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ABSTRACT 

The integrated Network-Enhanced Telemetry (iNET) Test Article Standards Working Group 
(TASWG) has developed a standard for Telemetry Network System (TmNS).  The introduction 
of Internet Protocol (IP) networks on test ranges has created the potential for greater flexibility in 
the telemetry environment.  This paper discusses the rationale for particular decisions concerning 
key components mandated by the standard.  Performance implications concerning the mandates 
of the standard are also described.   

As an educational aid, examples of TAS-based processing philosophies and data structures have 
been constructed.  These examples, including sending and receiving messages, are shown to 
reinforce understanding core concepts of the standard. 
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INTRODUCTION 

A set of standard technologies was required for the Test Article and its components that ensure 
broad acceptance by the telemetry community, interoperability between vendors of like 
components, and economical sources of products.  The standard technologies were chosen to be 
well established, with proven performance, continued future market support, and mature 
technologies with multiple competitive sources of integrated system components and constituent 
electronic devices (e.g., integrated circuits, wiring, and software). 

Internet Protocol (IP), Ethernet, and Base-T/FX are a suite of common protocols used by the 
Internet and most commercial networks.  This set of core technologies can be viewed as a set of 
layers, with each layer specifying the transmission of data and providing well-defined services to 
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upper layer protocols.  Each layer also uses services from lower layer protocols.  Choosing IP, 
Ethernet, and Base-T/FX as the set of core technologies provides the general approach to data 
transmission on the bottom three layers of the Open Systems Interconnection (OSI) model:  
physical, data link, and network.  The detailed use of these lower-layer protocols, as well as the 
use of other protocols in conjunction with and on top of these lower-layer protocols, is specified 
in the Test Article Standard. 

In the Test Article Standard, all Test Article network interfaces use Internet Protocol version 4 
(IPv4) as the core network layer protocol.  IPv6 does not meet all the goals stated above (i.e. 
broad acceptance, interoperability, economical sources, well-established, proven, market support, 
etc.) and the main IPv6 features are not required by the Test Article networks.  Figure 1 is a 
protocol map for the Test Article standards. 

 

Figure 1.  Test Article Standard Protocol Map 

CORE NETWORK STANDARDS 

The Test Article Standard specifies Ethernet (IEEE 802.3-2005) for the physical layer of the Test 
Article network.  Ethernet defines a number of wiring and signaling standards, supporting 
10BASE-T/100BASE-TX/1000BASE-T over copper Unshielded Twisted Pair (UTP) cabling 
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and 10BASE-F/100BASE-FX/1000BASE-LX over fiber optic cabling for physical layer 
transmission.  The Test Article Standard requires that one or more of the 10 Mpbs, 100 Mbps, 
and 1000 Mbps standard speeds be implemented.  The Test Article Standard also requires auto-
negotiation for copper connections and recommends auto-negotiation for fiber connections.  
These copper and fiber-based standards, along with Ethernet’s data link layer protocols, are 
widely used in commercial networks.   

The current Test Article Standard states that connectors and cable media should meet the 
electrical or optical properties of the standards referenced (i.e. specific Clauses of IEEE 802.3-
2005).  It is understood that applicability to the operational environment will place additional 
constraints on the selection of the connectors and cable media.  A list of flight-qualified cables 
that have been suggested by implementers of previous networked telemetry applications is 
included at the end of the Test Article Standard document. 

The Test Article Standard also specifies Ethernet (IEEE 802.3-2005) for the data link layer of the 
Test Article network.  The data link specifications of Ethernet provide common hardware 
addressing and Media Access Control (MAC) for the transmission of data frames between 
network devices.  Test Article networks must support the frame structure, field definitions, MAC 
conventions,  Logical Link Control (LLC), and flow control defined by Ethernet. 

The Ethernet data link protocols in the Test Article Standard are sufficient for basic connectivity 
between one or more stations over a single Ethernet link, possibly extended in length and/or 
inter-connected by network repeaters and hubs.  This half-duplex, contention-based approach is 
typically enhanced by bridging or switching multiple Ethernet links, resulting in only two 
stations per link communicating contention-free in full-duplex.  Therefore, switching network 
devices is also required to conform to the requirements set forth in IEEE 802.1D-2004 for 
transparent bridging and Rapid Spanning Tree Protocol (RSTP) functionality.   

The standards for Test Article network protocols rely upon the requirements for Internet hosts 
and routers as defined by the Internet Engineering Task Force (IETF).  The IETF develops and 
promotes Internet standards, cooperating closely with other standard bodies and dealing in 
particular with standards of the Transmission Control Protocol (TCP)/IP suite.  The Request for 
Comments (RFC) documents published by the IETF are intended to provide guidance for 
vendors, implementing organizations, and users of Internet communication software.  They 
represent the consensus of a large body of technical experience and wisdom, contributed by the 
members of the Internet research and vendor communities. 

IP is the network layer protocol used to logically address hosts and route data packets throughout 
the network.  IP is encapsulated by Ethernet, the data link layer protocol.  Test Article network 
transport protocols use IP to carry data from source host to destination host.  IP is a 
connectionless or datagram internetwork service, providing no end-to-end delivery guarantees.  
Using Ethernet as the layer below IP enables error-free data transmission, and the layers above 
IP are responsible for reliable end-to-end delivery service when required.  The IP protocol 
includes a provision for addressing, type-of-service specification, fragmentation and reassembly, 
and security information.  The datagram or connectionless nature of the IP protocol is a 
fundamental and characteristic feature of the Internet architecture. 
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Looking to other network layer protocols specified in the Test Article Standard, the Internet 
Control Message Protocol (ICMP) is a control protocol that is considered to be an integral part of 
IP, although it is architecturally layered upon IP (i.e., it uses IP to carry its data end-to-end just as 
a transport protocol like TCP or User Datagram Protocol [UDP]).  ICMP provides error 
reporting, congestion reporting, and first-hop gateway redirection.  Another network layer 
protocol, Internet Group Management Protocol (IGMP), serves is an Internet protocol used for 
establishing dynamic host groups for IP multicasting.  It is noted in the Test Article Standard that 
switching network devices can use IGMP “snooping” to aid in efficient network utilization. 

For the transport layer, the Test Article Standard specifies the TCP and the UDP end-to-end data 
transmission protocols and options.  Like the network layer protocols, TCP and UDP are based 
on widely accepted IETF RFCs.  TCP is the primary virtual-circuit transport protocol for the 
Internet suite.  TCP provides guaranteed, in-sequence delivery of a full-duplex stream of octets 
(8-bit bytes).  TCP is used by those applications needing guaranteed, connection-oriented 
transport service.  UDP, on the other hand, offers only a minimal transport service—non-
guaranteed datagram delivery—and gives applications direct access to the datagram service of 
the IP layer.  UDP is used by applications that do not require the level of service of TCP or that 
wish to use communications services (e.g., multicast or broadcast delivery) not available from 
TCP. 

The Test Article Standard also specifies several application layer network services for address 
resolution, address configuration, name services, and general file transfer. The Address 
Resolution Protocol (ARP) is the standard method for finding a host's hardware (MAC) address 
when only its network layer (IP) address is known. Other standard services can configure various 
parameters (including standard address subnetting) necessary for the clients to operate in an IP 
network.  Although this configuration may be done manually, the Dynamic Host Configuration 
Protocol (DHCP) allows devices to be added to the network with minimal or no manual 
configurations.  The Test Article network requires a DHCP service, but makes no mandate on 
which device acts as the DHCP server or which client devices must have DHCP enabled.  This 
allows the choice of static or dynamic IP address assignment.  The Domain Name System (DNS) 
associates various sorts of information with domain names; most importantly, translating 
computer hostnames into IP addresses needed for network layer delivery. 

For file transfer service, the File Transfer Protocol (FTP) is a reliable (i.e. using TCP) and 
widely-used mechanism that enables the transfer of file-oriented data from one device to another 
through a network.  As such, latency-tolerant bulk data transfers should use the FTP protocol for 
transferring files between Test Article network-connected devices.  Conversely, the Trivial File 
Transfer Protocol (TFTP) is a simple file transfer protocol, with the functionality of a very basic 
form of FTP.  Since UDP is used for transport, TFTP uses a stop-and-wait-protocol for 
reliability, where devices send a maximum packet size of 512 bytes and wait for an 
acknowledgement.  This results in slower transfers than FTP since FTP uses TCP sliding 
windows and larger packets, while TFTP can send only one (smaller) packet at a time and must 
wait for the specific acknowledgement of each packet.  Due to its simplicity (i.e. using UDP), 
TFTP is easier to implement in a very small amount of memory, making useful for booting 
computers (such as routers and switches) that do not have any data storage devices.  

 4



Along with the network, transport, and application layer protocols, the Test Article Standard also 
references several IETF RFCs that define the host (RFCs 1122 and 1123) and router (RFC 1812) 
functionality requirements for Internet-connected nodes.  These documents incorporate by 
referencing, amending, correcting, and supplementing the core protocol standards documents 
relating to hosts and routers, and they provide options and supporting documentation for the 
implementation of Test Article network components. 

Overall, test software and users need to be able to manipulate network functions (e.g., QoS, 
performance, configuration, discovery, etc.) defined in the Test Article Standard.  The Test 
Article Standard references the System Management Standard to specify these requirements.    

LEVERAGING STANDARDS FOR TMNS-SPECIFIC OPERATION  

The Test Article Standard specifies IEEE 1588-2002 for the distributed clock synchronization 
between components connected to the Test Article network.  IEEE 1588 enables sub-
microsecond synchronization between network devices using Ethernet.  This network time 
synchronization scheme allows high resolution time stamps at DataSources to enable 
applications of time-correlation of data at DataSinks.  The Test Article Standard specifies that a 
master clock may be physically located on any device connected to the Test Article network. 
Furthermore, devices needing precise synchronization can implement IEEE 1588 slave clock 
interfaces to use the synchronization service provided by the Test Article network.  Depending 
on application performance requirements, design choices can be made for slave clocks, trading 
higher accuracy, higher cost hardware implementations against lower accuracy, and lower cost 
software implementations.  For routing/switching devices, the standard also specifies “boundary 
clock” techniques, or approaches that are interoperable with boundary clocks (e.g. transparency 
implementations used in some switches), which are intended to eliminate large packet transport 
latency variations that are typically induced in these types of devices.  The Test Article standard 
also specifies clock “flywheeling” in the absence of masters, recommends 1-pulse-per-second (1 
PPS) outputs on devices, and recommends using the Global Positioning System (GPS) interface 
for external synchronization of a time master. 

Several existing network data message structures were examined, and an informal trade study 
was performed with the conclusion that no single existing message format completely meets the 
needs of the TmNS.  The working group agreed that a single common data message header was 
needed for moving data messages across the network.  Through several drafts and community 
feedback, the TmNS Data Message Format standard was created as a “best of breed” of existing 
packet formats while meeting additional requirements for the transport of TmNS data.  This 
universal data message header format captures the strengths and experience of existing formats 
(Instrumentation d'Essais des Nouveaux Avions [IENA], Ch. 10, Data Acquisition Recorder 
[DAR]), transports and supports existing formats, protects existing data processing and Data 
Acquisition Unit (DAU) software, promotes a common military and commercial format, 
encourages lower DAU and data processing costs, and provides scalability for current and future 
uses. 
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The TmNSDataMessage is a structure that is independent of transport.  If sent on a network, 
typical network and transport headers are pre-pended (e.g. UDP/IP).  A TmNSDataMessage is 
composed of a TmNSDataMessageHeader and a TmNSDataMessagePayload, as illustrated in 
Figure 2. 

TmNSDataMessagePayload

TmNSDataMessageTransport Segment 
Header (UDP)

Network Packet 
Header (IP)

TmNSDataMessageHeader
 

Figure 2.  TmNSDataMessage 
 

The TmNSDataMessageHeader assists with data transport and provides information about the 
TmNSDataMessagePayload.  The Test Article Standard defines the TmNSDataMessageHeader 
containing the fields and associated bit-widths as outlined in Figure 3. 

ApplicationDefinedFields
(Optional, {OptionWordCount}*32 bits)

AcquisitionTimestamp
(64 bits)

MessageLength
(32 bits)

MessageDefinitionSequenceNumber
(32 bits)

32 bits

MessageDefinitionID
(32 bits)

MessageFlags
(16 bits)

Reserved
(8 bits)

Option
Word
Count
(4 bits)

Message
Version
(4 bits)

 

Figure 3.  TmNSDataMessageHeader 

 
The TmNSDataMessagePayload is made up of Packages (see Figure 4).  The variable size of the 
TmNSDataMessagePayload allows control of the size and latency of TmNSDataMessages.  
DataSinks and other consumers of TmNSDataMessages can determine which Packages to expect 
in a particular TmNSDataMessagePayload by using the MessageDefinitionID.  The 
MessageDefinitionID specified in the TmNSDataMessageHeader serves as a reference to 
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Package(s) format, content, and ordering in the TmNSDataMessagePayload.  For details on how 
this information is defined, refer to the Metadata Standard Document.  

TmNSDataMessagePayloadTmNSDataMessageHeader

Package 5Package 4Package 3Package 2Package 1 Package N
 

Figure 4.  TmNSDataMessagePayload with Packages 
 

A Package where a PackageHeader and PackagePayload are present is illustrated in Figure 5.  
To achieve Package structure interoperability, TmNSDataMessages must either use the standard 
PackageHeader defined in the Test Article Standard (Figure 6) or a PackageHeader completely 
described by metadata.  All EndNodes that produce TmNSDataMessages must have, at the 
minimum, the ability to generate the standard PackageHeaders. 

PackagePayloadPackageHeader
 

Figure 5.  Package 
 

32 bits

AcquisitionTimeDelta
(32 bits)

StatusFlags
(16 bits)

PackageLength
(16 bits)

PackageDefinitionID
(32 bits)

 

Figure 6.  PackageHeader 
 

Many possibilities exist for how Packages may be placed into TmNSDataMessagePayloads.  
Rather than over-specify, and possibly prevent users from being able to meet their mission needs, 
reasonable flexibility is allowed by Test Article standards.  Responsibility is shifted to the users 
to impose local rules that meet the particular needs of their range.  However, there are several 
rules that TAS networks shall follow to ensure a sufficient level of network transport 
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interoperability.  First of all, MessageDefinitionSequenceNumbers shall not repeat or be 
generated out of order for a particular MessageDefinitionID, including when two or more 
DataSources generate TmNSDataMessages with the same MessageDefinitionID.  This rule was 
defined since DataSinks might want to be able to detect lost TmNSDataMessages.  So, a 
DataSource cannot repeat or generate MessageDefinitionSequenceNumbers out of order for any 
single MessageDefinitionID.  Furthermore, more than one MessageDefinitionID may share the 
same multicast address for network transport.  This rule was defined since there are a limited 
number of multicast addresses that can be practically subscribed to by any one IP stack instance 
running on a typical embedded processor.  Finally, a DataSource (or group of DataSources) may 
send a sequence of TmNSDataMessages with the same MessageDefinitionID to multiple 
destination addresses.  This rule was defined since modern Ethernet hardware can use multicast 
addresses to efficiently (and almost automatically) reduce the amount of load on DataSinks (and 
network switches) by only sending data to subscribed nodes. 

The Test Article Standard specifically defines two protocols for the delivery of 
TmNSDataMessages.  The first of these is the Latency/Throughput Critical (LTC) delivery 
protocol.  LTC uses UDP/IP to deliver sequences of TmNSDataMessages to multicast addresses.  
Delivery to unicast and broadcast addresses is also allowed.  Since UDP is inherently 
connectionless, considerations need to be made when using IP to support the latency and 
throughput guarantees.  When planning synchronous-like data transfer over asynchronous 
network transport, some performance-enhanced networking mechanisms must be designed into 
the network fabric to ensure the timely transfer of latency-critical data and maintain sufficient 
bandwidth for throughput-critical data flows.  To ensure optimal performance with IP multicast, 
Test Article network switches and/or routers should partition the network such that only two 
devices (i.e., the switch/router and the end device) are sharing a specific Ethernet link.  In this 
setup, no Ethernet frame collisions occur and each pair of network devices can operate in full-
duplex at full link speed without contention from other devices.  Additionally, switches/routers 
with sufficiently large queuing buffers should be chosen to handle the “burstiness” of the routed 
traffic. 

Even with this level of forwarding determinism, which is inherent to most modern 
implementations, composite throughputs on each link of telemetry networks should be planned 
to not exceed the available bandwidth.  This planning should be realized using the anticipated 
send rates of each of the MessageDefinitionID, along with the pool of available multicast 
addresses, to assign multicast addresses in proportions that do not overflow available line rates 
and buffer queues.  This planning should be automated in an application for producing setup 
files, but may be done manually based on the anticipated network topology.  Metadata should be 
generated and shared between DataSources and DataSinks for associating MessageDefinitionIDs 
with their multicast groups. 

The standard TmNSDataMessage structure includes MessageDefinitionSequenceNumbers to 
enable the detection and reporting of transport reliability through system management.  
Applications may also use MessageDefinitionSequenceNumbers to reorder flows of a particular 
MessageDefinitionID at DataSinks.  The standard TmNSDataMessage structure also includes and 
AquisitionTimestamp field for correlation of LTC delivered data at DataSinks.  Since the data 
delivered by LTC is by its very nature latency critical, this protocol is focused on controlling 
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latency first and data reliability second.  Consequently, no guaranteed transport mechanism is 
used that would require acknowledgements and resends that would delay data outside of the 
latency performance bound.  IP multicast packets will also include QoS markings in the IP 
header, as defined in the Test Article Standard, to enable the prioritization of multicast data 
across network devices. 

The second protocol for the delivery of TmNSDataMessages is the Reliability Critical (RC) 
delivery protocol.  This protocol is intended for the delivery of TmNSDataMessages when 
reliability constraints are more important than latency or throughput constraints.  RC includes 
detailed mechanisms (i.e. transport and application protocols) for implementing reliable data 
transfer between DataSources and DataSinks.  Since additional session control is necessary to 
ensure highly reliable transfer, this type of delivery occurs between only two devices (unicast) 
with no guarantees for latency and throughput metrics. RC data delivery uses a reliable protocol 
(i.e. TCP).  The reliable protocol supports the error-free delivery of a data stream using a system 
of acknowledgements, timeouts, and retries.  Although solid reliability is maintained for RC 
delivery, minimal latency is not guaranteed and competing flows reduce throughput when the 
network is congested. 

Stream-oriented transfer of data with RC consists of a data transfer between a DataSource and a 
DataSink.  The data transfer is initiated, controlled, and concluded under the supervision of the 
DataSink via a “Control Channel.”  The DataSink specifies parameters defining the DataSink 
destination IP address and TCP port, transfer data set (MessageDefinitionID [MDIDs]), and other 
aspects of the data transfer via commands issued to the DataSource via the Control Channel.  
The DataSink establishes a “Data Channel” TCP connection to the specified DataSink address 
and port.  The DataSource transmits the parameter-specified data set (often followed by an “end-
of-data” indication) via the TCP connection to the DataSink. 

Real Time Streaming Protocol (RTSP) was chosen for the RC control channel by the TASWG 
after studying Simple Network Management Protocol (SNMP) and Hypertext Transfer Protocol 
(HTTP) as alternatives.  It was determined that RTSP provided the required control channel 
methods and parameters with the least customization of the protocol.  TCP was chosen for the 
reliable transfer of data because TCP provides the required error correction, congestion control, 
and error recovery mechanisms for reliability critical data.    

The goal of designing for quality of service (QoS) within the Test Article Standards context is 
the allocation of Test Article network bandwidth and technology sufficient to meet the latency 
bounds and packet loss requirements of network traffic with differing quality of service 
requirements.  Proper network engineering and administration are a fundamental requirement for 
successful operation of a network-based telemetry system.  The telemetry network designer must 
anticipate composite data rates across Test Article network interfaces and subnets.  Adequate 
bandwidth, switching capacity, and packet processing policies must be sufficiently provisioned 
at each interface and across the network to meet the latency bounds and packet loss requirements 
of a particular implementation.  The telemetry network designer should use a combination of 
telemetry traffic analysis, scheduling, and network over-provisioning as the primary tools for 
meeting quality of service requirements.   
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Network over-provisioning is the practice of allocating additional bandwidth capacity to a 
segment or interface beyond the amount required to carry the computed average composite data 
rate.  The excess bandwidth provides dynamic range within the capacity of the given Ethernet 
segment or interface sufficient to handle the traffic variance of a composite traffic.  Adequate 
over-provisioning can eliminate or greatly reduce the need for QoS protocols.  The Test Article 
network engineer should employ over-provisioning to the maximum extent practical before 
investing in the complexity of other techniques.  In fact, sufficient capacity must be present for 
QoS protocols to provide substantial benefit during periods of network congestion.  Application 
of QoS protocols is appropriate when infrequent and random composite data rate on a subnet or 
interface may cause undesirable latency, latency jitter, or packet loss.  QoS protocols can not 
compensate for a persistent lack of adequate bandwidth.   

The Test Article Standard specifies the widely used DiffServ QoS protocols as an additional tool 
to meet QoS requirements when traffic engineering measures may not be sufficient to address 
momentary congestion within the Test Article network.  The QoS protocols implement a set of 
per hop behaviors (PHBs) at the outputs of peripheral interfaces.  The PHBs define a set of 
policies enforced at input and output queues of peripherals and when forwarding (routing) data 
through the TAS network as a means of prioritizing data aggregates.  The PHBs further define 
policies regarding traffic shaping, re-marking, packet discard, and latency.  Unified 
implementation of QoS protocols across the TmNS can provide for fair delivery of multiple data 
aggregates having disparate QoS requirements over various parts of the TmNS (vNET, radio 
frequency network [rfNET], ground station [GS]). 

CONCLUSION 

Now that the initial Test Article Standard has been documented, we have been able to leverage the 
content to create a general library for the creation and consumption of TmNSDataMessages. This 
library has been created as a basis for test bed EndNode emulators.  These EndNode emulators 
take command-line options for DataSource, DataSink, destination address, MDID, and DiffServ 
Codepoint (DSCP) bits for the setup of a TmNSDataMessage sending/receiving sequence.  
Statistics are printed to the screen periodically.  These statistics include TmNSDataMessages sent, 
bytes sent, time-windowed (on configured printing rate) TmNSDataMessages per second, time-
windowed (on configured printing rate) bits per second, MDID value, DSCP value for sent 
TmNSDataMessages, and MessageDefinitionSequenceNumber drops for received 
TmNSDataMessages.  It is envisioned that test bed assessments using these EndNode emulators, 
as well as real hardware from vendors, will contribute to the process of the further maturation of 
the Test Article standards. 
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