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ABSTRACT

It is known that, for a specified second-order digital filter transfer function, various
realizations with finite precision arithmetic can yield significantly different round-off
noises. For high performance communication and radar signal processing applications, the
need for low round-off noise is clear. The minimum round-off noise n-th order digital filter
of Mullis-Roberts generally requires (n+1)2 multipliers. Most practical systems, however,
desire to use a low number of multipliers. In this paper, we consider the minimum round-
off noise second-order digital filter realization under the practical complexity constraints of
using only four multipliers, two delays, and four two-input adders, The optimum constraint
filter has the same complexity as the know canonic direct-form realization, yet its round-
off noise can be significantly smaller for low-frequency rejection filtering applications.
Some numerical results are presented.

INTRODUCTION

In many communication and radar signal processing problems, a desired overall digital
filter transfer function is specified. If this filter is of even order n , then often, for practical
reasons, it is implemented as cascades of n/2 second-order filters. Thus, with this cascade
assumption, the optimum overall filter design problem reduces to that of the optimum
second-order filter design problem. It is well known that, for a specified second-order
digital filter transfer function, various realizations with finite precision arithmetic can yield
significantly different round-off noises [1, p.153].

Consider a second-order digital filter with transfer function

(1)



If all the filter coefficients {b1,b2,a1,a2} are real-valued, then the zeros {","̄} and poles
{$,$̄} form complex conjugate pairs. A commonly encountered topological realization of
(1) is the canonic direct form II given in Fig.1. In the next section, a multiplicative round-
off quantization noise model for this realization is discussed. Then, minimum round-off
noise realizations with and without complexity constraints are considered.

ROW-OFF NOISE MODEL

In a digital filter that uses fixed-point arithmetic, additions introduce no error when no
overflow occurs. However, the multiplication of two words of B1 and B2 bits generally
yields a new word of B3 = (B1+B2) bits. If B3 is greater than the allowed processor
wordlength B , then some word-reducing operation such as rounding or truncation must be
used. In this paper, we will use only rounding operations.

While the multiplication-rounding of two given finite-length words is a deterministic non-
linear operation, complete deterministic analysis of all rounding operations in a processor
is essentially too complicated for practical consideration. Thus, a simpler random linear
model is used to replace the finite-word multiplication and rounding operation by an
infinite-precision multiplication followed by an additive random round-off noise. Thus, the
linear random round-off noise model, as applied to Fig.1, is shown in Fig. 1'.

Clearly, there are many possible ways to model the round-off noise e of the multiplier-
rounding operations. The simplest models that have been used include the assumptions
[1, p.415; p.310] :

1. The round-off noise ei of the i-th multiplier-rounding operation is a zero-mean
uniformly distributed random variable on [-q/2,q/2] of variance           = q2/12 ,
where q =                   , and Bi is the i-th processor wordlength including the sign bit.

2. The noise ei , modeled as a function of time, is a zero-mean wide-sense stationary
white random sequence with uniform spectral density of           on [-B,B).

3. Any two different noise sources ei and ej are uncorrelated for all times.

4. Each noise source ei is uncorrelated with the input data sequence.

Let H(z) be the transfer function of the filter given by Fig. 1'. Then, the total round-off
noise variance at the output is given by
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In (2), if any ai or bi is an integer, then the corresponding          or           is zero.
Furthermore, if all rounding operations are done to B bits, and all multipliers are non-
integers, then (2) reduces to

(3)

where

(4)

From (2) or (3), it can be seen that the effect of the output round-off noise depends not
only on the processor wordlengths Bi or B through          and          , but also on the
transfer function H(z) . Specifically, the effect of             can be reduced considerably if
the transfer function attenuates over large parts of the frequency bandwidth. This basic
property is important in the consideration of forthcoming minimum round-off noise digital
filters.

OPTIMUM DIGITAL FILTER

In this section, some relevant results on the optimum digital filters without complexity
constraints are summarized. As in this entire paper, the criterion of optimality is in the
sense of minimum total round-off noise. This problem was originally formulated by Kaiser.
[3] and studied in greater detail by Jackson [4],[5]. In recent years, much work has been
done on this problem. Mullis and Roberts [6] have formulated a quite complete theory on
the analysis and design of a minimum round-off noise n-th order digital filter. In their
theory, fixed-point arithmetic is used and all input signals are assumed to be white random
sequences. By using Jackson’s R2 scaling rule, the probability of overflow is restricted to
be sufficiently small, so that the digital filter can be assumed to be a linear system. Then
the output round-off noise is evaluated in terms of internal multiplication-rounding noises
via linear state-variable methods.

Upon coordinate transformations of the internal states of the filter by similarity
transformations, maximum utilization of the dynamic range of the internal states and
minimum output round-off noise is realized. For both equal and unequal state wordlength
filters, remarkably compact minimum output round-off noise variance expressions were
obtained. Explicit evaluation of these expressions is of the order of complexity of
simultaneous diagonalization of two nxn positive-definite matrices which are, in turn,
solutions of Liapunov matrix equations expressed in terms of the state-variable matrices of
the transfer function.



For certain applications, such as narrow bandwidth low-pass filtering, the new Mullis-
Roberts filters can yield output round-off noise variances many orders of magnitude better
than known standard forms. Unfortunately, the complexity of these new optimum filters
grows with the order of the filters. Specifically, an n-th order optimum filter generally
needs (n+1)2 multipliers. Thus, an optimum second-order filter (n=2) requires 9
multiplications.

In the practical realization of such digital filters, either by dedicated hardware or by
software in some programmable signal processors, a large number of multiplications is
generally objectionable. This can be due to large multiplicative CPU time requirements
and/or to the large number of multiplier coefficient memory storage requirements. In the
next section, optimum second-order filters subject to practical complexity constraints are
presented.

OPTIMUM CONSTRAINED COMPLEXITY SECOND-ORDER FILTER

In order to motivate the general discussions on optimum constrained complexity second-
order filters, let us reconsider the canonic direct form II realization in Fig. 1 and its
roundoff noise model in Fig. 1'. The total output round-off noise variance FT

2 is given in
general by Eq.(2) and for equal processor wordlength by Eq.(3). Suppose  H(z) is a
narrowband low-frequency rejection filter on [-2o,2o] with sharp transition regions. This
means

(5)

Thus, Eq.(2) becomes

(6)

and Eq.(3) becomes

(7)
Now, suppose we per-form a “long-hand” division of the numerator by the denominator in
Eq.(l). Then,

(8)



The modified canonic form given by Eq.(8) can be realized in Fig. 2. The corresponding
round-off noise model is given in Fig. 2'. Then, the total output round-off noise variance in
general is given by

(9)

and for equal processor wordlength, is given by

(10)

For the case of the narrow-band low-frequency rejection filter given in Eq.(5), sharp
transition regions imply that the poles are near the zeros, and c1 •c • 0. Thus, H1(e

i2) • 0
for *2*$ 20. Then,

Thus, Eq.(9) becomes

(11)

 and Eq.(10) becomes

(12)
By comparing (6) to (11), we see that the round-off noise introduced by          has been
filtered by H1(z) in the modified canonic form and has not been filtered out by H(z) in the
canonic direct form II. For the equal processor wordlength case, by comparing (7) to (12),
we see that the modified form has a 50% reduction in round-off noise compared to the
canonic direct form II.

In this narrow-band low-frequency rejection filter example, if originally H(z) in Eq. (1)
was restricted to an elliptic digital filter, then b2 = 1 and                . Thus FT

2 for the
canonic direct form II corresponding to (6) and (7) becomes, respectively,

(13)



and

(14)

while FT
2 for the modified form remains that of (11) and (12). By comparing (12) to (14),

we see that, for the elliptic filter, the modified form has a 33% reduction in round-off noise
compared to the canonic direct form II.

At the more fundamental level, the important point to note is that the canonic direct form II
realization given in Fig.1 has the same complexity as that of the modified canonic form in
Fig.2 . In each case, we use four multipliers, two unit delays, and four two-input adders.
The significance of needing four multipliers instead of nine multipliers, as in the Mullis-
Roberts case, is clear for practical implementation.

In the light of the above observations and examples, it is meaningful to find the minimum
round-off noise filter subject to a practical constraint of four multipliers. Szczupak and
Mitra [7] have shown that, under the restriction of four multipliers, two unit delays, four
two-input adders, no products of multipliers appear in the transfer function expression,
there are only 15 possible different topological realizations. These realizations are given in
Figs.3 4, and 5 of this paper and correspond to those given in the same Figs. 3, 4, and 5 in
[ 7]. The basis for the classification of all these realizations into three different figures
depends on the way in which the multipliers are extracted. This rather technical detail need
not concern us here.

Once the topological connections of these filters are given, then the transfer functions H(z)
can be obtained readily in terms of the coefficients all "1 "2, "3 and "4. A summary of H(z)
is given in Table I below and has also appeared as Table I in [7].

For any specified filter transfer function H(z), the round-off noise model discussed above
can be applied to the 15 realizations. In general, for arbitrary transfer function, it is not
possible to conclude the optimality of any one realization from theoretical considerations.
In practice, for a specified H(z) , we need to perform the evaluation of the total output
roundoff noise variances FT

2 for all 15 realizations and then choose the one with the
minimum noise.

For the specific cases of low-frequency rejection filters, with equal processor wordlengths
when the rejection bandwidth [0,20] becomes arbitrarily small, simple explicit results can
be obtained.



THEOREM 1.  Consider a narrow-band low-frequency rejection second-order digital filter
H(z) denoted by Eq.(1), where the normalized total round-off noise variance ratio FT

2/F2 ,
for equal processor wordlengths, is obtained based on the model given in the second
section of this paper. Column 1 of Table II below shows the general case of the FT

2/F2

ratio as the rejection bandwidth parameter 2o which approaches zero with -2 … b1 6 -2,
1 … b2 6 1 , 2 … a1 6 2 , and -1 … a2 6 -1. Column 2 shows the general elliptic filter results
with the assumptions of  -2 … b1 6 -2, b2 = 1 , 2 … a1 6 2 , and -1 … a2 6 -1. Column 3
represents the special elliptic filter results with assumptions of b1 = -2, b2 = 1, 2 … a1 6 2 ,
and -1 … a2 6 -1/



TABLE II.  Normalized total output round-off noise variance ratios FFT
2/FF2

of equal processor wordlengths for various cases of narrowband
low-frequency rejection fitters.

Several comments can be made on the results presented in Table II. The FT
2/F2 ratios in

Columns 1, 2 and 3 can take values of 2, 3 and 4 . In Column 4, results are given for a
specific second-order elliptic digital filter when H(2) has 1 dB ripple in the pass-band of
[0.028B,B] , and has a rejection of greater than -39 dB on [0,0.004B] . The filter
coefficients for this specific filter are b1 = -1.99999 , b2 = 1 , a1 = 1.91016 , and
a2 = -.91699. For this example, a minimum FT

2/F2 ratio of 2.18 is obtained. From all the
results in Table II, it seems that the realizations given by 3a and 3c are optimum in the
sense of minimum round-off noise generation for low-frequency rejection purposes. It is
interesting to note that realization 3a is indeed the modified canonic form presented in
Fig. 2. The canonic direct form II, which is realization 3b, is not optimum for low-
frequency rejection filtering purposes.

CONCLUSION

In this paper, we studied the minimum round-off noise second-order digital filtering
problem under the practical complexity constraints of four multipliers, two delays, and four
two-input adders. For purposes of narrow low-frequency rejection filtering, explicit
optimum realizations are obtained. Of course, all the results obtained here are based on the



simple linear random model where all round-off errors are uncorrelated with the data. In
principle, these assumptions lead to optimistic round-off noise variances. Considerable
simulations have been done on these 15 realizations. While the simulated round-off noise
variances are indeed larger than that evaluated from the simple analytical model, the
relative ordering of the advantages of the realizations appears to be still preserved. That is,
for low-frequency rejection filtering applications, simulation results still indicate
realizations 3a and 3c to be optimum. More detailed results on minimum round-off noise
digital filter under practical constraints will be presented in later publications.
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FIG. 1.  Canonic Direct Form II FIG.1'.  Round-off Noise Model
Realization. for Figure 1.

FIG.2.  Modified Canonic Form FIG.2'.  Round-Off Noise Model
Realization. for Figure 2.



FIG. 3.  Constrained Complexity FIG.4.  Constrained Complexity 
Second-Order Filter Realizations -- Second-Order Filter Realizations --

(Part 1). (Part 2).

FIG. 5.  Constrained Complexity Second-Order
Filter Realizations --(Part 3).


