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ABSTRACT 
 

This paper presents analysis for evaluating the probability density function (pdf) of the 
noise at the output of the frequency demodulator. It is shown that the noise is non-
Gaussian and that for low to medium signal-to-noise power ratios, its pdf differs very 
significantly from the Gaussian pdf commonly assumed in simplified analysis. These 
results are very important for analyzing the performance of the PCM/FM type of 
modulation schemes used in telemetry systems as illustrated in the paper. 
 

INTRODUCTION 
 
This paper presents an exact analysis for the probability density function (pdf) of the 
noise at the output of a frequency demodulator. In the literature [2-3], the FM 
demodulator output noise is assumed to be Gaussian distributed at high signal-to-noise 
power ratio (SNR). At low SNR, it is analyzed in terms of a Gaussian noise and a 
sequence of impulse functions (clicks) based on the classical theory propounded by Rice 
[1]. In such an analysis, assuming relatively low bandwidth of the post demodulator 
video (LPF) filter, the variance of the total noise power at the filter output is evaluated. 
The probability distribution of the filter output noise is assumed to be Gaussian. While 
such an analysis is adequate for the case of analog information signals such as speech, for 
the case of digital signals, one of the most important characteristics of the noise is its pdf.    
 
This paper presents an exact analysis of the FM demodulator output noise. It is shown 
that the pdf is given in terms of Hypergeometric function. The derived expression is 
applicable to all SNRs. At relatively low to medium SNR levels, the pdf of noise differs 
drastically from the Gaussian pdf with the difference becoming progressively smaller 
with increasing SNR. At high SNRs (>25 dB), the difference is relatively small. 
However, since the typical SNR used in digital telemetry is in the 10-15 dB range, the 
non-Gaussian distribution is very important in evaluating the probability of bit error. Due 
to the analytical difficulties, the analysis does not take into account the effect of video 
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filter following the FM demodulator. However, this effect is expected to be relatively 
small when the video filter bandwidth is of the order of the IF bandwidth which has been 
shown to be optimum from earlier simulation results.   
 

SIGNAL MODEL 
 

The signal at the output of the IF filter or at the input of the frequency demodulator is 
given by 
   )t(n))t(tcos(A)t(v sIF +θ+ω=    (1) 
where ωIF denotes the IF frequency, θs(t) is the signal modulation and is equal to 

∫ ττ
∞−

t
f d)(mD  where Df denotes the frequency modulator sensitivity and m(t) is the 

message signal. The term n(t) represents band limited ‘white’ noise with one-sided power 
spectral density equal to N0 and assumed to have a Gaussian distribution. The variance of 
n(t) is equal to N0BIF where BIF is the IF filter equivalent noise bandwidth. The noise 
term n(t) may be expressed in terms of the following in-phase and quadrature 
representation 
   )tsin()t(y)tcos()t(x)t(n cncn ω−ω=    (2) 
where xn(t) and yn(t) are baseband ‘white’ noise processes with (one-sided) power 
spectral density 2N0 and of bandwidth BIF/2. The processes xn(t) and yn(t) are 
independent Gaussian and have variance σ2 = N0BIF. The frequency demodulator output 
may be expressed as the derivative of the phase θT(t) of the received signal v(t) expressed 
in AM-PM form  with θT(t) given by 
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where θs(t) denotes the desired signal and Rn(t) and θn(t) represent the amplitude and 
phase of the additive noise n(t) with its complex envelope given by 
 
   )t(j
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ne)t(R)t(g θ= ; )t(yj)t(x)t(g nnn +=   (4) 

The complex envelope of the received signal is similarly given by 

   )t(j
s

seA)t(g θ=      (5) 
In the first instance it is assumed that the modulation index is relatively small (θs(t) is 
small compared to θn(t)  ). In this case the noise term in (3) may be approximated as 
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Equivalently one may express φn as 
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Differentiation of (7a) with respect to the time t yields the following expression for the 
FM demodulator output noise. 
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In the following, an expression for the pdf of nφ& is derived which is valid for the 
complete range of SNR. 
 

DEMODULATOR OUTPUT NOISE DISTRIBUTION 
 
To derive the requisite pdf, the set of random variables (RV) X1, X2, X3, and X4 are 
defined for notational convenience by 
  n4n3n2n1 yX;xX;yX);xA(X && ===+=   (9) 

then the desired RV nφ& may be expressed in terms of RVs X1, X2, X3, and X4 as 

  )XX(/)XXXX( 2
2

2
13241n +−=φ&     (10) 

From the discussion of the in-phase and quadrature representation of n(t) in (2), it follows 
that X1 and X2 are independent and Gaussian distributed with variance σ2 = N0BIF. 
Therefore X3 and X4 are also Gaussian and probabilistically independent. The power 

spectral density (one-sided) of  )t(xn& is given by )f(P)f2()f(P
nn x

2
x π=& where )f(P

nx is 

the power spectral density (PSD) of xn(t), and thus the variance of )t(xn& denoted by 2
dσ  

is given by 

  ∫ π=σ
∞

0
x

222
d df)f(Pf4

n
     (11)

For the case when the IF filter is assumed to be ideal with bandwidth BIF = 2 B, 2
dσ  may 

be evaluated to be 

  3/)B2( 222
d σπ=σ       (12) 

Note however that (11) is more general and applies to any filter shape. Similarly the 

variance of )t(yn& is also given by 2
dσ . It easily follows as is well known that the cross 

correlation function of yn(t) and )t(yn& denoted by )t(y)t(y)(R nnyy nn
τ+⋅≡τ &&  is given 

by 

  
τ
τ=τ

d
)(Rd

)(R
nn yy &       (13) 

and thus the variables yn and ny&  are uncorrelated if R(τ) has a maximum at τ=0 which is 
true for most practical filters including the ideal filter case. Because of the Gaussian 
distribution of the two variables, it follows that they are also statistically independent. 
Similarly the variables xn and nx&  are also independent. In summary, X1, X2, X3, X4  are 
statistically independent and Gaussian distributed random variables. In order to evaluate 
the pdf (probability density function) of nφ& , a set of intermediate random variables Y1, 
Y2, Y3, Y4 is defined by 
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To evaluate the pdf of the random vector Y=[Y1 Y2 Y3 Y4 ]; the set of equations (14) are 
solved for the value of the random vector X = ]xxxx[x 4321= with 

]yyyy[yY 4321== . The desired solutions of (14) are given by 
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In (15) x1 and x4 (respectively x2 and x3) have same sign. Thus there are four possible 
solutions for (15). Considering first the solution with all  signs positive, the Jacobian J of 
the set of equations (15) may be shown to be 
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1
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x

J
424 −
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∂
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In (16),  A  denotes the determinant of any matrix A. As the random variables X1, X2, 
X3, and X4 are statistically independent, the joint pdf of the random vector X denoted by 

)x(fX is given by 

  )x(f)x(f)x(f)x(f)x(f 4X33X2X1XX 421
=    (17) 

and the component (corresponding to the selected solution from (15)) of the pdf of the 

random vector Y denoted by )y(f1
Y is given by 
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In the subsequent development )y(f1
Y and its integral with respect to components of y  

are referred to as pdf and marginal pdfs respectively. The actual pdf is the sum of such 
components evaluated for all four solutions in (15). In equation (18), g1, g2, g3, and  g4 
represent the components of the vector function )y(g . The various functions appearing in 

(18) are given by 
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where σ2 and 2
dσ  denote the variances of random variables X1 and X3 (respectively X2 

and X4 ). Now the product of the last two terms in (19) may be written in the following 
form 
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Substitution of (19) and (16) in equation (18) yields the joint pdf of the random vector 
Y . The desired joint pdf of the random variables Y1, Y2 is obtained by integrating the 

joint pdf )y(f1
Y  with respect to y3, y4. Since only the last two product terms in (18) are 

functions of y3, the marginal pdf of Y1, Y2, Y4 is given by 
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The integral in (22) may be easily evaluated by substitution from (20) and is given by    
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With the substitution for the integral from (23) and the expressions for )(f
1X  and )(f

2X  

from (19a,b) in (22), the desired marginal pdf of Y1, Y2, Y4 is given by 
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Finally the marginal pdf of Y1, Y2 is obtained by integrating the right hand side of (24) 
with respect to y4. Letting I represent the following integral 
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With the change of variables )y/y(v 24= , the integral may be rewritten as 
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Using the identity 3.389/1 of [4 ] reproduced below 
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where 21F represents the Hypergeometric function. The application of identity (27) with 
ρ = 1/2 and ν = 1/2 yields 

 ]4/;2/3,2/3;1[F]2/1,1[B]4/;1,2/1;2/1[F]2/1,2/1[BI 2
21
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where B denotes the beta function (Eulers’s integral of first kind) [4]. Representing the 
)(F21 functions in terms of their series expansions, the integral I may be expressed as 
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where the coefficients ck may be evaluated in terms of the coefficients in the series 
expansions of the )(F21 functions appearing in (28), such an evaluation is carried out in 
the subsequent development. Therefore, the marginal pdf of the random variables Y1, Y2 
is given by 
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Now the pdf of the desired random variable 21 Y/YZ ≡  is given by [5] 
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Substitution of the joint pdf of Y1, Y2 from (30) into (31) results in the following 
expression for the pdf of Z 
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Using the identity 3.351 in [4] reproduced in equation (33) below 
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where Γ( ) denotes the gamma function. The integral in (32) denoted by I2 is given by 
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Substituting for I2 from (34) into (32), the desired pdf fZ(z) may be expressed in the 
following form 
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Form the definition of the coefficients ck given implicitly by equations (28)-(29) and 
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using the series expansion for the Hypergeometric functions [4], the expression for ck is 
given by 
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Therefore, substituting the expansion for the gamma function, one obtains the following 
expression for the summand in (35) 
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where in equation (38) w has been defined as 
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Finally the substitution of (40) into (35) results in the following expression for fZ(z) 
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It may be shown in a manner similar to the derivation of )z(f1
Z that the component of the 

pdf fZ(z) corresponding to the negative sign for x1 and x4 in equation (15) is obtained by 
replacing the positive sign associated with the second term in (41a) by negative sign. The 
solution corresponding to the other two solutions are identical to the first two solutions. 
Hence the pdf fZ(z) is equal to four times the first term in (41a), i.e., 
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where using the definition of the hypergeometric functions, the 22F ( ) function has been 
simplified to the 11F  ( ) function and the Γ(3/2) has been replaced by (1/2) Γ(1/2). 
Equation (42) with (41b) represent the final desired result. Finally substituting the values 
of the beta and gamma functions : B[(1/2), (1/2)]=π  and π=Γ ]2/1[ , the expression for 
the pdf fZ(z) simplifies to 
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More conveniently defining the normalized random variable Ψ=Ζ/(2πB) in view of (12), 
(frequency fluctuation normalized by the filter bandwidth in rad/sec), the pdf of the RV 
Ψ is given by 
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where )B2/(df πσ=σ  in equation (44) and thus 2
fσ represents the variance of the 

normalized frequency fluctuations. Note that under the high SNR condition and ideal 

filter shape usually treated in the literature, .)A3/( 2
l

222
f σ≡σ=σ  

 
Comparison with Gaussian pdf: 
Figure 1-2 plot the pdf of the demodulator output noise as computed from (44) for the 
input SNR = (A2/2 σ2) equal to 12 and 20 dB respectively plotted versus ψ normalized by 

σl where )A3/( 222
l σ=σ is the variance of ψ predicted on the basis of linear Gaussian 

assumption. As may be observed from these figures, the pdf as computed from equation 
(44) differs very markedly from its value predicted from the linear theory for SNR up to 
15 dB with lower SNR resulting in higher difference.  For an SNR equal to 20 dB the 
difference is relatively small. Table 1 below shows the rms value of the noise σf as 
computed from (44) and its value σl as predicted from linear approximation for various 
values of SNR. 
 

Table1. Comparison of theory with Gaussian approximation 
SNR (dB) σl σf 20*log(σf/σl) 

6 .2046 .305 3.47 
8 .1625 .1895 1.34 
12 .1025 .1062 .308 
15 .0726 .0738 .142 
20 .0408 .0410 .042 
25 .0230 .0230 0 

 
While the linear theory gives good approximation for the noise variance for SNR greater 
than or equal to 12 dB, the results in terms of pdf differ significantly at these SNRs. For 
example, at SNR of 12 dB, at l/x σψ= equal to 5, the value of pdf predicted from linear 

approximation is 5105.1 −× compared to 4101.1 −× predicted from the results of this 
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paper. Thus the non-Gaussian nature of the noise is of high significance in determining 
the  probability of bit error in digital communication even when the correct variance can 
be evaluated by an independent means. 

 
   Figure1. FM demod output noise pdf (SNR = 12 dB) 

 
  Figure2. FM demod output noise pdf (SNR = 20 dB) 

 
 

 
 
Probability of Bit Error: 
To evaluate the impact of non-Gaussian noise distribution on the digital signal bit error 
probability Pe, the probability of error is computed both with Gaussian and non-Gaussian 
distribution given by (44). For the case of bipolar NRZ signaling, the sampled signal at 
the FM demodulator output takes values V± for some voltage V. The sampled output 
SNR equal to (V/σf)2 is dependent upon the input SNR, the modulation index and several 
other factors. In this paper to evaluate the impact of non-Gaussian noise distribution, the 
probability of error is computed for a given output SNR both for the Gaussian and non-
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Gaussian distribution of noise both with the same variance. The non-Gaussian noise 
distribution is parameterized by the input SNR. Figures 4 compares the results for the 
non_Gaussian noise distribution corresponding to input SNR of 12 dB. The figure shows 
in very clear terms, the difference in Pe resulting from the non-Gaussian distribution. 

 
      Figure 3. Probability of bit error for NRZ signal (SNRi = 12 dB) 

 
CONCLUSIONS 

 
The paper has presented an exact analysis of the noise at the output of FM demodulator. It has 
been shown that for low to medium SNRs the pdf of the FM demodulator output noise differs 
significantly from the Gaussian pdf. A detection example has been presented to illustrate 
possible impact of the non-Gaussian noise on the probability of detection error. The derivation of 
the paper assumed low modulation index and does not include the effect of the post 
demodulation (video) filter on the probability distribution (the effect on the variance is implicitly 
accounted for in the detection example). For the digital modulation schemes, earlier simulation 
studies show that the best performance is achieved when the video filter bandwidth is of the 
order of the IF bandwidth. In such cases the impact of the video filter is expected to be relatively 
small. A semi-analytical approach can be used to evaluate the impact of video filter under more 
diverse conditions. 
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