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Summary    Recent advances of solid-state device technology of generating microwave
power from low voltage dc power in one step have renewed interest in the study of
injection locking. The solid state millimeter-wave devices have many potential
applications such as parametric amplifier pumps, transponder sources, local and self-test
oscillators, and high bit rate millimeter-wave repeater systems.

The purpose of this article is to solve the nonlinear differential equation of injection
locking. Using the method of Riccati’s equation, an exact solution has been obtained
which is much simpler and more explicit than that shown by Mackey. This article shows
the tracking and acquisition behavior of the loop for different initial phase offsets and for
different ratios of initial frequency offset D to loop gain B. It also compares the transient
and steady-state responses with the exact solution and the linear approximation solution.

This article concludes that the difference of steady-state responses obtained from the
exact solution and the linear approximation solution will be greater if the D/B ratio is
greater.

Introduction    Since Adler1 showed that injection phase-locking is achievable for low
frequency, many investigations2-5 have shown that it is also achievable in the microwave
frequency region. Recent advances of solid-state device technology of generating
microwave power from low voltage dc power in one step have renewed. interest in the
study of injection locking. The solid-state millimeter-wave devices of injection locking
have many potential applications such as parametric amplifier pumps, transponder
sources, local and self-test oscillators, and high bit rate millimeter wave repeater
systems5.

The purpose of this article is to give a thorough study of the nonlinear differential
equation of injection locking loops1,2

(1)
where



For convenience of writing, let the initial frequency offset )To / D, then (1) becomes

(2)
We first briefly discuss the linear approximation solution of the nonlinear differential
equation (2). Then, using the method of Riccati’s equation, we show an exact solution of
(2). There are three conditions of the solution: overdamped condition when 0 < D < B,
critically damped condition when D = B, and oscillatory or underdamped condition when
D > B. The exact solution we obtained is a function of loop gain B, initial frequency
offset D, and initial phase offset No , which is much simpler and more explicit than that
shown in Reference 2, equations (12) and (13).

Linear Approximation Solution    From (2) the first order differential equation
indicates that the injection locking loop behaves like the first order phase-locked loop
(PLL). It is generally approximated by sin N Ñ N for N << 1 rad. Then (2) becomes

(3)
The complete solution of (3) is

(4)

where

The solution in (4) has been plotted as dashed lines in Figures 1 through 3 for the initial
phase offsets to be 10, 60, and 170 degrees. From the solution in (4), several results are
already well known for the first order PLL6,7 . First, the injection locking will be acquired
when the initial frequency offset is zero and with any initial phase offset, the steady-state
phase error will be zero

(5)



For nonzero initial frequency offset, the steady-state solution from (4) is

(6)
which has been plotted in Figure 4. Secondly, in the locking condition N = 0, the steady-
state solution obtained from (2) is6

(7)

The initial frequency offset D should be less than or equal to the loop gain B in order
that (7) has a solution. The maximum initial frequency offset which the loop can acquire
injection locking is called the maximum pull-in frequency

(8)
Note that there is a discrepancy between (6) and (7) because of the linear approximation
assumption made by many people in order to obtain an easy solution.

Exact Solution    Let us solve the nonlinear differential equation (2) by assuming

(9)
so that

(10)

(11)

Substitution of (9), (10), and (11) into (2) gives

(12)

If the initial frequency offset is zero, i.e., D = 0, (12) becomes

(13)
The solution of (13) is

(14)
Suppose at t = 0, the initial phase offset is No, then (14) becomes

(15)



Substituting (15) into (9) gives

(15)

When t = 0, the solution (16) gives N = No as it should. Using the initial phase offset No

as a parameter under the condition of zero initial frequency offset, the transient response
of N asymptotically approaches zero as shown in Figure 5, except No = ± B . If the initial
phase offset No is assumed to be some constant not equal to ± B and the loop gain B is
used as a parameter, the transient response of N as shown in Figure 6 also asymptotically
approaches zero except B = 0 or B = 4, for which cases either N = No (constant) or N = 0
instantaneously. Therefore, the steady-state solution for D = 0 from (16) is

(17)

The probability of No = ± B is zero, on the assumption that the probability density of the
initial phase offset is uniformly distributed

(18)

There is no delta function, *(No), existing at No = ± B.

However, if the initial frequency offset D is not equal to zero, the solution of the
nonlinear differential equation (2) or (12) is not easily obtainable. After several
transformations, (2) is transformed into the standard Riccati’s equation 8, 9 as shown in
Appendix A.

According to the relative values of D and B there are three solutions: overdamped,
critically damped, and underdamped cases. Let us discuss the acquisition and tracking
behavior for these three conditions as follows

Case 1.  0 < D < B. Overdamped Condition    The complete solution from (A-10) is

(19)

When t = 0, the initial phase offset is No , as it should be. The steady-state phase error is
really the solution of interest

(20)

The response of (19) has been plotted as solid lines in Figures 1 through 3 for the initial
phase offset to be 10, 60, and 170 degrees. The exact solution of Nss has been plotted in



Figure 4. It should be noted that (20) and (7) are equivalent for 0 # D/B # 1 and 0 # Nss #
90E.

If the initial frequency offset D is equal to B, then Nss is 90 degrees. That is, when D
approaches B, the steady-state phase error approaches 90 degrees as expected. However,
the derivative of Nss with respect to D B is

(21)

From Figure 4 we see that the slope of Nss at D/B = 1 is

(22)

There is no real solution when D/B > 1, which agrees with Case 3.

Case 2. D = B. Critically Damped Condition    The complete solution from A-13 is

(23)

The steady-state phase error as t 6 4 is Nss = 90 degrees. The response of (23) has been
shown in Figures 1 through 3 in which Nss is 90 degrees, a critical acquisition and
tracking condition.

Case 3. D > B. Oscillatory or Underdamped Condition    The initial frequency offset is
greater than the loop gain constant B, which is the maximum pull-in range. There is no
real solution under the oscillatory condition. The acquisition of phase-locking is not
possible.

Conclusion    From the solutions shown above, this article concludes with the
acquisition and tracking behaviors for any initial phase offset No … ± nB  as follows:

1) D = 0.  The injection locking loop acquires phase lock and tracks the phase with
zero steady-state phase error as shown in Figures 1 through 6.

2) 0 < D < B.  The injection locking loop acquires phase lock and tracks the phase
with a steady-state error

(24)

as shown in Figures 1 through 4.



3) D = B.  The injection locking loop acquires phase lock and tracks the phase with a
steady-state phase error Nss = 90 degrees as shown in Figures 1 through 4.

4) D > B.  Acquisition can never be achieved.

5) The higher the loop gain is, the faster the acquisition will be. As shown in
Figure 6, loop gain B = 0, the acquisition will never be achieved; if loop gain
B = 4, the acquisition will be achieved instantaneously.

APPENDIX A.
THE SOLUTION USING RICCATI’S EQUATION

The steady-state solution of (12) for D … 0 can be obtained by letting

(A-1)
where the dots represent time derivatives. Substituting (A-1) into (12) gives the standard
form of Riccati’s equation 8, 9.

(A-2)

(A-3)

The solution of (A.-3) is

(A-4)

where C1 and C2 are integration constants, and m1 and m2 are

(A-5)

(A-6)

In general, there are three cases which are depending on the relative values of B and D.



Case 1.  0 < D < B.   Overdamped Condition    Both m1 and m2 are negative real
numbers.  From u and its derivative, we obtain the solution of y; therefore, of x

(A-7)

The value of (m2 - m1) is negative since 0 < D < B. Therefore, the steady-state solution as
t 6 4 is

(A-8)

Assuming the initial phase offset to be No at t = 0, the complete solution of (12) for 0 < D
< B is

(A-9)

The complete solution of N is obtained by substituting x into (9)

(A-10)

The steady-state solution is

(A-11)

Case 2.  D = B. Critically Damped Condition    Since m1 and m2 are two equal negative
roots, the complete solution of x is

(A-12)

The complete solution of N is obtained by substituting (A-12) into (9)

(A-13)



The steady-state solution of N is 90 degrees. Of course, this result can be obtained
directly from (A-11) by substituting D = B.

Case 3.  D > B.  Underdarnped or Oscillatory Condition    m1 and m2 are two complex
conjugate roots. It is an oscillatory condition. This is another indication showing that the
locking condition cannot be achieved.

APPENDIX B
MACKEY’S SOLUTION

The solution from Equations (12) and (13), Reference 2, is given below for comparison:

where k = )To/B.

Realization that k = sin N4 where N4 is the steady-state phase shift allows (M12) to be
written as follows: 
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Figure 1. Comparison of Solutions for No = 10E

Figure 2. Comparison of Solutions for No = 60E



Figure 3. Comparison of Solutions for No = 170E

Figure 4. Steady-State Phase Error



Figure 5. Transient Response for Various No 

Figure 6. Transient Response for Various B




