
DISTRIBUTION OF INTELLIGENCE AND INPUT/OUTPUT IN
DATA ACQUISITION SYSTEMS

CHARLES W. ROSE
Case Western Reserve University

Cleveland, Ohio

JAMES D. SCHOEFFLER
Cleveland State University

Cleveland, Ohio

Summary

Low cost, high performance microprocessors are being used in several distributed
intelligence architecture to replace conventional data acquisition systems. Each distributed
topology has certain attributes which affect its suitably for data acquisition applications:
cost and position modularity, behavior in the presence of a fault, logical complexity, and
bottlenecking.

The software organization of these systems is impacted by the distribution of intelligence
and input/output, particularly in the areas of task communication, error recovery, data base
management, and operating systems structure.

A ring structure has been developed for data acquisition and control, which uses
distributed microprocessor intelligence and modified serial CAMAC protocol. A general
purpose instrument and communications control module based upon INTEL 3000
microprocessors has been built.

Introduction

The computational power of the microprocessor combined with its low cost is already
having a large impact on instrumentation used for data acquisition and control as new
functions and instrument enhancements are added using the microprocessor capability to
eliminate digital logic and reduce data for better presentation or control, Such “smart”
sensors and instruments also make system design more attractive because error recovery
and data integrity can be accommodated much more easily. Data acquisition and control
needs lead to an interconnection of sensors, actuators, and controllers. The microprocessor
is having an even more significant impact here as its computational power is used to



implement truly distributed systems. That is, both the data acquisition task itself and the
task of communication among devices may be assigned to microprocessors. Hence its
impact is double: first, increased capability in instruments, sensors, and dedicated control
systems; and second, as a communication device to link such intelligent components into a
distributed data acquisition and control system.

The most significant questions about this technology are concerned with reliability, error
recovery, allocation of tasks to components in the distributed system, and the costs of
implementation and maintenance. Furthermore, ease of use of such systems in the variety
of industrial applications they must serve is equally important. Since all of these questions
are most impacted by the structure of the distributed system, it is appropriate to examine
alternative structures for distributed systems and evaluate the impact of the structure on the
important questions listed above.

Distributed Systems-Taxonomy And Analysis

The Need for a Taxonomy

Distributed systems are new phenomena, and since few systems have been put into service
and studied, few insights into the relative merits of the various topological possibilities
have been developed. Each topology has its advocates, but without a common framework
for discussion, evaluators are reduced to discussing the specifics of a few given
realizations rather than investigating the general characteristics of classes of topologies.

Recently, however, Anderson and Jensen [AND 75] proposed a taxonomy of computer
interconnection which is a valuable first step toward the classification of distributed
systems by topology and functionality. We shall use this taxonomy as a framework for our
analysis of distributed architectures for data-acquisition.

Introduction To and Use of the Taxonomy

The Anderson/Jensen taxonomy is shown in Figure 1, The taxonomy describes three
hardware archtypes: processing elements (Ms), paths between them, and switching
elements or intervening intelligence. For our purposes, we will assume that sensors and
system-level peripherals in any data acquisition system will be controlled by processing
elements (CPU’s or microprocessors), and can thus be considered as processing elements.



FIGURE 1.  The taxonomy.

Transfer Strategy refers to the presence or absence of a switching element between PE’s
which can alter or switch the flow of a message. Direct transfer strategy implies that no
such intelligence is present.

The next level is present only for Indirect systems and defines the switching method. A
single Centralized switch or a Decentralized distributed routing scheme with several
switches may be employed.

The third level defines the nature of the paths themselves -- Dedicated (non-shared) or
Shared.

The lowest level refines the actual system architecture in terms of ten topologies which
represent the basic classes of distributed architecture.

The taxonomy is concerned only with the topology of interconnection, and evaluates the
topologies with respect to a set of broad attributes which are application-independent:

1. Cost Modularity. This attribute refers to the incremental cost of adding an additional
node (processing element or I/O sensor/ device) to the topology.

2. Place Modularity. This attribute refers to the degree to which an incrementally added
element is restricted in location and function.

3. Connection Flexibility. This attribute refers to the alternatives avaifiblefo`rconnecting
an incremental element.

4. Failure Effect. This attribute refers to the degree of fault tolerance of the topology with
respect to path, switching elements, and nodes.



5. Failure Reconfiguration. This attribute refers to the ease with which a distributed
system can be reconfigured to mask a failure to allow continued operation in a
degraded mode.

6. Bottlenecks. This attribute refers to the possible performance degradation arising from
non-uniform flow of communication in a system or from saturation of a shared
resource.

7. Logical Complexity. This attribute refers to the totality of decision which must be
made during communications, including those made by source and destination
processes and by switching entities.

The advantage of this taxonomy is that in many cases, these attributes can be specified for
entire classes of systems (i.e., fairly high in the tree). For example, all DXX systems have
chosen the poor cost modularity of dedicated paths over the risk of bottlenecking in shared
paths, while IXX systems have made the opposite choice. Whether such choices are, in
fact, justifiable in an instance, is a function of the requirements of the application.

Distributed Topologies for Data Acquisition

Data acquisition applications impose certain general constraints upon the topologies of the
systems which implement them.

First, since it may be desirable to add a sensor or display at any point within the system,
cost and place modularity are important attributes. It must be inexpensive to add the PE in
terms of interfacing, and its location and functionality must not be limited.

Second, the minimization of failure effect is important. A single sensor/PE failure must not
bring down the system, and a single path or switch failure should not either.

Third, these systems should be easily reconfigurable to mask a fault and allow gracefully
degraded operation.

Fourth, since data rates and an estimate of the maximum number of sensors are usually
known a priori, bottleneck can usually be avoided by picking an appropriate design for an
appropriate level of performance. The amount of local processing possible in the sensor/PE
will also tend to reduce the probability of a bottleneck in a communications resource.

Fifth, since the sensor/PE’s will tend to be homogeneous, communication flexibility tends
to be fairly unimportant.



Finally, since the motivation for distributed systems in data acquisition system is low cost
and high performance (fast response time), excessive logical complexity is to be avoided.

Conventional data acquisition systems like that shown in Figure 2 display several of these
characteristics. Analog and digital sensors may be added anywhere in the system at the
expense of the wire and multiplexor port. When the ports fill, however, the incremental
cost of the next sensor is high. Remote sensors may be added at an existing site in the
same manner. New sites require communications gear and a communications line which is
a high cost.

FIGURE 2  Conventional Data Acquisition System

Unless the central computer or multiplexor fail, the system is not vulnerable to catastrophic
failure, and reconfiguration is degenerate. A redundant multiplexor could be added.

The system is very simple from a logical and communications standpoint.

Which distributed architectures provide the same characteristics while offering increased
performance and potentially better reliability at reasonable cost by exploiting the flexibility
of the microprocessor?

Data acquisition systems are distinguished in that every sensor/PE is not required to
communicate with every other PE. In fact, most communicate directly with only one Or
perhaps two (a file control PE and an operator communication PE, perhaps) as shown in
Figure 3.

SENSOR 

CR! 

DISK 
(DATA BASE) 

OPERATORS 
CONSOLE 

SENSIIR 



FIGURE 3  Generalized Distributed Data Acquisition System

Message routing, therefore, tends to be fixed and in most cases an Indirect transfer scheme
is not warranted because of cost and logical com.plexity. We shall concentrate on Direct
transfer systems and look later at two specific indirect schemes of possible interest.

Direct-Dedicated Systems (DDX)

The two DDX systems, the loop (DDL) and complete interconnection (DDQ have very
different characteristics which arise from the numbers of paths in the system.

The DDC topology is equivalent to that of conventional star connected data acquisition
systems in which a sensor communicates only with those elements with which it shares
data (the central CPU).

The DDC topology has a poor cost modularity since the addition of the nth PE requires n-1
communication interfaces and links which must be accommodated at each of the existing
sites. In a data acquisition environment, in general, there is not a requirement for all
sensor/PE’s to communicate and therefore the cost is correspondingly less, but still high.
The cost of cable installation alone in large factory data acquisition systems is significant,
and the multiplexor costs are a sizable portion of the hardware investment.

Place modularity is good, and the failure effect and failure reconfiguration is quite good,
unless of course, the processing or mass storage resource fails. Providing redundancy for
these resources is a costly and difficult job under a DDC topology.

OPEP.ATOR 
CO!t!UNICATIONS 

SENSOR/PE 

PROCESSING PE 
(OATA REOUCTION 
& REPORT GENERATION) 



The topology is free from bottlenecks except at the processing and mass storage nodes, but
the presence of microprocessors at the sensor will reduce the possibility of exceeding the
bandwidth of these resources.

Although the logical complexity of this topology is simple, the installation cost of large
systems is a major disadvantage. In fact, it is precisely this cost which has stimulated
interest in the newer line-sharing distributed architectures for data acquisition and control.

The DDL [FARB 72] [AEC 73] topology or loop, on the other hand, has good cost and
place modularity. A sensor/PE may be placed anywhere on the loop with a simple interface
and communicate with every other node. Since messages are passed from node to node
successively, the failure of a single node or path between two nodes can bring down the
entire ring. Thus, for unidirectional, active repeater loops, the failure effect and failure
reconfiguration attributes are poor. Passive repeater systems, in which each node simply
looks at each message as it goes by to determine whether it is addressed to that node, are
less vulnerable to PE failure, and redundant path-loop collapsing mechanisms may be
added to improve the graceful degradation of a loop. These additions increase the cost, of
course.

The logical complexity is quite low. This topology,is subject to bottlenecks if the message
traffic between adjacent or nearly nodes on the loop is high for sustained periods.

The primary advantage of this topology is the cost Csince most loops are bit or byte serial)
and the high modularity. For passive repeater loops, a PE failure can be masked by load
sharing among the remaining elements if process or task addresses are soft; that is, if they
are not bound to one processor but are kept in a table and checked by the communications
software in each PE.

Direct Shared Systems (DSX).

The direct shared memory, DSM, topology is the classic shared memory multiprocessor
architecture and is of no interest here.

The Direct shared bus, DSB, or global bus, is very attractive for miCToprocessor-based
data acquisition systems. Access to the bus is shared by the PE’s by some allocation
scheme and messages are sent directly to the
destination node.

Cost and place modularity for PE’s is good. Elements connect to the bus via a standard
interface, and it may be possible to connect the PE anywhere on the bus.



Cost and place modularity of the communications bus itself is poor in that the total
bandwidth is fixed and increasing it would require extensive changes to PE interfaces and
perhaps to the communication medium itself. However, for data acquisition systems,
acceptable bandwidth (to avoid bottlenecks) can be provided, if at all, at design time.

Failure effect for PE’s is good, provided that the failure does not hang up the bus. If soft
process addresses are used, the dropped load may be picked up by other processors.

As with DDL topologies the failure characteristics of the bus itself are poor. Replication
may be costly depending upon the width of the bus.

The primary advantages of this topology for data acquisition are the cost and place
modularity of PE’s, and PE failure characteristics.

It is clear, therefore, that of the DX topologies, DDL and DSB are the principle candidates
for data acquisition systems because of cost and place modularity for PE’s, low overall
cost arising from little logical complexity, and good fault reconfiguration characteristics for
PE’s (this is only true for passive repeater loops, however) in the presence of soft process
addresses.

Their disadvantage lies in the vulnerability of the topologies to communication path
failures. Redundancy of paths can mitigate this disadvantage, particularly in bit or byte
serial systems.

Indirect Topologies IXXX.

Of the indirect topologies, only the centrally switched loop and bus are of possible interest.

All of the distributed routing systems are too complex logically, and reconfiguration to
allow load sharing requires extensive modification of the router tables or programs. In
general, the cost/performance of these topologies for data acquisition is not acceptable.

Since there is not a high degree of switching in a data acquisition system, the investment in
a central star switch is not warranted, and its vulnerability is high. In fact, if the switch
were a PE, the topology would resemble that of a conventional system with its attendant
disadvantages as shown in Figure 2.

The centrally switched loop and bus have characteristics similar to their direct counterparts
with the exception that the central switch can be used to logically reconfigure the system in
the event of PE failure by rerouting messages destined for a failed PE to ones capable of
handling its function. This is equivalent to the soft process address technique described



earlier, but the function is implemented once, thus reducing the complexity of each PE
interface. The penalty, of course, is poor failure effect in the event of a switch failure, and
redundant switches will probably cost more than the soft process address scheme. It is
reasonable, therefore, to reject these topologies for vulnerability reasons.

Indicative of the suitability of DDL and DSB topologies for distributed data acquisition
and control systems is the fact that of those systems commercially available or proposed as
standards, all utilize one of the two topologies [ARON 71].

For example, the CAMAC standard [COST 72] developed for nuclear instrumentation is a
DSB system, and a DDL serial CAMAC standard [AEC 73] has been proposed.

The IEEE standard 488-1975 Coriginally Hewlett-Packard) [KNOB 75] is a DSB as are
FOXBORO’s INTERSPEC [FOX 73] and Honeywell’s line sharing system [BAIL 76].

The Honeywell system, shown in Figure 4, is a hybrid since all PE’s and devices residing
on branch busses are reached via the switch which repeats the message on all branches.
Main bus communication is carried out in a standard DSB manner.

FIGURE 4  Honeywell Linesharing System.

An additional motivation for these standard communication schemes for distributed
topologies is that devices and instrument manufacturers are encouraged to provide
standard interface to them, thus allowing cheaper systems. Integration of microprocessors
into instruments simplifies the task of providing multiple standard interfaces from a
protocol standpoint.

MAIN BUS 

1 BRANCH 
BUS 



Effects of Distribution On Data Acquisition System Design

Figure 3 pictured a generalized distributed data acquisition environment with the topology
of distribution unspecified. Given the similar characteristics of the acceptable topologies,
DDL and DSB, it is possible to analyze the effect of distribution on data acquisition
systems while treating the topology as a “black box.”

These effects are primarily software and performance related and include: the interprocess
and operating system communications interface, handling of a distributed data base, error
recovery and graceful degradation, and response time and throughput.

Interprogram Communication and Operating System Interface

One form of intertask communication has been proposed which appears to be very
adaptable to distributed multicomputer systems [HANS 69]. All communication involves
transmission of data and synchronization through the exchange of messages between tasks
(including tasks and the operating system and tasks and I/O devices). It is attractive
because this is also the natural approach for task and I/O communication in a distributed
system.

In this scheme, data is communicated by inserting it into a message which is then sent to
the task needing the data. For example, a task wanting data from a common data base
sends a message to one task responsible for maintaining that data base with a request for
specific data. This data is returned in a reply message to the requesting task. Since all
accesses to the data base are through one task, the problem of simultaneous access is
essentially eliminated and moreover access is completely under the control of the one task.

Of course such a system must be very efficient for otherwise the overhead involved in
message exchange might create delays which are intolerable
in a realtime system.

A set of primitives associated with this scheme allow synchronization of multiple tasks,
prevention of lock out of high priority tasks by lower priority tasks, and release of
resources in the event of premature task abortion.

When processes are co-located in the same PE, the message discipline requires only the
source and destination process names. This approach causes several serious problems
where the processes are not co-located. The program must know the eventual location of
each process in the system, and, thus the topology becomes bolted into the application
software. The cost of application software is usually the dominate cost in real time data
acquisition and control systems, and thus such inflexibility is passed on to the user in terms



of a non-optimal topology/processor mix or large non-recurring software costs.
Furthermore, as we shall see later, this program-writing time binding of process to
processor precludes dynamic reconfiguration and load sharing under failure of a processor,
and thus adversely affects graceful degradation.

The approach of choice is to assume that no two processes are co-located and to force all
communications to use the distributed protocols, i.e. communication by unique,process
name and message. The actual process distribution is defined by process tables in each
operating system or in the hardware communications interface. Messages to local
processes are simply turned around in the protocol handier and passed back while
messages to remote processes are transmitted over the DDL or DSB. Thus, the
configuration is quite flexible; binding occurs at systems generation time, and dynamic
reconfiguration is possible if the I/O devices are distributed rather than dedicated to each
PE.

Data Base Considerations

The problems of maintaining physically and logically distributed data bases are well
known, if not solved. In these applications in which processes must access and update
remote data in a real time manner, files or records may be locked to avoid concurrent
updates or interference. When an entire file or record is transferred to a remote processor
for update and eventual rewrite, or when update data is accrued remotely over an extended
period, the lock out scheme is unworkable. To deny the real time processes access to the
existing data for long periods of time is not acceptable, but to allow processes to compute
and act on data which is no longer current may also not be acceptable.

Transferring raw data to the site of the data base and computing updates there defeats the
purpose of remote intelligence and is likely to place a heavy load on the communications
facility.

There are applications in which distributed data base maintenance is easily handled and in
which distributed intelligence is quite meaningful. Figure 3 could represent a data
acquisition environment in which the distributed processors acquire data, convert to
engineering units, alarm check and reduce data in their own local data bases. Only
summary information or alarm conditions are transmitted to the processor and/or data base
processor which controls the logger and operator communications. In this case, each local
data base is independent of the global history file.

Another application occurs in a production control environment in which local data bases
are interrogated periodically to update the global data base, and changes in the global base
are then transmitted to the remote systems affected.



There is a need for a general solution to these problems which allows a user to tailor the
distributed data base to his configuration and application. The microprocessor may help
considerably in this area because of its ability to perform complex computational tasks at
low cost and consequently may be dedicated to such tasks as management of data base
problems.

Error Recovery.  In conventional systems, input/output transfers are completed using a
handshaking synchronization scheme, and data errors on the bus are very infrequent. In
distributed I/O systems, however, errors are more likely, and thus error detection and
correction schemes employed in data communications systems must be considered. Error
correcting codes often occupy too great a fraction of the message bandwidth to be cost
effective, and for most systems and environments, retransmission of erroneous messages is
the scheme of choice.

Standard retransmission schemes exist which prevent lost or duplicate messages in the
event of communication errors [CAM 75). This is extremely important in data acquisition
applications in which counting of events is critical or in the control of a stepping motor.

The recovery from processor element crashes is simplified somewhat by the presence of
microprocessors at all nodes. Processor crashes can be detected by other processors as a
result of time out conventions on messages and the passing of “are you healthy messages?”
Thus, hot restart can be effected by resetting all message synchronization bits to their
initial states after the crashed PE is reinitialized. Note that this solution is valid only in
passive repeater DDL’s, since a crashed PE interface to the loop will disrupt
communications around the loop in an active repeater system.

Graceful Degradation. This attribute is equivalent to failure reconfiguration and the
distributed data acquisition system is constrained to the value of that attribute for
communication path failures. For processing element failures, the same topological
constraints obtain, but the software organization and distribution of resources determine
the extent to which the potential is realized.

For example, in Figure 3, the failure of a sensor/PE would disable input from those sensors
controlled by the PE. However, if the processing site were to fail, its load could be picked
up by the Operator communications PE if the following conditions held: [1] all
input/output devices needed by the processing site were distributed; (2) the operator
communication PE held a copy of the necessary tasks and had sufficient processing
capability; and finally (3) if soft process addressing were employed so that messages to the
processing site tasks would be routed to those tasks in the alternate processor.



To the extent that I/O devices are not bound to a specific PE and that soft addresses are
employed, the potential for failure masking and reconfiguration may be realized.

Throughput and Response Time

The throughput of individual processors in a distributed intelligence system will tend to
improve over uniprocessor multiprogrammed systems because extensive operating system
overhead and context switching time can be avoided by actual concurrency in the system.
System throughput will degrade, however, if there is a significant amount of interprocess
communication among processes which are not co-located because of the communication
delays.

Response time to external events will be at least as good as uniprocessor environments and
perhaps better, since a simple operating system is likely to have a much shorter response
time than sophisticated real time multi-tasking systems (50 users compared to 200-300
users). Of course, if the response processing is located remote from the processor to which
the stimulus is attached, response time will degrade significantly, but this situation is to be
avoided if at all possible and microprocessor; based sensor/PE’s will help.

Peripherals cannot use conventional methods to interrupt processors in a distributed I/O
environment. Instead, demand or LOOK AT ME messages must be transmitted to the
appropriate PE after which a data request message is sent to the peripheral. A message,
rather than single instruction I/O discipline and its attendant protocol overhead will slow
down all I/O. The alternative, dedicating the peripheral to a PE may preclude graceful
degradation in the event the PE itself fails.

Summary

We see then that the availability of microprocessors and the good modularity and
reconfigurability of DSB and passive repeater DDL topologies can provide high
performance data acquisition systems which better satisfy the requirements of these
applications than conventional systems at a lower cost.

A Microprocessor-based DDL Topology for Data Acqusition and Control

To achieve the advantages of distributed data acquisition and control in industrial
applications, it appears that a system will be composed of modules dedicated to a limited
function which in turn are interconnected and communicate with one another so as to act
like an integrated system. Since the nodes in such a system will vary from devices through
microcomputers to minicomputers, the structure for the interconnection is important if
simplicity and reliability is to be achieved [Schof 76].



As an example of the microprocessor and its use in such a system, one distributed system
has been designed and tested [Linn 75] [Schof 75]. This consists of a ring connected
network (DDL) of modules each of which may be a computer, microprocessor, smart
module, or simple I/O device. Because more than one computer exists on the ring and
because more than one device initiates communication, all messages are designed to be
general in that both source and destination address space is provided. Hence there is no
need for one device to act as the central message communication machine. In order to
maximize the simplicity of solving the device contention problem, a delay-insertion
protocol was selected for the ring. This further insures that no device can monopolize the
communication bandwidth of the ring.

The message structure is shown in Figure 5 where messages corresponding to commands,
replies, interrupts, and blocks of data transferred are shown. Message lengths are variable
in the system to accomodate special devices existing in the system, different modes of
communication, and ease of accepting future additions to the system.

The ring network uses the delay-insertion protocol mentioned in the previous section. Thus
a node may transmit a message only when it does not have its message buffer already
switched into the ring. It then sets up the message in the buffer, switches the buffer in and
then acts normally thereafter until it detects a buffer full of null characters, at which time it
removes the buffer. This has both advantages and disadvantages, the former being the
natural limiting of the rate of transmission of messages by any one node and the latter
being the delay time incurred in retriev ng the buffer in case of heavy utilization of the ring.
That is, in a critical time when message traffic is heavy, there may be long delays in
finding a sequence of null characters which permits the retrieving of the buffer so that a
sequence of critical messages from one node may be delayed intolerably.

HEADER 

TEXT 

TRAILER 

ll£SSA6E 
SEPARATOR 

Heider Length: 

Text.Length: 
Troller Length: 

Source ind desttnatton 
lddresses 1nd 11ess19e type 

Sub-address, c..,.nds, 
or datl 

Error detecting code 

fllt11 byte 

3 bytes 
z - 128 bytes 
1 byte 

Seporator: 1 byte 

Appllc1tlon IIOdule 
ca11puter, microprocessor 
1/0 device, ••• 

Microprocessor to hlndle 
ring conmunlcatlon protocol, 
ring Interface, and com,unlcatlon 
with application module 

rtng ring._ ____ .,. 

figure 6 
Use of a alcroprocessor 

Figure 5 In I node 

Message Structures 



This can be alleviated by modifying the delay-insertion protocol to a “shrinking buffer”
alternative. In this case, individual bytes in the buffer are retrieved whenever a redundant
character is detected entering a node. Thus a buffer with 15 characters could be retrieved
by detecting a number of short redundant sequences (null character sequences) rather than
one null sequence of length 15. The improvement in line utilization, throughput, and
response time is dramatic with this change in communication protocol.

Of most concern here is the use of the microprocessor as the ring interface and
communication controller. This software has several functions: monitor and pass messages
through a node (which contains a one byte buffer); detection of messages destined to the
node; insertion of messages onto the node; maintenance of a single message buffer within
the node used in the delay insertion protocol; plus handling of the global addressing of
virtual addresses in the system.

The structure of a node on the network is then as shown in Figure 6. The microprocessor-
based ring interface is responsible for both the communication protocol and the interfacing
to application programs in a computer (micro or mini-computer) or to modules connected
to the ring (set of analog input/output modules for example). The extent to which special
purpose microprocessor I/O hardware would be necessary for the interface is dependent
upon the speed of communication around the ring.

The ring transmits bits within a byte synchronously, and messages (a sequence of bytes
asynchronously. To facilitate a configuration independent software system, a virtual
address system is provided. An address space is divided into pages (128 bytes/page) and
this space addressed by page number and displacement. Pages may reside in any
microprocessor or computer on the ring and may be moved upon demand. Software in the
communication microprocessor at each node permits application programs to access data
on any page, request pages, lock pages in place, transmit pages, etc. Application software
can thus be created using data base stored on these pages along with standard software
modules also stored on pages and later distributed around the system with no change to the
software. A by-product of this organization is that all long messages are standard in that
they consist of transmission of a page of the virtual space. This simplifies the
communication software in the interface microprocessor.

The extensive byte manipulation requirements of the communication application are much
better met in later generation microprocessors. Normal length command and control
messages are less than 20 bytes in length and correspond then to less than 200 bits per
message (some are much less). Transmission of a 128 byte page in the long messages
corresponds to approximately 1300 bits. With a fast microprocessor acting as the ring
interface, approximately 1000 command and control messages per second or
approximately 100 long page transfer messages per second can be transmitted. In a typical



application, the two mix of course and vary from second to second. Nonetheless, the
combination of the messages leads to a bit rate for transmission of less than 200
kilobits/second. It is quite feasible to raise this rate to a more or less standard rate of 250
kilobits/second with little effort and to a megabit/second or more with a hardware assist in
the interface (the microprocessor computing rate cannot respond this quickly unless even
faster microprocessors were used. Nonetheless, the data rates are quite within the current
technological limits. In evaluation of one application involving a great deal of data
acquisition, control, and operator communication, line utilizations of around 40-50% were
found to adequately satisfy the application needs and these were well within the capability
of the distributed microprocessor network above. Furthermore, it has been found possible
to implement microprocessor interfaces without special hardware which can respond
quickly enough to satisfy currently available distributed I/O speed specifications.

The ring structure described above is a modification of serial CAMAC [AEC 73] and
serves as the serial highway as shown in Figure 7. Current research underway at Case
Western Reserve University is focused on discovering to what extent a single
microprogrammable module based upon INTEL 3000 microprocessors can realize all of
the modified CAMAC control and interface functions [BAK 76]:

1) Mastery of the Serial Highway’(Serial Driver).
2) Serial Highway Interface (Direct Connection of an instrument and/or controller to the

serial highway).
3) Mastery of the Data Highway (Crate Controller).
4) Instrumentation Interface (Crate Module).
5) Interface of an arbitrary Processing Element to either the Serial or Data Highway.

The design of the dataway interface is complete. The significant elements of the design
are: use of a bit sliced microprocessor, a pipeline architecture, a vector interrupt scheme,
and a micro program suspendable clock. Each of these elements of the design was
necessitated by the timing standard for dataway operations. A complete operation
including address decoding, function decoding, and data removal from or placement onto
the bus must take no longer than 1 microsecond.

The dataway read and write data paths are each 24 bits wide, and one of the standard 8 bit
microprocessors would require three I/O instruction sequences to read or write on the
dataway. This design contains a 24 bit wide implementation of the Intel 3000
microprocessor system; this allows the dataway to be read or written with a single micro
instruction.



FIGURE 7  Modified CAMC Linesharing Scheme

To reduce the micro instruction cycle to its minimum. A pipelined architecture has been
chosen. The Intel 3000 system allows an implementation in which the determination of the
next micro instruction can occur simultaneously with the execution of data transfers or
ALU functions. This is accomplished by adding a register of edge triggered D flip flops,
the pipeline, to the standard Intel 3000 system.

The design of an instrumentation interface is also complete. This interface provides for
both input and output connections to digital TTL level signals in measurement or control
instrumentation. All Intel 3000 CP functions can operate on this instrumentation interface.
This, therefore, allows a micro program to read, write, clear, selectively set, and
selectively clear signals in the instrumentation. The instrumentation can access parallel
outputs, signal the microprocessor, and enter parallel inputs.

An instrument control module combining the dataway interface and the instrumentation
interface has been designed. At present this design includes two identical instrumentation
interfaces and during the module, execution of a dataway command the dataway address
line, Al, selects between them. This design seems the most logical consequence of the
CAMAC standard’s specification of command operations. However, a change to this
design is being considered which would place a bidirectional data port in one of the two
instrumentation interfaces. The intention of such a change is to create an interfacing facility
which is both a status/control interface and a data interface. This change will allow the
instrumentation control module to interface to the Unibus or a floppy disk as readily as it
now interfaces to A to D or D to A converters. Figure 8 shows the block diagram of this
instrument control module.

PE 

lnst..-nt/control r-.. ,--..,...,...,...,...., 
Module ~ "\./ ' 

SERIAL 
DRIVER CRATE 

CONTROLLER 

0 Ser1al 
1ghway 

__ AE 
---D1nstN11e11t V 

Control Module 

ate 



Figure 8
Block Diagram of an Instrument Control Module

This design is being implemented experimentally by substituting the main memory of a TI
960 computer for the module’s micro processor memory. With such an implementation,
the interfacing abilities of this instrumentation control module can be easily verified. The
completed design and planned implementation focuses on two of the six functional
elements of a CAMAC system: the dataway interface and instrumentation interface.
Control of these two interfaces is readily accomplished with an Intel 3000 microprocessor
system, and the instrumentation control module design which combines these two
interfaces is a flexible and useful tool.

It is hoped that by microprogram modification and by slightly modifying the input/output
structure, the remaining three functions can also be realized using these standard building
blocks. Since the data highway timing is the most critical in the system, the INTEL 3000
microprocessors should handle the remaining tasks easily.

Conclusions

The microprocessor is such a versatile element that the attractiveness of distributed data
acquisition and control systems for industrial applications seems a certainty. Furthermore,
such systems will strip some of the faster, more time critical, more reliability-critical
applications out of process control computer systems. The net result will be a
simplification of process control computer systems together with an extension of
economical applications.

Interrupt 
Request 

M Bus (Data) 

u Memory Address 

Interrupt Control 

1/0 Control 

CP 
Array 

D BYS (Data) 



References

[AEC 73] AEC/NIM and ESONE, “CAMAC Serial System Organization, National
Tech. Information Service, TID--26488, December 1973; “Addendum and
Errata”; May 1975.

[AND 75] G.A. Anderson and E. D. Jensen, “Computer interconnection structures,”
Computer Surveys, vol. 7, No. 4, pp. 197-213; December 1975.

[ARON 71] R.L. Aronson, “Live sharing systems for plant monitoring and central,”
Control Engineering; January 1971.

[Bail 76] S.J. Bailey, “Multiplexor: distributed control design component,” Control
Engineering, Vol. 23, No. 4, pp. 32-36; April 1976.

[Bak 76] C. Baker, Forthcoming Master’s Thesis, Case Western Reserve University;
1976.

[CAM 75] F.I. Camerer, “A full duplex communications algorithm,” A. R. Jennings
Computer Center, Report No. 1164; February 1975.

[COST 72] L. Costrell, “CAMAC - A Modular Instrumentation System for Data
Handling; Revised Description and Specification,” National Technical
Information Service, TID-25875; July 1972.

[Farb 72] D. L. Farher and K. C. Larson, “The system architecture of the distributed
computer system,” Proc. Symposium on Computer Communications
Networks and Teletraffic, Polytechnic Press, Brooklyn, N.Y.; 1972.

[Fox 73] Foxboro Co., “Interspec technical information.” Bulletins 2DC-100, 2DN-
110, 240-100, 240-101, and 240-102, Foxboro, Mass.; 1973.

[Hans, 69] P.B. Hansen, “RC 4000 Software multiprogramming systems,” A/S
Regnecentralen, Copenhage, Denmark; April 1969.

[Knob 75] D.E. Knohloch et al, “Insight into interfacing,” IEEE Spectrum; May 197S.

[Lin 75] E.Y. Linn, J.D. Schoeffler and C.W. Rose, “Distributed Microcomputer Data
Acquisition.” Instrumentation Tech., Vol. 22, No. 1, pp. 55-63; January 1975.



[RUSS 75] R.D. Russell and P. Sparrman, “A technique for integrating remote
minicomputer into a central computer’s file system,” IFAC Realtime
Programming Workshop, Baton Mass.; August 1975.

[Schof 75] J.D. Schoeffler, M. Haelsy and C.W. Rose, “Microprocessorbased
communication and instrument control for distributed control systems,” Proc.
National Electronics Conference, pp. 270-276; October 1975.

[Schof 76] J.D. Schoeffler and C.W. Rose, “High speed microprocessorcontrolled
instrumentation and communications systems,” IEEE Transactions on Nuclear
Science, Vol. 23, No. 1, pp. 3855; January 1976.




