
1

ADVANCES IN TELEMETRY CAPABILITY AS

DEMONSTRATED ON AN AFFORDABLE PRECISION

MORTAR

Michael L. Don

U.S. Army Research Laboratory

Aberdeen Proving Grounds, MD

ABSTRACT

This paper presents three telemetry techniques demonstrated on an affordable precision mortar

that allowed the guidance, navigation, and control (GNC) system to be effectively analyzed. The

first is a technique for the real-time integration and extraction of GPS data into a sensor

telemetry stream. The second is a method for increasing telemetry bandwidth by saving a short

period of high rate data and then broadcasting it over the rest of the flight test. Lastly, I present

an on-board data storage implementation using a MicroSD card.

KEY WORDS

Telemetry Processing, FPGA, SD card, GPS, Decom.

INTRODUCTION

The U.S. Army Research Laboratory (ARL) is developing a flight controlled mortar (FCMortar)

in conjunction with the Naval Surface Warfare Center. This program aims to develop an

affordable guidance and control system, packaged into a fuze kit, that screws onto the fuse

threads of a standard 81-mm high explosive projectile. Early flight tests verified the design of fin

sets and forward section extensions. The rounds were instrumented with an ARL designed

diagnostic telemetry module embedded within the body of the projectile (1). This module,

named MIDAS (Multifunctional Instrumentation and Data Acquisition System), encodes analog

sensor data into a pulse code modulated (PCM) stream and transmits it to a ground station.

Although the original PCM encoder design was sufficient for early phases of the program, the

introduction of a GPS receiver and GNC subsections in later tests created new telemetry

challenges.

This paper presents three of the techniques developed to overcome these challenges. The first is

a technique for the real-time integration and extraction of GPS data into a sensor telemetry

stream. The second is a method for increasing telemetry bandwidth by saving a short period of

high rate data and then broadcasting it over the rest of the flight test. Lastly, I present an on-

board data storage implementation using a MicroSD card.

2

GPS INTEGRATION

Although ARL has extensive experience with munitions telemetry, GPS receivers are a recent

addition to the ARL instrumentation suite. The FCMortar project was the first ARL exposure to

a GPS receiver produced by Mayflower Communications. Due to the risk associated with

integrating a new GPS receiver into a mortar, all of the GPS data was required to be available

during flight experiments in real-time as well as recorded for post-processing. A method was

needed to integrate the GPS data into the existing sensor telemetry stream and extract it at the

ground station. First I will present the original PCM encoder design, and then I will describe the

method I developed to manage the new GPS data.

Figure 1 shows a functional block diagram of the MIDAS PCM encoder before the GPS

integration logic was added. Analog sensor data is multiplexed into an analog to digital

converter (A/D). The FPGA serially shifts the digital data into an input shift register. A

commutator inserts the sensor data into the telemetry frames which are saved into an off chip

RAM. The RAM acts as a buffer which delays the data about 100 ms before it is read into an

output shift register and serially shifted out to the transmitter. This delay allows data sampled

within the mortar gun tube to be transmitted later after exiting the tube, preventing the

transmission interference of the gun tube from corrupting the in-bore data. Telemetry data was

formatted into 48, 16 bit words and transmitted at a rate of 4 Mbit/s.

Figure 1: Original MIDAS PCM encoder block diagram

There were two general options for integrating the GPS data into the telemetry frames. One

possible method would have been to decode all of the GPS messages in MIDAS and integrate the

decoded data values into the telemetry frames. This was unpractical using the current MIDAS

FPGA since there were 15 different messages, some of which were 424 bytes long containing

150 different data values. A simpler method was to insert the raw universal asynchronous

receiver/transmitter (UART) bytes directly into the telemetry stream. Figure 2 shows a block

diagram of the new MIDAS configuration used to integrate the GPS data. The GPS receiver

3

transmits data messages using a UART at a rate of 115200 baud. I developed a custom UART

core to receive the incoming data while minimizing FPGA resources. In order to transfer the

GPS UART data from the UART clock domain to the PCM stream clock domain, a first in, first

out memory (FIFO) scheme was employed (2). UART words received from the GPS are written

to the FIFO using the UART system clock. The PCM control logic then reads this data from the

FIFO using the PCM clock and inserts the UART words into the telemetry frames. The 8 bit

UART bytes are converted into 16 bit telemetry words by adding zeros to the most significant

bits. AAAA hex is used as a placeholder when there is no valid data available.

Figure 2: New MIDAS PCM encoder block diagram

Although inserting the raw UART data into the telemetry stream made the MIDAS processing

easier, it posed a problem for monitoring the GPS data at the ground station. The telemetry

software we employed was unable to decode and display the complex GPS messages in real

time. In order to solve this problem, I created a custom decom box. This decom box extracted

the UART data from the PCM stream and sent it to a PC for further processing. Figure 3 shows

a functional block diagram of the decom box. Using data and clock signals supplied by the

ground station, the data is shifted into an input shift register. Control logic identifies

synchronization words to determine frame boundaries. The UART words can then be located

and checked for valid data. Valid data is determined by checking the most significant bits which

are zero if valid, or non-zero if invalid as described above. Valid data is then written to a FIFO.

The custom UART core designed for the MIDAS FPGA is then re-used here to send the data in

the FIFO to a COTS UART to USB converter.

This scheme not only allowed all of the GPS data to be recorded, but also allowed it to be

available to a PC COM port in real-time, enabling us to use Mayflower’s own parser program to

decode and view the GPS data. The ability to view this data in real-time was essential during the

development and debugging of the rounds, as well as the flight tests.

4

Figure 3: Decom Box block diagram

TELEMETRY BANDWIDTH CONSERVATION

As FCMortar progressed, more of the finalized design was added to the rounds. A DSP was

added to the design to implement GNC algorithms. Telemetry frames now needed to include

GNC information. It was decided that half of the frames would contain MIDAS sensor data, and

half GNC data. This effectively cut the MIDAS data rate in half creating a severe data

bandwidth shortage. Unique test conditions presented a solution to this problem. Much of the

telemetry bandwidth was taken up by high speed sensors that were only needed in-bore at the

beginning of the flight. By saving this high speed data for a short duration at the beginning of

flight and then playing it back over the rest of the test, the available telemetry bandwidth could

be significantly increased.

Figure 4: Telemetry Bandwidth Conservation block diagram

5

Figure 4 shows a functional block diagram of the telemetry bandwidth conservation scheme I

employed. The high speed PCM encoder block implements the functions of the PCM encoder

shown before in Figure 2. This runs at a rate of 4 Mbit/s with frames made up of 96, 16 bit

words. These frames are saved in a circular buffer of 32768 words using the off chip RAM. 48

of the words are selected from the 96 word high speed frames to create 2 Mbit/s low speed

frames. These words are saved into a FIFO and combined with the 2 Mbit/s GNC data to form a

4 Mbit/s combined PCM stream. Once a g-switch indicator triggers, the PCM encoder waits 100

ms and then switches from saving data to reading from RAM. 32768 words provide about 131

ms of record time, thus sensor data 31 ms before the g-switch and 100 ms after the g-switch is

saved in RAM. This saved in-bore high speed data is inserted into one word per frame of the

low speed MIDAS frames. At one word per frame at 2 Mbit/s, it takes about 12.5 seconds to

transmit all of the saved high speed data. This allows the data to be transmitted more than twice

for a typical flight test that lasts about 30 seconds.

Table 1 shows the statistics of the saved in-bore high speed 96 word frames. The sensors are

grouped by sampling rate. The “Number of sensors” column indicates the number of sensors

that were sampled at the given sampling rate. The “Rate sub-total” column is the sampling rate

multiplied by the number of sensors. In all, there were a total of 30 sensors, with 10 of those

sensors sampled at high rates, mainly to capture short in-bore events. The total data rate of all of

the sensors was 224 K samples/s. Table 2 shows the statistics for the lower speed MIDAS

frames that were transmitted throughout the flight test. Here only one sensor was required to be

sampled at a high rate, allowing all of the necessary data to be captured in 48 word frames at a

total sampling rate of 117 K samples/s.

This shows the dramatic increase in telemetry bandwidth gained by this scheme. If all the

MIDAS sensor data was sampled at the same rate throughout the whole flight, roughly twice of

the bandwidth would have been required. By only saving the high rate data for a short period at

the beginning of flight where it was crucial, and then integrating this data into the rest of the

telemetry frames over the course of the flight test, the MIDAS telemetry rate could be cut in half.

Words/Frame Data rate (K Words/s) Number of sensors Rate sub-total (K Words/s)

1 2.60 20 52.1

2 5.21 5 26.0

4 10.4 2 20.8

16 41.7 3 125

Total: Total:

30 224

Table 1: High speed frame statistics

Words/Frame Data rate (K Words/s) Number of sensors Rate sub-total (K Words/s)

1 2.60 29 75.5

16 41.7 1 41.7

Total: Total:

30 117

Table 2: Low speed frame statistics

6

ON-BOARD DATA STORAGE USING A MICROSD CARD

Once again problems arose in later flight tests that resulted in the development of new telemetry

techniques. Interference problems between the telemetry transmission and GPS reception

initiated a search for alternative means of telemetry data recovery. Since the test rounds were

recoverable, on-board storage was a viable option that would solve the GPS interference

problem. I developed a storage scheme using MicroSD cards which are small, cheap, and

contain abundant data storage.

SD cards are equipped with a standard serial peripheral interface (SPI) supported by many

microprocessors (3). The high speed PCM data, however, could not be processed by an

inexpensive microprocessor. It follows that the ideal implementation was to use an FPGA to

format the incoming PCM data and to implement the SD card interface using a soft processor

instantiated into the FPGA. A CoreABC soft processor from Actel was chosen which allowed

for easy programming in assembly language within Actel’s Libero design environment and

provided bus interfaces to Actel SPI and UART cores (4). Due to occasional delays during the

SD card writing, an external RAM was added to the design for additional data buffering. Figure

5 shows a simplified block diagram of the SD card recording implementation. During data

recording, the incoming PCM stream is processed and written into a FIFO. When the FIFO is

almost full, data from the FIFO is written to RAM using the FIFO address counter for the

address. After 512 bytes have been written to RAM, the RAM data is read back using the SD

address counter and written to the SD card though the SPI interface. To read from the SD card,

no buffering is necessary. Data is read through the SPI interface and sent out of a UART

peripheral.

The design was verified to write up to 4 Mbit/s, with reading speed limited by the UART

receiver. To date this design has not been used in a flight test, but it has been employed in a

wind tunnel test where the test environment made RF transmission impossible.

7

Figure 5: SD card control block diagram

CONCLUSION

The FCMortar program presented several problems which called for creative solutions. Custom

decommutation, on-board data storage, and telemetry bandwidth conservation techniques were

all developed to overcome unique diagnostic and telemetry challenges. In addition to advancing

the FCMortar program, these solutions will extend ARL’s telemetry capabilities for future

programs.

NOMENCLATURE

A/D – analog to digital converter

ARL – Army Research Laboratory

CLK – clock

COM – communication

COTS – commercial off-the-shelf

Decom - decommutator

DSP - digital signal processor

SD card – secure digital card

FCMotar – flight controlled mortar

FIFO – first in, first out (memory)

FPGA – field programmable gate array

GNC – guidance, navigation, and control

GPS – global positioning system

MIDAS - Multifunctional Instrumentation and Data Acquisition System

PC – personal computer

8

PCM – pulse code modulated

RAM – random access memory

Reg. – register

SPI – serial peripheral interface

UART – universal asynchronous receiver/transmitter

USB – universal serial bus

ACKNOWLEDGEMENTS

I would like to thank two of my co-workers at ARL for their contributions:

 Pete Muller for designing the MIDAS hardware and original FPGA PCM encoder.

 Mark Ilg for the initial ideas to save high speed in-bore data and to use an SD card for

onboard storage.

REFERENCES

1. Condon, John A. et al, "Design and Experimental Results of a Developmental 81mm Flight-

Controlled Mortar," Aberdeen Proving Grounds, MD, U.S. Army Research Laboratory, 2011.

2. Chu, Pong P., RTL Hardware Design Using VHDL: Coding for Efficiency, Portability, and

Scalability, Hoboken, NJ, John Wiley & Sons, Inc., 2006. p. 652.

3. Technical Committee SD Card Association, "SD Specifications Part 1 Physical Layer

Simplified Specification Version 2.00," San Ramon, CA, SD Card Association, 2006.

4. Actel Corporation, "CoreABC v3.1 Handbook," Mountain View, CA, Actel Corporation,

2010.

