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ABSTRACT  

This study concerns the development of the peridynamic strain energy density function for 

a Neo-Hookean type membrane under equibiaxial, planar and uniaxial loading conditions.  

The material parameters for each loading case are determined by equating the peridynamic 

strain energy to those of the classical continuum mechanics.  Therefore, the peridynamic 

equations of motion are derived based on the Neo-Hookean model under the assumption 

of incompressibility.  Numerical results concern the deformation of a membrane without 

and with a defect in the form of a hole, an inclusion and a crack under equibiaxial, planar 

and uniaxial loading conditions.  As part of the verification process, the peridynamic 

predictions are compared with those of finite element analysis.  For all defect types and 

loading conditions, the comparisons indicate excellent agreement. 
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1. INTRODUCTION 

Rubbery type materials are used commonly in many engineering applications because of 

their resilience, toughness, isotropy and elasticity.  Such applications range from tires, 

engine mountings, vibration isolators, medical devices and structural bearings.  However, 

they present nonlinear elastic behavior; thus, the deformation analysis become rather 

complex.  Many hyperelastic material models were developed to describe the behavior of 

rubbery materials.  For elastic and isotropic rubbery materials, these material models are 

expressed by the strain energy density function in terms of strain invariants iI  ( 1,2,3i  ).  

The first mathematical model to describe the large deformation of rubber was introduced 

by Mooney [1].  This model suitable for hyperelastic deformation under the assumption of 

incompressibility was expressed by Rivlin [2] as 

 

   1 1 2 23 3W C I C I    , (1) 

 

where 1 2,  C C  are the material constant.  This Mooney-Rivlin material model uses only 

linear functions of the strain invariants.  Also, it recovers the Neo-Hookean model 

introduced by Treloar [3] by retaining only the first invariant as 

 

 1 1 3W C I  , (2) 
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where 1C  is the material constant.  In order to achieve better accuracy in the presence of 

very large strains, Ogden [4] and Yeoh [5] proposed their own models in the form of power 

series.  Ogden model is expressed in terms of the principal stretches, i  ( 1,2,3i  ) as 

 

 1 2 3

1

3i i i

N
i

i i

W
  

  


    , (3) 

 

where ,  iN   and i  are the material constants.  Yeoh model can be considered as a 

general form of the Mooney-Rivlin model.  It includes the third strain invariant in the form 

 

 
3

1

1

3
i

i

i

W C I


  ,  (4) 

 

where iC  are the material constants.  Among the molecular models, Arruda and Boyce [6] 

suggested the eight-chain model retaining two molecular material parameters as  

 

     

   

2 3

1 1 12 4

4 5

1 16 8

1 1 11
3 9 27

2 20 1050

19 519
                             81 243

7000 673750

L L

L L

I I I

W

I I

 


 

 
     

 
 

    
 

 (5) 

 

where   is the initial shear modulus of material, L  is limiting network stretch.  As the 

parameter L  goes to infinity, this model is identical to the Neo-Hookean model.  Gent [7] 
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proposed a model containing a singular behavior; it is described by the first invariant only 

in the form 

 

1 3
ln 1

2

m

m

J I
W

J

  
   

 
, (6) 

 

where   is the shear modulus, and mJ  is the constant limiting value for 1 3I  .  This model 

recovers the Neo-Hookean model when the variable mJ   in the denominator goes to 

infinity.  Recently, Amin [8] proposed another model for natural rubber and high damping 

rubber.  It is expressed in terms of the first invariant as   

 

     
1 13 4

5 1 1 13 3 3
1 1

N MC C
W C I I I

N M

 
     

 
,  (7) 

 

where 3, 4, 5,   C C C M and N are the material parameters.   

 

All of these models require material constants that are measured by performing simple tests 

such as the equibiaxial tension, uniaxial tension and pure shear [11].  Among these material 

models, the most commonly used one is the Mooney-Rivlin model. Although this model is 

based on a simple form of strain energy density, its simplicity makes it convenient to 

utilize.  However, it does not show consistent deformations for different loadings.  

Therefore, it requires additional approaches such as interpolation method. The Neo-

Hookean model designed by Treloar [3], whose mathematical form is analogous to that of 
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an ideal gas.  This model can be used to represent the Helmholtz free energy of a molecular 

network with Gaussian chain-length distribution.  An advantage of the Ogden model is that 

it can be efficiently fitted to nonlinear material behavior because many sets of experimental 

date are used for the determination of material constants, and its form contains exponential 

parameters.   The Mooney-Rivlin and the Ogden model make use of different material 

constants for tension and compression.  However, the Arruda-Boyce model uses only one 

material coefficient.  Although each of these models presents a particular advantage, Yeoh 

model provides the best agreement with experimental results as shown in Fig. 1.1. 

 

 

Figure 1.1. Comparison of hyperelastic material models to experimental measurement  

 

Consequently, all of these models are available in the commercially available programs of 

the Finite Element Analysis (FEA) such as ABAQUS and ANSYS to predict the behavior 

of components of rubber-like materials.  By performing FEA, Podnos et al. [9] investigated 



21 

 

 

 

the deformation of silicone rubber prosthesis for the metacarpophalangeal joint of hand. 

They selected and calibrated the material model by incorporating the test data. Montella et 

al. [10] examined the large deformations of a Tire Derived Material. They employed four 

classical hyperelastic models in the FEA of the railway track mat. Duncan et al. [11] 

evaluated usability of several hyperelastic material models and input data to obtain the 

force-extension response of lap joint bonded with a flexible adhesive. They modelled the 

lap joint specimen by using FEA to predict the force-extension response, and compared 

them to the experimental results.  Vavourakis et al. [12] presented a procedure for the 

simulation of complex biological muscular motion such as the octupus arm bending at 

several different conditions. They validated the FEA model by comparing the results with 

experimental data for the squid arm extension.  Gagnon et al. [13] simulated the behavior 

of a carbon black rubber at less than 25% engineering strain. They simplified the data 

obtained from experiments by assuming a perfectly elastic material, and they fitted them 

to hyperelastic models in the FEA.  Also, Samad et al. [14] made an attempt to predict the 

fatigue life of the rubber components for the car jounce bumper. They performed a FEA to 

obtain the parameters which are required to predict cyclic loading. Ramachandran et al. 

[15] investigated the prediction of deformations of the engine mount with FEA.  They 

determined the design variables of the mount element properties by optimizing the 

geometry of the structural components, and they simulated the rubber mounting with the 

FEA. Guo and Sluys [16] also simulated the rubber-like materials by utilizing the FEA. To 

simulate the ideal Mullins effect, they used both the concept of a continuum damage 

mechanics and a pseudo-elastic law. They verified the constitutive models by comparing 

the results with the experimental data.  Kyriacou et al. [17] obtained axisymmetric and non-
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axisymmetric solutions of the finite deformations of nonlinear orthotropic membranes by 

using the FEA. To validate their approach, they compared the numerical results to 

analytical solutions of two boundary value problems. Daly et al. [18] investigated the 

hyperelastic behavior of the cardiovascular tissue. They made use of Mooney-Rivlin model 

to simulate the anisotropic nonlinear elasticity of vessel under high strains. 

 

Although these FEA analyses provide the deformation of response of rubber-like materials 

very accurately, the predictions with the traditional elements become more challenging in 

the presence of cracks or defects.  To overcome this shortcoming, several approaches were 

proposed.  In particular, the eXtended Finite Element Method (XFEM) can be applied to 

address crack growth [19-20]. However, the element distortion and appearance of 

singularities in the isoparametric mapping of the element cause numerical difficulties for 

large deformations.  Therefore, the arbitrary Lagrangian-Eulerian (ALE) finite element 

formulation was introduced [21-26].  With this method, the element shapes for large 

deformations can be optimized by arbitrarily moving the mesh inside of the material and 

moving the mesh along the material on the boundaries and interfaces.  Also, the meshless 

FEM was introduced [27-30] to remove excessive element distortion.  In addition, the fine 

mesh and remeshing are utilized to investigate discontinuities experiencing large 

deformations [31-36].  

 

Even with those approaches, the fundamental problem cannot be resolved. A different 

analysis approach is necessary for each case.  Therefore, Silling [37] introduced the 

Peridynamic theory to address failure prediction in a unified manner.  The significant 
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characteristics of the peridynamics (PD) is that it is formulated based on the integral 

equation. Since there is no derivative of the displacement in its formulation, it can be 

applied to anywhere including the mathematical singularities such as cracks. Especially, 

without using any special treatment of crack propagation, with only one equation, we can 

predict structural deformation with or without cracks.  

 

The original formulation proposed by Silling [37] is “bond-based peridynamics”.  This 

formulation does not distinguish the volumetric and distortional part of strain energy 

density.  Thus, the two independent material constants reduce to one with a constraint on 

the Poisson’s ratio.  For this reason, Silling et al. [38] introduced the more general 

formulation, coined “state-based” PD theory. This formulation removed the constraint on 

the Poisson’s ratio, and accounts for the separation of the volumetric and distortional part 

of the strain energy density.  This distinction disappears if the material model has one 

independent constant such as the Neo-Hookean material model.  

 

The behavior of rubber-like materials with the PD theory was considered by Silling and 

Bobaru [39].  They described a constitutive model to explain the behavior of rubbery 

materials. The strain energy density function was constructed in terms of the principal 

stretches, 1 2 3, ,   .  They performed the simulation of stretching and tearing of a 

membrane for only the planar loading case.  This study concerns the deformation of rubber-

like materials with PD theory under different loading cases.  The PD equation of motion is 

based on the Neo-Hookean model.  Under the assumption of incompressibility, Poisson’s 

ratio being equal to 0.5., three different loading cases of equibiaxial, planar and uniaxial 
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are considered as shown in Fig. 1.2. The equibiaxial and planar loadings result in extension 

only; however, uniaxial loading presents both extension and contraction simultaneously.   

 
(a) 

 
(b) 

 
(c) 

Figure 1.2. Loading conditions: (a) equibiaxial, (b) planar, and (c) uniaxial 

 

In chapter 2, the PD concept, kinematics and strain energy density (SED) are described. 

The PD SED is expressed in terms of the summation of the micropotentials.  The PD 
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equation of motion is constructed in general form in terms of the force density vector.  

However, its determination requires the explicit form of the SED function.  In chapter 3, 

PD strain energy density functions, and the PD parameters for Neo-Hookean material 

behavior are constructed for equibiaxial, planar and uniaxial loading conditions.  In 

chapter4, the numerical solution of the PD equation of motion along with the imposition 

of the boundary conditions are discussed.  In Chapter 5, the numerical results are discussed 

for a membrane without and with a defect in the form of a hole, a crack and a solid inclusion 

under equibiaxial, planar and uniaxial loading conditions.  In Chapter 6, the dissertation is 

summarized, and plans for future work is shared. 
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2. PERIDYNAMICS FOR HYPERELASTIC DEFORMATION 

The original formulation introduced by Silling [37], and later generalized Silling et al. [38] 

can be extended to account for hyperelastic deformation.  In this chapter, the kinematics 

and constitutive relations and equations of motion for hyperelastic materials are described.  

The following sections 2.1- 2.3 can be found in more detail in [40] 

 

2.1. Kinematics 

As shown in Fig. 2.1, the material points, 
( )kx  and 

( )jx  interact with other material points 

in their families defined by 
 k

H x  and 
 j

H x , respectively.  Therefore, they are influenced 

by the collective deformation of all the material points in their families.  The relative 

position vector 
( ) ( )j kx x represents the position vector of the two material points 

( )kx  and 

( )jx in the undeformed state, and the current position vector 
( ) ( )j ky y represents the 

position vector of the two material points
( )ky and

( )jy after displaced by the displacement 

vector 
( )ku and 

( )ju  in the deformed state.  Therefore, the PD stretch between the material 

points, 
( )kx  and 

( )jx  for a large deformation can be defined as  

 

( ) ( )

( )( )

( ) ( )

j k

k j

j k







y y

x x
. (8)  
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Figure 2.1. Kinematics of PD material points 
( )kx and 

( )jx  

 

 

2.2. Constitutive relations 

A material point 
( )kx

 
interacts with the other material points 

( )jx within a horizon. These 

interactions result from the exertion of the forces between the two material points 
( )kx

 
and 

( )jx  arising from their collective deformation.  A force density can be expressed as 
( )( )k jt

 
 

or 
( )( )j kt , with the subscripts k  and j  indicating the sequence force exertion.  For 

example, ( )( )k jt  denotes the force acting at the material point k , exerted by the material 

point j , and 
( )( )j kt

 
denotes the force acting at the material point j , exerted by the material 

point k .  As derived by Madenci and Oterkus [40], these force density vectors are defined 

as  
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 
 

( )( )

( )( ) ( ) ( ) ( ) ( ) ( )

1( ) ( ) ( )

1 1
, ,

2

N
k i

k j j k j k i

ij j k

t V
V





 
   
  
 
t u u x x

y y
 (9a) 

 

and 

 

 
 

( )( )

( )( ) ( ) ( ) ( ) ( ) ( )

1( ) ( ) ( )

1 1
, ,

2

N
i k

j k k j k j i

ij k j

t V
V





 
   
  
 
t u u x x

y y
, (9b) 

in which 
( )( )k j and 

( )( )j k  represent the micropotentials between the interaction of two 

material points 
( )kx and 

( )jx .  The micropotentials 
( )( ) ( )( ),  k j j k  can be expressed as 

 

 ( )( ) ( )( ) ( ) ( )(1 ) (2 )
, ,k kk j k j k k   y y y y , (10a) 

 

and 
 

 

 ( )( ) ( )( ) ( ) ( )(1 ) (2 )
, ,j jj k j k j j   y y y y , (10b) 

where 
( )ky

 
is the position vector which indicates the material point 

( )kx in the deformed 

configuration, and 
(1 )ky is the first position vector which interacts to the material point 

( )kx

in its family.  Similarly, ( )jy  is the position vector which indicates the material point ( )jx  

in the deformed configuration, and 
(1 )jy is the first position vector which interacts to the 

material point ( )jx .  
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The strain energy density, 
( )kW  at the material point 

( )kx  can be obtained through a 

summation of the micropotentials of all interactions of material points, 
( )kx  and 

( )jx within 

a horizon.  Therefore, the strain energy density can be expressed in terms of micropotentials 

( )( ) ( )( ),  k j j k 
 
as  

 

    ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )(1 ) (2 ) (1 ) (2 )
1

1 1
, , , ,

2 2
k k j jk k j k k j k j j j

j

W V 




      y y y y y y y y

, (11) 

 

where 
( )( ) ( )( ),  k j j k   are zero when k  is equal to j .  

As derived by Madenci and Oterkus [40], the force density vectors, 
( )( )k jt or 

( )( )j kt  can be 

expressed in terms of the strain energy density at material points k  and j  as  

 

 
 

( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

1
, ,

k j k

k j j k j k

j j kj k

W
t

V

 
  

 

y y
t u u x x

y yy y
,  (12a) 

and 

 
 

( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

1
, ,

j k j

j k k j k j

k k jk j

W
t

V

 
  

 

y y
t u u x x

y yy y
,  (12b) 

 

in which  ( ) ( ) ( ) ( )j k j k y y y y  and  ( ) ( ) ( ) ( )k j k j y y y y  are unit vectors 

representing the direction of the force densities ( )( )k jt
 
and ( )( )j kt .   
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2.3. Equation of motion 

The PD equation of motion at the material point x  can be derived as [38]  

 

       , ( , , ) ( , , ) ,
H

t t t dH t           x u x t u u x x t u u x x b x , (13) 

 

in which  mass density in the reference configuration, u  is the displacement vector, b is 

a prescribed body force density, and H is a neighborhood of the material point x .   

If the force density vectors t  and t  aligned with the direction of (
( ) ( )j ky y ), the balance 

of angular momentum [37] is automatically satisfied.  As shown in Fig. 2.2, they act as a 

pairwise force if they are defined as  

 

   
1

, , , ,
2

t t         t u u x x f u u x x , (14b) 

 

and 

 

   
1

, , , ,
2

t t       t u u x x f u u x x , (14a) 

 

where the magnitude of the force density vectors f  and f are identical.  Substituting from 

Eq. (14) into the PD equation of motion results in 

 

     , ( , , ) ,
H

t t dH t     x u x f u u x x b x . (15) 
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This case is regarded as the bond-based PD formulation. The unit of force density f  is the 

force per unit volume squared.  As suggested by Silling [37], the pairwise force density 

vector can also be expressed as 

 

 
 

( )( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

, ,
k i j k

k j j k j k

j kj k

t
 

  
 

y y
f u u x x

y yy y
 (16a) 

 

and 

 

 
 

( )( ) ( )( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

, ,
k j k j j k

k j j k j k

k j j kj k

t
 



    
    

    

y y
f u u x x

y yy y
. (16b) 

 

 

 

Figure 2.2. Deformation of PD material points , x x  and pairwise force densities 
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It is worth noting that determination of the force density vectors requires the explicit form 

of the micropotential or the strain energy density function.  Based on the derivation given 

by Madenci and Oterkus [40] for linear elastic materials, the peridynamic strain energy 

density function can be constructed for the Neo-Hookean material model.   
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3. PERIDYNAMIC STRAIN ENERGY FUNCTIONS 

Based on the classical continuum mechanics, the strain energy density function at material 

point ( )kx  can be expressed as  

 

  2 2 2

( ) 1 1( ) 1 ( ) ( ) ( )3 ( 3)k k x k y k z kW C I C         , (17) 

 

in which ,  ,  x y z    are the principal stretches in the x, y and z direction respectively.   

The incompressibility conditions requires that 1x y z    . The material constant, 
1C  is 

related to the shear modulus,   as 
1 2C  .  Also, the Biot stress components are related 

to the strain energy density function in the form  

 

1 1 12  ,    2  ,    2x x y y z z

x y z

W W W
C C C     

  

  
     
  

. (18) 

 

Substituting from Eq. (18) into Eq. (17), the strain energy density for the material point at 

( )kx  can be rewritten as 

 

2 2 2

( ) ( ) ( ) ( ) 1

1

1
( ) 3

4
k x k y k z kW C

C
      , (19a) 

 

or 
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   

 

2 2 2 2

( )( 1) ( )( 1) ( )( ) ( )( )

( ) 1

2 21
( )( ) ( )( )

1 1

1 2 2
3

14
                                      

2

xx k k xx k k yy k k m yy k k m

k

zz k k n zz k k n

W C
C

   

 

   

 

 
    

  
  
  

 (19b) 

 

where the subscripts identify the contributions arising from the internal forces exerted by 

material points ( 1),  ( 1),  ( ),  ( ),  ( )k k k m k m k n     and ( )k n on material point k  as 

shown in Fig. 3.1. 

 

 

Figure 3.1. Material point interacting with others in its immediate vicinity 

 

Also, the strain energy density function can be expressed in terms of the force density 

vectors as [40] 

 

  
2

( ) ( )( ) ( ) ( ) ( ) 1

,1
 ,
 ,
 ,
 ,
 

1
3

4
k k j j k j

j k l
k l
k m
k m
k n
k n

W V C
C  







    f x x . (20) 
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However, its explicit form requires the determination of the force density vector, f for each 

loading case of equibiaxial, planar and uniaxial. 

 

3.1. Equibiaxial Loading 

Under equibiaxial loading, in order to satisfy the condition of incompressibility, each 

principal stretch is expressed as  

 

2

1
, ,x y z    


   , (21) 

 

in which   is the applied stretch. After substituting from Eq. (21) into Eq. (17), the strain 

energy density function becomes 

 

2

( ) 1 4

1
2 3kW C 



 
   

 
.  (22) 

 

Based on this form of the strain energy function, the micropotential, ( )( )k j  for an 

interaction between material points ( )kx and ( )jx  can be defined as 

 

2

( )( ) ( )( ) 4

( )( )

1
 =  (2 3)k j k j

k j

c 


  , (23) 

 

in which ( )( )k j  is the PD stretch, c  is a PD material parameter.  With this form, Eq. (16) 

leads to the explicit expression for the force densities f as  
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  ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )( ) 5

( )( ) ( ) ( ) ( ) ( )

1 1
, , 4

j k

k j j k j k k j

k j j k j k

t c 


    
           

y y
f u u x x

x x y y
. (24) 

 

In accordance with Eq. (20), the PD strain energy density function can be obtained in terms 

of the PD stretch ( )( )k j  in the form 

 

2
2

2 2

( ) ( )( ) ( )( ) ( ) 15
,1 ( )( )

 ,
 ,
 ,
 ,
 

4 1
3k k j k j j

j k l k j
k l
k m
k m
k n
k n

c
W V C

C


 






 
     

 
 , (25) 

 

where ( )( )k j  is defined as  

 

( ) ( ) ( ) ( )

( )( )

( ) ( ) ( ) ( )

j k j k

k j

j k j k

    
     
    
   

x x y y

x x y y
. (26) 

 

 

After expanding Eq. (25) and considering the interactions of material ( )kx  with other points 

within its horizon, the PD strain energy function can be constructed as  
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2 2 2

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )4
1 1 ( )( )

2

( )( ) ( )( ) ( ) ( )( ) ( )10
1 1( )( )

1

1
                                                      

N N

k e k j k j k j j e k j k j j

j j k j

N N

e k j k j j e k j j

j jk j

W A w V B w V

D w V E w V






 

 

    

 

 

 

 (27) 

 

where N  is the number of the material points inside its horizon, and the PD material 

parameters are defined as 
eA , 

eB , 
eD  and 

eE . Also, the nondimensional influence 

(weight) function is defined as 
( )( ) ( ) ( )k j j kw     x x .  

 

Under equibiaxial applied stretch,  , leading to ( )( ) 1k j  , this expression can be 

simplified by disregarding the third term as  

 

2 2 2

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )4
1 1 1( )( )

1N N N

k e k j k j k j j e k j k j j e k j j

j j jk j

W A w V B w V E w V
  

       , (28a) 

 

or 

 

2

( ) ( ) 2

( ) ( )( ) ( )

1 ( ) ( ) ( ) ( )

2

( )( ) ( ) ( )4
1 1( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1
          

N
j k

k e k j j

j j k j k

N N

e k j j e j

j jj k j k
j k

j k

W A V

B V E V



 



 

 
   
  
 

 
  

 
 
 



 

y y

x x x x

x x x xy y

x x

 (28b) 

 

In accordance with Eqs. (12) and (14), the PD force density can be obtained as 
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 
2

( )( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )( )2 5

( )( ) ( ) ( )( ) ( )

4 2
, ,

k j j ke
k j j k j k e k j

k j j kj k

B
t A






  
        

y y
f u u x x

y yx x
. (29a)  

 

The PD material parameters 
eA , 

eB  and 
eE  can be determined by equating the PD strain 

energy density to that of classical continuum mechanics under a specified equibiaxial 

stretch of  .  For this loading, depicted in Fig. 3.2, the relative position vectors, ( ) ( )j kx x  

and ( ) ( )j ky y , in the reference and deformed states, respectively, can be written as  

 

   ( ) ( ) cos sinj k     x x i + j  , (30a) 

 

   ( ) ( ) cos sinj k      y y i + j , (30b) 

 

 

                 

Figure 3.2. Two dimensional position vector of material points for equibiaxial loading 

 

The direction cosines between these relative position vectors is determined as  
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( ) ( ) ( ) ( )

( )( )

( ) ( ) ( ) ( )

1
 

j k j k

k j

j k j k

 
  

 

x x y y

x x y y
 . (31) 

 

Also, the PD stretch ( )( )k j  is determined in terms of   as 

 

( ) ( )

( )( )

( ) ( )

j k

k j

j k

 


 


y y

x x
. (32) 

 

After substituting from Eq. (31) and Eq. (32) into Eq. (28), it can be rewritten in integral 

form in terms of polar coordinates,  ,   as  

 

2 2 2

2

( ) 4

0 0 0 0 0 0

1
 k e e eW h A d d B d d E d d

     
  

         
   

      
        

      
      , (33) 

 

in which h  is thickness of the membrane and   is the radius of horizon. Its evaluation 

results in 

 

2 2

( ) 4
2 e

k e e

B
W h A E 



 
   

 
. (34) 

 

By equating Eq. (34) to Eq. (22), the PD material parameters are determined as 
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1 1 1

2 2 2

C C 3C
,    ,    

2 2
e e eA B E

h h h  


   ,   (35) 

 

which depend on one common parameter 
2

1C h .  Therefore, the PD strain energy 

function can be rewritten as  

 

2

( ) 1 4

1
2 3kW C 



 
   

 
. (36) 

 

The material parameters 
eA , 

eB  and 
eE  are determined for a material point whose horizon 

is completely embedded in the material. However, in the case of a material point close to 

the surface, these parameters should be corrected. 

 

The correction can be achieved by considering two simple loading conditions such as 

principal stretches 
x  and 

y in the x and y directions.  As a result of such loading 

conditions, the corresponding displacements can be expressed as  

 

      1 1 1T

x xx y   u x , (37a) 

 

      2 1 1T

y yx y   u x , (37b) 

 

in which  1

T
u x ,  2

T
u x represent the displacement vectors in the x and y direction 

respectively.  
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Based on the classical continuum mechanics, the strain energy density resulting from these 

loading conditions can be readily obtained as  

 

  2

( ) ( ) 1 4

1
2 3CM

m k m

m

W C 


 
   

 
x , (38) 

 

with  ,m x y . 

 

Similarly, the PD strain energy density can be obtained by applying the displacement fields 

given by Eq. (37) in Eq. (28) as  

   
 

2
2 2

( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )4
1 1( ) ( ) ( ) ( ) ( )( )

( )

1 ( ) ( )

1 1
2

2

                                                                                    3

N N
PD

m k e k j k j j k j j

j jj k j k k j

N

j

j j k

W A V V

V

 






 






   
 


 



 



x
x x x x

x x





 (39) 

with  ,m x y   

 

Corresponding to these loading conditions, the strain energy density from classical 

continuum mechanics, ( )

CM

mW  must be equal to those of PD theory,
( )

PD

mW .  Therefore, the 

correction factor can be defined as  
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 

 
 

( ) ( )

( ) ( )

2

1 4

2 2

( )( ) ( ) ( )( ) ( ) ( )4
1 1 1( )( )( ) ( ) ( ) ( ) ( ) ( )

1
2 3

1 1
2 3

2

CM

m k

m k PD

m k

m

m

N N N

e k j j k j j j

j j jk jj k j k j k

W
S

W

C

A V V V




  

  



 
  

 
  

    
    

  

x

x

x x x x x x

(40) 

 

With Eq. (40), we can express a vector of correction factors for the PD parameters as 

 

 ( ) 1( ) 2( )( )
T

k k kS Sg x .  (41) 

 

In general, the correction factors are different at material point
( )kx  and 

( )jx . Thus, their 

mean values are used as correction factor  

 

( ) ( )

( )( )
2

k j

k j




g g
g . (42) 

 

These correction factors are valid for the material points interacting in the x and y 

directions.  For arbitrary directions, the correction factors are determined based on the 

assumption that the correction factors in the x and y direction serve as principal axis of an 

ellipse as shown in Fig. 3.3.  

 

Therefore, the correction factors in any directions can be obtained as   
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2 2

( )( ) ( )( )

( )( )

1

yx

x k j y k j

k j

nn

g g

G
   

      
   

 , (43) 

 

in which, xn and yn are components of an unit vector of the relative position vector, 

 ( ) ( ) ( ) ( )j k j k  n x x x x . Also, ( )( )x k jg and ( )( )y k jg are components of a vector of 

correction factor ( )( )k jg .  

 

         

                                    (a)                                                 (b)                                     

 

Figure 3.3. (a) The peridynamic interaction between material points ( )kx and ( )jx , and (b) 

the ellipsoid for surface correction factors 

 

Finally, the PD force density vector in the PD equation of motion can be rewritten as  

2

( )( ) ( ) ( )

( )( ) ( )( )2 5

( )( ) ( ) ( )( ) ( )

( )( )

4 1k j j k

k j e k j

k j j kj k

k jA G





   
  

   

y y
f

y yx x
 (44) 
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3.2. Planar Loading 

Under planar loading, in order to satisfy the condition of incompressibility, each principal 

stretch is expressed as  

 

1
, 1,x y z   


   , (45) 

 

in which   is the applied stretch.  It is worth noting that there is no deformation in the y 

direction. 

As substituting from Eq. (45) into Eq. (17), the strain energy density function becomes 

 

2

( ) 1 2

1
2kW C 



 
   

 
.  (46) 

 

Based on this form of the strain energy function, the micropotential, ( )( )k j  for an 

interaction between material points ( )kx and ( )jx  can be defined as [39] 

 

2

( )( ) ( )( ) 2

( )( )

1
 =  ( 2) k j k j

k j

c 


  , (47) 

 

in which ( )( )k j  is the PD stretch, c  is a PD material parameter.  With this form, Eq. (16) 

leads to the explicit expression for the force density, ( )( )k jf  as  
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  ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )( ) 3

( )( ) ( ) ( ) ( ) ( )

1 1
, , 2

j k

k j j k j k k j

k j j k j k

t c 


   
          

y y
f u u x x

x x y y
. (48) 

 

In accordance with Eq. (20), the PD strain energy density function can be obtained in terms 

of the PD stretch ( )( )k j  in the form 

 

2
2

2 2

( ) ( )( ) ( )( ) ( ) 13
,1 ( )( )

 ,
 ,
 ,
 ,
 

1
3k k j k j j

j k l k j
k l
k m
k m
k n
k n

c
W V C

C


 






 
     

 
 . (49) 

 

After expanding Eq. (49) and considering the interactions of material ( )kx  with other points 

within its horizon, the PD strain energy function can be constructed as  

 

2 2 2 2

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )2 6
1 1 1( )( ) ( )( )

1 1N N N

k p k j k j k j j p k j k j j p k j k j j

j j jk j k j

W A w V B w V D w V
   

         

( )( ) ( )

1

N

p k j j

j

E w V


  , (50) 

 

where N  is the number of the material points inside its horizon, and the PD material 

parameters are defined as pA , pB , pD  and pE .  

 

Under planar loading, the applied stretch,  , leads to ( )( ) 1k j  ; thus, this expression can 

be simplified by disregarding the third term as 
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2 2 2

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )2
1 1 1( )( )

1N N N

k p k j k j k j j p k j k j j p k j j

j j jk j

W A w V B w V E w V
  

       , (51a) 

 

In accordance with Eqs. (12) and (14), the PD force density can be obtained as 

 

 
2

( )( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )( )2 3

( )( ) ( ) ( )( ) ( )

4 1
, ,

k j j k

k j j k j k p k j p

k j j kj k

t A B





  
        

y y
f u u x x

y yx x
. (52a)  

 

The PD material parameters pA , pB  and pE  can be determined by equating the PD strain 

energy density to that of classical continuum mechanics under a specified planar stretch of 

 .  For this loading, depicted in Fig. 3.4, the relative position vectors, ( ) ( )j kx x  and 

( ) ( )j ky y , in the reference and deformed states, respectively, can be written as  

 

   ( ) ( ) cos sinj k     x x i + j  , (53a) 

 

   ( ) ( ) cos sinj k      y y i + j . (53b) 
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Figure 3.4 Two dimensional position vector of material points for planar loading 

 

 

The direction cosines between these relative position vectors is determined as  

 

2 2
( ) ( ) ( ) ( )

( )( )
2 2 2

( ) ( ) ( ) ( )

cos sin

 cos sin

j k j k

k j

j k j k

  

  

 
  

  

x x y y

x x y y

+
 . (54) 

 

Also, the PD stretch ( )( )k j  is determined in terms of   as 

 

( ) ( ) 2 2 2

( )( )

( ) ( )

cos sin
j k

k j

j k

   


  


y y

x x
. (55) 

 

After substituting from Eq. (54) and Eq. (55) into Eq. (51), it can be rewritten in integral 

form in terms of polar coordinates,  ,   as 
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 
 

 

2
2 22 2

2
2 2

( ) 2
2 2 2

0 0 0 0

cos sin
 cos sin  

cos sin
k p pW h A d d B d d

       
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    


   

     
    

   
+

+      

          
2

0 0

 pE d d

 


  


 
  

  
   (56) 

 

in which h  is thickness of the membrane and   is the radius of horizon. Its evaluation 

results in 

 

 
 
 

2

2 2

( ) 2

6 1
 3 2 3 2

4 1

pp

k p

BA
W h E

 
   

 

   
     

  

. (57) 

 

The PD material parameters pA , pB
 
and pE

 
can be determined by equating the PD strain 

energy density and that of classical continuum mechanics at three different values of 

stretch, 1  , 2   and 4   as  

 

1 1 1

2 2 2

C C C31 89 138
  = ,   B   = ,   

25 81 59
p p pA E

h h h     
  ,  (58) 

 

which depend on one common parameter 
2

1C h .  Therefore, the PD strain energy 

function can be rewritten as  

 

 
 

 

2

2

( ) 1 2

6 131 89 276
 C 3 2 3

100 81 591
kW

 
 

 

   
     

  

. (59) 
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Similar to the equibiaxial loading, the correction can be achieved by considering two 

simple loading conditions such as principal stretches 
x  and y in the x and y directions.   

However, in the planar loading case, only the x direction component needs to be corrected 

because the deformation does not happen in the y direction. Therefore, as a result of such 

loading conditions, the corresponding displacements in the x direction can be expressed as  

 

    1 1 0T

x x u x , (60) 

 

in which  1

T
u x  represents the displacement vector in the x direction.  

Based on the classical continuum mechanics, the strain energy density in the x direction 

resulting from these loading conditions can be readily obtained as  

 

  2

( ) ( ) 1 2

1
2 2CM

x k x

x

W C 


 
   

 
x , (61) 

 

Similarly, the PD strain energy density in the same direction can be obtained by applying 

the displacement fields given by Eq. (60) in Eq. (51) as  

  2 2 2

( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )2
1 1 ( )( )( ) ( ) ( ) ( )

1 31 1
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 
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   
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 x

x x x x
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1 ( ) ( )

66

35

N

j

j j k

V





 
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

x x
, (62) 
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Corresponding to these loading conditions, the strain energy density from classical 

continuum mechanics, 
( )

CM

xW  must be equal to that of PD theory,
( )

PD

xW .  Therefore, the 

correction factor in the x direction can be defined as  

 

 

 
 

( ) ( )

( ) ( )

CM

x k

x k PD

x k

W
S

W


x

x
 (63) 

2

1 2

2 2 2

( )( ) ( )( ) ( ) ( )( ) ( ) ( )2
1 1 1( )( )( ) ( ) ( ) ( ) ( ) ( )
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2 2

1 31 1 66
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  
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 
  

 
  

    
    

  
x x x x x x

 

 

Also, in the y direction, the surface correction factor should be equal to 1, i.e. 
 

1y k
S 

because parameter does not need to be corrected in this direction. 

 

Finally, the PD force density vector in the PD equation of motion can be rewritten as  

 
2

( )( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )( )2 3

( )( ) ( ) ( )( ) ( )

( )( )

4 31 1
, ,

35

k j j k
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k j j kj k

k jt A G





   
    

   

y y
f u u x x

y yx x
 (64) 

 

3.3. Uniaxial Loading 

Under uniaxial loading, in order to satisfy the condition of incompressibility, each principal 

stretch is expressed as  

 

1 1
, ,x y z   

 
   , (65) 
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in which   is the applied stretch.  It is worth noting that deformation exhibits both 

extension and contraction simultaneously. 

As substituting from Eq. (65) into Eq. (17), the strain energy density function becomes 

 

2

( ) 1

2
3kW C 



 
   

 
.  (66) 

 

Based on this form of the strain energy function, the micropotential, ( )( )k j  for an 

interaction between material points ( )kx and ( )jx  can be defined as 

 

2

( )( ) ( )( )

( )( )

2
3k j k j

k j

c 


 
    

 

, (67) 

 

in which 
( )( )k j  is the PD stretch, c  is a PD material parameter.  With this form, Eq. (16) 

leads to the explicit expression for the force densities f as  

 

  ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )( ) 2

( )( ) ( ) ( ) ( ) ( )

1 1
, , 2

j k

k j j k j k k j

k j j k j k

t c 


  
        

y y
f u u x x

x x y y
. (68) 

 

In accordance with Eq. (20), the PD strain energy density function can be obtained in terms 

of the PD stretch ( )( )k j  in the form
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

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 
     

 
 . (69) 

 

In order to account for the interactions of material ( )kx  with other points within its horizon, 

the PD strain energy function can be constructed as  

 

2 2 2
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 

 
 (70a) 

 

where N  is the number of the material points inside its horizon, and the PD material 

parameters are defined as uA , uB , 
uD  and uE .  

In accordance with Eqs. (12) and (14), the PD force density can be obtained as 

 

2

( )( ) ( ) ( )

( )( ) ( )( )2 2 5
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       

y y
f

y yx x
 (71) 

 

The PD material parameters uA , uB , uD  and uE  can be determined by equating the PD 

strain energy density to that of classical continuum mechanics under a specified planar 

stretch of  .  For this loading, depicted in Fig. 3.5, the relative position vectors, ( ) ( )j kx x  

and ( ) ( )j ky y , in the reference and deformed states, respectively, can be written as  
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 Figure 3.5 Two dimensional position vector of material points for uniaxial loading 

 

 

   ( ) ( ) cos sinj k     x x i + j  , (72a)  

 

 ( ) ( )

1
cos sinj k    



 
    

 
y y i + j .  (72b) 

 

The direction cosine between these relative position vectors is determined as 

  

2 2

( ) ( ) ( ) ( )

( )( )

2 2 2( ) ( ) ( ) ( )

1
cos sin

 1
cos sin

j k j k

k j

j k j k

  
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


 

  
 



x x y y

x x y y
 . (73) 

 

Also, the PD stretch ( )( )k j  is determined in terms of   as 
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( ) ( ) 2 2 2

( )( )

( ) ( )

1
cos sin

j k
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   
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
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. (74) 

 

After substituting from Eq. (73) and Eq. (74) into Eq. (70), it can be rewritten in integral 

form in terms of polar coordinates,  ,   as  
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in which h  is thickness of the membrane and   is the radius of horizon. Its evaluation 

results in 
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in which E  and K  in the second term denote a complete elliptical integral of the first and 

second kind respectively.  
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The PD material parameters
uA , 

uB , 
uD
 
and 

uE  can be determined by equating the PD 

strain energy density and that of classical continuum mechanics. However, these 

parameters need to be determined separately under tension and compression loads.  

Accordingly, the parameters 
t

uA , 
t

uB , 
t

uD
 
and 

t

uE for representing the tensile load can be 

obtained by considering four different values of stretch, 1,  2,  3      and 4  , and 

the parameters 
c

uA , 
c

uB , 
c

uD
 
and 

c

uE  for representing the compression load can be 

determined in the least square sense for the stretch range of 0.4 to 1 as   

 

1 1 1 1

2 2 2 2
,    ,   

64 3 8 48

49 4 17
 ,   

19

t t t t

u u u u

C C C C
A B D E

h h h h       
     , (77a) 

 

and 

 

1 1 1 1

2 2 2 2
,   ,

109 239 5 202

14 1
   ,

6 18 9
   c c c c

u u u u

C C C C
A B D E

h h h h       
       (77b) 

which depend on one common parameter 
2

1C h .  

 

Similar to the previous loading cases, the correction factors can be achieved by considering 

two simple loading conditions such as principal stretches x  and y in the x and y 

directions.  As a result of such loading conditions, the corresponding displacements can be 

expressed as  
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u x , (78b) 

 

in which  1

T
u x ,  2

T
u x represent the displacement vectors in the x and y direction 

respectively.  

 

Based on the classical continuum mechanics, the strain energy density resulting from these 

loading conditions can be readily obtained as  
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with  ,m x y . 

Similarly, the PD strain energy density can be obtained by applying the displacement fields 

given by Eq. (78) in Eq. (70) as  
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with  ,m x y   

Corresponding to these loading conditions, the strain energy density from classical 

continuum mechanics, 
( )

CM

mW  must be equal to those of PD theory, 
( )

PD

mW . Therefore, the 

correction factor can be defined as  
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 (81) 

 

Finally, the PD force density vector in the PD equation of motion can be rewritten as  
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4.  NUMERICAL ANALYSIS 

The peridynamic equation of motion is in the form of an integro-differential equation. 

Therefore, its solution cannot be obtained with analytical approaches. This chapter 

concerns the numerical spatial and time integrations of the PD equation, and the approach 

for imposing boundary conditions as described in [40, 41, 47].  

 

4.1 Spatial integration 

The spatial integration in PD equation of motion can be performed by considering the 

concept of collocation (integration) points. After discretizing the domain of the material 

into the subdomain, collocation points are placed in the subdomain as shown in Fig. 4.1. 

Then, by summing up all volumes of each collocation point within a horizon, spatial 

integration of PD equation can be implemented.   

 

For a particular material point k , an integral of PD equation in Eq. (13) can be 

approximated as  

 

       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

, ( , ) ( , ), ,
N

k k j j k j k j k

j

t w t t V t


   x u x f u x u x x x b x , (83) 

 

in which N represents the number of subdomain inside its horizon. The vector ( )kx
 
and 

( )jx indicate the positions of the thk  and 
thj  collocation points, respectively.  The 

parameter 
( )jw is the influence (weight) function. The 

( )jV represents the volume of 

material point, and it has each cubic subdomain at material point 
thj .  In Eq. (83), the 
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truncation error has the order of 
2( )O   for uniform spacing of   between the material 

points  [42]. 

 

 

Figure 4.1. Discretization of the domain of interest for two dimensional region 

 

As shown in Fig. 4.2, a one-dimensional rectangular bar is considered in order to explain 

the construction of the set of ordinary differential equations in Eq. (83).  The bar is 

discretized into cubic subdomains, and each subdomain contains a collocation point.  Also, 

the response function vanishes beyond its horizon size,   as shown in Fig. 4.2. 

 

As a result, for a material point at 5x , the ordinary differential equations can be expressed 

as  

 

         5 53 53 3 54 54 4 56 56 6 5, , , , ,t V V V t    u x f ξ η f ξ η f ξ η b x , (84) 
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in which  

 

 η u u  (85a) 

 

and 

 

 ξ x x . (85b) 

 

Figure 4.2. Discretization of rectangular bar 

 

4.2 Time integration 

Numerical time integration can be performed by using backward and forward difference 

explicit integration schemes.  However, the PD equation of motion includes the inertial 

terms; it is not directly applicable to static and quasi-static problems. Therefore, a special 

treatment is required so that the system will converge to a static condition in a short amount 

of computational time. Although there are different techniques available for this purpose, 

adaptive dynamic relaxation (ADR) introduced by Kilic and Madenci [41] can be utilized.  

The static solution can be regarded as the steady-state solution of the total transient 

response of the PD equation. An artificial damping is included into the equation, and it 



61 

 

 

 

drives the solution into the steady-state solution in a faster way. However, it is not possible 

at all times to obtain the most appropriate damping coefficient. Hence, by using adaptive 

dynamic relaxation method introduced by Underwood [43], the damping coefficient can 

be changed at each time iteration. Then, the steady-state solution can be obtained with 

faster convergence. 

 

The peridynamic equation of motion can be expressed as a set of ordinary differential 

equations for all material points by removing the acceleration term and introducing a 

fictitious diagonal density and damping matrix as    

 

     , , , , ,t c t   DU X DU X F U U X X
 
, (86) 

 

in which D  is the fictitious diagonal density matrix and c is the damping coefficient, and 

they are achieved by Greschgorin’s theorem [43] and Rayleigh’s quotient, respectively. 

The vectors X  and U  indicate the initial position and displacement of the collocation 

points, respectively, they can be written as  

 

 1 2, , ,T

MX x x x  (87a) 

 

and 

 

      1 2, , , , , ,T

Mt t tU u x u x u x , (87b) 
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in which M is the total number of material points. As a result, the vector F consists of 

peridynamic interactions and body forces, and its component at thi  can be written as  

 

 ( )( ) ( ) ( )

1

N

i i j cj j i

j

V


 F f b
 

(88) 

 

By making use of central-difference explicit integration, displacements and velocities for 

the next iteration step can be achieved as  

 

  
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1 2 1
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c t t
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(89a) 

 

and 

 

1 1 2n n nt  U U U , (89b) 

 

where n  represents the thn  iteration. However, due to the unknown velocity field at 1 2t , 

Eq. (89a) and Eq. (89b) cannot be utilized for the first iteration process.  By assuming that 

0 0U  and 0 0U , integration can be started by 

 

1 2 1 0 2t  U D F  (90) 
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in which F , D , c  and t represent the force vector, density matrix, damping coefficient, 

and time step size, respectively. Among all of these, only physical term is the force vector, 

F and the other quantities are not physically meaningful. Therefore, they are selected to 

achieve faster convergence.  

 

A time step size, 1t   is useful in dynamic relaxation method.  The diagonal elements of 

the density matrix D  can be selected based on Greschgorin’s theorem, and they can be 

expressed as  

 

21

4
ii ij

j

t K    , (91) 

 

where 
ijK is the stiffness matrix. In accordance with the stability condition given by 

Underwood [43], the inequality sign is determined in Eq. (91), and it ensures stability of 

the behavior of the system. As illustrated by Lovie and Metzger [44], since all of values in 

Eq. (91) are dependent upon absolute values of global stiffness matrix, those values are 

coordinate frame dependent. Hence, as proposed by Suave and Metzger [45], to make 

frame invariant, by selecting the values based on minimum dimension, an alternative 

approach can be performed. This method appears to diminish overshooting as compared to 

Greschgorin’s theorem. Therefore, the present solutions of PD equations also use a frame 

Invariant density matrix.  
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By taking derivative of PD interaction forces with respect to the relative position vector, 

η  , the stiffness matrix is constructed, and it can be approximated as  

 

 
( )( )

1 ( ) ( )

N
i j

ij

j j j i

K



 
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 

f
e

y y
,  (92) 

 

which leads to the specific expressions for the equibiaxial,  planar and uniaxial loadings as 

 

  2
( )( ) ( )( ) ( )( )

3 6

( )( )( )( ) ( )( ) ( )( )

4 10i j i j i je e
ij e

j j i ji j i j i j

B
K A





   
     

 
ξ e

ξ ξ




 (93a) 
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in which e  is the unit vector along the x and y direction.  The elements of stiffness matrix 

of each loading can be determined from the summation given in Eq. (93a), Eq. (93b) and 

Eq. (93c), respectively. Note that the densities associated with a specific material point are 

identical in all directions of the coordinate frame, and it makes them frame invariant.  

 

As explained by Underwood [43], by utilizing the lowest frequency of the system, the 

damping coefficient can be achieved. Also, by using Rayleigh’s quotient, the lowest 

frequency can be determined as  
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T

T
 

U KU

U DU
. (94) 

 

However, the values of density matrix in Eq. (91) could be large, and it makes it difficult 

to calculate the denominator of Eq. (94).  This problem can be solved by rewriting at the

thn iteration as   

 

     1, , , , ,n n n n n n n nt c t    U X U X D F U U X X . (95) 

 

The damping coefficient in Eq. (95) can be written by utilizing Eq. (94) for each time 

iteration as  

 

     12
T T

n n n n n nc  U K U U U  , (96) 

 

where 1 n
K  is the diagonal “local” stiffness matrix which is expressed as 

 

   1 1 1 2n n n n

ii i ii i ii iK F F t u     .   (97) 

 

Another important concern when using a numerical technique is the convergence of the 

results. It is important to use optimum values of parameters to achieve sufficient accuracy 

within a suitable amount of computational time.   
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4.3 Boundary condition 

In order to solve the peridynamic equation of motion, not only boundary conditions but 

also initial conditions on displacement and velocity are required. Since the PD equations 

of motion do not include any spatial derivatives, the boundary conditions are not necessary 

to obtain the solution of an integro-differential equation. In the peridynamic theory, the 

boundary conditions are imposed in the region of the fictitious boundary layers.  

 

Macek and Silling [46] proposed that the extent of the fictitious boundary layer be 

determined equally to the horizon size,  . By imposing constraints to the material points 

in the fictitious layer, the imposition of the displacement boundary conditions are 

implemented, and on the boundary surface, these conditions are satisfied explicitly.  

However, the value of the displacement in the fictitious layer can be approximated based 

on the linear extrapolation of the values in the real domain and the particular value of the 

boundary condition [47].  The imposition of the traction boundary conditions can be 

achieved through the use of body forces in the fictitious region, [40].  In the case of a two-

dimensional analysis, the displacement constraints can be implemented by imposing a 

prescribed value of the displacement, *U  and *V  on the boundary.  As shown in Fig. 4.3, 

along the boundary of the actual material region, , a fictitious boundary layer with depth 

 is presented. Then, the boundary condition can be obtained through a fictitious region, 

f
.  
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The prescribed displacement boundary values of *U  and *V  can be imposed in the x and 

y direction in the fictitious region, 
f

 along the boundary of the material surface, as   

 

* * *( , , ) 2 ( , , ) ( , , )f f fx y t t U x y t t x y t   u u  , (98a) 

* * *( , , ) 2 ( , , ) ( , , )f f fx y t t V x y t t x y t   v v  , (98b) 

 

where, in the case of the prescribed values of * * 0U V   as shown in Fig. 4.3b, it 

represents the clamped boundary conditions.  For instance, the displacement constraint *U  

is only implemented, and in the other direction, there is no displacement * 0V   such as 

the case of planar loading.  Then, the boundary condition can be imposed as  

 

* * *( , , ) 2 ( , , ) ( , , )f f fx y t t U x y t t x y t   u u  , (99a) 

( , , ) ( , , )f f fx y t t x y t v v  , (99b) 

 

As shown in Fig. 4.4, Eq. (99b) represents the roller support boundary conditions for the 

prescribed value, * 0U  .  
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                                     (a)                                                      (b) 

 

Figure 4.3. Imposing boundary condition on displacement components: (a) constant 

displacement components 
* * *( , , )x y t Uu  and 

* * *( , , )x y t Vv ; (b) zero displacement 

components 
* * *( , , ) 0x y t U u  and 

* * *( , , ) 0x y t V v  
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(a)                                                         (b) 

 

Figure 4.4. Imposing boundary condition on displacement components: (a) fixed in the 

normal direction * 0U  ; (b) free to move in the tangent direction  
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5. NUMERICAL RESULTS 

In order to establish the validity of the PD force-stretch relations, Eqs. (44, 64, 82) for 

equibiaxial, planar and uniaxial loading conditions, first the deformation response of a 

square hyperelastic membrane is considered.  The membrane is isotropic with Young’s 

modulus and Possion’s ratio of 0.109 GPaE   and 0.5  , respectively.  The PD force 

predictions for each loading condition are compared with finite element predictions by 

using ANSYS (a commercially available program) for a range of applied stretch (

1.5,  2.0,  2.5  and 3.0 ).  After verification, the same membrane is analyzed with a 

defect in the form a hole, rigid inclusion and a crack with a gap.   

 

The geometry of the membrane is specified by its edge, 0.5L W m   and its thickness is 

0.01h m .  The radius of a hole and a solid inclusion is 0.08R m  and the crack length is 

0.16l m  with a gap of 0.005w m .  Convergence study is performed based on the grid 

size.  For the analysis of equibiaxial and planar loading conditions, the PD model consists 

of 100 by 100 material (grid) points to discretize the membrane in the x- and y-directions, 

and a single layer of material points in the thickness direction.  The spacing between the 

material points is 100x L  , and the corresponding horizon is specified as 3.015 x  

.  Also, the surface corrections are obtained by applying the stretch values 4x   and 

4y   for equibiaxial, and 4x   and 1y   (no deformation) for planar loading in the 

x- and y- directions. 

 

In the case of uniaxial loading, the membrane is discretized with 50 by 50 material points 

in the x- and y- directions resulting in 50x L   spacing between thee material points.  
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Also, the horizon size is specified as 9.015 x    in order to capture the presence of large 

contractions for which force densities at remote material points interact with each other. 

The number of material points is reduced in order to minimize the computational cost. 

The surface corrections are obtained by applying the stretch values 4x   and 4y   in 

the x- and y- directions. 

 

The finite element discretization is achieved by 40 by 40, 50 by 50 and 15 by 15 for 

equibiaxial, planar and uniaxial loadings, respectively.  The element, SHELL181 with Neo-

Hookean material model is employed in the ANSYS model of the hyperelastic membrane.  

The force acting on the membrane is obtained by using the ANSYS command, PRNLD.  

 

 

5.1. Equibiaxial loadings 

As shown in Fig. 5.1, the membrane is subjected to equal stretch of 1 2     varying 

from 1.5 to 4 in increments of 0.5.  The stretch is applied along the edge of the model in 

the x- and y- directions in the boundary regions.  The resulting forces in the x- and y- 

directions are identical.  Therefore, the PD force in the x- direction is compared with the 

ANSYS prediction as shown in Fig. 5.2.  The maximum deviation between the PD and 

ANSYS predictions is about 3.0 %, for the applied stretch of 4.0  .  The deviation 

decreases down to 1.75% for the applied stretch value of 1.5  . 
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Figure 5.1. Geometric and loading for equibiaxial loading 

 
 

Figure 5.2. Force comparison of peridynamics and Ansys in the x direction for equibiaxial 

loading. 
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5.1.1 Membrane with a Hole 

The hole is located at the center of the membrane as shown in Fig. 5.16.  The stretch values 

of 1.5,  2.0,  2.5   and 3.0  are applied equally in the x- and y- directions.  The 

deformation contour plots are shown in Figs. 5.5 - 5.8. for each stretch value.  As expected 

by the definition of equibiaxial loading, the length and width increase while the thickness 

decreases.  Such deformation state satisfies incompressibility condition.  Also, the radius 

of the circle increases with increasing stretch value. Moreover, the shape of the circle 

remains as circle in the deformed configurations.  The peridynamics deformation contour 

plots for all applied stretch values are in a good agreement with those of ANSYS as shown 

in Figs. 5.5 - 5.8 . 

 

Figure 5.3. Geometric and loading with a hole for equibiaxial loading 
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Figure 5.4. Undeformed membrane with a hole 

 

 

 

 
left                                 right 

(a) 

 
left                                 right 

(b) 

Figure. 5.5. Displacement contours of membrane with a hole under equibiaxial loading for 

1.5   in deformed configuration: (a) x- directions, and (b) y-direction. (left: peridynamic 

and right: ANSYS) 
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(a) 

 

 

left                                 right 

(b) 

Figure 5.6. Displacement contours of membrane with a hole under equibiaxial loading for 

2.0   in deformed configuration: (a) x- directions, and (b) y-direction. (left: peridynamic 

and right: ANSYS) 
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(a) 

 

 

 

left                                 right 

(b) 

Figure 5.7. Displacement contours of membrane with a hole under equibiaxial loading for 

2.5   in deformed configuration: (a) x- directions, and (b) y-direction. (left: peridynamic 

and right: ANSYS) 
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(a) 

 

left                                 right 

(b) 

Figure 5.8. Displacement contours of membrane with a hole under equibiaxial loading for 

3.0   in deformed configuration: (a) x- directions, and (b) y-direction. (left: peridynamic 

and right: ANSYS) 
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5.1.2 Membrane with a Crack 

The crack with a gap is located at the center of the membrane as shown in Fig. 5.9.  The 

stretch values of 1.5,  2.0,  2.5   and 3.0  are applied equally in the x- and y- directions.  

The deformation contour plots for each stretch value are shown in Figs. 5.11- 5.14.  As 

expected, the length and width of the membrane increase while the thickness decreases in 

accordance with the incompressibility condition.  Moreover, the crack gap increases with 

increasing applied stretch.  The shape of the crack in the undeformed membrane is 

rectangular with a small width. However, after deformation, its shape becomes elliptical 

for the stretch values of 1.5,  2.0,  2.5  , and finally it becomes almost circular for the 

stretch value of 3.0  . ANSYS simulations also capture identical deformation patterns. 

As shown in Figs. 5.11 - 5.14, the displacement component in the y-direction appears to 

remain horizontal because the initial crack is aligned with the y-direction.  However, the 

displacement component in the x-direction is affected by the local deformation of the crack 

surfaces.  The peridynamic deformation contour plots compare well with those of ANSYS 

for all of the applied stretch values  as shown in Fig. 5.11- 5.14.  
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Figure 5.9. Geometric and loading with a Crack for equibiaxial loading 

 

 

 

 

 
 

Figure 5.10. Undeformed membrane with a crack 
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(a) 

 

 
left                                 right 

(b) 

Figure 5.11. Displacement contours of membrane with a crack under equibiaxial loading 

for 1.5   in deformed configuration: (a) x- directions, and (b) y-direction. (left: 

peridynamic and right: ANSYS) 
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(b) 

 

Figure 5.12 Displacement contours of membrane with a crack under equibiaxial loading 

for 2.0   in deformed configuration: (a) x- directions, and (b) y-direction. (left: 

peridynamic and right: ANSYS) 
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(b) 

 

Figure 5.13. Displacement contours of membrane with a crack under equibiaxial loading 

for 2.5   in deformed configuration: (a) x- directions, and (b) y-direction. (left: 

peridynamic and right: ANSYS) 
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(b) 

 

Figure 5.14. Displacement contours of membrane with a crack under equibiaxial loading 

for 3.0   in deformed configuration: (a) x- directions, and (b) y-direction. (left: 

peridynamic and right: ANSYS) 
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5.1.3 Membrane with a Solid Inclusion 

The solid inclusion with a radius of 0.08R m  is located at the center of the plate as shown 

in Fig. 5.15.  The stretch values of 1.5,  2.0,  2.5   and 3.0  are applied equally in the x- 

and y- directions.  The deformation contour plots are shown for each stretch value in Fig. 

5.17-Fig. 5.20.  Similar to the previous cases, the length and width of the membrane 

increase and the thickness decreases satisfying the incompressibility condition.  

Deformation contours indicate sharp gradients near the rigid inclusion.  Because of the 

presence of symmetry, the deformation contours present the same variation in the x- and 

y- directions.  As shown in Figs. 5.17 - 5.20, the comparisons of peridynamics predictions 

with those of ANSYS indicate good agreement for all values of applied stretch. 

 
Figure 5.15. Geometric and loading with a solid inclusion for equibiaxial loading 
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Figure 5.16. Undeformed membrane with a solid inclusion  

 

 

 

 

 

 
left                                 right 

(a) 

 

 
left                                 right 

(b) 

Figure 5.17. Displacement contours of membrane with a solid inclusion under equibiaxial 

loading for 1.5   in deformed configuration: (a) x- directions, and (b) y-direction. (left: 

peridynamic and right: ANSYS) 
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(a) 
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(b) 

Figure 5.18. Displacement contours of membrane with a solid inclusion under equibiaxial 

loading for 2.0   in deformed configuration: (a) x- directions, and (b) y-direction. (left: 

peridynamic and right: ANSYS) 
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(b) 

Figure 5.19. Displacement contours of membrane with a solid inclusion under equibiaxial 

loading for 2.5   in deformed configuration: (a) x- directions, and (b) y-direction. (left: 

peridynamic and right: ANSYS) 
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(a) 
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(b) 

Figure 5.20. Displacement contours of membrane with a solid inclusion under equibiaxial 

loading for 3.0   in deformed configuration: (a) x- directions, and (b) y-direction. (left: 

peridynamic and right: ANSYS) 

 

 

 

 

 



89 

 

 

 

5.2. Planar loadings 

As shown in Fig. 5.21, the membrane is subjected to a stretch of   in the x-direction, 

which is varied from 1.5 to 4 in increments of 0.5.  These stretch values are applied along 

the right and left edges of the membrane.  The upper and lower edges are on roller supports, 

thus constrained from deformation in the y-direction.  The comparison of the PD and 

ANSYS force predictions in the x- direction is shown in Fig. 5.22, and the deviation 

remains about 5% . 

 

Figure 5.21. Geometric and loading for planar loading 
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Figure 5.22. Force comparison of peridynamics and Ansys in the x direction for planar 

loading. 

 

5.2.1 Membrane with a Hole 

The stretch values of 1.5,  2.0,  2.5   and 3.0  are applied in the x-direction. The 

deformation contour plots are shown each stretch value in Figs. 5.25 - 5.28.  As expected 

with the planar loading conditions and constraints, the length increases and the thickness 

decreases. The thickness decreases inversely proportional to the length because there is no 

deformation in the width direction.  Therefore, the deformation contours plots are presented 

only in the x-direction as shown in Figs. 5.25 - 5.28.  Moreover, the hole becomes an ellipse 

whose major axis increases with increasing applied stretch.  As shown in Figs. 5.25- 5.28, 

the peridynamics predictions of displacement variations are in good agreement with those 

of ANSYS for all values of applied stretch.  
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Figure 5.23. Geometric and loading with a hole under planar loading 

 

 
 

Figure 5.24. Undeformed membrane with a hole 

 

 

 
left                                 right 

 

Figure 5.25.  Displacement contours in the x- directions of membrane with a hole under 

planar loading for 1.5   in deformed configuration(left: peridynamic and right: ANSYS) 

 

 
left                                 right 

 

Figure 5.26. Displacement contours in the x- directions of membrane with a hole under 

planar loading for 2.0   in deformed configuration(left: peridynamic and right: ANSYS) 

 



92 

 

 

 

 
left                                 right 

 

Figure 5.27. Displacement contours in the x- directions of membrane with a hole under 

planar loading for 2.5   in deformed configuration(left: peridynamic and right: ANSYS) 

 

 

 
left                                 right 

Figure 5.28. Displacement contours in the x- directions of membrane with a hole under 

planar loading for 3.0   in deformed configuration(left: peridynamic and right: ANSYS) 

 

 

 

5.2.2 Membrane with a Crack 

For stretch values of 1.5,  2.0,  2.5   and 3.0  applied in the x- direction, the deformation 

contour plots are shown in Figs. 5.31 - 5.34.  Similar to the case of a hole, the thickness 

decreases inversely proportional to the length of the membrane.  Also, the gap increases as 

the larger stretch is applied.  However, in the planar loading, unlike the equibiaxial loading, 

crack shape becomes elliptical for increasing stretch values.  Both PD and ANSYS predict 

similar deformations, and their comparison indicate good agreement as shown in Figs. 

5.31- 5.34. 
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Figure 5.29. Geometric and loading with a crack for planar loading 

 

 

 

 
 

Figure 5.30. Undeformed membrane with a crack 

 

 

 

 
left                                 right 

Figure 5.31. Displacement contours in the x- directions of membrane with a crack under 

planar loading for 1.5   in deformed configuration(left: peridynamic and right: ANSYS) 

 

 

 



94 

 

 

 

 
left                                 right 

 

Figure 5.32. Displacement contours in the x- directions of membrane with a crack under 

planar loading for 2.0   in deformed configuration(left: peridynamic and right: 

ANSYS 
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Figure 5.33. Displacement contours in the x- directions of membrane with a crack under 

planar loading for 2.5   in deformed configuration(left: peridynamic and right: 

ANSYS 
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Figure 5.34. Displacement contours in the x- directions of membrane with a crack under 

planar loading for 3.0   in deformed configuration(left: peridynamic and right: ANSYS 
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5.2.3 Membrane with a Solid Inclusion 

The stretch values of 1.5,  2.0,  2.5   and 3.0  are applied in the x- direction. The 

deformation contour plots are shown for each stretch values in Figs. 5.37- 5.40. The 

thickness decreases inversely proportional to the length due to the incompressibility 

condition.  As expected, the deformation contour lines present a nonlinear behavior in the 

x-direction, there exists no deformation in the y-direction. As shown in Figs. 5.37- 5.40, 

the peridynamics deformation contour plots compare well those of ANSYS predictions.  

 

 

Figure 5.35. Geometric and loading with a crack for planar loading 

 

 

 

 
Figure 5.36. Undeformed membrane with a solid inclusion 
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Figure 5.37. Displacement contours in the x- directions of membrane with a rigid inclusion 

under planar loading for 1.5   in deformed configuration (left: peridynamic and right: 

ANSYS 
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Figure 5.38. Displacement contours in the x- directions of membrane with a rigid inclusion 

under planar loading for 2.0   in deformed configuration (left: peridynamic and right: 

ANSYS 
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Figure 5.39. Displacement contours in the x- directions of membrane with a rigid inclusion 

under planar loading for 2.5   in deformed configuration (left: peridynamic and right: 

ANSYS 
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Figure 5.40. Displacement contours in the x- directions of membrane with a rigid inclusion 

under planar loading for 3.0   in deformed configuration (left: peridynamic and right: 

ANSYS 

 

 

 

5.3. Uniaxial loadings 

As shown in Fig. 5.41, the membrane is subjected to a stretch of   in the x- direction, 

which is varied from 1.5 to 4 in increments of 0.5.  Similar to the planar loading case, these 

stretch values are applied along the left and right edges of the membrane.  The membrane 

is not constrained in the y-direction.  As a result, the force in the y- direction is zero.  Also, 

the membrane width and thickness contract simultaneously as expected because of the 

incompressibility condition.  The PD force prediction in the x-direction is compared with 

ANSYS as shown in Fig. 5.42.  The comparison indicates good agreement, and the 

deviation between the two varies between 1.5 % to 10 %.  The PD force prediction is 

slightly larger than ANSYS predictions for stretch values less than 3, and higher 

subsequent values. 
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Figure 5.41. Geometric and loading for uniaxial loading 

 

 

 

Figure 5.42. Force comparison of peridynamics and Ansys in the x direction for uniaxial 

loading. 
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5.3.1 Membrane with a Hole 

For applied stretch values of 1.5,  2.0,  2.5   and 3.0  in the x- direction, the deformation 

contour plots are shown in Figs. 5.45 - 5.48.  As expected, the circular hole becomes 

elliptical in shape for increasing stretch values.  The comparison of PD deformation 

contours with those of ANSYS indicates good agreement.  It captures the effect interaction 

of free surface of the hole and unloaded edges on the deformation field.  

 

 

 
Figure 5.43. Geometric and loading with a hole for uniaxial loading 

 

 

 

 
Figure 5.44. Undeformed membrane with a hole 
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(a) 
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(b) 

Figure 5.45. Displacement contours of membrane with a hole under uniaxial loading for 

1.5   in deformed configuration: (a) x- directions, and (b) y-direction. (left: peridynamic 

and right: ANSYS) 
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(a) 

 
left                                 right 

(b) 

Figure 5.46. Displacement contours of membrane with a hole under uniaxial loading for 

2.0   in deformed configuration: (a) x- directions, and (b) y-direction. (left: peridynamic 

and right: ANSYS) 
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(b) 

 

Figure 5.47. Displacement contours of membrane with a hole under uniaxial loading for 

2.5   in deformed configuration: (a) x- directions, and (b) y-direction. (left: peridynamic 

and right: ANSYS) 
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(a) 
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(b) 

 

Figure 5.48. Displacement contours of membrane with a hole under uniaxial loading for 

3.0   in deformed configuration: (a) x- directions, and (b) y-direction. (left: peridynamic 

and right: ANSYS) 
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5.3.2 Membrane with a Crack 

The deformation contour plots are shown for each stretch values of 1.5,  2.0,  2.5   and 

3.0  in Fig. 5.51- 5.54.  Similar to the deformation with a hole, the membrane increases in 

length, and decrease in width and thickness.  As expected, the crack becomes circular in 

shape, and elliptical for increasing stretch values.  As shown in Figs. 5.51 - 5.54, both  

PD and ANSYS predictions capture such deformation, and they are in good agreement. 

 

 
Figure 5.49. Geometric and loading with a crack for uniaxial loading 

 

 

 

 

 
 

Figure 5.50. Undeformed membrane with a crack 
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(a) 
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(b) 

Figure 5.51. Displacement contours of membrane with a crack under uniaxial loading for 

1.5   in deformed configuration: (a) x- directions, and (b) y-direction. (left: peridynamic 

and right: ANSYS) 
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(a) 

 

 
(b) 

Figure 5.52. Displacement contours of membrane with a crack under uniaxial loading for 

2.0   in deformed configuration: (a) x- directions, and (b) y-direction. (left: peridynamic 

and right: ANSYS) 
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(a) 

 

 
(b) 

Figure 5.53. Displacement contours of membrane with a crack under uniaxial loading for 

2.5   in deformed configuration: (a) x- directions, and (b) y-direction. (left: peridynamic 

and right: ANSYS) 
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(a) 

 

 

 
(b) 

Figure 5.54. Displacement contours of membrane with a crack under uniaxial loading for 

3.0   in deformed configuration: (a) x- directions, and (b) y-direction. (left: peridynamic 

and right: ANSYS) 
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5.3.3 Membrane with a Solid Inclusion 

The deformation contour plots are achieved for stretch values of 1.5,  2.0,  2.5   and 3.0  

as shown in Fig. 5.57 - 5.60.  Similar to the previous cases of uniaxial loading, the length 

of the membrane elongates and the width and thickness contract.  However, the membrane 

away from the edges contract more than the middle part due to the rigid inclusion.  The 

comparison of PD and ANSYS prediction indicate good agreement, and captures the 

presence of the rigid inclusion. 

 

 
 

Figure 5.55. Geometric and loading with a solid inclusion for uniaxial loading 

 

 

 

 

 
 

Figure 5.56. Undeformed membrane with a solid inclusion 
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(a) 

 

 
(b) 

Figure 5.57. Displacement contours of membrane with a rigid inclusion under uniaxial 

loading for 1.5   in deformed configuration: (a) x- directions, and (b) y-direction. (left: 

peridynamic and right: ANSYS) 
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(a) 

 

 

 
 (b)  

 

Figure 5.58. Displacement contours of membrane with a rigid inclusion under uniaxial 

loading for 2.0   in deformed configuration: (a) x- directions, and (b) y-direction. (left: 

peridynamic and right: ANSYS) 
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Figure 5.59. Displacement contours of membrane with a rigid inclusion under uniaxial 

loading for 2.5   in deformed configuration: (a) x- directions, and (b) y-direction. (left: 

peridynamic and right: ANSYS) 
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(a) 

 

 
 (b)  

 

 

Figure 5.60. Displacement contours of membrane with a rigid inclusion under uniaxial 

loading for 3.0   in deformed configuration: (a) x- directions, and (b) y-direction. (left: 

peridynamic and right: ANSYS) 

 

 

As part of a convergence rate study, the discretizations of (200x200), (150x150), (100x100) 

and (50x50) are considered for equibiaxial, planar and uniaxial loading cases. However, 

the resulting force for each loading case, and the deformed shapes with defects are almost 
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identical for each discretization. Therefore, the selection of the number of material points 

is only dependent upon the computational time.  In the equibiaxial and planar loading, only 

elongation occurs, and the horizon size, 3.015 x    is sufficient. In the uniaxial loading, 

both elongation and contraction occur simultaneously, and the horizon size of 9.015 x    

is necessary.  However, it causes longer computational time; for this reason, the small 

number of material points, (50x50) is selected for uniaxial loading, and 100 by 100 is 

selected for equibiaxial and planar loading.  On the other hand, in FE models, (40x40), 

(50x50) and (15x15) are used as number of nodes for equibiaxial, planar and uniaxial 

loadings, respectively. There are two reasons for these selections.  First, the finite element 

solution does not converge in the presence of a crack with any discretization.  Hence, the 

acceptable discretization is established for convergence while considering the 

computational time. 

 

 

6. SUMMARY AND FUTURE WORK 

One of the major contributions of this study is to develop the bond-based peridynamic 

constitutive relations for modeling rubbery materials.  It specifically concerns Neo-

Hookean type membrane under equibiaxial, planar and uniaxial loading conditions.  The 

Neo-Hookean material model has one independent constant.  The strain energy density 

function is expressed in terms of the principal stretches, 1 2 3, ,    while satisfying the 

incompressibility condition.  The material parameters for each loading are determined by 

equating the peridynamic strain energy to those of the classical continuum mechanics.  

Also, the surface correction is performed by comparing the PD strain energy density with 
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that of the classical continuum mechanics.  After determining the explicit form of the strain 

energy density function for each loading condition, the  PD equation of motion is 

constructed in general form in terms of the force density vector.  PD equation of motion is 

based on the Neo-Hookean model.  The numerical results concerning the deformation 

without and with defects, a hole, crack and a rigid inclusion are verified by comparing them 

with ANSYS prediction.  

 

The solutions of the PD equation of motion subject to the specified the boundary conditions 

are achieved by using techniques already available the literature such as the adaptive 

dynamic relaxation.  The numerical results concern primarily verification of the PD force 

density – stretch relations for each loading case.  The PD numerical predictions for 

deformation without and with defects in the form of a hole, crack and a rigid inclusion are 

compared with ANSYS predictions for all loading cases.  

 

As a future work, crack growth behavior can be investigated under equibiaxial, planar and 

uniaxial loading conditions. Also, this approach can be extended to construct the strain 

energy density function for Neo-Hookean type rubbery material under three dimensional 

loading conditions. 
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