
DEVELOPMENTOF AN OBJECT-ORIENTEDSOFTWARE
APPLICATION TO PROVIDE A TRANSPARENT

INTERFACE BETWEEN SPACE NETWORK OBJECTS
AND A TELEMETRY SYSTEM FOR TRAINING

Mitchell Kleen and Joey White and Joseph Policella
CAE-Link Corporation

2224 Bay Area Boulevard
Houston, Texas 77058-2099

ABSTRACT

The Space Station Verification and Training Facility is using an object-oriented
design methodology for software design, a rate monotonic scheduling and message
passing system to support the highly distributed environment, and the Ada language to
implement most of the software. One of the subsystems within the Space Station and
Training Facility is the Space Network Simulator. Space Network simulators are used
to provide training of ground controllers and flight crews, providing a model of
real-world formats and protocols. This gives the controller the appearance of a
real-world network, providing valuable training. To develop a simulation of the space
network within this distributed environment, software objects are under development
to dynamically simulate the existence of the space vehicle(s) and their communication
components. Communication components include the on-board antennas,
transponders, communication systems, and corresponding communication ground
control facilities. Telemetry systems are used in the simulation to provide the control
of actual data manipulation, as a function of the state of the simulated Space Network.
The telemetry system automatically formats appropriate telemetry characteristics
through mode and control commands. A software model is under development to
provide a transparent interface between the software objects and the telemetry system,
allowing the objects to execute without knowledge of the particular telemetry system
in use. A transparent interface between the software and hardware, within this
object-oriented methodology, reduces the propagation of change to software models as
the interface requirements change.

KEY WORDS

Object-oriented, Composition, Inheritance



INTRODUCTION

The purpose of this paper is to describe a sample of a current object-oriented
development within the Space Network Simulator (SNS). The SNS is one of the
subsystems within the Space Station Verification and Training Facility (SSVTF). The
SNS requirements are to train Ground Support Personnel (GSP) in the Space Station
Control Center (SSCC). In the SNS, the Instructors who operate the simulator replace
the people in the real world who operate the Network Control Center (NCC) at the
Goddard Space Flight Center (GSFC) and at the White Sands Complex (WSC). The
SNS simulates the interface between the SSCC and the simulated Space Station, and it
is the hardware used in the simulation that is subject to the most change. If the SNS
software to hardware interface remains transparent to the SNS software, the SNS
software models will not have to be modified to add additional capability when
hardware requirements are modified. The SNS has experienced numerous hardware
design changes throughout the life of the SSVTF, but regardless of the changed
requirements, the software design of the simulated communication systems has
remained. This paper describes this design methodology.

THE SSVTF ARCHITECTURE

The SSVTF Ada software architecture must support a general distributed hardware
environment. Figure 1 shows the general SSVTF hardware architecture with two
session computers and the various non-session assets connected via the Real-Time
LAN (RT LAN) and the nodes on the General Purpose LAN (GP LAN). Also shown
are the multiple cpus per node and multiple nodes per session computer system. Cpus
communicate in local memory, nodes communicate via reflective memory, and other
assets communicate on the RT LAN. The SNS is one of the asset computers that
exists in this SSVTF Ada architecture.

The real-time system interfaces include a generic thread executive that provides a
periodic Rate Monotonic Scheduling (RMS) task to cycle a model at a given rate, a
messaging system that allows models to communicate in a distributed environment,
and the Distributed Identifier Specification (DIS) which provides the association of
logical names to physical data variables for instructor Station (IS) display and
manipulation. The real-time system services provide a virtual machine on which the
SSVTF models execute. These services support a distributed Ada environment. Each
model exists in a self-contained structure denoted as the partition.

Each SSVTF software model within a partition is decomposed in an object-oriented
fashion based on real-world structures and assemblies. Object-oriented means that
data and the data associated operations are grouped into class structures. A class



Figure 1

structure encapsulates the hidden portion of the object's attributes and operations and
exports the data type that abstractly represents the object and the valid operations.
Class structures may be made up of other classes by declaring instances of lower-level
classes in the object-attribute record of the higher-level class. If the higher level class
represents a less abstract form of the lower-level class, then this structure is defined as
inheritance. If the higher-level class represents an assembly where the lower-level
classes are sub-parts of the higher level class, then the structure is called a
composition.

THE SNS ARCHITECTURE

The SNS is one of the subsystems within the SSVTF architecture. In the SNS, the
instructors who operate the simulator replace the people in the real world who operate
the NCC and the WSC. The SNS requirements are to train Ground Support Personnel
(GSP) in the Space Station Control Center (SSCC) . The SSCC console positions



which receive the majority of the training provided by the SNS, are the Ground
System Manager (GSM) and his support personnel. When running in integrated mode,
the SNS is receiving and transmitting data at real world rates and in real world
formats, to both the SSCC and the vehicle simulation. An interfacing telemetry system
provides this interface (see Figure 2 below). The SSCC is not required to support a
training configuration which differs from that needed to support the Space Station
Facility (SSF). All the SSCC console positions receive the same data as they would
during operational support. A primary training goal, of crew/GSP interaction is
satisfied through sessions conducted in the integrated mode. The third type of
interface supported is the network management data interface. The SNS Tracking
Date Relay Satellite System (TDRSS) simulation generates the network management
data, as well as the SSCC interface. This data consists of TDRSS Status and Ground
Control, and Tracking. Since these data interfaces already exist, in support of the
Shuttle Training System and other NASA spacecraft, the format is the 4800 bit
NASCOM block protocol.

Figure 2

IMPLEMENTATION

To develop a simulation of the space network with the described requirements and
within this distributed environment, software objects are under development to
dynamically simulate the existence of the space vehicle(s) and their communication
components. Communication components include the on-board antennas,
transponders, communication systems, and corresponding communication ground
control facilities. The telemetry system is used in the simulation to provide the control
of actual data manipulation, as a function of the state of the simulated Space Network.
The telemetry system automatically formats appropriate telemetry characteristics
through mode and control commands, and provides an interface to receive SNS
network management data.



The SNS software consists of 9 partitions. All of the partitions, with the exception of
the Hardware Interface Partition, represent an SNS abstraction of the simulated
real-world objects. The communication models within the White Sands partition, the
Space Station Partition, and the TDRS partition communicate to each other through
the RfLinks partition. This is essentially a real-time handshake of information, to
determine whether a transmitting and receiving entity have the correct signal
characteristics for an acquisition of signal. Sun and earth position is also included in
this calculation. The RfLinks partition sends this data to the Hardware Interface
partition. Based on this information, the Hardware Interface partition modes the
telemetry system to manipulate the simulated data stream. At the same time, the
White Sands partition also receives performance data from the Hardware Interface
partition. The Hardware Interface partition receives this information through the
telemetry system interface. White Sands uses this information to build performance
data blocks, based on the network configuration commanded by the simulated GSFC.
The simulated GSFC, like White Sands, also has an interface with the Hardware
Interface partition. It receives Ground Control Message requests from the SSCC
through this hardware interface. The output of the Goddard partition, after receiving
the performance data, is to pass the information on to the Hardware Interface partition,
who uses the telemetry system to pass the data forward to the SSCC. As noted, the
Hardware Interface partition provides a transparent interface to the software models
described above. This transparent interface for software development of the SNS
allows models to continue executing without having knowledge of the hardware
interface in place.

Figure 3

At the object level, the Hardware Interface Partition instantiates the Hardware
Interface Control Class and the Hardware Interface Data Class creating a Hardware
Interface object for controlling the telemetry system, and a Hardware Interface object
for transmitting and receiving data, respectively. It instantiates The Thread Exec in the
Simulated Virtual Machine distributed executive that is an instantiation of the periodic
package, defined by the Generic_Model package. The partition supplies the mode
routines during the instantiation. The thread exec executes the mode routines at the



appropriate times. Internal partition mode routines iterate the objects at a rate of 25
hertz. Messages to other partitions are sent to through the message system.

Figure 4

The Hardware Interface Class is the parent class that both the Telemetry Hardware
Interface Control Class and the Telemetry System Hardware Interface Data Class
inherit operations from for basic low-level read and write processing.
Commercial-Off-The-Shelf Software (COTS) device drivers are provided with the
procurement of the interfacing workstation. The procedures from the COTS are
accessed by a child class through the generic instantiation shown below. A key data
structure, the Data Block, is also a generic instantiation. The child classes provide the
attributes that defined this basic structure for read and write operation. Note that all
processing necessary to manipulate the object are performed in the package body of
the Hardware Interface Class and are hidden from the child. Functions return the data
block and state of the data block itself, providing an instance of the child class with all
the necessary information to continue processing



with System; with Low_Level_Types;
generic

type The_Data_Block is private;
with procedure Read (X : The_Data_Block; Y : in System.Address);
with procedure Write (A : The_Data_Block; B : out System.Address);

package Hardware_Interface_Class is
type Object is private;
procedure Io_Read (Instance : Object; Block_Address : in System.Address);
procedure Io_Write (Instance : Object; Block_Address : out System.Address);
function Get_Io_Status (Instance : Object) return Low_Level_Types.Io_Status_Kind;
function Get_Data_Block (Instance : Object) return Low_Level_Types.A_1500k_Byte_Block;

private
type Object is

record
The_Data_Block : Data_Block;
The_Block_Address : System.Address;
The_Status : Low_Level_Types.Io_Status_Kind;

end record;
end Hardware_Interface_Class;

The Telemetry System Hardware interface Data Class class provides the transport
interface between the telemetry system device driver and the SNS application models
necessary to transmit and receive NASCOM blocks. A NASCOM block is a data
structure the real-world space network uses to transmit and receive information. Once
the data is read from the telemetry system, an instance of the Telemetry System
Hardware Interface Data Class uses an instance of the Nascom Structures to format
the block into a Nascom block, and extract display information (details of this display
structure not shown) out of the block for the Instructor Station. Then, the formatted
NASCOM block is propagated to the other SNS partitions through the Hardware
Interface Partition (via the message system). To write to the telemetry system, the
instance of the Telemetry System Hardware Interface Data Class receives a Nascom
block (passed down at the partition level from the Ground Link partition) and is
returned to the form necessary to pass through the device driver software.

with Hardware_Interface_Class; with Low_Level_Types; with Generic_Device_Driver; with Nascom_Structures;
package Telemetry_System_Hardware Interface_Data_Class is

type Object is private;
procedure Receive_Telemetry_System_Data (Instance : Object; Data_Block : in

Low_Level_Types.A_1500k_Block;
procedure Collect_Ground_Link_Data (Instance : Object; Nascom_Block : in

Nascom_Structures.Nascom_Block);
function Nascom_Block (Instance : Object) return Nascom_Structures.Nascom_Block;

private
procedure Read_From_Telemetry_System is new Generic_Device_Driver.Read

(Low_Level_Types.A_1500k_Block);
procedure Write_To_Telemetry_System is new Generic_Device_Driver.Write

(Low_Level_Types.A_1500k_Block);
package Hardware_Interface is new Hardware_Interface_Class

(Low_Level_Types.A_1500k_Block, Read_From_Telemetry_System, Write_To_Telemetry_System);



type Object is
record

The_Nascom_Block : Nascom_Structures.Nascom_Block;
The_Interface : Hardware_Interface.Object;
The_Display_Parameters : Parameters_For_Display;

end record;
end Telemetry_System_Hardware_Interface_Data_Class;

The Telemetry Hardware Interface Control Class provides the interface between the
hardware device driver and the application software models necessary to mode and
control the SNS telemetry system. Based on the state of the SNS RfLink models (via
the partition to partition message system), the bit synchronizers within the telemetry
system are moded to receive the simulated real-world data stream. The data stream
can consist of command data from the SSCC or telemetry data from the simulated
station (refer to figure 2). Additional mode and control occurs if the state of the SNS
models require noise to be added to the serial data, or if the SNS has been commanded
to a trainer specific standalone mode. In the standalone mode, the telemetry system is
commanded to generate its own data streams internal to the system. This commanded
mode is required for maintenance and telemetry system check-out. However, the SNS
models continue to execute their operations without any knowledge of a new trainer
mode.

with Hardware_Interface_Class; with Low_Level_Types; with Generic_Device_Driver;
package Telemetry_Hardware_ Interface_Control_Class is

type Object is private;
procedure Interrogate_Models

(Instance : in out Object; Rf_State : in Rf_Link_State; Ground_State : in Ground_Link_State);
procedure Mode_Bit_Synchronizer (Instance : in out Object; Link : in Link_Characteristics; Synchronizer : in

Integer);
procedure Mode_Standalone_Drivers (Instance : in out Object; Link : in Link_Characteristics);
function Get_Bit_Sync_State (Instance : Object; Bit_Sync : in Integer) return Bit_Sync_State;
function Get_Data_Block (Instance : Object) return Low_Level_Types.A_l500k_Block;

private
procedure Read_From_Telemetry_System is new Generic_Device_Driver.Read

(Low_Level_Types.A_l500k_Block);
procedure Write_To_Telemetry_System is new Generic_Device_Driver.Write

(Low_Level_Types.A_1500k_Byte_Block);
package Hardware_Interface is new Hardware_Interface_Class

(Low_Level_Types.A_1500k_Block, Read_From_Telemetry_System, Write_To_Telemetry_System);
type Object is

record
Bit_Syncs_State : Bit_Syncs_State;
The_Status_Parameters : Parameters_For_Status;
The_Interface : Hardware_Interface.Object;

end record;
end Telemetry_Hardware_Interface_Control_Class;



CONCLUSIONS

High fidelity simulations of telemetry and data communications networks have been
utilized by the US space program for training of flight crews and mission control
center personnel for many years. For the space program, changing requirements are
common, and it is imperative in this budget constrained environment that simulation
systems be designed in a way that is resilient to change. This is a fundamental design
concept for the SNS. The SNS simulates the interface between the Space Station
Control Center and the Space Station, and it is the hardware used in the simulation
that is subject to the most change. For the SNS, software models maintain the
simulated state of the real-world communication models, and based on their state a
hardware interface agent modes a telemetry system. At the same time, this hardware
interface agent must also receive data from the telemetry system, and populate the
software models with simulated performance data. If this software to hardware
interface remains transparent to the software, the software models will not have to be
modified to add additional capability when hardware requirements are modified. A
transparent interface between the this software and hardware, within this
object-oriented methodology, reduces the propagation of change to software models as
the interface requirements change. For SSVTF, this approach has withstood several
design changes. The hardware requirements have been modified or considered for
modification, and the analysis has always concluded that there was minimal impact to
the simulated communications systems.

ACKNOWLEDGEMENTS

The authors wish to thank Robert H. Sturtevant and members of his Real-Time
Sessions group who provided much of the basis for this architectural platform.
Significant contributions for object-oriented techniques in Ada was provided by
Stanley R. Allen and David G. Weller.

REFERENCES

Policella, Joseph, "A GENERIC OBJECT ORIENTED DESIGN FOR A RADIO
FREQUENCY SIMULATION IN A SPACE TELEMETRY AND COMMAND
ENVIRONMENT", Proceedings of the 1991 International Telemetry Conference.

White, Joey, "A TELEMETRY AND SPACE COMMUNICATION NETWORK
SIMULATION FOR TRAINING", Proceedings of the 1991 International Telemetry
Conference.



Policella, Joseph and White, Joey "AN OBJECT ORIENTED COMMUNICATIONS
NETWORK SIMULATION FOR SPACE STATION FREEDOM CONTROL
CENTER TRAINING", Proceedings of the 1992 Intra Service Industry Training and
Simulation Conference.

Policella, Joseph and White, Joey and Shillington, Keith "AN OBJECT ORIENTED
COMMAND AND TELEMETRY "BLACK BOX" SIMULATION USING ADA",
Proceedings of the 1993 International Telemetry Conference.

Policella, Joseph and White, Joey "A SYSTEMATIC METHOD FOR SYNTHESIS
OF OBJECT ORIENTED SOFTWARE DESIGNS FOR TELEMETRY
SIMULATION", Proceedings of the 1993 International Telemetry Conference.


