
Detection and Isolation of Instrumentation
Failures Applied to GPS and Inertial

Navigation

Walton R. Williamson and Jason L. Speyer
SySense Incorporated
Burbank, California
walton@sysense.com
speyer@sysense.com

Charles H. Jones
Edwards Air Force Base, California

charles.jones@edwards.af.mil

Abstract

During flight tests and during post-processing of flight data, a need exists to validate that all sensors are
working properly and that data is valid after experimentation. Analytic redundancy methods enable data
validation using multiple, dissimilar instruments processed through the vehicle dynamic system model. A
design methodology is presented through which the designer chooses the instrumentation for flight test using
output separability of the failure modes as the design metric for measuring system integrity. An example is
presented using an aircraft navigation system.

1 Introduction

A need exists for robust analysis of flight test data. The designer wishes to implement a real time instru-
mentation package capable of measuring the desired parameters effectively. Since the system and aircraft
are often experimental operating in never before tested stages of flight, validation of instrument and aircraft
performance during the test is paramount to the success of the flight test.

Redundancy is typically used as a means of providing a check against failures. A redundant instrument may
be used to detect a failure, but not isolate to a particular system. A bank of three or more instruments
may be used in a voting scheme to detect and isolate a failure. However simple redundancy methods are
costly due to size, power, weight and value of redundant systems. While this method is typically used in



production aircraft for safety of life, an alternate methodology is now presented which enables the designer
to use dissimilar instrumentation to provide integrity of operation. In this way, the designer may make use
of other instrumentation on board the aircraft to provide integrity checks while decreasing the overall cost
of the instrumentation system.

Previously, an integrity monitoring system is proposed which possesses five important qualities[1]. Two of
them are repeated for the current discussion. These are:

• Analytic Redundancy. The fault tolerant scheme provides for explicit comparison of multiple,
dissimilar instruments in order to detect faults in any component through the dynamic modeling[2][3].

• Un-modelled Failure Modes. Only the fault direction in the dynamic system is assumed, not
the fault magnitude which is arbitrary. Therefore, the particular failure mode of each instrument is
irrelevant. A step jump, ramp, or increased noise are all detectable and rejected in the filter structure.

This paper discusses the analysis of output separability. The goal is to familiarize the reader with the concept
of analytic redundancy and relate that to failure modeling. Then a method for determining if a particular
set of instruments has the required analytical redundancy is presented.

Several examples using GPS/IMU/Baro Altitude are presented. Typical strap down systems include a three
axis accelerometer, a three axis gyro and a baro altimeter. The altimeter is used to enable smoothing of the
gravity estimate within the strap down equations of motion. The concepts presented are used to show under
what conditions the altimeter failure is output separable from the accelerometer triads.

2 System Failure Modeling

Fault modeling within system analysis is developed based on linear, state space methods. In essence, the
fault is modelled as an input to the dynamic system. Measurement failures are discussed in the next section.

A typical linear, continuous time, stochastic system is described as in Eq. 1

ẋ = Ax + Bω + fµ (1)
y = Cx + ν (2)

where x is the state, ω is process noise or uncertainty in the plant model, and µ is the target fault to be
detected. The measurements y are also corrupted by measurement noise ν(k). All of the system matrices
A, C, B, and f may be considered time varying and are continuously differentiable.

In this analysis, only the direction matrix f is assumed known. The fault signal generated µ is unknown and
arbitrary. In this way, the methodology is generic in the sense that no assumptions on the particular failure
are made, only that the failure affects the dynamics in a particular direction. For example, it is possible to
state that the body frame x-axis accelerometer only enters into the dynamics through the x-axis while the
particular failure mode such as hard-over, a bias jump, or simply a change in the scale factor would not need
to be predicted a priori.

From this basic modeling problem, a set of filters may be constructed to estimate the state x. Defining the
error e = x− x̂, where x̂ is the estimated state, a generic observer[4] uses the following residual process:
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r = y − Cx̄ = Ce (3)

where noise terms are neglected for convenience. The term x̄ represents the a priori state estimate of the
filter. The error dynamics are described in terms of the state dynamics and the filter gain L as:

ė = Ae + LCe (4)

If a fault direction f is present, the effect on the estimator becomes:

ė = Ae + LCe + fµ (5)

The failure now acts as an input to the estimator driving the state error. Note that the effect is independent
of the choice of gain L and therefore applicable to a variety of linear filtering methods. A methodology for
constructing filters to block the effect of the failures is discussed in a number of references and is beyond the
scope of this paper. The reader should refer to [4][6] for further discussion on filtering options.

2.1 Faults in the Measurements

The discussion presented applies to measurement faults as well as plant faults. A methodology exists for
transforming the measurement fault into a plant fault equivalent to the model presented in Eq. 1. The
measurement fault problem is converted to an equivalent fault detection problem with a fault in the dynamics
as previously described using the following method. The development follows Chung and Speyer[4].

The measurement model is now modified to include a fault µm with known direction E as in Eq. 6.

y(k) = C(k)x(k) + Eµm + ν(k) (6)

To understand how this measurement fault will affect the state estimation problem, a transformation is
performed to find an equivalent plant fault direction F in the state dynamics so that filtering techniques
developed for input failures may be applied to the measurement failure mode.

The residual process for a generic observer is now modified by the measurement fault as:

r = Ce + Eµm (7)

A transformation is made through the definition of a matrix fm which satisfies

E = C(k)fm (8)

The solution is not necessarily unique and the designer is free to pick the matrix fm to minimize computa-
tional complexity so long as the matrix fm has the same column rank as the rank of E.

Using this definition of fm, a new error state ē is defined as:

ē = e + fmµm (9)

and the residual process becomes:

r = Cē (10)
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Then assuming the generic observer structure in Eq. 4, the effect on the estimator error is given by:

˙̄x = ė + ḟmµm + fmµm (11)
= Ae + LCē + Afmµm −Afmµm +

ḟmµm + fmµm

= (A + LC)ē + fmµ̇m − (Afm − ḟm)µm

This estimator structure is equivalent to estimating a dynamic system of the form:

ẋ = Ax + Bω + fm[−µm; µ̇m] (12)

where fm is defined as:
Fm = [fm;Afm − ḟm] (13)

In short, the matrix Fm has twice the rank of fm, or the measurement fault takes up two fault directions in the
dynamic state. Note that if the designer chooses a time invariant fault direction, then ḟm = 0 simplifying
the calculation of Fm. A measurement fault is equivalent to two faults in the dynamics as described in
Chung [4].

Several caveats are necessary to understand this transformation. First, the filter structure defined by Eq. 11
estimates the quantity ē and not the true estimate of the error. However, for a case where no fault exists
(µ = 0) the filter estimates the true error e. Second, the meaning of µ̇m is unknown since the original fault
signal is assumed unknown. Just as no restrictions on the original fault are made, no restrictions on the
derivative are necessary.

2.2 Continuous to Discrete Time conversion

The continuous to discrete time conversion for a linear system is given in Maybeck[7] and written here as:

x(t + ∆t) = eA∆tx(t) +
∫ t+∆t

t

eAτBω(τ)dτ

+
∫ t+∆t

t

eAτfµdτ (14)

where ∆t is the time step between integrations. Note that the fault signal is assumed constant over the time
interval. Defining Φ = eA∆t, Γ =

∫ t+∆t

t
eAτBdτ , and F =

∫ t+∆t

t
eAτfdτ , the discrete time system may be

re-written as:

x(k + 1) = Φx(k) + Γω(k) + Fµ(k) (15)

If f , and B are time invariant, and if we further approximate Φ = I +A∆t, then the fault and noise matrices
may be approximated as:

Γ = (I∆t +
1
2
A∆t2)B (16)

F = (I∆t +
1
2
A∆t2)f (17)
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3 Output Separability

Two issues now face the designer. First, can the particular failure mode f be observed with the current set of
measurements y. Second, if multiple failures are a concern, is it possible to distinguish between the different
failures. The first problem is one of identification of a failure. The second problem concerns isolation of the
failure from other possible failure modes.

To assess these problems, the output separability test is used to define the degree to which and under which
conditions the failure is identifiable and the capacity for the current filter structure to isolate the failure from
other possible failures in the system. The test is similar to the observability/controllability test in linear
algebra[7]. The test for output separability is a rank test of a matrix formed from the measurement matrix
C, the fault direction F and occasionally the dynamics Φ. Discrete time notation is used in this case. Note
that the theory presented assumes time invariant fault direction F otherwise the rank test becomes more
complex. Refer to Chung[4] for the time varying case.

If the matrix is full rank, then each of the faults within F is output separable. Note that the maximum
number of faults that are distinguishable in a dynamic system is at most the size of the state space.

3.1 Fault Identification

For a given fault direction F , the discrete time rank test is defined as the rank of the matrix:

rank[CΦδF ] (18)

where δ is the smallest integer δ ≥ 0 for which the matrix is full rank. If the matrix is not full rank for any
choice of δ then the fault direction is not identifiable with the given instruments. More instruments or a
different set of dynamics are necessary to observe the given fault.

For the continuous time case, the rank test is simply

rank[CAδf ] (19)

where A is the continuous time dynamics matrix and f is the continuous time fault direction matrix.

3.2 Fault Isolation

Suppose that the following dynamic system defines the process under discussion:

x(k + 1) = Φx(k) + Γω(k) + F1µ1(k) + F2µ2(k) (20)

where F1 and F2 represent two independent fault directions representing different possible failures of the
system. In order to determine if the two failures are identifiable, it is sufficient to perform the following rank
tests separately:

rank[CΦδF1]; rank[CΦδF2] (21)
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If both matrices are full rank then each fault is identifiable. In other words, both faults can be seen through
the current set of measurements. However, in order to be able to tell if it is possible to isolate one failure
mode from the other, both faults must be combined into a single fault matrix Fc = [F1;F2] and the rank
test performed as:

rank[CΦδFc] (22)

If this matrix is full rank, then both sets of failures are distinguishable using the current set of measurements.
For time varying matrices, the test condition changes slightly[4].

For time varying systems, the faults may be output separable during some portions of a trajectory and not
output separable during other portions. Using the rank test presented, the designer may distinguish and
design dynamic test cases required to guarantee the absence of a failure before a particular test begins. For
instance, in the next section an example is presented in which the failure modes are not output separable
except under dynamic conditions. The designer may design a maneuver for which the output separability
matrix is full rank before beginning an experiment which will include long periods where failures are not
observable.

4 GPS/INS Example

An example is now presented where a GPS receiver is used to detect failures in a strap-down INS with baro
altitude aiding. In this example, the GPS position and velocity estimates are used to detect failures in the
accelerometers or the baro-aided altitude.

First the error dynamics are presented. Then the GPS measurements are presented. The design options for
output separability are then presented. Finally, a numerical example is presented to determine the required
dynamics for distinguishing between failures.

4.1 Strap Down INS Equations of Motion

The strap down INS equations of motion are described primarily in Britting[8]and utilized with GPS and INS
blending functions in Williamson[11]. The goal is to use the input measurements of acceleration and angular
rate in the body axis frame combined with an altimeter to estimate the position, velocity, and attitude of
the vehicle.

The measurements are defined by the following set of error equations:

f̃ B̄ = f B̄ + wa + µa

ω̃B̄
IB̄ = CB̄

B ωB
IB + wg (23)

h̃ = h + wh + µh (24)

The term f̃ B̄ represent the specific force measured from the accelerometers measured in the estimated body
frame B̄. The process noise wa is assumed a zero mean Gaussian. Note that the fault µa is actually
composed of three separate faults, one for each body-axis direction. A goal of this work will be to show
how each accelerometer fault is isolatable from the other. The gyro measurements ω̃B̄

IB̄
measure the angular

velocity of the estimated body frame B̄ to the inertial frame I. The rotation matrix CB̄
B represents the error

in the estimated body frame relative to the true body frame. The noise wg is assumed a zero mean Gaussian.
No fault is assumed here for simplicity.

Finally, the altitude measurements h̃ is defined in terms of the true altitude plus noise wh and a fault
direction µh.
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The continuous time kinematic dynamics for the vehicle are defined[williamson] as:

ṖE = V E

V̇ E = (ωE
IE × ωE

IE × PE) + CE
B̄ f B̄

−2ωE
IE × V E + gE

Q̇E
B =

1
2
QE

B̄ΩB̄
EB̄ (25)

where PE and V E are the position and velocity in the ECEF coordinate frame, QE
B is the quaternion defining

the rotation from the body to the ECEF coordinate frame, fB is the specific force in the body frame and
gE is the gravity vector in the ECEF coordinate frame. The ωE

IE term represents the angular velocity of the
Earth. The × operator represents the vector cross product and the matrix. Note that in the current case,
the pressure altimeter is only used in the calculation of the gravity vector gE [8].

The strap down equations of motion are defined in terms of the ECEF coordinate frame for ease of use with
GPS measurement blending[11].

4.2 Baro Altimeter Aiding

Pressure altimeters are typically used to aid navigation grade inertial units. The independent measurement
of altitude provides a means of stabilizing the strap down equations of motion for the inherent instability in
the gravity calculation. Without altitude aiding, the inertial errors grow rapidly.

The calculation of the gravity vector for the present case in the ECEF coordinate frame is defined as:

gE = − µ

||Pg||3

 Ke 0 0
0 Ke 0
0 0 Kp

 PE (26)

where µ is the gravitational constant, the constants Ke and Kp are the equatorial and polar gravitational
constants given by the J2 gravity term[8]:

Ke = 1 +
3
2
J2(

re

||Pg||
)2(1− 5sin2(L)) (27)

Kp = 1 +
3
2
J2(

re

||Pg||
)2(1− 5sin2(L)) (28)

The gravitational constants are calculated using the radius of the Earth at the equator (re) and the geocentric
latitude L.

The norm of the vector defining the location of the instrument relative to the center of the Earth Pg is
calculated using a nonlinear estimation technique by combining the estimated ECEF position P̄E from the
strap down equations of motion and the independent altitude measurement r̃a. Note that r̃a is only a scalar
representing the norm of the ECEF vector using the current altitude measurement and given the estimated
latitude and longitude of the vehicle from the strap down equations of motion. From these two quantities,
a nonlinear vector estimation process is performed[8] as:

||Pg||n = (r̃a)κ(||P̄E ||)n−κ (29)

The value of κ is a design parameter and is typically an integer greater than zero. Using these estimates in
Eq. 26 results in an estimate of gravity which combines the pressure altimeter and the strap down estimates.
Note that the altimeter is only used to help smooth the gravity estimate and is not used as an external
measurement.
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4.3 Strap Down Error Model

Britting[8] defines the error in Eq. 25 using perturbation methods. The goal is to transform the error into a
linearized form:

δẋ = Aδx + Bw + Faµa + Fhµh (30)

where δx is the linearized error in the state estimate, w is the process noise, µa are the faults in the accelerom-
eters with associated direction matrix Fa, and µh is the fault in the altimeter with associated error matrix
Fh. The perturbed dynamics are presented here without proof in the ECEF coordinate frame[8][11][10]. The
error vector δx for the strap-down system is defined as:

δx =

 δPE

δV E

δq

 (31)

The dynamics matrix A is defined as:

A =

 03x3 I3x3 03x3

G− (ΩE
IE)2 −2ΩE

IE −2CE
B̄

[f B̄×]
03x3 03x3 −ΩB̄

EB̄

 (32)

The term Ω is the matrix cross product of the angular rotation vector ω, or Ω = [ω×] defined as:

Ω = [ω×] =

 0 −ωx ωz

ωx 0 −ωy

−ωz ωy 0

 (33)

The term G is the perturbation of gravity due to vehicle position over the Earth [8].

G = ω2
s [(κ− 2)I +

(κ− 3)
||Pg||2

[P̄E×][P̄E×] (34)

The same definition holds for the position cross product matrix [P̄E×] as for the angular velocity cross
product matrix. The Schuler frequency ωs is defined as approximately

√
µ

||Pg||3 .

The term CE
B̄

is the estimated rotation matrix from the body frame to the ECEF frame which is different
from the true rotation matrix CE

B by a small rotation error defined by δqE
B .

The term δqE
B is the linearized error in the estimated quaternion defined as:

δqE
B =

[
δq1 δq2 δq3

]T (35)

with the last quaternion term neglected to first order, but recalculated using the quaternion constraint
equation: 1 =

√
q2
1 + q2

2 + q3
3 + q4

4 .

The process noise vector w has dimension 7× 1 and is defined as:

w =

 wa

wg

wh

 (36)
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The process noise matrix B has dimension 9× 7 and is defined as:

B =

 03×3 03×3 03×1

CE
B̄

03×3 κω2
s

P̄ E

‖Pg‖
03×3 I3×3 03×1

 (37)

For the current case, the fault direction matrix is similar to the process noise matrix and contains all three of
the accelerometer faults and the altimeter fault. The accelerometer fault matrix is defined as a 9× 3 matrix
as:

fa =

 03×1

CE
B̄

03×1

 (38)

The altimeter fault matrix is defined as:

fh =

 03×1

κω2
s

P̄ E

‖Pg‖
03×1

 (39)

The altimeter is not actually a measurement within the current dynamical system. Instead, it is modelled
as an input to the dynamics similar to the accelerometers and rate gyros. The altitude value from the
altimeter is typically used to estimate the gravity vector and stabilize the numerical instability[8] of the
gravity calculation. Therefore the altimeter noise and fault modes enter through the velocity dynamics of
the system where errors in the estimate of the gravity vector g or the perturbation matrix G influence the
estimates.

We note that the fault direction matrices are time varying functions. However, for the present analysis the
matrices are treated as time invariant which is true for slowly varying systems. More advanced analysis is
necessary to identify the time varying components for the output separability[?], but are not necessary for
the present analysis.

4.4 GPS Measurements

The GPS system provides both position and velocity measurements. GPS measurements are treated exten-
sively [13] and [12]. A simplified error model can be defined in the following way [10].

P̃ = P̄ + Cpδx + νp (40)

Ṽ = V̄ + Cvδx + νv (41)

where P̄ and V̄ are the a priori estimates of the position and velocity in the ECEF frame. The noise terms νp

and νv represent zero mean Gaussian noise. This configuration corresponds with the formulation in Hong[10]
and corresponds to the ”Loosely Coupled” formulation in Williamson[9].

The measurement matrix Cp is a 3× 9 matrix and is defined as:

Cp =
[

I 0 0
]

(42)

where it is assumed that the GPS antenna and IMU are co-located. For the case where the two instruments
are separated, refer to[11]. The velocity measurement matrix is also 3× 9 and is defined as:

Cv =
[

0 I 0
]

(43)

9



These measurement structures are now used to identify failures in the accelerometers and altimeter. The goal
is to utilize only the navigation state output of the strap down system combined with the GPS measurements
and the GPS/INS EKF sensor fusion model presented to detect failures in any and all of the instruments
described.

4.5 Accelerometer Faults Output Separability

The test for output separability of the accelerometers is a rank test of CFa. In this case, we see that:[
Cp

Cv

]
Fa =

[
03×3

CE
B̄

]
(44)

which is a 6× 3 matrix. Note that since the rotation matrix CE
B̄

is full rank, the system meets the rank test
criterion and all three accelerometers are output separable. Note also that only the velocity measurements
are necessary to observe the accelerometer failures and that the position measurements are not necessary.
If only position estimates are available then the rank test fails. Instead, the dynamics must be employed to
detect the failures as:

CpAfa = CE
B̄ (45)

which shows that accelerometer failures are output separable using either position or velocity measurements.
The term ∆t represents the time step between measurements over which the dynamics are integrated.

Given the large uncertainty in GPS position as compared to GPS velocity measurements, GPS velocity
measurements are likely to be more accurate and faster to detect failures. Further, the use of the dynamics
indicates that the accelerometer failures will not be visible in the first time step that they occur. Only after
the failure has been integrated through the dynamics will position estimates be capable of seeing the failure.

4.6 Altimeter Output Separability

The test for output separability of the altimeter is a rank test of the matrix CFh. In this case, again we see
that the failure is readily observable through the velocity measurements as:

Cvfh = κω2
s

P̄E

‖Pg‖
(46)

However, if position measurements are used, again, we require the dynamics to make the altimeter fault
observable:

CpAfh = κω2
s

P̄E

‖Pg‖
(47)

In this way, the altimeter is shown to be output separable using either velocity or position estimates.

4.7 Combined Isolation

Combining the output separability for both requires extra work on the part of the designer. Clearly, both the
altimeter and accelerometers are individually output separable. However, if only GPS position or velocity
estimates are available, the two sets of measurements are not output separable.
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The output separability matrix for the combined system using only velocity measurements is:

Cv [fafh] =
[

CE
B̄

κω2
s

P̄ E

‖Pg‖

]
(48)

Note that while the column rank of the output separability matrix is 4, the row rank is constrained to
only 3. In other words, if only 3 measurements are available, there are not enough linear directions to
distinguish one failure from the other three entirely. This result is intuitively satisfying since with the given
velocity measurements, it should be impossible to distinguish between a vertical accelerometer failure and
an altimeter failure if the IMU is at rest and aligned with the Earth tangent frame. A failure is detected,
but isolation is not possible with only velocity measurements. A similar problem exists using only position
estimates.

If both position and velocity estimates are available, then the faults are output separable, Although dynamics
are assumed in the use of the position estimates. The new output separability matrix is defined as:[

Cp

Cv

]
A [fafh] =

[
CE

B̄
κω2

s
P̄ E

‖Pg‖

−2ΩE
IECE

B̄
−2ΩE

IEκω2
s

P̄ E

‖Pg‖

]
(49)

The matrix is a size 6× 4 matrix. However, even at this point, the matrix has a rank of only three.

This result is not intuitive since it should be easy to distinguish a reasonable jump in the vertical channel
from an accelerometer fault. However, this analysis assumed that the output of the navigation state was
used and corrected with the GPS measurements. In other words, the blended navigation state generated by
the strap down equations of motion does not have output separable failure modes for both the altimeter and
the accels since the altimeter is used to generate the gravity estimate, but not used to correct the altitude
directly. Therefore the four fault directions are not output separable.

Note that several combinations of accelerometers and the altimeter are outputseperable. For instance the
lateral and longitudinal accelerometers are output separble from the altimeter. The result presented shows
that the altimeter failure is not ouptut separable from the entire accelerometer triad.

4.7.1 Discussion

The lack of output separability does not preclude the ability to detect failures in either the accelerometer
or the altimeter. The results merely indicate that there is some combination of accelerometer failures which
will effectively mask the altimeter failure. Likewise, there is some combination of two accelerometers and
the altimeter fault that is indistinguishable from a fault in the third accelerometer. The results presented
are not restricted to a single fault case where only one accelerometer or the altimeter has a failure. The
results consider the possibility that all instruments have a failure and show that in that case all faults are
not observable.

If we restrict ourselves to a single instrument fault, all instruments may be distinguishable. The rotation
matrix CE

B̄
provides the attitude direction of the accelerometer triad relative to the ECEF coordinate frame.

The vertical line of sight vector P̄ E

‖Pg‖ defines the direction of the altimeter. It is clear from analysis that any
one accelerometer fault is distinguishable from the altimeter failure so long as the accelerometer is not aligned
with local tangent frame so that one accelerometer fault direction is co-linear with the vertical channel.

Analytically, it is possible to compare the altimeter fault with any one of the three accelerometer faults to
get effectively the same result. So long as any one accelerometer does not align with the altimeter, and if
we are restricted to a single fault case where only one of the accels or the altimeter may fail, then all faults
may be observed.
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5 Conclusion

In this paper, the use of the output separability metric for determining the amount of analytic redundancy is
presented. It is shown that the metric enables the designer to chose instruments necessary to detect failures
within the plant model. A systematic methodology for detecting failures between dis-similar instruments is
presented.

An example is presented in which a GPS is used to detect accelerometer and altimeter failures. From
the simplified model employed, the accelerometers and altimeter failures are each observable, and output
separable using either position, velocity, or both position and velocity. The complete accelerometer triad
failures are not output separable from altimeter failures using only the navigation state from the strap down
equations of motion. Combinations of accelerometers and the altimeter are output separable. If we restrict
to a single fault case, then all instruments are output separable from each other so long as the accel is not
co-linear with the altimeter, which is a reasonable assumption during at least some portions of flight test
due to aircraft motion.

Future work will show alternative schemes for implementing fault detection on the complete inertial naviga-
tion system which will identify all failures.
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