
SOFTWARE SUPPORT FOR A STORED PROGRAM
PCM DECOMMUTATOR

Dwight M. Peterson
Fleet Support Department

Fleet Analysis Center
Corona, CA 91720

ABSTRACT

Telemetered data generated by missile systems has become increasingly complex with the
inclusion of asynchronous data streams, variable word lengths, and discrete encoding. The
display of this data for analysis purposes requires sophisticated equipment, usually
designed with a programmable architecture. This paper describes software support that
was developed for a stored program PCM decommutator. The software includes a cross
assembler and supports downline loading of the decommutator from a host computer.

INTRODUCTION

A stored program PCM decommutator accepts input telemetry data and obtains frame
subframe, and sub-subframe synchronization by utilizing internally stored instructions. The
decommutator assigns Identification Tags (ID TAGs) to any or all syllables in each frame,
optionally performs arithmetic logic operations, and selectively outputs data to a remote
computer or Digital to Analog Converters (DACs). To use the decommutator to process
data generated by a specific telemeter, machine language instructions must be generated.

Programming for the decommutator is done at the machine language level in hexadecimal
format. As decommutator programs increase in length and become more complicated, a
mnemonic language becomes increasingly desirable to assist a programmer in writing
programs.(1)

The Fleet Analysis Center has developed a cross assembler for the Aydin Monitor Systems
Model 1126B stored program PCM decommutator, together with a program which
downline loads machine language instructions to the decommutator from a host computer.

THE CROSS ASSEMBLER

An assembler allows a mnemonic based language to be used when programming at the
machine level. The cross assembler developed by the Fleet Analysis Center was written in
FORTRAN IV to run on a PDP-11 minicomputer. It will automatically assign memory
locations, compute branch offsets, assure that data fields are within a specified range, and
generate machine language instructions for the decommutator.

The cross assembler makes two passes through the source decommutator program. The
main purpose of pass 1 is to build a local symbol table and perform a rudimentary syntax
check of each source statement. During pass 2, the cross assembler simultaneously writes
the machine language code it generated to an output file and creates an assembly listing.
Errors found during the assembly process are flagged with an error description that is
included in the listing.

The decommutator source program is composed of a sequence of source coding lines.
Each line contains a single assembly language statement. The assembly language statement
may consist of as many as four fields. These fields are identified by their order of
appearance within the assembly language statement. The format of the assembly language
statement is:

Label: Op-code Operands ; comments

The label and comment fields are optional. The op-code and operand fields are
interdependent; when both fields are present in a source statement, each field is evaluated
by the cross assembler in the context of the other. Each of the four fields, if present, uses
the tab character as a delimiter.

A label is a means of symbolically referring to physical memory location within a program.
When a label is used in a decommutator program, both the label and the value of the
current location counter are entered into the symbol table. The current location counter is a
means by which the cross assembler assigns memory addresses to the source program
statements as they are encountered during the assembly process. Memory addresses
assigned by the cross assembler are absolute and represent the actual physical address
used by the decommutator.

Two operating modes exist within the cross assembler. The first is used to assemble
decommutation instructions (Decom mode), the second to assemble computation module
instructions (Comp mode). The cross assembler defaults initially to Decom mode, and the
ENA directive is used to change modes to Comp mode. Two modes are required because

address calculation is performed differently for decommutation and computation module
instructions.

Programs for the decommutator are written in assembly language for all missile telemetry
formats. As display requirements for a particular telemetry format change, the source code
is modified and processed by the cross assembler to generate a new machine language
program.

The instructions used by the cross assembler are listed in Table I.

TABLE I. Instructions Used By The Cross Assembler

I. DECOM INSTRUCTIONS

OP Code Operands Description

DST C, P, L/M, LENGTH, IDTAG Distribution
JMP DISPLACEMENT Jump
SF1 I, S, DISPLACEMENT Jump to subframe #1
SF2 I, S, DISPLACEMENT Jump to subframe #2
SF3 I, S, DISPLACEMENT Jump to subframe #3
SF4 I, S, DISPLACEMENT Jump to subframe #4
SFS I, S, DISPLACEMENT Jump to subframe #5
RET Jump return

II. COMP INSTRUCTIONS

OP Code Operands Description

SCL C, CND, +/-, SCALE, OFFSET Y=M(X±B) scaling
OFS C, CND, +/-, OFFSET Y=X±B offset
SUM C, CND Running Summation
OB1 C, LOC, MASK Code conversion
OB2 C, LOC, MASK Code conversion
OBS C, LOC, MASK Code conversion
AND C, VALVE Logical AND
OR1 C, MASK Logical OR
XOR C, MASK Logical exclusive OR
NAN C, MASK Logical NAND
NOR C, MASK Logical NOR
NXO C, MASK Logical Not EX OR

MAC C, VALVE, MASK Mask and compare
COM C, VALVE Compare
DLC C, CND, F/D, EOF, FMT/LOC Decom list change
DEP C, ASRC, AREG, ADST, BSRC, BREG, BDST Discrete event
DBO C, CND, DTRANS, REG, DREG, BSRC, BDST Discrete proc
BRN C, CND, ADDRESS Conditional branch
NOP No output

III. ASSEMBLER DIRECTIVES

OP Code Operands Description

ENA DECOM/COMP Enable Decom/Comp mode
LST ADDRESS Change location counter address

MODEL 1126B DECOMMUTATOR ARCHITECTURE

The Model 1126B PCM decommutator(2) is controlled by machine language instructions
stored in an internal Random Access Memory (RAM). Two groups of instructions exist:
Decommutation Instructions and Computation Instructions. The first group of instructions
is used for the decommutation of incoming data and the second is used to manipulate the
data in the computation module.

Decommutation Instructions are stored in an 8K x 24 bit RAM memory. This will be
referred to as the Decom memory. Instructions in the Decom memory are grouped in a
sequential list, called a main frame distribution list, in which each instruction defines a
word in the PCM telemetry format. The first instruction in the sequential list corresponds
to the first word in the telemetry format, the second instruction to the second word, and so
on. The list continues until the last word in the format is defined; by convention, the last
word is the Frame Sync Word. A word in the telemetry format which is not
subcommutated is programmed with a distribution instruction. The distribution instruction
defines the Least Significant Bit (LSB)/Most Significant Bit (MSB) alignment and the
number of bits in the word, assigns a unique Identification Tag (ID TAG) to the word, and
determines whether the word should be ignored, passed to the computer output port, or
passed to the computation module. A word in the telemetry format which is
subcommutated is programed with a Jump to Subframe instruction. The Jump to Subframe
instruction gives the address of a sequential list in the Decom memory which contains
additional instructions required to decommutate the subframe. The sequential list, called a
subframe distribution list, usually contains distribution instructions. Supercommutation is
handled by using multiple distribution instructions which assign the same ID TAG to each
supercommutated word.

Computation module instructions are stored in an 4K x 24 bit RAM memory. This will be
referred to as the Comp memory. Computation module instructions are used to manipulate
the incomming data by shifting, logic operations, code conversion, etc.

PROGRAMMING EXAMPLE

Figure 1 shows, in diagram form, the SM-2 FTR missile telemeter format. Each block
represents a word in the telemetry format which is identified by a function number located
inside. The function number is assigned arbitrarily to represent telemetered missile
functions like vertical acceleration, tail position, etc. The widths of the blocks in Figure 1
indicate the lengths of the words; a narrow block indicates an 8-bit word, and a wide block
indicates a 12-bit word.

The beginning of the main frame distribution list required to decommutate the FTR missile
telemetry format is shown in Table II for the first 24 words utilizing cross assembler
instructions.

The first word in the FTR telemetry format is an Identification (ID) counter. The counter
increments from 0 to 5 by 1 every 108 words and is used as an index to define the location
of subcommutated words. The first word is programmed with a SFI (jump to subframe #1)
instruction because it contains subcommutated data. The SF1 instruction defines word 1 as
having the ID synchronization counter (S present) and defines the mnemonic S001 which
represents the address of the subframe distribution list.

The second word is programmed with a DST (distribution) instruction which defines the
word as being LSB first, 8 bits in length, and assigns the value associated to the mnemonic
F01 as the ID tag. The cross assembler will scan its symbol table and insert the numeric
value associated to the mnemonic F01.

Words 3 through 13 are programmed in a manner identical to that used in programming
word 2 except that different mnemonics are used to define the ID TAG field of the
distribution instruction.

The distribution instruction used to decommutate word 14 is identical to that used for word
2. This is beacuse function number 1 is supercommutated and appears in words 2, 14,
26,...,etc. Supercommutated data is processed by the decommutator by haveing the same
ID TAG defined for all words which contain identical information.

TABLE II. Beginning Of Main Frame Distribution List

Mem DECOM OP
Adr Instr Label Code Operands Comments

0200 9 8 0062 SF1 ,S,S001 ;Word 1 ID Count Subframe
0201 5 7 018C DST C,,L,8,F01 ;Word 2 Function 1
0202 5 7 018F DST C,,L,8,F02 ;Word 3 Function 2
0203 5 7 0192 DST C,,L,8,B ;Word 4 Function B
0204 5 7 0193 DST C,,L,8,F03 ;Word 5 Function 3
0205 5 7 0194 DST C,,L,8,F04 ;Word 6 Function 4
0206 5 7 0195 DST C,,L,8,F05 ;Word 7 Function 5
0207 5 7 0196 DST C,,L,8,F06 ;Word 8 Function 6
0208 5 7 0197 DST C,,L,8,F07 ;Word 9 Function 7
0209 5 7 0198 DST C,,L,8,F08 ;Word 10 Function 8
020A 5 7 0199 DST C,,L,8,F09 ;Word 11 Function 9
020B 5 7 019A DST C,,L,8,F10 ;Word 12 Function 10
020C 5 7 019B DST C,,L,8,F11 ;Word 13 Function 11
020D 5 7 018C DST C,,L,8,F01 ;Word 14 Function 1
020E 5 7 018F DST C,,L,8,F02 ;Word 15 Function 2
020F 9 4 0063 SF1 I,,S016 ;Word16 Subcom WD16
0210 9 4 0069 SF1 I,,S018 ;Word18 Subcom WD18
0211 9 4 006F SF1 I,,S019 ;Word19 Subcom WD19
0212 9 4 0075 SF1 I,,S021 ;Word21 Subcom WD21
0213 9 4 007B SF1 I,,S022 ;Word22 Subcom WD22
0214 9 4 0081 SF1 I,,S024 ;Word24 Subcom WD24

Word 16 is programmed with a SF1 instruction much like word 1. However, word 16
contains information which must be indexed by word 1 before it has meaning. When the
ID counter in word 1 has a value of zero, then word 16 contains function G1. If word 1
contains a one, then word 16 contains function G23. The SF1 instruction that describes
word 16 defines an Indexed branch (I present) to the subframe distribution list defined by
the mnemonic S016. The 1126B decommutator will take the address defined by the
mnemonic S16 and add to it the value of the current ID counter defined by word 1, and
fetch the correct distribution instruction from the subframe distribution list. The subframe
distribution list for word 16 is programmed as shown in Table III.

TABLE III. Subframe Distribution List For Word 16

Mem DECOM OP
Adr Instr Label Code Operands Comments

0263 5 B 019C S016: DST C,,L,12,G001 ;G001 ID count 0
0264 5 B 019D DST C,,L,12,G023 ;G023 ID count 1
0265 5 B 019E DST C,,L,12,G045 ;G045 ID count 2
0266 5 B 019F DST C,,L,12,G067 ;G067 ID count 3
0267 5 B 01A0 DST C,,L,12,G089 ;G089 ID count 4
0268 5 B 01A1 DST C,,L,12,G111 ;G111 ID count 5

After all main frame and subframe distribution instructions required to describe a telemetry
format have been defined, the cross assembler is placed in comp mode by the ENA
directive. The mnemonics that defined the ID TAG field of the distribution instructions
used in the main frame and subframe distribution lists above appear as labels for
computation module instructions. This is illustrated by the cross assembler instructions in
Table IV.

The LST directive is used to change the cross assembler location counter. The functions
F01 and F02 are converted from 2’s complement to offset binary and output to Digital to
Analog Converters (DACs) 1 and 2, respectively. The remaining functions are defined but
use a No Output (NOP) instruction to inhibit DAC output.

Defining the mnemonics for all distribution instructions in the computation module section
of the source code allows the cross assembler to automatically generate ID TAG values.
All mnemonics are defined, whether or not the function will be output to DAC’s or
requires the processing capabilities of the computation module.

During the assembly of the source code, the cross assembler saves all mnemonics and the
numeric values assigned to them in a symbol table. Table V is the symbol table for all the
above decommutator instructions.

After a decommutator program has been assembled, a listing of the source code and a
downline load file are generated. The format of the listing is identical to that of the
programming examples shown above. The downline load file contains the physical
memory address and the decommutator machine language instruction in hexadecimal. The
downline load file for the main frame distribution list programming example would appear
as shown in Table VI.

TABLE IV. Computation Mode Cross Assembler Instructions

Mein DECOM OP
Adr Instr Label Code Operands Comments

2000 ENA COMP ;Enable Comp Mode
218C LST 0218CH ;Start at 0218CH
218C 7 A 0080 F01: XOR C,080H ;Sign
2180 3 9 8C01 SHF C,,L,8,D,A,1 ;Output DAC 1
218E B 0 0700 NOP ;Return
218F 7 A 0080 F02: XOR C,080H ;Sign
2190 3 9 8C02 SHF C,,L,8,D,A,2 ;Output DAC 2
2191 B 0 0700 NOP ;Return
2192 B 0 0700 B: NOP ;Return
2193 B 0 0700 F03: NOP ;Return
2194 B 0 0700 F04: NOP ;Return
2195 B 0 0700 F05: NOP ;Return
2196 B 0 0700 F06: NOP ;Return
2197 B 0 0700 F07: NOP ;Return
2198 B 0 0700 F08: NOP ;Return
2199 B 0 0700 F09: NOP ;Return
219A B 0 0700 F10: NOP ;Return
219B B 0 0700 F11: NOP ;Return
219C B 0 0700 G001: NOP ;Return
2190 B 0 0700 G023: NOP ;Return
219E B 0 0700 G045: NOP ;Return
219F B 0 0700 G067: NOP ;Return
21A0 B 0 0700 G089: NOP ;Return
21A1 B 0 0700 G111: NOP ;Return

A program was written which reads the contents of the downline load file and transfers the
instructions to the decommutator via a contractor supplied computer interface. The
program performs a load followed by a verify for all instructions contained in the downline
load file. Verify errors cause the memory address, expected and found value to be output
on the user terminal.

TABLE V. Symbol Table

Mne-
monic

Decimal
Value

Hexa-
decimal
Value

Mne-
monic

Decimal
Value

Hexa-
decimal
Value

Mne-
monic

Decimal
Value

Hexa-
decimal
Value

B
F01
F02
F03
F04
F05

00402
00396
00399
00403
00404
00405

0192
018C
018F
0193
0194
0195

F06
F07
F08
F09
F10
F11

00406
00407
00408
00409
00410
00411

0196
0197
0198
0199
019A
019B

G001
G023
G045
G067
G089
G111
S016

00412
00413
00414
00415

00417
00099

019C
019D
019E
019F
01A0
01A1
0063

TABLE VI. Downline Load File For Main Frame Distribution

Mem DECOM Mem DECOM
Adr Instr Adr Instr

0200 9 8 0062 020B 5 7 019A
0201 5 7 018C 020C 5 7 019B
0202 5 7 018F 020D 5 7 018C
0203 5 7 0192 020E 5 7 018F
0204 5 7 0193 020F 9 4 0063
0205 5 7 0194 0210 9 4 0069
0206 5 7 0195 0211 9 4 006F
0207 5 7 0196 0212 9 4 0075
0208 5 7 0197 0213 9 4 007B
0209 5 7 0198 0214 9 4 0081
020A 5 7 0199

REFERENCES

1. Wester, John G., and Simpson, William D., 1976, Software Design for
Microprocessors, Texas Instruments Incorporated.

2. Aydin Monitor Systems, March 27, 1978, Operation and Maintenance Manual for
Model 1126B PCM Decommutator.

FIGURE 1. SM-2 FTR MISSILE TELEMETRY FORMAT

