a function of thickness



the powers at each surface are given by

F, o= W, w| = [1x+) & = Fv, &,

.= [Bo@) = -0y % = runs,
where we have defined the functions FV¥, and

Fw, = FWD + Fws = [1(X+1)

FW, = Fwd - Fws = -[}(X~1)

These may be tabulated once

and 4o and X .

Fwa. .
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(6-65)

(6-66)
Note that

(6-67)

(6-68)

and for all for selected values of

The points representing the surfaces are given by (see Eq.

3-15)
;l = Wx - w =
o [3(x-1) + (6-69)
= 2 + {(SREW TS = 2 o+ (F2)
F { [1(x+0) } F F (F2,) 2¢
2, = Wa - Wy =
—£u _ (6-70)
= {E](XH]—I} i + 2% = Q=2J 3, + 2§
L3(x-1)

where we have defined the functions F2,,

simplified to read
Fz, = (X +;/a_,')/(x+ )

(x =vV@)/(x -1).

F2, =

F2

2 e

These may be

(6-71)

(6-72)
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Note that
Fw, (—=X) = F W, (+ X)
Fw, (—X) = FW, (+X)
F2, (—X) = F2, (+X)
F2,(-X) = F2,(+X)

and therefore we need to calculate them only for positive values
of X.
Stavroudis (1971) has shown that these functions, which

are of the general form
§ 00 = f2(-%

have the general property that F is a sum of an even and an odd
function, and f. is the difference of the same even and odd
functions. This is clear for FW,, FWV, , but it is not immedi-
ately obvious for the others.

It is of interest to tabulate the limiting values of these
functions for 4 =0 and =1, as well as for some special

values of X

for =0, FW, = a(X+1)

FW, = -/a(X+1) (6-73)
F23, = Fz2, = |

for =1 Fw, = 2
Fwa = (1=-X)/(1+Xx) (6-74)
F2, = ZX/(X'.#I)

F2, 0
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for X=0 FW, = FW, = U/(I +v3)
F2, = Fez, = VT (6-75)
for x=1, Fv, = |
Fa, =1
F2, = 2
for X =00, Fw, = /V%
FWe = UV (6-77)
F2, = |1+ V%
Foe = 1= /F

Cardinal Points of the Thick Lens

Any two conjugate points with an associated magnification

m, are separated from the surfaces 5.. Eg by
|§,,§‘ = |2, =] + (l/mr)lil,-’:",:\
(6-78)
in object space, and by
liz_‘-i" = ""T';a,EF‘ +l§= ,E’F‘ =

(6-79)
(Fe, — 'm,-)/_E

in image space.

With these expressions we may calculate the

positions of the cardinal points with respect to the surfaces of

the lens.

The front focal point has associated with it a magnifica-

tion m, = % ; therefore, the front focal distance is given by



FFp = (F2) ¢

The rear focal point has an associated magnification

msr = 0 ; therefore, the back focal distance is given by

B8FD = (F2.) ¢

The principal points are given by setting wm, =1 into

Eqs. (6-78) and (6-79)

\:UEP\ = (1 - F20/§
|2.,23] = (F2.- 1)/ =

But these expressions may be simplified to read as follows

(1= F2)/2 = - [1(X~))p/2

!

(Fw) T
(FE‘_’)/E = —L_J(X'F/)jp/é = —(F;y,)r

Therefore, the actual distances become

/ZP/"I = (sz)%'

Lo [m, = —(FW) 3

where T = Z/ﬁ' is the reduced thickness of the thick lens.

The more conventional formulas for these distances (see
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(6-80)

Born and Wolf, 1970) may be obtained by using Eqs. (6-2) and (6-3)

instead of Eqs. (6-78) and (6-79), to yield

12,, % = 7%./%
- (6-81)
|22, 2| = -TE% /¥

which in turn may be reduced to Eqs. (6-80) by using the

expressions for the powers given by Eqs. (6-65) and (6-66). The
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advantage of using Eqs. (6-80) is that the functions FW,, Fu,
contain explicitly the dependence on - and X.

Also of interest at this stage is the expression for the
separation of the principal points, which is not given directly by
the diagram because both principal points, in object and in image
space, are represented by the same vector ip- However, by using

the distances given by Eqs. (6-80) we see that
and by reducing this distance by M , the index of refraction in

the interior of the lens, and multiplying by the Lagrange invar-

iant, we may write

o ~ 'Ylf, ﬂ1£|
KPE)K?P,/'"':T[‘ - - ha }:

= (6-82)
mgZ

where we have used the expressions in Egqs. (6-81). By using the
expressions for the powers, Eqs. (6-65), (6-66) and the functions

FW¥D and FwS given by Egs. (6-49), (6-50), we may finally write

PP = Z (_*’i{ — FWD (M + ;) + Fws (n, —m)] (6-83)

If we restrict ourselves for a moment to the case for

which ™, =7n, (the thick lens in air), we see that
PP = Z (R - 201) (6-84)

This equation tells us that the separation between the principal
planes will vanish not only for a thin lens (¥ =0) but also for
a thickness such that [1] = {/2,. It is possible to show that

this is the case of a concentric thick lens.
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The separations of the nodal points may also be obtained

from Eqs. (6-78) and (6-79) by substituting the value m,; = w /na.

Optical Center of the Thick Lens

The optical center of the lens is defined as the point
within the thick lens that is conjugate to the nodal points. GSee
Fig. 46. Therefore its location will be given by Eq. (4-24) with

™me = R = 'nu/'nz.

T, = - RW 2 (6-85)
£, +RE, LI{(+R) +(1-R) X3

If R=) , i.e. m=m, , 2y = 2, and Eq. (6-85) reduces to

-

5. = /L1 = (1+ V@) 3

The distances of the optical center from the surfaces are

given by

- I - R (x-1)RT

e T T T

R~ _(x+)T
F01{ 3 {}

ts"» -§°¢\

where the { } factor is the same as in Eq. (6-85). When R =|
these distances reduce to
!Ep,ioc\ = —'/a.(x—l)T

| %2, Foe] = - (X+0)T.
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()

Fig. 46. Optical center of a thick lens

We see from these expressions that when X =0 , the optical center
lies within the lens; when X = x| , it is located at the curved
surface of the lens; and if the lens is a meniscus, the optical

center is located outside the lens.

We may also note that the ratio of these distances is

equal to the ratio of the curvatures of the lens.

‘i| > Eer_‘

= L =
lza,-ioc\ €

,5[3
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Conclusion

The expressions just derived for a thick lens are com-
pletely general with respect to the shape and thickness of the
lens. We have restricted ourselves to lenses whose thickness
parameter V?\ < | + This is valid, as practically all of the
thick lenses actually used in optical systems belong to this
group. On the other hand, little is known about the properties
of very thick lenses for which |4| > | ; this corresponds to
axial thicknesses greater than the effective focal length of the
lens itself, and they will become the subject of a future investi-
gationo.

Several approximations to the expressions developed in
this paper are worth noting.

First, we have the "text-book" thin lens, for which
1P =0 « In this case E. and '3, coincide with 5} and the line
representing Wx pivots on EP as a function of the shape factor
X ; all expressions simplify enormously but are of limited appli-
cation because no actual thin lenses may be fabricated. More
interesting is the case where Lrl‘es | (which I call "narrow"
lenses), as these may be realized in practice and, in fact, a
great number of elements in optical systems are indeed of this
type. In this case the basic approximation is that of the
bracket function, Eq. (6-23) for small values of 1&; by expanding

the radical in Eq. (6-23) we obtain for the bracket function

(1= Vo-Y®T = [I- He(x-1)]; (6-86)
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being apsim§1er’functi0n of 4 and X, each expressibn_invélviﬁg.
this bracket function will be'simpler°

Anothervusefﬁl approximation of fhe formulas develéped
hefé is that ofva mirror; invthis case we may also take f¥=O  asf
‘for a thin leﬁs, but we must have ma:= —M; . This also may be
.considéred as a special éase of a single refrécting sufface9
mo#F Ny P =0

These expressions can also be used invthe caée of,a
system of tworthin lenses; in this case * wouid representlfhe:vi
separation parameter, the product qf the actual;separationrand
the power of thevcombinafion,'and the two -thin lenses,would take
the place of the twb refracting.surfaces of fhe thick lens. Ve
still have the freedom of choosing all the three indices 7q,§;,ﬁ?
‘equal to or‘differen£'£rom each other, i.e., thg two‘thin-ienSeé

in air or separating different media.



CHAPTER 7
GENERALIZED BENDING AND THICKENING OF LENSES

—f The general‘treaﬁment of a sihgle thick lensfin the;
diagram“describedcio'the previous chapter, allows the deri§ation
of'exﬁressione'for'cﬁe Benoiog'and chickening’of leﬁees,ViThese”
expressions are completely'geperalvend in cloSed form,‘without
recourse to approximations or iterativerprocedures, aﬁd therefore
ﬁay be’epplied eithef enalyticelly,'for:the‘stodj of5propefties.
of thick elements, or in graphlcal form by means. of the dlagram,_
to the analy31s and de51gn of optical systems9 they may also be -
"iﬁcoréorated into a computer programo‘

By bendlng9 we mean the well known procedure ueed in
optical des;gn of changing the-curvatgres'of the.surfaces comﬁos—
bing the element; without chéﬁging~icsrpower‘andjthejfirstforderle'
- properties of the rest.of_the‘systemo' It is generalized to~allow
{for different.indicesvof refréctionioefore;:igside;‘and affer toe
leﬁss-eno in the Sense'that we;permit ermOre liberai7change in fhe
cur#afures‘than the uscal sma;l incfements in fheir valuesgﬁfseve’
A.erelﬁaftempfs'haﬁe beeﬁ ma&e‘et a procedure for ﬁgenefaiizeo'u
bendlng" (notably Sutton (1963)9 but see also Hopklns (1950, po
;111),and Darnauer (1971)] but in our oplnlon, they are not

7-generalenough°
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By thickening, we mean any change in the thickness of the
lens, including the thickening of a previously thin lens. This
has also been attempted before, by Berek (1930, p. 86), Herzberger
(1944), Hopkins (1950, p. 114), Hopkins and Rao (1970); but all of
them at one stage or another recourse to approximations or itera-
tions.

As may be appreciated from the previous chapter, the bend-
ing of the thick lens is completely determined by the shape factor
X defined by Eq. (6-18), and the thickening of the lens is
controlled by the thickans factor p = T# . These two parame-
ters are completely independent of each other, but they are
intimately related in describing the properties of the thick lens.
Therefore, the formulas to be described as an algorithm may be
used to vary -4 and X independently or simultaneously, in one or
several elements of an optical system, to adjust the values of the
third order aberrations, or to replace a system of ideal thin

lenses by a more realistic one of thick lenses, for example.

Bending a Thick Lens

Let us assume for the moment that we fix the value of the
thickness factor -p, and only change the value of the shape factor
X. In other words, we are making a pure bending.

As may be appreciated from the right-hand side of Fig. 36,
bending a lens defines a new vector W& for the space within the
lens, given by Eq. (6-20). In turn, the line vector Wx defines

e -

with the object and image vectors W,, W, the new points E” 2,
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given by Egs. (6-69), (6-70). 1In Fig. 47, we have plotted in a
single graph the lines Wx and the points 3., 33 resulting from
different values of the bending factor X, for a fixed set of
object and image vectors -\\7,, -: . It may be seen from the figure
that this small sample already shows how the set of lines
produced in this manner envelope a curve, which the analysis of
the previous chapter shows to be an ellipse. If we chanee contin-
uously the shape factor from X = —~o to = + ¢ we obtain the
upper part of the ellipse shown in Fig. 42 defined as the envelope
of all its tangents. Note also that each line determines a

-~

different set of surface vectors 2, %;.

C:n

Fig. 47. Same thickness,
different shape factors
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If we were te‘ehapgepfhe.thickﬁees perameéer ¢; aﬁ‘the ep
same time we change the:value of X, we would“define a tangent
line. W& to a different elllpse. _ThisAis'in essence whet the
algorlthm.proposed by Sutton (1963) does, as he forces the bendlng
(and_lncldentally9 the thlckenlng) in such a manner as to leave
the first surface vector 3} unchangedo Unfortunately, by doing
this, he loses the generallty of the method as there ls no con-.
trol over the resulting thickness. This is also.fhe seﬁrcerf the
singularity that he hesrto overcome by a special case. Oneemay
remedy the situation by doing a "packWard" Eending, asrdefined by
Dernauer C1974);'however, that complicates the process. _.AA

The methodrhere proposed 1s more general as it permits a
bet;er controlvof,the two perémeters, the shepe facforf)( and the‘
'thicknees factor f aSAtheareles ef-the two‘arevclearly eseab-
. lished. |

:Before we’describe the algorithm let ﬁs eramine the

effecf of changing enly'the'fhicknees peramefer.ﬁn-for a fixed .

choice of the shape factorafl

: Thlckenlng a Lens
' By looklng at the left=hand side dlagrams in Flgo 36 we;-
may see that by changlng the thlckness parameter 1#, and keeplng
.fixed the shape factor "X, we in effect -are sliding the line
parallel to 1tselfo This may be appre01ated more clearly in Flg°

48, in whlch we have plotted 1n ‘the same graph, the vector W&
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for different values of 4+ for the same choice of object and

P O

image vectors W, W, as in Fig. 47.

Y

i

Fig. 48. Same shape factor,
different thicknesses

It is clear from Eq. (6-20) that by this operation we are
only changing the value of the function L[] given by Eq. (6-23)
and as the slope of the 1line W& is determined by the factor in
braces in Eq. (6-20), it is clear that the line will remain
parallel to itself.

The limiting case of —P::O is worth noting; in this case
L) ="'~ and W represents the space within a thin lens. Also

2, = 3‘ = 2p 4 i.e. the two surfaces coincide with the principal

points. This illustrates the fact that we may also use this



-aigorithm‘to thicken a previously thinfiens asrweli as to change
‘the thickness of an already thick lenso- Thisiproblem'has been
"attacked before but without the generality and completeness glven
_by the present algorlthm° Hopkins and Rao (1970) as mentloned |
before,'use an iterative procedure5of successive approximationso_
;Berek (1930) gives a cumbersome method and suggests that an iter-
rfatlon will be necessary when tne thickness to be 1ntrodnced is

not sufficiently small. Herzberger (1944) solved this problem
'squite successfully restricting himself to a fixed value.of the
Shape~factor; his formnlae may be obtained from the’ones‘preSented-
here by using.the ratio of cur?atures ﬁ/cz ‘instead of - X, by |
taklng 1t as a constant, and by assuming that the lens is in alr,_
fn];;'nz:zj 3 However, ‘instead of leaving his formulae in the v

- éenefal forn (at the time of applylng thenm to compute the'Petzval.'
.snm;'for‘example) he made an approxlmatlon too soon, which '
_v1t1ated hlS results, as was already p01nted out by Rayces (1955)
Nevertheless, his general method and expressions may be considered

‘as special cases of‘thosefderived in theuprevious chapter°

The Algorithm

4rIt'is clearnfron tne'previous‘paragraphs that the two f
operatlons of bendlng and thlckenlng are 1ndependent of each
‘other and may be applled one at a time or both SLmultaneously-to
‘a given system. - The generality‘of7thispalgorithm'is'based onfthez
ffaCt%thatﬁeach.opefation'isLacoomplished;by a@distinct;§arameter

independently.o-f_the_oth_e_r°

153
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Fig. 49.

Definition of

variables for thickening or bending

’

In order to use efficiently the following algorithm we

must express first the system
3-—5 variables. The system
Fig. 49. The two surfaces of

object and image lines are W,

under consideration in terms of the
we want to modify is represented in
the original lens are I; and 3,_; the

and Vz_with corresponding indices

n, and M,; the surface previous to ;. will be designated by N

and that following 2, by 2.

given by Wx with index T,

The space within the lens will be

-l

We assume that the object and image lines W,, W, are

fixed, and therefore the power of the lens £, and the focal

points EF.'E? remain fixed throughout any change considered by
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this algorithm; this assures the continuity with, and the invari-
ance of the first-order properties of the rest of the system. 1In
particular, the distances between the surfaces 2, and 5; here
designated by 7The, and between 2% and 2, ( 7r8), will not
change. Therefore, for any change of - or X that defines a new
set of EH 5; only the back and front focal distances from these
surfaces will be required.

Given then the above points ;;q 2,, 2%,, 2,, we calculate

first the object and image lines,

- 5 - 3 2 -2
W, = 2 = Fe o —3_'.—':&’ (7-1)
7 | %, 7))
AR N T A (7-2)
z - - iy, i, >
7 | 2. 25\

which in turn give the power of the lens
3 = |w, Wl. (7-3)

Next, we calculate the intermediate vector Wx, and the

thickness of the lens,

Wx —— = (7-4)
T \2“21\

If the original lens is thin T=o0 , and Eq. (7-4) will
be undefined. However, as in that case [1=Y. , the intermediate

vector will be given by
Wx = {W,(x+1) = W (x-0F, (7-5)

where we must know or assume a shape factor for the thin lens.
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Next, we calculate the powers at each surface,

= |W., wl (7-6)

£,
2, = IW},;a\ (7-7)

and the shape factor, if it is not already known,

§, - f;
X = . (7-8)
F, + 2,

It is also convenient to calculate the focal vectors

2, = -W,/E, (7-9)
E,F = +-Y;,/.§,

(7-10)

and the separations of these points from the previous and fol-

lowing surfaces 2., 2,
Tae = | 2a, 2¢] = cons? (7-11)

7}3 = l%,:’ 33l = const (7-12)

which will remain constant during bending or thickening.
Note that some of these quantities may already be known by
previous analysis and some of the above steps might be eliminated.
We are now ready to proceed with the changes. At this
point we introduce a new value of '?, or X, or both.

We define the thickness parameter

~

4 = T& (7-13)
and the quantity

&= | + H(X*-1) (7-14)



to get the bracket function

=1
0 | + V&

We may now define the functions

FW, LI(x+1)
FV, = *[1()(")
F2, = (X +V&)/[(x+1)

F2, (x = va)/(x ~1)

which allows to write the new values for the powers
&, = (FV,) _§,

£,

Ew) 2,

in terms of the power of the lens given by Eq. (7-3).

we get the new curvatures

(Fw)e ,

n - m,

Ca = .:_(_F_”ﬁ'l__‘ﬂ-.

n-m,

From
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(7-15)

(7-16)
(7-17)
(7-18)

(7-19)

(7-20)
(7-21)

these

(7-22)

(7-23)

The value of the new intermediate vector Wx will be given

by
-\Tlx = (FW,) W& + (F%) v

and the new surfaces will be:

-§|= EF + (Fal)g'r—"
2 o= (F2)E o+ 2L

(7-24)

(7-25)

(7-26)
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The new front and back focal distances will be given by

FFD = (Fal)f, (7-27)
BFD = (FE;)J(’, (7-28)

as may be seen from the equations following Eq. (6-79). There-
fore, the separations from the previous and following surfaces

3@, 2, will be

7, = |2,%5| = Tap + (F2,)/& (7-29)

To = 12,2 = Tey + (F2)/Z (7-30)

where the constant distances 7af, 7f3 are given by Eqs. (7-11),
(7-12).
By introducing the indices of refraction and the Lagrange
invariant, the actual separations ¢%,, ¥, may be obtained.
Finally, the new separation of the principal points will

be given by
Top = P = m(Fw) = (Fw0) ] (7-31)

This completes the algorithm. Note, that by keeping

; = coms? , and varying X we get bending and a graph will look
as in Fig. 47 with several such changes. For thickening we set
X = const and vary 'F; several such changes are shown in Fig. 48.
It should be noted that the new values obtained after a change of

4 or X do not depend at all on the old values of 4 and X.
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7
Minimum Thickness for a Narrow Lens

When thickening a previously thin lens, the question

arises as to what should be the minimum thickness attached to it.

P>0 ®<o0
a b
S, Se
-o.z-"o- -’E-:t-

Fig. 50. Minimum thickness.
a) For a positive lens. b) For a negative lens
As seen in Fig. 50, if the lens is positive this minimum thickness
includes the sagittae of the two surfaces plus some construction
thickness for the rim, that we shall call 4. If the lens is

negative the construction thickness t, will be sufficient.

Therefore the minimum thickness £ will be given by
g = § - S, + Z, , for a positive lens,

T= 1% ,» for a negative lens.
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An expression may be developed for this thickness in
terms of the parameters of the lens. Noting that the sagittae

may be written as

- kS
sz fch® = Ke{lf] + |y}, (7-32)
where h is the minimum clear aperture of the lens to avoid
vignetting, we may write,
~ ~ ~ W 2
T = T + ':‘.—((Sl -5) =7 +',;;_"(C'_c‘)z_ =
. - (7-33)
OWrE []{ X(m -my) +2n - (n,+nz)} .
Ym (M =m,) (F=n.)
If the lens is sufficiently narrow, :/-'<<l them [l | .

And if we consider the case of the lens in air, m, = n, =1 ,

then
t L3 ~
Wh2 |7, (7-34)

2n (m ~1)

~
T 2

which is independent of the shape factor.
We may use this value for thickening a previously positive

thin lens to produce a sufficiently narrow but otherwise realistic

thick lens. If the thin lens is negative, we neglect the first
term on the right-hand side of Eq. (7-34).



CHAPTER 8
THE PROGRAM YYRANCH

 The C§mputer program YYRANCH_(ﬂ*E Representation ANd.
Computatibnal Handiiﬁg), written entirely.in FCRTRAN for:the CDC
6400 Computer is basically a proéramvfor'the numerical anéiysis:'
of given optical syétems; although it*hés-sevefal-degign featﬁrés
thatvallow‘the modification of the given sysfem’towards a desired 
designu: |

It is;entipely baseéd on the formulae develoﬁed in the
previous chapter of this work, and should. be cﬁnsidergd as a
ﬁumericai applicétion éf the y—j nmthod to the analysis and
design df optical systems. |

The:progfam is a multipurﬁoée ppdgram beingrcapébié of
performing a series of faSks‘sequentiallyiand éontrollablé.
éntiréiyvby data cardéo "Fo;ﬂfhis'purposefthe-program is démpoSed,
of aﬁ ensemble of subroutines, eaéh of,whiCh perforﬁévé_specifi§ 
ﬁésk,‘ All the subroufines_havé been groﬁped in712_Subprograms as
liéted in Table I, to fécilitate thé flow of the progrém and the
‘internal tranSferAéf infdrmatioh‘amqng tﬁe difféfénf subroutine;;
,fbr,ekamble,Amost of the‘transferfiﬁg from one part,ofﬂthe prégfam'
to anothef»is doﬁéithrough labelled,CQMﬁON, tb:avoid the calliné.

lists associated with the subroutines.

161
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LISTVOF_THE SUBPROGRAMS CONTAINED IN THE PROGRAM YYRANCH

ONE'

- TWO

TASKT

Y POINTS

THREE FOUR =~
INVARNT ~ BENDING = SEIDEL FROM 12 % FROM X
TO READ Z ~ CARDNAL MERIT FROM PP 7 FROM.Y
TO GET Z  TO LIST Z WAVE CF TO VARY  Z FROM KC
TO GET W NEW ZHE CHANGE Z 8 SHIFT .
'TO SHIFT  NEW RN CHANGE W ¢ SHIFT
NORMAL -~ FOR BX CHANGE N Z ABS
THIN  ° FOR SP CHANGES . % ORD
TH AND CV  TO SAVE  VIGNETT
PARAX NEW DECK
THICKEN RESTORE
' DIAGRAM ~ FIRST SECOND  THIRD FOURTH
' DIAGRAM  CENTER PITLES  ~ AXIS X . TO IMBED
~ RECOVER  CNTROID TO CLEAR AXIS Y . DPACKING
 NEW Z00M  FOR ZOOM ~ FRAME XY =~ FOR XMOD = MASKING
 ENLARGE SCALES FRAME Y = FOR YMOD |
| B TO PRINT  PLOT XY  TO LASTX
REJECT FOR LINE  TO LASTY
 FOR AXES ~ LABELS X
© LABELS Y -
‘X POINTS

' SEIDEL
' SEIDEL

TASK2

SEIDEL
SEIDEL

SEIDEL
SEIDEL
SEIDEL
SEIDEL
DERIVAT -

l'at‘_‘\ﬂ-P\»l\)_.).Q

FIFTH - -

DECIMAL 7
DIGITS .
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rThe pfog:am fYRANCHup%opé;, aces-as a.driver.and control
for all the rest of the subroutines ahd-can<call upon any part of-
anj subprogram with veryfewrest‘rictions° In turn, a glven
" subroutine can call any other ln another subprogram w1thout
going back to the main programo,-

The upper parilof Tahle I‘contalhs all’the operations_-
pertaining to thevhandling'of the gay‘;diagfam variables. - Theje
lower part of.the table lists the‘subpfogramsbhecessary forlthe
| production'of the y-y  or ix—lljdiagrams as cartesian graphs
plotted in the printer. Therefo}e, they are not absolutely
essenﬁial3to the analysis*of opfical systems, if one'does not
desire.the'graﬁhs? or if there are othef means‘of-plottingrthose‘
graphs. :These latter routines, although wrltten in FORTRAN9

depend heavily on the 1nternal structure of the CDC 6400 computer,,

.All the tasks.performed by the YYRANCH program are -

cohtrollable through data cards whlch are all of the same. format°
two!alphanumeric fields and'five numerical fields, which are
read under the format 2A8 5E12.6; the last 4 columns may be
used forrldentlflcatlon; Thus, the two labels should be’ punched
startlng in columns - and 9 respectlvely,_and the five varlables
v
should be punched startlng in columns 17, 29, 41, 53, 65, respec-
'tlvelyg The ldentlflcatlon.may be started.lnbcolumn 77
- : In’the,follouing;exauples of_input éards the first two.'.
'lahels:uill be“typeofas_theylshould ahpear in the'dafacards9
and fhe numerieal va#iableleill,be:liSted as-a sequence;;u

sepa;ated by commas. When a variable may be absent,-this willh
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' be-indicéted by a ldng dash. - Sometimes the names.iﬁ the labelsf
are_optidnall,in the sense.thatfés far as the program is con-
cefﬁed they may be ébsent, although’its ?resence is a good.
-guidance for the uéef° This will be'indiqéted'by an asterisk.
after.those names.

Ariong fhe ﬁany tasks that thé program YiRANCH,pérfﬁrms we
may mentioﬁ the'déri§ation of first-order érqperties»of é éiven
5~31_or111~fi diagram; the normalization of thé diagram; its
graphical_representafioh; a shift of the objeét‘or ofvthe stop;
the_derivation'of avdiagram from a given set. of curvatures and
spacings; thejderivation-of the Seidel coefficients for each
surface and all of the surfaces together;rénd‘fhe bending and =
thiékening of lenses. .

We now proceed to deséribe the input cards to ééhievef
thése.taskso o J

‘The very first'card of a given inputideck must be of the’
_form’f»ﬁ . 7 |

NEW DECK® SRR o - (8-1)
.this inifializés several counters and sets the Qalge of W to
@nitj; ;The very lést card ﬁf’the deck must be. - | A
| END"-DECK‘?"“ o - ©(8-2)
to properly stop the program;'
| 'Several“syétems'may be;prqcessed in a:siﬁglg‘runé Eéch

one must bégin with a card of the form (8—1),7to’pr6perly_



_initiaiize:the counters° Hoﬁever, oﬁiy one END card'muet be
preseﬁt - thHe very last one, ae thie card stops.the‘pfcgram.

Immediately follow1ng a NEW card, the program expects to.
flnd a card of the form |

TITLE Some approplate title- beglnnlng . (8-3)
' .after column 17

’The-contents of this TITLE cafa will be used as = labele
for all listings: and graphs,pertaiﬁing to the pafticular system
that it precedes. If this card is left outrthe titlefiabel-willﬂ
 be left blank, | |

"When asking~for‘graphe of the diagram there is an thien
for a cardlef similar.format |

MESSAGE Some appropiate message beginning. A-(8-4)
after column 17 ‘ :

. which is used to put a required label at the bottom of the graphs

to distinguish theﬁ from one another,

Options for Input"

‘The 1nput to the YYRANCH. program may take three forms:
We may 1nput the set of pomnts 2 representlng the optlcal system
-1n the 3—5 dlagrem, or the set'of line vectors “/ repreeentlng-
the same system in the n-a diagram, of,the set of'sufface curva- |
'tures,and‘separatione,'frem'whieh the:s;g' diegrem may. be |
Cbnstructed‘by.the.rey:tracewof'ﬁarginal‘end chief'-rayso At the .
same tlme we read the values of the dlfferent indices of refrac-

tlon 1nvolved°~
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To read a set of points E we start by reading a card
of the form

OBJECT POINT* Jo s Oy , ) . (8-5)

We next read as many cards as points are in the diagram,
representing either surfaces or thin lenses. If the point read
is to represent a surface, the data card takes the form
SURFACE* j* Tov Yj0 M0 Vi - (8-6)
Instead, if the point represents a thin lens, the input card
should be
LENS j* Yss Y50 Mg s P X4 (8-7)
In these cards, ( §j, 4j ) are the coordinates of point j, M5, ¥,
are the index of refraction and dispersion constant of the space
before point j, or 4%, ﬁg for the thin lens, (see Appendix A for
nomenclature), and XJ is the shape factor of lens jJ.
After all points representing surfaces or thin lenses are
read the set is closed with a card of the form

IMAGE POINT* 4z 0., , . . (8-8)

This card signals the end of the input set and the
program then proceeds to calculate the lines " connecting the
points and the derived quantities 7 and £, according to Egs.
(3-9), (3-14), (3-11).

If instead of points 2 we wish to read the lines W we

begin with a different object card:

OBJECT LINE n, o,,m, v, . (8-9)
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Then the intermediate lines are read as

RAY* j* ng, a4, mi, o, . (8-10)

——————

and finally we close with an image card that has the same function
as the one in (8-8),

IMAGE LINE* £, Qz, Mz, v, . (8-11)

From here, the program proceeds to calculate the vectors 2 and
the quantities 7 and 2.

When we wish to read the input in the conventional manner
by giving the curvatures and separations of the surfaces compos-
ing the system, we begin by reading an object card of the form

OBJECT HEIGHT Yoo Wyy Uy My, ¥, (8-12)

Where %, %, are the chief and marginal ray angles in the first
space, expressed in radians. This card is valid for an object at
a finite distance. If the object is located at infinity, this
object card takes the form

OBJECT HEIGHT Yeo Wiy Oy, M, Y. (8-13)

Here, Ye is the height of the marginal ray at the entrance pupil.
After reading either of the two object cards we proceed

with alternating thickness and curvature cards of the form

TH* %o ’ ’ ’ y (8-14)
for the separation fj, and
cve Cd' ’ '"J'Hs Vit » ’ . (8-15)

for the curvature Cj and the index for the next spacing. The

set ends with an image card of the form
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IMAGE HEIGHT*

(8-16)

with this card the program proceeds to trace a marginal and

-

chief rays through the system and from them get all the values of
2, W, Tand Z.

To complete the specification of the system we must input

the value of the Lagrange invariant used to reduce the set of

points or lines in the y-y diagram to the physical set of curva-

tures and spacings or vice versa.

As mentioned before, at the beginning of the program W
is set equal to unity. Another given value of M can be intro-
duced with the card

CHANGE ZHE W, oO. ’ ’

. . (8-17)
1. list

The second variable allows the printing of a new 7 and ? lists,
(see below).

Another way of introducing a value of the Lagrange

invariant is by specifying the focal length of the system j’.

the f-ratio W, and the field angle %, as follows

INVARNT Ny g u, , , . (8-18)

The invariant is computed from

= "lasf’/zlv-

However, the card (8-18) does much more than just introducing a

new value of M. After the value of Y has been computed, the

whole set of points and lines ¥ and W are normalized, according
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to the rule given in Chapter 5, and then rescaled with the new
value of Y using the expressions developed in the same Chapter 5.
Obviously this operation cannot be carried out before the points
and the lines are defined, and therefore an INVARNT card must
follow the OBJECT through IMAGE cards.

On the other hand, if the input is given in terms of
thicknesses and separations it will be necessary to introduce a
Lagrange invariant before we read the input set in order to get
realistic values for the variables $ and W of the Y-y diagram.
This is most conveniently done by introducing the value of
through a card of the type (8-17).

If any of the points in th; Y-y diagram represents a
thin lens this should be indicated by the card

THIN LENS* d» O. old data
1. new data, 7j, I{,-. Xg - (8-19)

which follows the OBJECT through IMAGE cards. In this card if
the second numerical variable is absent or zero means that we
take the data for the thin lens (55..%3 Xj) from the card (8-7);
otherwise, they are given in this card (8-19).

When all the points defined in the input set are thin
lenses then it is sufficient to use the card

THIN ALL® (8-20)

These cards (8-19), (8-10) have the effect of defining
two coincident points which represent the two surfaces of the

thin lens of strictly zero thickness. The line vector
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;representing the space within'thezlohsiis.ooméutedfwithvthe helé._
of the shape factor X by means of Eq. (7 5)

One word about default condltlonso In the great magorlty
of cases3 when a numerical variable is left blank, it is read by_
1théfprogram as zero (aofually,.negatioe-éoro);" Ono:notébie -
éxoeption is.the cardéocontaining iﬁdicoé of refraotion; when
itheée_are left blénk they are set equal to unlty by the program
;and the correspondlng dlsper51on factor is set as Y = 90. Inothé
same way, when we deflne points to be thin lenses; Ey'meéns of |
vcards (8-7) or (8=19), the nelghboflng 1nd1ces of refractlon aro
1set equal to unlty° If different indices are des;red ‘surrounding S
a thin lens, these may be introduced witﬁ a card of the'form,'

CHANGE INDEX - G M %, 00 ,____ 5 (8'_'?;1)

. ) o 1o list S 7
VTheifourth'voriabie'allows'printing.of'a new. ¢ li;t,.(seo below).
| Oncevthe’input.to thé progrém‘is=spécifiedAby means of
A_fhe above cards;_wé may proceed to apaiyze thefcontents_of the -
diagrém or to modifyoit by oeffaioﬁoperations;"Befofe wé»
roeSCfibé}theséAmodificétiohsfletfuo look»into.the options:of

outputiand>the analysis features of the'progra_m°

7 Options for Output

The output may take the form of llstlng of several types
" or the form of graphs of the 5-3 or Jlﬁﬂ. dlagrams° Several of
 the llstlngs are the result of other operatlons carrled out on-

parf»or the whole of the diagram, but a’dlrect command may producé
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;-the'listing_of the variables in the'd?g' diégraﬁ by means of the

" card .

LIST . 1. T 1list, . . . ' (8-22)
’ 20' '6 list o :

3 t.list
The T list refers to the lisfing of the‘quantitiesrg',yv
; T,ii,il{.and B, ﬁhich'are direefl§ derivable from the»set of
points i{ - The = list consist of the reduced quenﬁities B W, W,
»and;? ,‘which are-derived from'the T‘lisfrby inserting.the_value__
'eof.the‘Legfange’invariant X . Finally, the f list is'e listing“
of'tﬁe Quantitles £, .i' u ‘f" c,7, obtalned from the 2 llSt by
' .1nsertlng the appropiate 1nd1ces of refractlono
.If ‘the numerlcal variable is left blank,eit-is interpfet;}
ed bj ﬁhewprdgfam as unity and @hefefofe, a;T'lisf is impliedos
| lTp'obtain the graphicaleoutput we use the card_ |

 DIAGRAM-YYBAR 0. 0. 0. 0. 0.

OMEGA " 1., graph 1o scales 10 T'llst 1o reJected 1o messege
2. % list - . : .
3. £ list | (8-23)

.According‘to (8~23) if the’secend name:is—YYBAR we obtain
';a 3-3 dlagram ‘and if it is OMEGA we - get an -0 dlagramostf
-the flrst variable is: dlfferent from zero9 the graph will be
fprlnted otherw1se it w1ll be calculated and saved, elther for
v,subsequent.modlflcatlon or. for future prlntlng,a The secondvvaria— -
sle controls the prlntlng of the scale used for the grabho »The
*thlrd varlable serves to produce the llstlngs descrlbed before

for card (8-22);»if it.is blank, no lists will be producedol'The.
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foufth variable conireie t£¢ p£inting §f the poihtsufhat'fali“
- outside the frame defihing'the“gfapho Fiﬁally,’fhe fifth variable
(-permlts the prlntlng of a message read 1mmed1ately after card
(8 23) under the format (8 4).

The graph prev1ously calculated .or prlnted has a fixed
eeale of one unlt,per\lnch,vand-ls'centered at_the prlgln of
coordinates. Someb;mes this:isinot coaﬁenient»and a medifieaﬁion

either before orfaffer printing is possible with a card of the

~ form
Z00M TO. CNTROID ~Scale X, SCale\y;-Oo ) Xey Yo
NEW CTR . 1. graph S
OLD CTR - | o (8-2h)

RECOVER

When the’éecondrnamekie CNTROIﬁ,'the graph.will Be_t;ans-
. iated,rﬁithﬁnew sealihg:(ecale x;‘scaieg.j if necessa?y; to the
centroid of the peints iﬁ_tee diagram. . If itlisfdesired toehave
;the scallng unchanged we must put scale X = scale 3‘; 1. The
prlntlng of the graph is controlled w1th the third var:.ableo

When the second name 1s NEW CTR, a new center is deflned
‘by.varlables 4 and 5, w1th or w1thout scallng and prlntlngo

When the second name is OLD CTR the center of the;f
- previous graphpls-used,;and.only the-scallng,is_changedov
Finally, when the second name is RECOVER, the‘originalv‘
_graph»is.recovere&; o B | '

Two more cardsvmay be ased when confrolllng the outputei
lThe follow1ng card | |

PRINT DECK“
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»allows.the:pfinting of thc set cf:points andfindices of . reffac-c
tion in- the same . format as would be used as-input for a follow1ng
run; This llstlng is dlfferent from a 7'llst in the sense that-
the values'appear,with six figures after thé-decimal point.

. .Sometimes, whenra printing'option is called for, the
outpﬁtiwoul& be printed,immediatelylbeiow the last printed
results., If it_is desired to pfiﬁt these resultauin a‘diffcrent
~page, the following card may be used just before asing'fhe oﬁtidn-
in queation;. | |

| SKIP PAGE®
This will allow‘the‘printer,to-start any subsequgnt oufput-in.a

new page.

- Analysis Features

' Asidé~frcﬁ the:above opticns of'output-wﬁich aay'be_used
as’ analysis tools, the YYRANCH prcgramipfo#iaes fcr a aumbe;>ofi'
cperaﬁipns and listings that pcfmits thé'detailed:study of an
,optical‘syatem represented in the 3—5r'diagfam° 'The'mcst impor~-
.tant of these are the-ccﬁputaticn,aca'listing ofrthc»first-uahda,
third—c%der éropartieS;of the optical systema_’But before
descriping tpése we shall mention two options that are aseful_in~
pfacticeo | V | |

When we comsider that the opfical systaﬁ.conaists of’iena; 
_elementa either thin or thick, scﬁefimas it is importaﬁt before
proceedlng, to calculate the shape and thlckness factors of the

1ens9 glven by Eqso (7-8) and (7- 13) respectlvely° »Th;s is
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‘accomplished by the two following cards, one for each element

considered
 SHAPE , o Lo - (8-25)
sp o ___ P . (8-26)

Note that the inclusion of these tworcafds wil1_not produée'anyi
-printedroutp'ut° Its inclusion is mandatory when thevquantitieg

X or-@bare necéssafy for'furthef cbmputatiéns, and the poWers or:
v.thé sepa?ations have been changed by previous ca-lculé—tions°

| ‘:The first order properties of a sjstem may bercomputéd by

a card of the form

FIRST ORDER* 0. -
, . ‘ 1. 7 list
2. ¢ list
3. ¢ list

., , - (8-27)

‘After. reading this card the program will proceed té make the 
'iistings{indicated by the first variable; accordingrtb the‘ruleéii
'giveﬁ ébove for,car@v(8—22); ifvthis'variable is blank or zero
 _these”lists‘wil1Vbe omitted. |

Proceeding, the pfogfémvwill caléulate‘éll thé‘first‘
'E ofdér parameters of the system taking the first liné:as'object.‘
ray and the last one‘és‘image ray. “Therfbrmulée developedriﬁ 
,'Chépter'Q afé‘usédito calculaté allithe_cardinal'pgiﬁté, the
.'iject.énd pupil magnifications, the fefractionﬂinvagiapf,'etcoy
as well as the lo;ation of all points_frbm the«first;ana léét |

‘SurfacésAof the system. The distahces,are also displayedvin_thel
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three formats of T list, % list, and # list. Finally the loca-
tion of the stop of the syéfém ié_printed at the bottom of the'n
:pageo .. | o | |

It is alSovpossible_£o~calculate the cardinal pdints and
other first order parameters for a;pair of giveh line,veétors
taken as cbject énd:image.fays; this may be accomplished with a.

card of the form

CARDNAL POINTS® 4. k, , ., . (8-28)°

This card will calculate the cardinal points gorresﬁonding-to fﬁe
"system" formed by tﬁe raysr ﬁa | Gl.

If it becomes necessary to construct a vignetting
diagram of the system,.the progfah will calculate and print the'

neceésary quantities»to_produce a drawing as in~Figa‘32 by

reading a card of the form

VIGNETT j, ChAiy v (8-29);::
for eggh surfapé o_f;‘;:he_system°  The_secona variable gives the
presériﬁéd cléar apertﬁre-of the:system; if it is absénf;theb
program will Sét‘it at its ﬁinimum'vaiué as gi&en by Eqa;(4-41)o'A

. The third-drdef coeffi¢ients of the sysfem will be_calcu—:

lated by means of a card of the form-

THIRD ORDER® .~ __ , hk, ___4 __s___. - (8-30)
hwghis‘card will signal -the programlto calculate the Seidel coef-
 ficient Sh(seeibelow) for éll surfaééso If k=0, all Seidel’
coefficients will bé3computea'fof allisurfaces7énd printéd; how-‘

ever if k=0, the result will_ndt'be printed.
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The Seidel coefficients are computed from the following
expressions, which are essentially those given by Hopkins (1950,
pp. 87-88), properly scaled by the Lagrange invariant, and in
terms of the quantities intrinsic to the diagram. The coeffi-
cient for distortion is differently expressed to avoid a

singularity.

Using the variables defined in Chapter 4, we have for

each surface:

Spherical aberration, S, = §; = 3AI*

Coma, S.= 8 = yAaIr
Astigmatism, Ss=Sm=y AZ?

' Petzval, / Sqy= Sg= P = - R &/n*
Distortion, Ss = Sy = yAI* - GIP
Longitudinal color, S¢ = C. =0y Ih(a%’"’ - J%/n)
Transverse color, S = Cr = g-f.(Jﬁ'ﬂ"- dn/n)

Summing over all surfaces we obtain the wave aberration

coefficients as follows, (Hopkins, 1950, p. 50)
Woro = Y2 WX S
Wiw = -2 WIS
W = -% W E Sz

~fy WCE Sy

Way = -%2 W I S

=
I



177

J(wuo) = "/1 )H T Ceo
/(Wm) = MZ cr

]

These aberration coefficients may be combined in some
"figure of merit" to give an idea of the performance of the
system. We chose as a figure of merit the following ''mean
squared spot size" referred to the image centroid in the gaussian

image plane:

= (5] oo )+ O ra

<+

Y2 (Wazz @z)z + Y4 (Wo‘lo)z +

+

[(Wm + W,,,)(& + wau (3311 + Y3 (Wlau (3)1} s

where @ is the fractional size of the aperture, and where we

have taken W, = 9(Wim) and W, = o{(Wew) , using the C and

F lines as extremes and the d line as reference. This quantity

is computed by the program for the values @ = 0, 0.5, 0.7, 1.0.
After calculating these quantities the program prints the

Seidel coefficients for each surface, their sums, the wave aber-

ration coefficients and the merit function.

Design Features

We include as design features all the operations and
changes in the diagram that will lead to a desired configuration.

These include bending and thickening of lenses, and shifts of the
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stop or the object. Each type of change may be accomplished with
a different card or set of cards. We describe them in this sec-
tion.

Many times it is convenient to work with a normalized
diagram in the manner described in Chapter 5. A normalization of
the diagram is accomplished with the following card

NORMAL (8-31)

Arvitrary changes in the variables may be made with the
following cards; however they are of limited value in the present
use of the program, because after the data cards have been read
in the machine, the user has no control whatsoever over that run.
Nevertheless some times it is desirable to include those changes
in the same run to see how the diagram is evolving.

We already mentioned the cards used to change the

Lagrange invariant, card (8-17), or a given index of refraction

(8-21).
If we wish to change a point we use the cards
CHANGE POINT 1oy 4y 34y Y. -
CHANGE POINT 2.y §y Ry Fg4e - (8-32)
CHANGE POINT 300§y R Y -
CHANGE POINT by oy R B2y -

When the first variable is unity, the new value of Ej will be
given by variables 3 and 4. When the first variable is 2, the 35
is moved along the line “L until it has a value Ed given by

variable 4. Similarly, when variable 1 is 3,'§fmoves along line
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WL until it has a wvalue of Y; given by variable 4, Finally, when
the first variable is 4, 3; moves along W a distance A2,
A change in a line vector W may be made with a card of

the form

CHANGE LINE 1o, 4+ 4, 04, . (8-33)

Of more important applicability is the bending or
thickering of lenses. The tending of a lens according to the

rules given in Chapter 7, may be obtained with the card

BENDING LENS* J, Tis1, xj , O, 01d 7, O. (8-34)
1. new T, 1. print -

where Xg is the new bending factor for lens j. A lens is
considered to be composed of surfaces 53 and iﬂ'- If the fourth
variable is blank, the bending will be done without changing the
thickness of the lens. If however a thickening as well as a
bending is desired, this variable (4) will be different from zero
and the new thickness in the form 7 =X %/n , must be punched as
variable 2. The fifth variable controls the printing of the
results.

For thickening, we use a card of similar format

THICKEN LENS® g+ Tgns X, 0. old shape, O. (8-35)
1. new shape, 1. print

The new thickness is 7ju and the possible new shape is given by
Xj.
We may use either of these two cards also to thicken or

bend a previous thin lens, by giving the new thickness or bending
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required. However if we wish to give the thin lens the minimum
thickness required, as explained at the end of Chapter 7, we use
the card

il

THICKEN MINIMUM ds tos v ___» O (8-36)

1. print

Where 2; is the physical rim thickness. See the last section of
Chapter 7.

The shifts of the object or the stop may be accomplished
by many different options, each more convenient than the others
in different applications. The cards are of the following format
either for the object or the stop shift:

SHIFT OBJECT 1., k', , , .
STOP kK

(8-37)

The second name controls the type of shift, and the
first variable the option. For card (8-37), the slope of the new
axis is given, and the formulae of Chapter 4 are used to calcu-
late the new values of g or y variables.

SHIFT OBJECT 2.y Hsv Yo o , . (8-38)
STOP

This card says that the new axis passes through the point

(g-h 35)

SHIFT OBJECT 3., 05, o, , . _
STOP b, (8-39)

In this card if the first variable is 3, the new axis is
parallel to (g, N¢); if it is 4, the new axis is perpendicular

to (g, O5).
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SHIFT OBJECT Sey 4 ' 1 .
STOP 6. (8-40)
7

This card determines that, according to the first
variahle, the new axis passes through the point i{(S), or is

parallel (6) or perpendicular (7) to the line W.

SHIFT STOP 8., 4, ts, . . (8-41)

This card can only be used for a stop shift and says that
the stop should be located at the distance 7, from the point 2j.

SHIFT OBJECT 9., m, , , , .
STOP me (8-42)

This card expresses the fact that the new axis is the conjugate
line whose magnification is m, or me.

SHIFT OBJECT . 10. Y, , '. .
STOP . "z (8-43)

Finally, this card says that the new axis should be the
conjugate line whose magnification ratio is either Y or 2 given

respectively by

y = B2 + 2 = I + Mo
N, - 0, | = Mo
2 = L.+ A 1+ ™
Ill - —ﬁ, 1 - ME

These factors are very convenient in expressing certain
properties of optical systems. See Hopkins (1950, p. 120).
Note that these SHIFT cards do not produce any printed or

graphical output. If the results of these operations need to be
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‘checked.the.appropiate.cards_should'beﬁusédito-diép%éy'the'in_
formation. | | B

One last word of caufion: anyrvariabie punched in the
-five.numerical fields should be‘alwaysfpunched‘as a-flbating
poiﬁt.nuxﬁber9 ioeogwith a‘decimal point,_or'located_within its
own fieldAas to,Satisfy”the implied fofmat ﬁ12°6a' This is
particularly important for those numbers that appear'as sub=

'scripts or integers in the cards described above.



APPENDIX A
NOMENCLATURE =

,  General -
Quanfities pertaining to a #ay.refEr to the maréinal ray
if written without a bér and to the chief ray if writtén’with a.
bafo | | » .
Quantities without a prime refer to the space'before fhé
"refraéting surface under,cpnsideratién, and primed Quanﬁitiesrre—‘

 fer to the Space after the surface.

Subscripts
, Therfirstwéhysiéal surface is deﬁéted Ey the subscript 1.
An intermediate surfacé‘ié‘labeled és—thg 525 surface Wifh the
subscfiét d,‘or if necesaryfas fhe .i% sufface‘with the‘subscript 
;i; The last surface»ié denéted'by the'suﬁscript k. L
o The objecf plane or surfacé ié denoted by O and the~imagév'
plané or surface by 0 or I. |
-~ The surface or“plané of.the'physical stop is aenoted b& a‘
' subscript lgov | . o
| The éurface or»plang.of %he éntrapce pupil is denoted by':

a Subscripf'E",-that of the'exit pupil Byba subscript E’,

Quantities Belonging to a Surface
B radius of curvature
“c=1[v, curvature

'183""



3,3’ height of the marginal and chief rays
ca = |g| +|yl, clear aperture
R=n/n refractance

Quantities Defined in the Spaces Between the Surfaces

wn, u, angle between ray and optical axis
i, i, angle of incidence; note that
i=u+c3, -z'—.=‘l:+cg
i’, 1  angle of refraction
n,n, indices of refraction before and
after the surface
t, +, axial distances before and after the surface
Note that Wi = Ujey , My = My, PR T
- Reduced Quantities
w=nu W =Enu
T = t/n
g=(n—-—m)c, power

Lagrange Invariant

H = &73-—3«)

Quantities Derivable from the y-4 Diagram

n = w/)K, n= /K
7 = WMz

F= /M

184



APPENDIX B
DUAL TRANSFORMATIONS OF CONICS

Before we derive the transformations of conics from point
to line coordinates and vice versa, we shall quote the formulae

necessary to analyze a conic when we are given its general form

Ax* 4+ Bxy + Cyg* +Dx + Ey + F = 0. (B-1)

These formulae are derived in books on analytic geometry
(e.g., Spain, 1957; Garnier, 1946); and we shall restrict our-
selves to summarize them indicating a logical sequence for their
use. They are based on the existence of certain quantities which
remain invariant when we apply the transformations of rotation
and translation to the general Eq. (B-1).

Starting from the general equation of a second degree
curve in the cartesian plane, Eq. (B-1), we form the following

determinant with its coefficients:

2A 32 D
A= B 2C¢ E > (B-Z)
D E 2F

which is called the "General Discriminant." From this determi-
nant we now define the following minors
Ay = 4CF - E?,
A3 = DE — aBF, (B=-3)
A. = 4AF - DY,

185
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A, = BE -~ 2¢D,
Ap = 3D - 2AE, (B-3)
A = 4AC - BY

We also define the two quantities
I = A + ¢,
(B-4)
Apae = Qp + Ac.

The cuantities O, OAfF,Z, and the sign of Aac, are
invariant under the transformations of rotation and translation,
and therefore may be used to classify the different types of
conics available. Table II gives such a classification (p. 194;
or see Korn and Korn, 1968, p. 42). The curves for which Ag # 0,
are also called "central conics'" and in this case, the most
common for our application. It is more convenient to carry out
first a translation of the origin to the center of the curve and

then a rotation of the axes about this center.

The center of the curve is given by
(%o, 40) = (Bv/nr, Ae/Ar). (B-5)

When the translation to this point has been carried out

the equation of the curve takes the form

A‘x,l + :Bx,d, + Cy’z + A/Z AF = 0. (B—6)

The rotation of the curve through an angle \plé.%b.can be
used to eliminate the coefficient B in Eq. (B-6). This is

accomplished by solving the 'characteristic equation,"

- IXx + /5 b = 0. (B-7)

2

A
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The roots of this equation X\; X\, permit us to write Egq.

(B-6) in the following form

N E ayt + B/2ae = o (B-8)

Note that these roots may be written also as

)\l,:. = % (I x K): (B-9)
where R* = I* - A, (B-10)

The choice of the roots is arbitrary, and we shall adopt
the following notation: For the ellipse, X, <)X\, and for the
hyperbola, XA, >0, 2\ < 0.

The equation of the major axis, that is, the new x-axis

after translation and rotation, is

3
—_Yy = — X - ‘Xo) (B-11)
y-3 oo ¢ )

and the equation of the minor axis is given by

- - 2 - X.).
Y- Y 2(x,—<:)(x )

The angle of inclination of the major axis may also be

expressed as

'l‘Mt(J: 3 = A-CHR > (B-12)
2(\,-¢) -8

where R is given by Eq. (B-10).

The eccentricity of the conic is given by

e = V’ - Xl/)\z '. (B“13)
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Then, we have for the ellipse,

the semi-major axis: at = - A/(2 MOAR),
the semi-minor axis: b = et (1 ~e?), (B-14)
the semi-focal distance: C = ae,

And for the hyperbola,
a? = —A/(QX\AF):

bl

at (e* - 1), (B-15)

cC = ae.

The asymptotes of the hyperbola are given by

20x + (BEV=8F)Yy = 2Ax. + (B + V-4F) Yo, (B=-16)

or alternatively,

(B £ V=) x + 2€4 = (B £V~8F)x. + 2CYe. (B-17)

For the case of a parabola (Ap==0), we have to proceed
in a different way, as there is not a center defined in this case
(in fact, it is located at infinity). We must first rotate the
axis and then carry out a translation of origins, usually to the
vertex of the parabola, the new x-axis being the axis of symmetry
of the curve.

We shall not quote the formulae for the parabolic case,
as they are not of interest for the present investigation, and
the interested reader may find them in the books quoted above.
However, we shall quote the only case that may find application

in our work, namely when Ag=0 and also A=0.
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In this case, as may be appreciated from the Table B-1,
the parabola has degenerated in a pair of straight lines, whose

equations are

VA x + /Ty + VADx VERE "t'_:;m‘ ’ (B-18)

2T

where the negative sign of V€ is to be chosen when B8 < 0.

We shall now proceed to see how these conics transform
from point coordinates to line coordinates and vice versa. For
that purpose we shall make use of the concept of homogeneous
coordinates; see Gans (1969), and Chapter 2 of this work. The
point coordinates will be denoted by (X,Y,2) and the line coordi-

nates by (%,7,%).

The equation of a straight line will be given by
X% + ym + e? = 0, (B-19)

which may be written in the matrix form

(X Y i) ; = 0.
Y] (B-20)

f 5

The equation of the point conic, as defined in Eq. (B-1),

- -

in homogeneous coordinates is given by

Ax* + Bxy + Cy* + Dx2 + Ege + F2a* =0 (B-21)

Note that we may recover the cartesian form of Eq. (B-1)

from this expression by setting 2=1I.
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Equation (B-21) may also be written in matrix form as:

(x y 2) (24 2 D\V\/>xX\ = O.

B 2¢ E || Y (B-22)
) E 2F 2

The equation of the tangent to this conic at the point

(%1, Yy 2), is given by

(x 9 2) ¥\ = (x Yy 2)[2a 3 D\ /M) = 0;
3 D E 2F 2,

comparing both sides of this expression we see that

13 24 38 D\ [
M| ={ 8 2¢c E|{ Y (B-24)

and solving for the point of tangency,

L

i 2 3 2\ '[%
| =B 2 E vl (B-25)
2, D E 2F ;

But the point (%, Y4 ,2/) is on the line (%‘,W + 5 ), whose equa-
tion is given by
(37m 3)/x\ = o.

Y, (B-26)
a,
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Substituting Eq. (B-25) into Eq. (B-26) we have there-
fore
(57%) (22 2 >\ (5| = 0
B 2¢ E i (B-27)
D E 2F *5
which is the equation of the conic in terms of its tangents, or
in other words, is the equation of the line conic. This is the
equation of the conic in the dual space.
The inverse of the matrix of the coefficients of the
conic, defined by Eq. (B-24), may be expressed in terms of its

minors defined in Eq. (B-3). Let us call the original matrix M;

then
24 3 2\ Asr Dy 4Hp
M'=|3 22 ) = —A'— By Ac Qe | s (B-28)
D E 2F by A AF

where A is given by Eq. (B-2) and is the determinant of the
matrix M. Let us call M the matrix whose elements are the
minors of M and whose form is given in Eq. (B-28). 1Its determi-

nant will be denoted by KEEIM[ and its corresponding minors will

be E%, Ei , etc. We may rewrite Eq. (3-28) as follows
M' = M/A (B-29)
We wish to find now the determinant of the inverse,
(M| = | A/s) = |Pl/&° = B/ (B-30)

For this purpose we remember that

MM = m ﬁ/A = the unit matrix, (B-31)
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and
An = ) = B/at = | (8-32)
therefore
A= &t
(B-33)
Also, note that
~ < -
Na Ag A_‘D QA B D
- 4 _ Al xR
(e s et = AR Bl B =3 s )]s o
En &E &F D E 2F
therefore,
&}‘ = 2A-A
&3 = B'A
~
Ae = 2¢- A (B-35)
ZJD = DA
EE —_— E'A

As a check we may calculate from these expressions the

~

value of the determinant A :

~

A\

which agrees with

A(Dop+ Ebg + FAF) = AT,

AD’E:D + AE'EE 1 AF'KF =

(B-36)

the value obtained in Eq. (B-33).

Using Eq. (B-28) and Eq. (B-27), we see that the equation

of the conic in the dual space (% ,%,%) is given by
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(; “q 3) AA Az A.'D E 0;
8 Ac D |7 (B-37)

Ay Bs A /\3

or written in expanded form for cartesian coordinates ( §=/), we
have
DaE* + 20857 + D™+ 2853 + 283 + 4 = 0. (B-38)
This is the dual transform of the conic given by Eq. (B-1),
which is also a conic as expected (see Basset, 1901, p. 30, and
Zwikker, 1950, p. 76).
We finish this appendix by noting that the coordinates
(x,4,2) and (% ,7,% ) are interchangeable, due to Eq. (B-19).

Thus, the conic

A  + B3y +Cy* + DY + Ey + F =0, (B-39)
is transformed into the conic

AAxl + 2A3x5 + Acyl + ZAD'X -+ aAEy + AF, = 0. (B-L.’O)



194

TABLE II

CLASSIFICATION OF CONICS
IN TERMS OF A, Ag, I, AND A,c

Ag> 0y elliptic curve:

a) TA <0 ; real ellipse, (I'= Af, circumference).

b) IA =0 ; a point, punctual ellirvse.

¢) IA >0 ; no geometric locus, imaginary ellipse.

Dr €0, hyperbolic curve:

a) A# 0 ; real hyperbola, (Z= 0, equilateral hyperbola).
b) A = 0 ; two intersecting straight lines, the asymptotes.
Ag = 0, parabolic curve:

a) A # 0 ; real parabola
b) A = 0 ; degenerate parabola:
i) Aas. < 0 ; two parallel straight lines.

ii) Aaec = 0 ; a single straight line, coincident
parallels.

iii) Qac > 0; no geometric locus, imaginary par-
allels.
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