AN ORGANIZED APPROACH TO HARDWARE
DIAGNOSTIC DESIGN

Submitted by
Frank Murphy
Aydin Computer and Monitor Division
700 Dresher Road
Horsham, PA 19044

ABSTRACT

The built-in diagnostic test has taken on an increased role as a maintenance tool in today’s
complex electronic systems. While the ultimate diagnostic would exercise all of the major
functions in a system and instantly isolate and identify any fault down to the specific part,
many practical problems stand in the way. Using the diagnostic facility installed in a recent
frame synchronizer/decommutator for the Jet Propulsion Laboratory (JPL) in Pasadena, the
author attempts to show the logical approach, considerations, and compromises necessary
to design the best possible diagnostic routine in a telemetry processor.

INTRODUCTION

In recent years, the built-in diagnostic test has progressed from being almost a novelty to
being virtually an essential element of many complex electronic systems. While the
ultimate goal of the diagnostic is to exercise the system’s circuitry and to detect and isolate
any system problem down to the specific part at fault, achieving this goal from a
completely automated standpoint is nearly impossible. Why? By examining the real case of
the development of a diagnostic routine for a frame synchronizer/decommutator recently
designed for the Jet Propulsion Lab (JPL) the author will show the considerations and
compromises necessary to develop a viable diagnostic facility in a telemetry processor.

THE JPL FRAME SYNCHRONIZER/DECOMMUTATOR

The diagnostic routine under discussion was needed for a frame synchronizer/
decommutator designed for the Deep Space Network of the Jet Propulsion Lab for use in
the Magellan Mission. The function of the unit was to break up serial frames of data into
blocks of parallel words and to add header words into each block with status information
concerning frame synchronization state, block count, frame sync pattern errors, etc.
Previously done in software, the real-time function now called for a full-function



synchronizer merged with two FIFO buffers, one for the data, and one for the header
information. An sequencer would combine the two at the output. Aside from the timing
complexities of matching the proper status information with its status, the data flow was
basically simple. Each unit had three circuit cards: two synchronizer/decommutators and
one microprocessor control card. Control was provided by either a remote RS-232 port or
front panel keystroke input, aided by a gas plasma display.

JPL had a good track record with the diagnostic abilities of their other equipment.
Technicians liked the simple checkout procedures and management liked the reassurance
they provided. It was no surprise then that one of the requirements of the new design was
an automated diagnostic routine that would isolate any fault down to the IC level. Though
this requirement sounded very simple, the obstacles to its implementation were formidable.

THE LIMITATIONS

First, the system would have to exhibit a fairly high level of viable operation just to run the
diagnostic. Many possible failures concerning the controlling microprocessor/PROM
networks, control interfaces, or power supplies would leave the unit “braindead” and
incapable of even delivering any useful information much less gathering it. Second, even in
a simple, serial, data processing path like this one, many faults could be so fundamental
that a processor-driven diagnostic looking at the output would not be able to derive any
information about the problem.

What if a main clock driver died and data could not get past the input buffer? In cases like
these the only possible solution would be to get out an oscilloscope and poke around a
logical list of signals. The overlapping of IC gate usage between functional blocks could
also help to make fault isolation difficult. One gate in an IC might belong to a very
specific, detectable function while another might leave the technician in the “fog” of a
problem that is acknowledged, but impossible to isolate by test results. Also, while a given
parameter setup could exercise the unit very well, it could not be expected to exhaustively
check every bit of every setup parameter the way a good acceptance test procedure could.

THE COMPROMISE

So while perfection could not be attained, the task of engineering a solution has always
been to find the best possible compromise. We decided that even though we could not
achieve a completely automated test that would tell the operator just which IC was bad,
we could design an overall step-by-step procedure that, if followed, would lead the
operator to detect and isolate most failures to an IC or group of ICs. The procedure
involved automated tests and technician investigation in an organized plan. Would the plan
detect and find every single problem? Maybe not, but then how could one even simulate



the myriad of possible random breakdowns to test the diagnostic? We felt confident that
the procedure would find the overwhelming majority of flaws, and we planned to test it by
removing all of the IC’s, one by one, to verify the diagnostic’s operational effectiveness.

Our 1nitial plan to acquire diagnostic information was to implement an output port, parallel
to the real output, but accessible by the setup processor. We thought that we might
improve the fault isolation process by adding special circuitry to the board to acquire
intermediate circuit information. However, as the main design progressed, we had to
abandon these plans as the circuit cards became completely full.

THE FINAL PRODUCT

What we termed the “diagnostic facility” was a logical flowchart designed to find and
repair any malfunction. The whole facility involved nine automated tests that ran in
sequence on power-up. Based on where the tests failed the operator would either replace
an IC or isolated group of Ics, or perform some test check such as a voltage check, or run
a self-contained simulator stream and compare real signals to ideal traces in the manual.
The best way to describe the diagnostic is to follow the chart from the most fundamental
failures, and on through complete system verification.

The flowchart began with the unit powering up completely dead or operating erratically.
The technician was led through a series of power supply voltages checks, followed by
checking various critical signals on the microprocessor board, such as clocks, resets,
interrupts, and memory reads. When the network of the microprocessor, memory, the front
panel, and the frame synchronizer/decommutator setup were finally working, the
automated tests would begin to provide answers.

There were three types of automated tests which ran in the following order: (1) memory
checking tests that confirmed PROM checksums or wrote to and read back all RAM
locations, (2) register tests that wrote to and read back all setup registers, and (3) frame
sync/decom tests that ran on-board, canned simulator patterns through unique parameter
configurations and compared the output header words and data to a table of known, good
results.

Of the nine automated tests, the initial memory and register tests were very effective at
pinpointing a failure, usually to a specific IC. After checking individual PROM checksums
and RAM viability, each hardware register on the frame sync/decom boards was checked.
These registers stored the control bits that told the synchronizer which mode to operate in
and what count values to give variable parameters. The diagnostic test wrote and read
back all 5’s and all A’s to these registers. Any individual failed register was detected
quickly and reliably. We often wished that all of the ICs could have been tested that easily.



The last group of automated diagnostic tests checked all of the frame synchronizer/
decommutator functions. The only “window” we had into the unit’s main data reformatting
function was a port to the final parallel output of the synchronizer/decommutator. This port
was completely parallel to the normal output of the unit, so it allowed the control
microprocessor to read back the exact data that, in normal operation, would go out the rear
panel. All of the frame sync/decom tests consisted of setting up the parameters, running a
canned format, and then checking the contents of the output. The user could then compare
these results to tables of known good results in the manual. In this way the raw information
was available to the user with all of its sometimes subtle, but important, clues to the
failure.

Aside from the fact that it required most of the processing circuitry to work, this proved to
be an excellent diagnostic vehicle. With access to this information, the operator would be
able to tell not only what was wrong, but how it was wrong. For example, the headers
contained frame sync errors and status, so the operator would be able to see in the case of
an incorrect sync state advance if the sync state logic was at fault or if the error detector
had reported the wrong number of errors. Even though we had designed a simple repair-
by-numbers procedure that anyone could follow, I emphasized the value of this raw
information during all design reviews with JPL.

Because these tests relied heavily on the overall ability of the circuitry to move data
through the entire unit there was a large grey area where a fault could leave the “pipeline”
blocked and no useful information would be available. In these cases the operator would
be instructed to turn on a canned simulator pattern and, using an oscilloscope, compare a
series of test points to known good signal signatures. The assumption was that the failure
would be found when the real signals deviated from the expected. We agreed that what we
were actually trying to do was to systematically design, and document the instinct and
intelligence of a skilled troubleshooter.

Once the basic operation of the frame synchronizer was achieved, meaning that the
synchronizer could lock up and that reasonably correct data could flow through the unit,
then the final group of frame sync tests would be run. As before, a canned simulator
pattern would be run through a specific setup, but now all of the various header words in
the data output would be checked, one by one. These tests proved very effective since
each header word was built from a very specific group of circuitry. About half were
counters such as the large block counter or the valid bits counter. The other half were
status bits, such as frame sync state, bit slip, and data polarity. Intricate parameter setups
and data patterns were required to completely exercise these complex functions. Another
complication was that in normal operation of the unit, the synchronizer could sync up on
the MSB, LSB, normal, or inverted form of the data. Since separate hardware supported
each of these possibilities, each test was actually run four times, once for each type.



CONCLUSION

We verified the completeness and effectiveness of the diagnostic test by pulling out all of
the ICs, one by one, and found the results very interesting. Over 95% of the ICs were
actually recognized by the diagnostic, meaning that it would not pass with them out. The
only ICs invisible to it were the extreme input and output drivers surrounding our test input
and output points. Around 35% of the missing ICs could be detected either specifically or
as belonging to a small group of ICs. These included the read-back registers which were
detected individually and the ICs directly and completely responsible for a specific header
word. The remaining 60% of the ICs were detected as missing, but would require the
operator to get out an oscilloscope and follow the trace procedure. We were all pleased
with the final results of the diagnostic, and we felt that we had made the best compromise
possible. We all knew that the perfect diagnostic was not realistically attainable, but within
the time and physical restraints that we had, we felt we had designed the best diagnostic
facility possible.



