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ABSTRACT 
To determine the tracking abilities of a Telemetry (TM) antenna control unit (ACU) 

requires ‘truth data’ to analyze the accuracy of measured, or observed tracking angles.  This 
requires we know the actual angle, i.e., that we know where the target is above the earth.  The 
positional truth is generated from target time-space position information (TSPI), which implicitly 
places the target’s global positioning system (GPS) as the source of observational accuracy.  In 
this paper we present a model to generate local look-angles (LA) and line-of-sight (LoS) distance 
with respect to (w.r.t.) target global GPS.  We ignore inertial navigation system (INS) data in 
generating relative position at time T; thus we model the target as a global point in time relative 
to the local tracker’s global fixed position in time.  This is the first of three companion papers on 
tracking This is the first of three companion papers on tracking analyses employing Statistically 
Defensible Test & Evaluation (SDT&E) methods.a  
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INTRODUCTION 
The target TSPI file is our truth source.  It contains GPS, and often INS data.  Our task is 

to translate target global latitude (TLAT), longitude (TLNG) and altitude (TALT) at time (T) to 
local tracking ‘look-angles’ of azimuth (AZ), elevation (EL) and line-of-sight distance (LoS) at 
time T.  Time correlates target position (SLAT, SLNG, SALT) with a fixed location as tracker 
site origin.  Below we develop a set of global-to-local transformations between tracker and target 
at time T using derived target angles and target/tracker angle differences:  

∆φ = TLAT – SLAT,       (Ia) 
∆λ = TLNG – SLNG,       (Ib)  
∆H = TALT – SALT.       (Ic)   
 
Our geometric model is merely one of a set of tools for we’ve developed for estimating 

tracking efficiency.  It serves as our primary analysis spaceb.  The purpose of our geometric 
model is to estimate ACU tracking errors and mode probabilities.  Error is not exclusive to an 
ACU, but rather extends to the scope of the test scenario.  Target inertial data is useful for 
modeling tracking angle errors due to tracker-target antenna alignment.  A second paper focuses 
                                                           
a Rf. 1 & 2. 
b Rf. 3. 
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on modeling tracking error which employs GPS and INS; a third on modeling autotracking mode 
of an ACU employing receiver gain (AGC) and antenna scanning controls. 

 
LOCAL AZIMTUH AND ELEVATION MODELS: 

The flat azimuth model is shown in figure 1.  Basically, two local areas on an earth 
tangent plane (an earth local frame), with each locally flat plane a distance, ‘d’ apart – the 
calculated earth distance, which is d = R × cos−1(L), where L denotes the earth surface arc 
between the two points.  LoS designates the distance between points at altitude.  In the distance 
equation, the earth radius is approximated as R ≈ 6378137m, and θ is calculated via projections 
of latitude, longitude and longitudinal differences via the spherical geometry. 

 

 
 

Figure 1  Flat Azimuth Model 
 
Our model formulae are derived from spherical law of cosines (cf. below).  There are 

several estimates of arc length, ‘d’ on sphere.  We employ two (cf. figure 1.1 below): 
cos(d) = sin(φ1) × sin(φ2) + cos(φ2) × cos(φ1) × cos(∆λ),   (1a) 
L = R × acos(d).        (1b) 
 

Substituting d ⇒ L/R yields a more accurate close-distance formula: 
sin2(½l) ≡ haversin (l) = sin2(½∆φ) + cos(φ1) × cos(φ2) × sin2(½∆λ), (2a) 
L = R × 2asin(√l).        (2b) 
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The haversine is more accurate for smaller arc distances (angles); where smaller is 
relative w.r.t. R.  Mapping the plane of figure 1 onto a sphere, we get a grid shown in figure 1.1 
below.  In this figure, from a perspective above the plane φ designates latitude, λ longitude and L 
designates the projection of LoS onto the spherical plane.  

 

 
 

Figure 1.1  Mapping of Plane in Figure 1 onto a Sphere 
 
The azimuthal calculations are based on the law of cosines and sines for a spherical 

coordinate system:   
θ = (180/π) × atan2(ϕ)       (3a) 
ϕ = (sin(∆λ) × cos(φ1), sin(φ1) × cos(φ2) – cos(φ1) × sin(φ2) × cos(∆λ)). (3b) 
 

 
 

Figure 2  Planar Geometric Elevation Model 
 
A flat or planar geometric elevation model, shown in figure 2 is based on the difference 

in altitudes and the LoS or L: 
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ψ = (180/π) × asin(∆H/LoS) = atan(∆H/L).     (4) 
 
The arctangent is preferred as ∆H ≥ LoS is possible during flight.  The elevation angle is 

the angle of altitude, ψ.  The LoS and azimuth angle formulae are derived below.  First we prove 
the theoretical ‘truth source’, i.e., the laws of spherical trigonometry. 

 
Law of Spherical Cosines (LSC): 
The Law of Spherical Cosines is one of two fundamental formulae used as our navigation 

truth, so we shall prove it and its companion, the Law of Spherical Sines.  Of course, this 
theoretical ‘truth source’ compares with observed ‘truth source’ that is GPS TSPI.  Using the 
triangle in figure 3 the LSC, or the so-called cosine rule of sides is represented by the formula: 

cos(c) = cos(a)cos(b) – sin(a)sin(b)cos(C).    (5) 
 
 

 
 

Figure 3 Spherical Reference Points 
 
  
LSC PROOF: 
This proof is attributed to Romuald Ireneus (1997).  We use the unit sphere, as the radius 

will drop out of the calculations.  For unit vectors u, v, w from center of the sphere to the corners 
of the triangles, the inner-product of one vector on the other yields the cosine angle subtended by 
arc length: s = 1 × θ.  The cosine on the sphere is still the inner-product of the subtending units. 

cos(a) = u • v; cos(b) = u • w; cos(c) = w • v.     (6) 
 

We define tangents perpendicular to each unit: 
ta = v – u(u • v)/|| u – v(u • v) || = (v – ucos(a))/sin(a),   (7a) 
tb = = (w – ucos(b))/sin(b).       (7b) 

 
Therefore, the ‘law of arcs’ is: 
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cos(C) = ta • tb = (v – ucos(b))(w – ucos(b))/sin(a)sin(b)   (8a) 
= (cos(c) – cos(a)cos(b))/sin(a)sin(b) → 

cos(c) = cos(a)cos(b) + sin(a)sin(b)cos(C).     (8b) 
 

Similarly, ‘the law of angles’ is: 
cos(A) = –cos(B)cos(C) + sin(B)sin(C)cos(a).    (8c) 
 
QED. 
 

  
Law of Spherical Sines (LSS): 
Again using the triangle from figure 3 above, the LSS or so-called rule of sines is 

represented by the formula: 
sin(A)/sin(a) = cos(B)/cos(b) = sin(C)/sin(c).     (9) 
 
 

 
 

Figure 4 Spherical Model Frame 
 
 
LSS PROOF: 
From Pythagoras’ law we know that for any angle (arc length), A 
sin2(A) = 1 – cos2(A).        (10a) 

 
Using the LSC from above: 

sin2(A) = 1 – (cos(a) – cos(b)cos(c))/sin(b)sin(c))2.    (10b) 
 
A little manipulation yields: 

sin(A)/sin(a) = cos(a,b,c)/sin(a,b,c)      (10c) 
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where 

cos(a,b,c) ≡ [1 – cos2(a) – cos2(b) – cos2(c) + 2cos(a)cos(b)cos(c))]½ (10d) 
sin(a,b,c) ≡ sin(a)sin(b)sin(c).        (10e) 
 

A permutation on pairs (A,a), (B,b), (C,c) proves the rule.  This proof is attributed to Isaac 
Todhunter circa 1863.  We will use these spherical trigonometric laws to construct the azimuth 
formulae. 

 
AZIMUTH AND LOS PROOFS: 
For instructional insight we derive azimuth in two ways: the first using vectors, the 

second via the spherical trigonometry laws derived above.  Our analyses calculations employ the 
trigonometric formulae, without taking account of the earth’s elliptical eccentricity – our 
relatively small distance w.r.t. R between target and tracker permit this.  The spherical model 
frame is shown in figure 4.  The error due to ignoring eccentricity is insignificant for the 
precision of our calculations.  To derive azimuth via vectors we create unit vectors on the sphere 
referenced to a cartesian coordinate system, e.g.: 

ek = (cos(φk)cos(λk), sin(φk)cos(λk), sin(φk)) ⇔ (e1(k), e2(k), e3(k)).  (11a) 
 

I found this approach in an earthquake seismology class notec, and believe the derivation and an 
alternative enlightening, so include both here for completeness.  For two coordinates we have an 
arc length (on unit sphere) given by the inner-product: 

 cos(∆) = e1 • e2.        (11b) 
 

Thus the arccosine will provide angle.  Simple!  Although mathematically simple, when angles 
are small, round-off errors emerge and grow as cos(∆) → 1.  So, we derive an equivalent 
alternative formula that employs the sine and cosine to create the tangent; and though more 
complicated, is numerically more accurate for computer computation.  Figure 5 shows a way to 
construct the sine and cosine of the bisected angle: 

 
 

Figure 5a  Sine and Cosine of Bisected Angle 
 
We derive the so-called haversine representation of LoS from the vectors of figure 5a: 
sin(½∆) = ½| e1 – e2|, cos(½∆) = ½| e1 + e2| → sin(∆) = 2sin(½∆)cos(½∆). (11c) 
 

So, 
∆ = atan2(sin(∆),cos(∆)),        (11d) 
 

                                                           
c Rf. 4 & 8. 
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Where, from 11b and the sine-cosine relations we have: 
cos(∆) = e1 • e2, sin(∆) = ½| e1 – e2| × | e1 + e2|.    (11e) 

 

 
 

Figure 5b Grid for Spherical Trigonometry Laws 
 
Now we make the simple derivation using the spherical trigonometry laws.  Using the 

grid of figure 5bd yields: 
sin(θ)/sin(½π – φ1) = sin(∆λ)/sin(∆) = sin(2π − θ∗)/sin(½π – φ2),  (12a) 
cos(π – φ1) = cos(∆)cos(π – φ2) + sin(∆12)sin(π – φ2)cos(θ).   (12b) 
 

These are rewritten as 
cos(φ2)sin(∆)sin(θ) = cos(φ1)cos(φ2)sin(∆λ),     (12c) 
cos(φ2)sin(∆)cos(θ) = sin(φ1) – sin(φ2)cos(∆).    (12d) 
 

Therefore, 
θ = (180/π) × atan2(sin(θ),cos(θ)) = atan2(ϕ),    (13a) 
ϕ = cos(φ1)cos(φ2)sin(∆λ)/(sin(φ1) – sin(φ2)cos(∆λ)).   (13b) 
 
Azimuth is the angle of (13b) which is equivalent to (14a) below.  Reversing the 

arctangent arguments supplements perspective, i.e., we move the look-angles from tracker-to-
target to target-to-tracker. 
QED. 

 
For the haversine note that 
haversin(θ) ≡ sin2(θ/2); cos(θ) = 1 – 2sin2(θ/2) = 1 – 2haversin(θ).  (14a) 
 

                                                           
d Ibid. 



8 
 

Now substitute this form of cos(θ) and employ the identity: 
cos(a − b) = cos(a)cos(b) + sin(a)sin(b),     (14b) 
 

into equation (8b) above to obtain the law of haversines: 
h ≡ haversin(L/R) = haversin(∆φ) + sin(a)sin(b)cos(∆λ),   (14c) 
L = 2Rasin(√h).        (14d) 

 
Where ½∆φ = a – b and ½∆λ = C, the latitude and longitude differences of figure 4. 
QED. 

 

 
Figure 6a Observed and Modeled Angles 
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Figure 6b Observed and Modeled Angles with Error (red) 

 
Figures 6a and 6b show observed (track measured) and theoretical (calculated from TSPI) 

azimuth and elevation angles.  The sample times are seconds from test start time, T = T0 ≡ 0.  It 
is clear that between 6k to 8k seconds that tracking error increased, significantly w.r.t. to the rest 
of the profile.  From the whole angle tracking profile we conclude that overall the measured was 
quite accurate w.r.t. the calculated, or theoretical tracking profile.  Figure 6b shows the error 
superimposed on the angle means, which is a numerical verification of our conclusion.  A sample 
of observed and calculated angles is shown in figure 7. 
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Figure 7  Observed and Calculated Angles 

 
 

SUMMARY 
To determine tracking accuracy we need both a measured data and theoretical truth 

source to compare observed angles with expected angles.  The equations used to compare 
measured with expected angles are: 

 
Line of Site Distance: 
LoS = 2R × asin(√h), R ≈ 6378137m     (2a) 
h = haversin(∆φ) + sin(φ1)sin(φ1)cos(∆λ)    (2b) 
∆φ = TLAT – SLAT       (Ia) 
      
Azimuth Angle: 
θ = (180/π) × atan2(ϕ)      (3a) 
ϕ = cos(φ1)cos(φ2)sin(∆λ)/(sin(φ1) – sin(φ2)cos(∆λ))   (3b) 
∆λ = TLNG – SLNG       (Ib) 
 
 
Elevation Angle: 
ψ = (180/π) × atan(∆H/L)      (4) 
∆H = TALT – SALT       (Ic) 
 



11 
 

Equations 15 were given in the introduction and show the relations between modeled, 
observed and calculated angles that comprise geometric variables.   
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