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ABSTRACT

This paper treats the problem of optimal selection of data quantization levels for minimum
error.

No assumptions are made regarding the underlying statistics of the process to be
quantized. A finite precursor sample of the data is analyzed to infer the underlying
distribution. Selection of optimum quantization levels can then be related to the generation
of an optimum histogram for the data record. The optimum histogram is obtained by a
dynamic programming approach for both least mean square error and minimum Chebychev
error criteria.

Transmitted data can then be quantized according to levels specified by the histogram. The
process can be repeated periodically either with a new data sample, if the underlying
process is nonstationary, or performed on the accumulated record in the stationary case.

INTRODUCTION

An important error source in digital telemetering applications arises in the quantization of
analog signals prior to transmission which are to be reconstituted as analog signals upon
reception.

The encoding/decoding scheme, mutually agreed to by transmitter and receiver, is as
follows. L Quantization intervals I1,I2,...,IL and corresponding quantization levels
Q1,Q2 ...Qi , Ii, are agreed to. The intervals Ii are usually contiguous and cover the total
possible range of input signal voltages x(t). At a particular sampling instant tk, the input



analog signal voltage x(tk) is quantized to the level Qi corresponding to the bin interval Ii it
has fallen in. The level Qi (or a symbol representation thereof) is transmitted and the
receiver reconstructed signal will be based on the assumption that x(t) had value Qi at the
sampling instant. Of course, an irreparable error is made and even with noiseless channels
x(t) can not be reproduced with perfect fidelity at the receiver output. Up to the point of
diminishing return where quantization is no greater a contributor to output error than are
transmitter, channel and receiver noise, additional levels of quantization will reduce the
error; but, at the expense of increased transmitted data rate. Thus, both for fidelity and data
rate considerations, the choice of quantization intervals and levels is an important one and
should be made under the guidance of a minimum-distortion-with-minimum-levels policy
to the extent that such a criterion can be devised. For the rare case in which the stochastic
signal x(t) has a known a priori probability density function (pdf) Max, reference 1, has
provided an optimum solution. Here we present a method that requires no such a priori
knowledge and provides additionally remarkably good estimates of tile unknown
underlying pdf.

MINIMAL A POSTERIORI ERROR HISTOGRAM CRITERION

In Max’s method the contiguous quantization intervals Ii = (D1,D2), I2 = [D2, D3)..., IL =
[DL,DL+1) (DI = - 4 ,DL+1 = 4 ) and associated quantization levels Qi are selected to
minimize a distortion D which is defined as the a priori expected value of a differentiable .
on f of the quantization error;

By differentiating D with respect the levels Qi and division points Di, Max obtains 2L-1
simultaneous equations for the unknown parameters. For the particular case he treats in
depth, D is the mean square error (f(x)=x2) and the system of equations becomes

(1)

Equation (2) shows that Qj is the centroid of the pdf p(x) between Dj and Dj+1.

Besides the obvious deficiency of requiring a known pdf, solution of these equations
requires a single parameter search. For example, assume a value for Q1, solve (2) for D2,
solve (1) for Q2 and repeat the procedure. If the resulting QL is indeed the centroid of p(x)
betwee DL and DL+1 = 4 the original Q1 was the correct choice and the computed Qi, Di are
optimal. Otherwise a new Q1 must be tried and the procedure repeated until convergence.



To circumvent these problems we propose a quantization criterion based on an a posteriori
measure of the errors xi-Qj where Qj is the quantization level to which the signal sample xi

is encoded and xi is one of a precursor set of N+l independent samples of x(t) that we
analyze prior to initiating transmission. Thus, based on analysis of the samples
[x0,x1,...,xN], quantization levels and intervals will be selected and relayed to the receiver
for use in signal reconstruction. If N is large enough and x(t) is a stationary process these
intervals and levels will remain in force through all subsequent transmissions. Otherwise,
at prearranged intervals, new levels and intervals based on more recent sample analysis
will be transmitted. With this approach the problem of optimum quantization can be
formulated in terms of the optimum histogram generation problem depicted in Figure 1.
That is, given data sequence x0,x1,...,xN , generate an L-bin histogram with the property
that the total error measure ,L of distances ,i = xi-Qj of all samples xi from their assigned
bin centers Qj is minimized. This problem is solved by dynamic programming methods in
the following section for each of two popular error measures;

(i)  Least Mean Square (LMS) error

(3)

(ii) Chebychev error

(4)

In the latter case the resulting quanitization levels (bin centers) QL are truly geometrically
centered within the quantization interval, while, in the former, LMS quantization levels
will be shown to be centroids of the subset of data falling in the optimally selected interval.
This is a notable similarity with Max’s result (eqn(2)).

SOLUTION BY DYNAMIC PROGRAMMING

We first consider what appears to be an unrelated approximation problem which was
solved by Fryer[2] and Bellman[3]. As shown in Figure 2, we are given a set of N+l pairs
(x0,y0),..., (xN,yN) and wish to fit L lines to the data such that the overall error (LMS or
Chebychev) is minimized. The data are not necessarily equally spaced and the linear
segment intervals                                                                                    may be of unequal
length. Clearly, this problem reduces to one of selection of optimum breakpoint indices       
                            . Once two consecutive breakpoints are specified the optimum linear
approximation Ax+B within the specified segment can be obtained easily for the LMS case
from well known least squares approximation formulas. In the Chebychev case the
optimum first-order-linear segment approximation has the property that the minimum error
must occur three times, in alternating fashion, above and below the approximation curve.



Scheid [4] has used this property to develop a point exchange algorithm that will yield the
optimum solution. The algorithm applies as well to higher order polynomials with the
required number of alternations increasing accordingly.

Whatever the error measure let us designate the resulting minimum error in fitting a linear
segment from xi to xj by H(i,j). For a specified set of breakpoints                                the
total error is then

(5)

in the LMS case and for the Chebychev case

(6)

where B0 = 0, BL = N and, for either case,

(7)

Fryer [2] has shown the futility of attempting the brute force solution of investigating all
possible breakpoint arrangement to determine that yielding minimum overall error. The
number of such arrangements satisifying

is easily shown to be

Thus, for a typical case of 100 points and 10 lines as in an example shown later, the
number of possible arrangements exceeds 1.5 x 1014. Even in the unlikely event that
computation speeds will one day permit each of the 10 required H(i,j) errors to be
computed in a microsecond, the total computation time would approach 5 centuries.

Fortunately this problem is well suited for application of Bellman’s Principle of Optimality.
We suppose that the first breakpoint from the left has been chosen perhaps non-optimally
at index k. The resulting error for the right-most segment is then H(k+l,N). The Principle
of Optimality suggests that we proceed optimally thereafter, i.e. assign the remaining
breakpoints to minimize error over the left samples x0,...,xk. But this minimum left error is
,L-1(k). Thus the total error incurred is



for the LMS case, and

for the Chebychev case. It follows that the overall minimum error satisfies the recursion

(8)

for LMS approximation, and for Chebychev approximation

(9)

where in both cases the initial condition is

(10)
Thus, starting with the ,1 array from eqn.(10) the recursions (8), (9) proceed through each
successive value of the number of lines L until we reach the desired maximum number. At
each stage the minimization over index k reveals the optimum breakpoints and the H(i,j)
computation provides the corresponding optimum linear approximation parameters (slope
A and intercept B). Thus, not only is the best L line fit to the samples x0,...,xN obtained but,
the best J line fit to x0,...,xk for J = 1,2,...,L; k=0,1...,N as well. Moreoever, in cases where
the optimum solution is non-unique, the foregoing procedure will reveal all possible
optimum solutions (breakpoint arrangements).

This is a very elegant solution of an interesting approximation problem; but, what does it
have to do with the optimum quantiziation/histogram-generation problem posed earlier?
The answer, as portrayed in Figure 3, is that we have solved the histogram problem if we
simply sort the input data x0,...,xN in increasing order and use the foregoing technique to fit
zero-order line segments in an optimal fashion to the resulting monotone sequence. The
quantization levels (bin centers) are the resulting zero-order line intercepts, the bin
frequencies are given by the number of xi samples in the segments and the bin widths are
determined by the corresponding segment approximation errors. Note that the resulting
bins are not contiguous; the method for joining them contiguously is described below. We
further observe that owing to the reduction to zero-order approximation, the computations
required for the optimum quantum levels and associated errors are quite simple. For the
LMS case the segment level Qi and error H are simply the sample mean and variance of
the data in the segment. For the Chebychev case, since the data are sorted, Qi = (xRi + xLi)/

2

and H = (xRi - xLi)/
2 where xRi, xLi are the extreme right and left data points in the segment.



SELECTION OF CONTIGUOUS-BIN EDGES AND PDF ESTIMATION

Unless it is known a priori that the input signal can not fall in certain ranges the
noncontiguous bins of Figure 1B should not be permitted. The gaps of Figure 1B and also
arising in the technique illustrated in Figure 2 merely reflect the fact that all possible values
of x can not possibly occur in a finite sample unless the process is discrete. To join the j,
j+1 bins contiguously at some division point Dj, we simply apply Max’s result (1)

(11)

provided that it does not cause overlapping bins. To avoid this Dj is set equal to the value
closest to (11) that satisifies x'Bj # Dj #  x '1+Bj  where xi denotes the sorted sequence and
Bj are the breakpoints. The specification D0 = - 4, DL = + 4 completes the solution of the
quantization problem.

The pdf estimates for interior intervals are

(12)

This estimate is most accurately attributed to the bin center, but, also provides a
reasonable estimate for p(x) at all points x within the segment. For the extreme intervals
the assignment D0 = - 4, DL - 4 will cause the pdf estimate to vanish. We can avoid this if
absolute maximum values of x(t) are known a priori. Other possibilities include extending
these bins beyond their most exterior sample by some multiple of the segment deviation.

RESULTS AND CONCLUSIONS

The following example, illustrate the technique. The xk samples are integerized, computer-
generated random variates given by xk = A sin 2k where 2k is uniform on [0, 2B]. Table 1
lists the sorted sample values and Table 2 provides the dynamic programming 10-segment
approximation parameters. The estimation results are graphed in Figure 4. Note that we
have assumed that the maximum signal amplitude *A* = 1000 is known in order to obtain
density estimates for the first and last interval. The resulting 10 bin Chebychev and LMS
pdf estimates are observed to approximate the ‘true’ underlying pdf

(12)

quite reasonably. An apparent advantage of the LMS estimates over the Chebychev case is
observed at the extreme edges where p(x) is sharply peaked. Since the Chebychev error is
symmetric, the estimates p̂(Q1), p̂(QL) are attributed to the bin geometric centers while the
corresponding LMS bin centers are data centroids that fall much closer to the data
extremes ±A and thus can more accurately portray the singularity nature of the underlying
pdf.



Table 1.  Sorted xk Sample Values

Table 2.  Dynamic Programming Breakpoints, Quantization Levels and Histogram
Bin Division Points

Additional research exploring the accuracy of our method is underway. We hope to report
shortly on comprehensive evaluations of the quantization method described as compared to
Max’s ideal results and on the pdf estimation as compared to the popular Kernel method
[5], [6] and Nearest Neighbor method [7], [8].
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Figure 1.  Optimum Quantization in Terms of Histogram Generation



Figure 2.  Piece-Wise Linear Approximation Problem



Figure 3.  Optimum Histogram Generation Method



Figure 4.  pdf Estimates and Quantization Intervals


