FILTERING EFFECTS IN A SPREAD-SPECTRUM COMMUNICATION SYSTEM

By W. H. HARMAN

Summary, -Binary antipodal direct-sequence biphase modulation is
employed (for the purpose of interference reduction) over a channel
disturbed by white noise and an '"external' coherent sinusoidal inter-
ference, Before these are added, the signal suffers distortion in the
form of linear filtering whose effects are to be determined. The
receiver is a coherent '"rematched filter" (matched to the distorted
signal),

The mean ard variance of the detection variable are expressed as an
output SNR (signal to noise ratio). The variance is the sum of three
components: due to noise, external interference, and self interference,
Concise formulas for the first two contributions are developed. The
third is approximated and found to be quite small in many cases of
interest.

Results are applied in the case in which the filter has a bandpass
characteristic and external interference is dominant. With fixed
signal power entering the filter, there is an optimal cbip rate above
which filter distortion effects increase faster than process gain; the
optimal cbip rate is approximately equal to the filter noise bandwidth
B (Hertz). For an ideal bandpass filter and a single pole bandpass
filter, the optimal chip rates are 1. 0B and 0, 95B, respectively,

System Considered. - The system under consideration is modeled
by the block diagram of figure 1. Attention is restricted to cases of
narrowband signals, and complex-envelope formulationl is employed,
according to the convention

Jw_t
(real signal) = 2Re [ (complex envelope) e #5)

where wc is the carrier frequency, Transmitted signal modulation is
binary-antipodal direct-sequence biphase, which can be written

[P
stt) = ¢/ 5~ m(t)z a ¢ (t) (1)

k= =

where P is the signal power, m(t) is the information modulation, a
function whicb is either +1 or -1 for the duration of each bit, {a.k}
is a set of statistically independent, binary random variables,

taking the values *1 equiprobably, and cbip function ¢k is given by

1, for (k-1) T< t<kT

& (t) = {

in terms of the chip time T. We focus attention on a single-bit trans-
mission £+ s' (t) given by K

J P
't = § o Z a, # (6) (2)
k=1

where K is the number of chips per bit, and the information transmitted
determines whether plus or minus applies.

0 , otherwise
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As illustrated in figure 1, the signal passes through a filter of transfer
function H{w) in terms of frequency w (relative to the carrier frequency
@), Realizability is not required. The filtered version of s(t) is denoted
s$(t), and the filtered version of s'(t) is denoted S'(t),

A coherent sinusoidal interference i(t) of power I

i(t) :"I/Z (3)

and a white noise n(t) are added to the distorted signal emerging from the
filter, The noise power per Hertz is denoted Ng.

A coherent ""rematched filter' receiver is employed. For each bit
transmission, this receiver forms a detection variable A by correlating
the received signal with the reference signal s"(t).

A= ZRef [S(t)+ilt) +n(t) ] L) ]*dt (4)

The output decision is based on the sign of A,

Measure of Performance., - The measure of performance considered
is the SNR (signal-to-noise ratio) defined by

SNR = (mean of )\)Z

2 (variance of 1)

1
when +s (t) is transmitted, It can readily be verified that the SNR so
defined would not change if -s'(t) were transmitted,

SNR Calculations, -From equation (4) we write A\ as the sum of three
components

A= A_+ A + A
s i n
where -

A= 2 Re[ s(t) [sr(t) ] b dt

©

A= 2 Re_[ i) L3017 at

@

Az zgc[ n(t) [5re) ] " at

(=]

By substitution of eq's. (2) and (3), we readily determine that }; and
both have zero means., Thus the mean of A equals the mean of Ag.
From eq's. (1) and (2)
(=]

K
5 PZ Z: a, 3, Re . Bﬁ&(t) '&&*(t) dt

=" k: 1



where is the filtered version of ¢, We separate A; into two terms by
and A\ depending on whether k=4Lork#1 respectwely, that is

T p:z:-[; | g, |° at (5)
k=1
K = ~ %
=PZ Z a,a. Re-[-m (a {t}¢ (t) dt

k=1 f=-®
L#k

We see by inspection that X is deterministic and that 4A has zero mean,
Therefore X is the mean of A,

The variance 02 of A\ is, by definition,

2 Z
o” = (Ax+ 2+ 1) (6)

where the bar denotes averaging, We can readily see that

02= 02 +O:.£+02
s 1 n

2
where O'ZS, 0'21, and O are the respective variances of &, 7\1 and =
that is, the "three cross terms resulting from eq, (6) are all zero.
Therefore, we can write

1
o+

SNR = T
SNKs mi gNKn

where

are separate signal-to-noise ratios accounting for self interference,
external interference and noise,

We now evaluate T, Applylng Parseval's rule to the integral in
eq. (5), we see that all terms in the sum are equal,

X:pr l@(w)l"‘d—“’:PK/ | & (wh | IH()iZd“’
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where § and & are the Fourier transforms of §and & respectively. It
is now recogni}fed that X can be written

where A_ is the value of A4 obtained with no filter ( H=1) and L is the

""power foss' due to filtering" =

-[ |@1(w) IZIH(w) |2_d_w

2w 45

(==}

(o
"
T

2 dw
S paciod 7
: 3 ‘@(}\2 dw S(w}lH{w)lzﬁ g
p (@ —2"

(-]

in terms of the normalized signal power density spectrum

sinl Tl 2)]2

S_ () =
] T[(miz)

which has been normalized such that L._ = 1 when H=1, The last
equality in eq. (7) follows from the fact® that the chip energy density
spectrum 1 g; (w) 12 has the same shape as the long term power density
spectrum of " s(t), Furthermore, we evaluate >\0 as

==
' 2
A\,=2ReJ |s (t) | dt= PKT

which equals the transmitted enexrgy per bit E, Thus,

X = EL
P

(a) Self Interference. - Eq, {8) is rewritten as

K- -]
RS PP

k=1 {=-=
L+k

where
ols

Q g = Re[ ;L(t) Ek (t) dt

=]

%<The name '"'power loss'" is suggested by the case of passive filtering
obeying |H {w) 1 =1 at all w, which implies L, <1, In other cases,

Lp may exceed 1, but the results derived here still apply.



We note the symmetry

o, , for all k

Yl == =R

2
In this notation, the var1ance oy becomes

i Z Z Z Z
=P 8o B B o et Geely

k=1 kK'=1 4=-o 4'z -
Lk V=K

Omitting terms which are zero and employing symmetry we obtain
GSZ = 4 PZK E Q. &
k=1

A general evaluation of SNR  follows directly

K1‘2L 2

SNRS = —asL . (8)
8 E crk
lee) 1

While this is a simple formula, we will go on to develop a far simpler
approximation to it, applicable to cases in which &; dominates all of
the other interchip lnterference factors, ¥py @35 eees 2@ condition to be
expected when filtering is not severe.
Note that the quantity A defined by
L=

A:Zak

k==
has the following concise evaluation: By definition
@ oo
A= E Ref ¢, (8 ¢> op 1 (thdt = Re[m 9 .(tlkz _all 8 1{t)*u(e) 1" at
k===

Using linearily of the filter
Z [ 9, (Dn(t) ] EZ B,y (0 J¥h(t)= 1% h (1) = H(0)
k =~

so this factor can be removed from the integral. The remaining integral
is

/ ;1 (t) dt = El (0) = él (0) H(0) = TH (0)



Thus we obtain
2
A= 1 |H(0) | (9)

If ¥yy U350 are neglected we obtain the approximations

A=a +20a
o 1
- " 2
g b et (10)
o, = o Sll—<
k 1 2
k=1

where @ is evaluated as simply

5] =3, 2 "I
Qo_./-‘m l@lft}\dtwKPMTLp (11)
When eq's. (9), (10), and (11) are substituted in eq, {8), the result is
the desired approximation to SNRS.

prZ
SNR = (12)
* 2l|mO -1, 17

(b) External Interference, - The component ;\i can be rewritten as

K

Ai:"PI E a, By
las="1 1!
where Bk is the deterministic quantity

® N X
ﬁk=Re s ¢tk(t)dt:'rReH(0)
which is the same for all k, Thus the variance of )\i is

czi = PIK 'rz Re 3 H(0)

from which we readily obtain SNRi.

L 2
SNR, = [KP][ 12 ] (13)
* 21 || Re H(0)

The first factor KP/21 may be identified as the SNR; that would be
achieved if there were no filtering, The second factor is thus a
loss or gain due to the filter H,

(c) Noise, - The noise component )\n can be rewritten as
K

7\n= ‘||2P E ak'}'k

k=1



where ‘yk is a random quantity defined by

~ %
szRe/ n(t) ¢ (t)de

The noise variance becomes

K
cz =2P .
n k
k=1
Routine evaluation of ?—leads to
2 N EL
vk £ 9P
4 PK

which is the same for all k, Thus we have solved for 0'2 and hence
SNR o’
EL

SNR = ‘N‘E‘ (14)

[v]

Discussion of Problem and Results, - In the problem considered here,
the filter H can represent for example a gradual non-uniformity of
channel frequency response, a predictable multipath characteristic,
or simply an electrical bandpass filter. We note that our results include
the effects of inter-chip and inter-bit interferences which result from
a blurring of the signal details in passing through the filter,

In many cases, the probability distribution of A is approximately
Gaussian, due to a central limit theorem phenomenon, If A were
assumed to be exactly Gaussian, then its SNR as defined here would
completely determine error probability,

When I = 0, one would conclude by inspection that ELp/Ng is an
upper bound to SNR, based on the fact that [ is the physical power
loss in filtering and that inter-bit interference could presumably not
improve SNR, Our results confirm this conclusion and indicate the
amount of degradation beyond ELpf'NO, expressed in the form of the
self interference SNR_,

The simplicity of the resulting expressions, eq's, (12),(13), and
(14), is remarkable, Filtering effects are expressed solely in terms
of Lp and H(0); and since this latter parameter may be considered
a scale factor, the entire dependence on the shape of the filter transfer
function is given by the single figure p- Furthermore, SNRS, SNRy 2
SNR,, and SNR are all monotoni¢ functions of Ly (for all Ly, < |H (0) |%)
and as a result LP is a particularly useful measure of signal-filter
interaction, *

* The figure has been used as a measure of bandwidth in
signal design, for example in reference 2,



Evidently self interference, according to our approximation, is so
small that it can often be neglected, For example, the ratio

2
SNR;  p [ [H(0) | - Ly 2
SRR T Re H (0)

is much less than unity in many cases of practical interest, Appearance
of the factor K in eq, (12) indicates that self interference, like external
interference, is reduced by the "process gain" of the spread-spectrum
modulation.

Application, - As an application of these results, we consider the
special case in which H is a passive bandpass filter satisfying

H(0) =1
|H(w) | s1, for all »
Under these conditions, eq's, (12) and (13) become simply

2]
KL

SNR_ = ——Lz— (15)

2(1 - L)

KPL 2

Furthermore, we consider cases dominated by external interference,
and restrict attention to SNRi.

Consider the effect of chip rate 1/7 on eq, {16). Atlow chip rate
Lp =~1 so that

E 1 R :
SNR, =~ (ZT)T , weak filtering (17)

Performance increases in proportion to chip rate, to be expected in
a spead-spectrum system, At the other extreme, high chip rate,
only the center of the signal spectrum is passed by the filter,

Ss (0) 2
me e |H(w) |“dw = B

where B is the filter noise bandwidth defined by
(==}

B=/m |H @ [* 3

thus 2

SNRi ~ <%) T, severe filtering (18)



Here performance decreases inversely with chip rate, Thus if the
transmitted power {entering the filter) is fixed, there is an optimal
chip rate between these two extremes which maximizes SNRi, The
optimum point occurs near where the asymptotes (17) and (18) intersect,
namely where

L =

1]
that is, a chip rate equal to the filter noise bandwidth in Hertz. The
precise location of the optimum depends on the detailed shape of the
filter transfer functior*.

Figure 2 is a graph!of SNR; with fixed power P for two specific

filters: an ideal bandpass filter, defined by

1 , for |w|snB
H(w)={

0 , otherwise

and a single tuned bandpass filter obeying *
4B%
4B% + o2
The optimal chip rate to be employed through the ideal bandpass filter
is 1. 0B and the filteringloss at this point is 2-.2,22db, Fora
single tuned filter, there is a much broader maximum with the optimal
chip rate falling at 0. 95 B, and a filtering loss at this point of I,_2= -4, 7db.

If the power leaving the filter, PL,, is fixed, an appropriate Ronstraint
in some situations, the performance at high chip rate follows the asymp-

tote FL B
SNR & agp | e e (19)
1 21

| H (w) |2=

which is independent of chip rate. Thus there is generally no optimal
chip rate, but rather SNRj approaches a constant value at high chip
rate. The low chip rate performance is still given by eq.{(17). The
two asymptotes (17) and (19) intersect at

._]'.....:B
T:

so that there is relatively little to be gained by increasing chip rate
beyond B, Figure 3 is a graph of SNR; under these conditions for the
same two specific filters,
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