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Summary   This paper reviews the data rate, error rate, and signal-to-noise ratio
relationship for various uncoded M-ary digital amplitude modulation (AM), phase
modulation (PM), and combined AM-PM systems. These signal systems have the common
virtue that expanding the number of possible signals to be transmitted increases the data
rate but not the bandwidth. The increased data rate generally requires an increased signal-
to-noise ratio to maintain constant error probability performance. Thus, these systems use
power to conserve bandwidth.

A general treatment of the error rate of M-ary digital AM-PM permits development of a
simple yet accurate expression which approximates the increase in average signal-to-noise
ratio (over that of binary phase shift keying) required for constant error performance. This
equation provides insight into why arrays differ in their signal-to-noise ratio requirements.

Introduction   In any bandwidth-constrained digital communication environment, uncoded
M-ary amplitude-and-phase modulation systems must be considered as a means of
increasing data rate without expanding bandwidth. These may be simple M-ary amplitude
shift keying [1-3] or M-ary phase shift keying (PSK) [2-7], systems with independent
amplitude-and-phase shift keying [8-9], systems with two amplitude shift keyed sets in
quadrature (QASK) [10], single sideband ASK [11-12], or any of a large number of
combined dependent amplitude-and-phase shift keying [13-18].

An uncoded M-ary digital communication system transmits once every signaling interval T
one of M possible signals corresponding to one of M information symbols (0,1,2,...,M - 1).
It is assumed that successive symbols, and thus, successive signals, are independent and 



2 In practice, the signals may be shaped by a time function to yield a better spectral profile than
that of the rectangular pulse. The resulting signal may or may not be restricted to one signaling
interval. This aspect of the signal design is ignored here by relating all performance to that of
binary PSK. This approach focuses attention on the real bandwidth-conserving effects of M-ary
communication, rather than on those of the various spectral shaping techniques.

equally likely. An M-ary amplitude-and-phase shift-keyed (MAPSK) system transmits in
each interval T signals of the form2

(1)

where “Re” denotes “the real part of,” and phasor si takes on one of M complex values
corresponding to the M possible symbols

(2)

Thus the power in the signal Si(t) is

(3)

and a signal si(t) can be pictorially displayed as a phasor (or signal point) si in a two-
dimensional plane, where the square of the distance from the origin to si is the power in
si(t). A signal set is an array of signal points

(4)

In any signaling interval T, the transmitted signal si(t) is perturbed by a sample of a zero
mean white Gaussian noise process n(t) of one-sided spectral density No W/Hz, and the
received signal is r(t) = si(t) + n(t). The receiver’s function is to detect in each interval
which one of M signals (and hence what symbol) was sent. The receiver is assumed to
know the frequency To and the signaling interval, as well as the a priori possible values of
si. This assumes frequency synchronization, symbol synchronization, carrier
synchronization, signal ambiguity resolution, and amplitude control. In the maximum-
likelihood receiver, the received signal is correlated with two quadrature reference signals
to obtain a phasor representation of the received signal and the signal selected whose
phasor is closest to the received phasor in the two-dimensional signal plane. Thus, the
signal space may be subdivided into exclusive and exhaustive decision regions Ri, each
containing a signal point si. The decision region Ri is chosen such that if a noisy signal
point lies in the region of si, the corresponding signal si(t) was most likely sent. The
decision region for each signal point is that set of all possible points closer to that signal



3 The points represent the actual signal points, the solid lines indicate the maximum-likelihood
decision regions, and the dashed lines indicate the regularity of signal structure.

point than to any other. A region Ri is determined by the intersection of semi-infinite
regions Rij containing si and bounded by the perpendicular bisector of the line connecting si

to its neighboring points sj (j … i, j = 0,1,2,...,M - 1). The correlator outputs U and V are
statistically independent Gaussian random variables with means Xi and Yi respectively and
identical variance F2 = No/2T. The point (U, V) is the noisy signal point. The region Ri in
which (U, V) lies contains a signal point si, which is the most likely to have been sent.

The first few figures show the geometric arrays of a variety of MAPSK systems.3 Figures 1
and 2 show the simple multiple amplitude shift keyed (MASK) and multiple phase shift
keyed (MPSK) systems respectively. The linear array of MASK is characterized by
phasors si = Ai exp (j2o), i = 0,1,2,..., M - 1, while the circular array of MPSK is
characterized by phasors si = Ao exp (j2i), i = 0,1,2,..., M, - 1. That is, these two systems
may be categorized as type 0 systems in which only one of the two parameters (amplitude
or phase) is varied.

Historically, arrays of the kind shown in Figure 3 have been labeled Type I [13]. This is a
signal system with independent amplitude and phase shift keying (IAPSK). The amplitude
ranges over K possible values Ak, k = 0,1,..., K - 1, while the phase independently ranges
over L possible values so that M = KL. The independence of phase and amplitude in
IAPSK systems forces the use of the same phases in each of the concentric rings. The
Type II [13] signal systems of Figure 4 represent the earliest attempt to remove the
restriction of the same phases for all amplitude levels. The system consists of an inner
level with three phases, with each successively larger ring containing six more phases than
the one prior. Quadrature amplitude shift keying (QASK), historically called Type III [10],
is a signal system consisting of two quadrature ASK signals. That is, in each signaling
interval two signals in quadrature are independently amplitude modulated. As shown in
Figure 5, the array is one of concentric squares, at least when M is the square of an
integer. For values of M = 8,32,128,..., 22n+1 , rectangular arrays of independent quadrature
signals may be used, although more complicated arrays are possible [10].

Finally, in Figures 6 through 10 are shown arrays which may be called Type IV. These are
arrays in which neither phase-amplitude or quadrature component independence nor the
restriction to circular patterns is retained. The arrays may include signal points at the
origin, as in the arrays of concentric pentagons or hexagons of Figures 8 and 9. The arrays
may be complete concentric polygonal arrays such as the diamonds of Figure 7, the
pentagons of Figure 8, or the octagons of Figure 10; or incomplete (when restricted to
dyadic numbers 4, 8, 16, 32, 64,...) polygonal arrays such as the concentric triangles of
Figure 6 or concentric hexagons of Figure 9. Many other arrays are possible and have been
considered elsewhere (see especially [15]).



In successive sections, the performance of systems based on these various signal sets is
examined in terms of the geometric patterns. The average power performance depends
roughly on how well the points cluster around the origin, yet remain separated from one
another. The Gilbert approximation [19] to the probability of error is linearized to provide
a simple but accurate expression relating the “clustering” and “separation” characteristics
to the increased average signal-to-noise ratio necessary to maintain constant error
performance. The relative performance of the systems is shown by plotting the data rate
achievable (relative to binary PSK) as a function of the average signal-to-noise ratio
(relative to binary PSK) at constant error rate and bandwidth. Asymptotically, as the
number M of signals increases, type 0 systems in which only one parameter (amplitude or
phase) is modulated require a 6-dB increase in average signal-to-noise ratio to achieve a
doubled data rate at constant error rate, while Types I, II, III, and IV with joint
modulations of both parameters all require only a 3-dB increase.

M-ary APSK Error Rate Expressions   For most signal sets of regular structure, the
least of the distances from each signal point in an array to its nearest decision region
boundary is a measure of how tightly the signal points are “clustered.” This minimum
distance, called the “Gilbert distance,” is denoted here by *. The ratio of the average
signal power S of an array to the squared Gilbert distance *2 is called the “packing
coefficient” Cp of the array and is a measure of how tightly the signals are “packed”
around the origin; i.e.,

(5)

Since the received signal phasor U + jV is the signal point si plus a two-dimensional
independent Gaussian noise random variable of mean zero an variance (F2 = No/2T, it is
convenient to normalize the space of signal points by the scale factor 1/F. Denoting the
normalized Gilbert distance by ) = */F, the average symbol signal-to-noise ratio Rd ×
ST/No  is given by

(6)

In the normalized signal space, the signal si has coordinates (xi, yi) and maximum-
likelihood decision region Ri with complement R̄i. If for each value of i, the signal point si

is translated to the origin and Ri denotes the corresponding translation of the maximum-
likelihood region Ri, then the conditional probability of error is

(7)



The average probability of symbol error p(e) can now be calculated since all the signals
are equally probable by

(8)

The conditional probability p(e/i) may or may not be convenient to evaluate, depending on
the shape of the region R̄i. Since Ri is the intersection of M - 1 semi-infinite planes R̄ij  j … i,
then R̄i is the union of the complements of these planes, R̄ij.. The “union” bound on p(e/i) is
obtained by assuming that the regions R̄ij are disjoint and that

where 2)ij is the (normalized) distance between the ith and jth signal point, and Q()ij), the
probability of lying in the jth region R̄ij when the ith signal was sent is

(9)

Thus, the probability of error p(e) can be bounded by

(10)

The “Gilbert” approximation [19] of p(e) is based on a recognition that for most signal sets
Q()ij) is negligible at high signal-to-noise ratios except for the minimum )ij, that is, the
(normalized) Gilbert distance ).

The Gilbert number N is defined [19] as the average number of adjacent signal pairs at the
Gilbert distance ). The Gilbert approximation of p(e) is

(11)
An even grosser but still useful bound on p(e) is the “spherical” bound, in which each
decision region is replaced by a circle of radius ) with center at the signal point.
Transformation to circular coordinates and integration outside the circle of radius ) yields
the “spherical” bound on p(e):

(12)



This bound, while crude, is illuminating! If the array of signal points is considered, each
centered at a circular decision region of radius ), this bound on the probability of error
depends only on the radius ), as does the average signal-to-noise ratio Rd The signal array
can be viewed as a collection of spheres of radius ) in a two-dimensional plane. Holding
the spheres constant in size is equivalent to holding the probability of error constant. The
spheres may be shifted around on the plane without affecting the error bound. Squeezing
the spheres as tightly as possible around the origin has the effect of minimizing the average
signal-to-noise ratio. If binary PSK (with unity packing coefficient) requires an average
signal-to-noise ratio Rdo to achieve a specified symbol error rate p, and an arbitrary
MAPSK array with packing coefficient Cp requires Rd to achieve the same p, then using
equations (6) and (12) reveals that

(13)

That is, the packing coefficient is the average signal-to-noise ratio (relative to binary
PSK) required to transmit M-ary information at a constanterror-rate spherical
bound!

Since the bound is meaningful only for high signal-to-noise ratios, a somewhat tighter
estimate, the Gilbert approximation, can be used, but the symbol error rate must be
specified. The Gilbert number for M-ary ASK is N = 2(1 - 1/M) since all but the extreme
two signal points have two adjacent signal points. Binary PSK has a Gilbert number of 1
while MPSK’s Gilbert number is N = 2. For Type I IAPSK (K, L) the Gilbert number is
N = 2, since signal points in the innermost ring have three adjacent signal points, those in
the outermost ring have only one, while those of the remaining K - 2 rings have two. For
QASK (K2) with four “corner” points, each with two nearest neighbors, (K - 2)2 “interior”
points each with four nearest neighbors, and 4 (K - 2) “side” points, each with three
nearest neighbors, the Gilbert number N is = 4(1 - 1/K). More generally, for rectangular
QASK (K, L) it is easy to show that the Gilbert number N = 4(1 - (K + L)/2KL). Setting
the probability of error p constant establishes the binary PSK signal-to-noise ratio Rdo

according to the formula                               and the signal-to-noise ratio Rd of any signal
set according to the formula                                  .  Note that if the effect of the Gilbert
number is neglected (N = 1), equating the two formulas yields the packing coefficient
Cp = Rd/Rdo as before.

It is also possible to find the increased signal-to-noise ratio of an M-ary APSK array
(relative to binary PSK) in terms of the packing coefficient and Gilbert number through use
of the Gilbert estimate. Letting )o denote the Gilbert distance of binary PSK that achieves
Gilbert approximation to p at signal-to-noise ratio Rdo, and ) the Gilbert distance of the
M-ary APSK array at ratio Rd and the same p, then



                                                                                          
Taking natural logarithms of both sides, assuming that log [Q(x)] is linear in x and that

yields

(14)

Now, using equations (6) and (14) for both arrays,

(15)

The value of N must be less than 6, since that is the most nearest neighbors a point can
have. For p # 10-4, Rdo $ 7, and log N/Rdo # 1/4. Under these conditions the third term is
negligible relative to the second and may be discarded. The assumption that p # 10-4 is
essential also to the assumption of linearity of log [Q(x)] and Q(x) taking on its asymptotic
form. Likewise N < 6 makes the linear assumption more believable. Thus, the signal-to-
noise of an M-ary APSK array, relative to binary PSK, can be described in terms of its
packing coefficient Cp and Gilbert number N at a prescribed probability level                      
                              by use of the Gilbert approximation to achieve

(16)

Again, if the Gilbert number effect is neglected (N = 1), equation (16) reduces to equation
(13) derived from the spherical bound. Equation (16) has been applied to several 4-bit
M-ary APSK arrays (Types 0, III, and IV) which had been exactly evaluated at 10-5 [17]
and found to be less than 0.1 dB in error in all cases.

More precise performance analysis is possible, though not necessary for purposes of
comparison between Types 0, I, and III systems. The exact error performance for MASK
in fact equals the Gilbert approximation. The Gilbert approximation for MPSK essentially
neglects the overlapping region opposite the origin of two semi-infinite regions (see, for
examples, Figures 13 and 14 of [2]). For quadriphase, this amounts to approximating
2Q())[1 - Q())] by 2Q()), a small error at high signal-to-noise ratio. At higher values of
M, the effect will be even less. Likewise, for IAPSK (K, L), if the regions are
approximated by rectangles and semi-infinite strips, the probability of error becomes



NQ())[1 - Q())/K], which can be approximated as before by NQ()). The Type III QASK
(K2) has sufficiently well-shaped maximum-likelihood decision regions to permit an
analytic solution to the exact error performance. The exact probabilities of symbol error,
given that “corner,” “interior,” and “side” points are transmitted, are Q())[2 - Q())],
4Q())[1 - Q())]. and Q())[3 - 2Q())], respectively, and thus,

(17)

where ) is the (normalized) Gilbert distance as before. Recalling that the Gilbert number
N for QASK (K2) is 4(1 - 1/K), the probability of error can be written as p(e) = NQ())[1 -
NQ())/4], and the Gilbert approximation p(e) = NQ()) is quite adequate at large signal-
to-noise ratio. Exact expressions for MPSK are available in the literature [7].

M-ary APSK Error Rate Performance   In an MASK system with M signals uniformly
spaced on interval (-A, A), the separation between all adjacent points is the same, the
Gilbert distance * = A/(M - 1), the M amplitudes Ai = (M - 1 - 2i)*, i = 0,1,2,..., M 1, and
thus, using equations (3) (4) and (5) the packin coefficient is

In an MPSK system with M signals uniformly spaced around a circle of radius Ao = %S̄,
the separation between all adjacent points is the same 2Ao sin B/M, the Gilbert distance
* = Ao sin B/M, and thus

In a Type I (IAPSK) system with M signals arrayed with L uniformly spaced phases at K
amplitudes Ai, i = 0,2,..., K - 1, the distance between adjacent signals in the inner circle is
2 Ao sin B/L. If this is set as the minimum signal separation, the Gilbert distance * is Ao sin
B/L, and placing the outer circle s at Ai = Ao + 2i*, i = 1,2,..., K - 1, minimizes the packing
coefficient without reducing the Gilbert distance. Thus, the K levels are Ai = (csc B/L +
2i)*, i = 0,1,2,..., K - 1, and the packing coefficient is

when M is a perfect dyadic square, the best number of phases is four times the number of
power levels, and



In the Type II system, the K amplitude levels are Ak = 2(1/%3̄ + k), k = 0,1,2,..., K - 1,
while the number of phases nk = 3(1 + 2k), k = 0,1,2,..., K - 2. The outer ring will
generally not be completely filled since the total number of signal points is usually a dyadic
integer (2,4, 8,16,32,...) and no ring is completely filled by any of these numbers (L rings
contain 3L2 points). This incomplete outer ring makes it difficult to characterize the
packing coefficient analytically. However, asymptotically the packing coefficient is

which is approximately an asymptotic 3-dB improvement over that of the Type I system.

In a QASK system with M signals arrayed as K and L uniform amplitudes in quadrature
each level se arated by 2*, the packing coefficient is

For a fixed value of M, the minimum Cp occurs for K2 = M. Thus, when M is a perfect
square,

Once it is recognized that efficient use of average signal-to-noise ratio is achieved by
minimizing the packing coefficient for a fixed number of points, then a large variety of
sphere-packing arrangements is possible. The Type II system of Lucky and Hancock has
little more than historical significance, since it does not perform as well as the Type III
QASK yet is much more difficult to implement. The pentagonal array (Figure 8) was
apparently considered independently by three different researchers as a “natural”
collection of 16 points. That is, initial searches for good arrays tend to look for “complete”
circular patterns, although in fact the completeness has no relevance at all. The octagonal
array (Figure 10) is achieved by rotating the outer ring of a Type I system and nesting it as
close as possible to the inner ring without reducing the Gilbert distance. The various
triangular, diamond-shaped, and hexagonal arrays (Figures 6, 7, and 9) are based on a
recognition that the tightest possible sphere packing uses equilateral triangular structures to
characterize signal point geometry. All three systems have hexagonal decision regions. The
primary difference between the three sets is simply placement of the various arrays relative
to the origin -- or, in any large isometric array of hexagonal regions, where the origin is
placed. For concentric hexagons, there is one signal at the origin, while for concentric
triangles, there are three signals around the origin, and for concentric diamonds, there are
four signals (in a complete diamond) around the origin.

The packing coefficient for complete concentric triangles and diamonds is Cp(M) = 2(M -
1)/3 and slightly less for concentric hexagons [17]. Note that this is the same packing



1 I.e., log2 M.

coefficient as for QASK for the same number of signal points, and that the diamonds are
simply “squished” squares. In fact, it can be shown that any array of concentric rhombuses
has the same power independent of the angles, and that for any angle between the right
angles of QASK and the angles of the diamonds, the packing coefficient is unchanged,
although not the Gilbert number N.

Figures 11, 12, and 13 show the relative performance of the several arrays discussed.
Figure 11 plots the data rate (relative to binary PSK)1 versus the average symbol signal-to-
noise ratio (relative to binary PSK) at constant spherical error bound. In Figure 12 the plot
is made with the Gilbert approximation at 10-5. In Figure 13, the abscissa is divided by M
to show the average bit signal-to-noise ratio (relative to binary PSK), at constant bit error.
The bit error is taken as the symbol error divided by log2 M, which assumes perfect two-
dimensional Gray coding and negligible Gray code penalty [17]. The performance curves
of the various Type IV systems are indicated by the shaded region around QASK.

The asymptotic performance of the Type 0 MASK and MPSK signal sets shows a four-
fold increase in signal-to-noise ratio required to double the data rate at constant error
performance. This follows from the asymptotic M2 form of the packing coefficient. The
Types I through IV, on the other hand, have packing coefficients which are asymptotically
linear in M and thus require only a doubled signal-to-noise ratio.

Conclusions   M-ary amplitude-phase shift keyed (MAPSK) signal sets are appropriate in
an average-power-and-bandwidth-constrained communication environment. The historical
development of the various types of signal sets has been traced from the simple Type 0
systems to the fairly complex Type IV. The concepts of the Gilbert distance and packing
coefficient have been introduced to permit insight into the relative performances of the
various signal systems under an average signal-to-noise ratio constraint. Bounds on error
rates have been examined to relate the effects of packing coefficient, Gilbert distance, and
Gilbert number on the probability of error. Fairly simple but relatively accurate expressions
have been developed to show the increased signal-to-noise ratio required (relative to
binary PSK) for the arrays of signal points considered. The asymptotic performances
reveal the dramatic power savings inherent in the joint modulation forms.
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Figure 1.  Type 0--octal ASK Figure 2.  Type 0--octal PSK

Figure 3. Type I--IAPSK (16) Figure 4. Type H, with three rings



Figure 5.  Type III--QASK (16)

Figure 6.  Type IV--concentric triangles



Figure 7.  Type IV--concentric Figure 8.  Type IV--concentric
diamonds  pentagons

Figure 9.  Type IV--concentric hexagons



Figure 10.  Type IV--concentric octagons

Figure 11.  Data rate--symbol energy tradeoff at constant spherical
bound (Ps = 10-5)



Figure 12.  Data rate--symbol energy Figure 13. Data rate--bit energy 
tradeoff at constant Gilbert tradeoff at constant Gilbert

approximation (Ps = 10-5) approximation (Pb = 10-5)


